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Abstract

We present a research study aimed at testing of applicability of machine learning

techniques for prediction of permeability of digitized rock samples. We prepare

a training set containing 3D images of sandstone samples imaged with X-ray

microtomography and corresponding permeability values simulated with Pore

Network approach. We also use Minkowski functionals and Deep Learning-based

descriptors of 3D images and 2D slices as input features for predictive model

training and prediction. We compare predictive power of various feature sets

and methods. The later include Gradient Boosting and various architectures of

Deep Neural Networks (DNN). The results demonstrate applicability of machine

learning for image-based permeability prediction and open a new area of Digital

Rock research.
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1. Introduction and Justification

Digital Rock Physics is an innovative approach for computing the properties

of rocks. The paradigm of Digital Rock Physics is image-and-compute: the rock

sample is imaged to obtain a 3D representation of the mineral phase and pore

space, and this 3D representation is then used to simulate physical processes in

the sample. [1, 2, 3, 4].

Recent methods of 3D imaging of pore topology include micro-scale x-ray

computed tomography (µxCT), which images rock samples with resolution down

to tens of nanometers (voxel size) or hundreds of nanometers (physical resolu-

tion). µxCT enables the internal structure of fine-structured samples to be

imaged accurately and non-destructively. After removal of µxCT scanning ar-

tifacts and segmentation [1, 2], the scan is processed to retain the samples

petrophysical properties.

Applications of Digital Rock technologies include:

• the calculation of transport properties such as absolute permeability and

relative permeability [5, 6, 7, 4];

• the calculation of electric, elastic, geomechanical properties and NMR

response [5, 4, 8];

• screening enhanced oil recovery methods [9];

• assessing the potential efficiency of chemical treatment for well stimulation

[10].

Recent advances in high-resolution imaging, high performance computing

and Machine Learning will lead to new and more effective computation.

The present work applies advances in Deep Learning image processing to

Digital Rock Physics. Our goal is to build fast approximation models, or so-

called surrogate models, to predict permeability based on the results of physical

modeling (an example of such modeling can be found in [11]). Such models are
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an acknowledged method for solving various industrial engineering problems

[12].

Using the VGG-16 DNN [13] network, we recover a set of descriptors for

the 2D layers, which compose the 3D image, and utilize their low-dimensional

representation to compute sample permeability. The results outperform the

frequently used technique of using Minkowski functionals as input features for

a machine learning algorithm to predict logarithmic permeability.

We also assess the applicability of conventional Deep Learning models con-

volutional neural networks (CNNs), which are frequently used in the analysis

of multidimensional data to µxCT voxel rock scans. We apply CNNs in an

end-to-end fashion to simultaneously extract features and carry out regression

for permeability prediction. The advantage of this approach is that it does not

require manual feature engineering, but provides equally accurate results.

2. Data Acquisition

We used a sample from the Berea Sandstone Petroleum Cores (Ohio, USA)

for model evaluation. The 3D image already had its artifacts removed and its

segmentation computed by Imperial College London. The segmented sample

makes no distinction between different rock phases, denoting every rock voxel

as 0, and every pore voxel as 1. The initial sample consisted of 400× 400× 400

elements with voxel size of 5.345 µm.

Figure 1: Berea sandstone sample

To generate a dataset for machine

learning algorithms, the sample was

cut into intersecting 100 × 100 × 100

voxel cubes with shift of 15 voxels and

same step size of 5.345 µm, giving a

dataset of 9261 samples in total. Each

of these smaller samples can be exam-

ined as an independent rock image,

retaining some geometrical properties
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of the parent Berea sample.

To compute initial permeability

values for voxel cubes in the dataset, we used a pore-scale network modelling

code (courtesy of Taha Sochi) [14], paired with OpenPNM framework [15]. The

network model is a simplified representation of rock geometry, consisting of

spherical pores connected by cylindrical throats, usually stored in Statoil format.

The network representation was then used to compute the rock permeability of

each cut rock sample, making use of Darcys law and taking the flow type to be

Stokes flow. The result was a dataset of 9261 100× 100× 100 voxel cubes and

corresponding permeability values, measured in millidarcies. The by-product of

the calculations is a set of 9261 network models.

3. Regression on Generated Features

3.1. Feature generation

We considered three different approaches to feature generation for regression.

First, we tried to explicitly use characteristics of network models. Second, we

computed a well-known set of geometrical descriptors, Minkowski Functionals,

for use as an input for the predictor. Finally, we used a set of 2D image descrip-

tors with reduced dimensionality, acquired using VGG-16 DNN and Principal

Component Analysis (PCA), as a feature set.

Network characteristics. We considered a number of network model character-

istics, which could influence the permeability value for a given sample. These

characteristics are: median pore radius, mean pore radius, median throat radius,

mean throat radius, median throat length, mean throat length, median pore

connectivity number, mean pore connectivity number, and total pore count. As

in Stokes flow, we considered advective inertial forces to be small, compared

to viscous forces. The permeability of the sample is then proportional to the

area of the phase transition surface, which, in turn, is proportional to certain

included characteristics. However, this approach proved inferior to the other

two approaches.
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Minkowski functionals. Minkowski functionals (also known as intrinsic volumes

or quermass integrals) are additive morphological measures, initially defined for

convex objects in the field of integral geometry. It has been shown that every

measure on the finite union of compact convex sets in R3 can be expressed as a

linear combination of the four Minkowski functionals. For R3 these Minkowski

functionals are volume, area, mean breadth and the Euler-Poincar characteristic.

In recent years, these functionals have found applications in astronomy, material

science, medicine and biology [16, 17, 18, 19], as well as voxel-based surface

recognition [20].

The additive property of Minkowski functional Mv for two convex sets A

and B can be expressed as Mv(A ∪ B) = Mv(A) + Mv(B)− Mv(A ∩ B).This property,

as well as discrete structure of the 3D voxel image, considerably simplifies the

computation of Minkowski functionals for a rock sample dataset, since, for such

objects, the procedure is reduced to enumeration of open voxels, faces, edges

and vertices [16].

For efficient computation of the functionals, we utilized the method, de-

scribed in [16], which uses binary decision diagrams. This method takes advan-

tage of the local configuration around each added voxel.

Minkowski functionals for rescaled samples. Another way to evaluate rock per-

meability using its voxel image is to include not only Minkowski functionals

for the sample itself, but also functionals for a rescaled sample as an input

to the machine learning algorithm [21]. The intuition behind this technique

is that, while Minkowski functionals retain some fine information about geo-

metrical structure of the sample, calculating them for a rescaled sample could

provide insights on the geometrical structure on a larger scale, offering a better

mathematical description of the sample and its viscous flow properties.

A rescaled sample of magnitude M is a voxel cube, the dimensions of which

are M times smaller. A given voxel is set to 1 (pore phase) if the average of

voxels in the corresponding range in the initial sample is no less than a specified

threshold. In this work, a threshold of 0.5, and magnitudes M of 2, 5, 10 and
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25 were used.

VGG-PCA descriptors. VGG is the name for a family of deep convolutional

neural networks (DCNNs) for 2D image recognition. They were introduced on

ImageNet Challenge 2014 [13], and they marked the advent of the Deep Learning

era. Not only could these networks provide accurate image classification and

generalize well, but a pretrained network could be fine-tuned to a given problem,

quickly achieving satisfactory performance in terms of some metric without

additional increase of the dataset size and training time.

A common approach to fine-tuning is to remove several bottom layers from

a pretrained DNN or CNN, exposing one of the dense layers, which are typically

denoted as FC-1000 or FC-4096 (see the VGG architecture in [13]). A number

of layers is then added to the network, as appropriate to the specifics of the

problem, and they are trained on the new data.

In our approach, we simply extract features from the FC-4096 layer for each

2D slice of the scan, represented as an image. After additional processing with

PCA to reduce their dimensionality, these features are then used as inputs for

the regression.

One important property of VGG network dense layers is that they retain

a significant amount of image structure, and their output alone is frequently

enough to correctly classify a given image or to process it in some other way.

Although they are not interpretable, this set of values can provide much insight

into composition, pattern distribution and other aspects of the image.

For the purposes of rock permeability prediction, we recovered descriptors

of 100 × 100 × 1 2D layers, or, essentially, voxel rectangles, which compose a

given 100 × 100 × 100 sample in the dataset. To process the binary image, we

converted all rock voxels to (0, 0, 0) vectors in RGB code, and pore voxels to

(255, 255, 255). Accordingly, the voxel layers had to be resized to 224 × 224.

The output of the second fully connected layer of size 4096 was used to recover

the descriptors.

The feature vector of length 409600, obtained by concatenation of 100 layer
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descriptors, can then be interpreted as a descriptor of the sample as a whole,

retaining information about the structures of individual layers and their position

in the voxel cube through the placement of individual layers.

The enormous size of the vector makes it unsuitable for direct use as an input

for the regression model. Instead, we used PCA to reduce dimensionality of the

input vectors, making it possible to use conventional models without significant

modifications. A principal component size of 1350 was used.

3.2. Regression methods

We used two regression methods to evaluate the predictive power of gen-

erated features: gradient regression trees (XgBoost) and deep neural networks

(DNNs)

XgBoost. XgBoost is a gradient boosting library [22]. It provides a powerful

prediction model, consisting of numerous weak prediction models [23]. It is much

used in Machine Learning due to its computation speed and interpretability of

the results. We first found model hyperparameters, which yielded better results

in terms of the ABSq metric (this metric is described in detail in section 5),

by a grid search, i.e., by training the model with different hyperparameters and

evaluating its performance on the hold-out validation subset.

The parameters used for all feature groups are described in Table 1.

Deep neural networks. We used several deep multilayer perceptron (MLP) ar-

chitectures to assess predictive power of generated features with neural networks.

Final architecture and results are described in section 5.

Table 1: XgBoost hyperparameters used

learning_rate=0.05 n_estimators=400 max_depth=5

min_child_weight=6 gamma=0.1 subsample=1

colsample_bytree=1 reg_alpha=0.5 reg_lambda=1
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4. End-to-End Regression

We assessed the use of an end-to-end convolutional neural networks (CNN)

modeling technique, which is commonly applied in image processing. We used

a 2D CNN to carry out regression on individual 2D slices of a sample and a 3D

CNN to process the samples as a whole.

2D convolutional neural networks. CNNs are a class of deep feedforward ar-

tificial neural networks, which are most commonly applied to analyze visual

imagery.

Figure 2: Receptive field for 5 × 5 filter of 2D

CNN

Just like multilayer perceptrons,

CNNs were inspired by biological

structures, specifically, by the orga-

nization of the visual cortex of an-

imals. Specific cortical neurons re-

spond to corresponding stimuli only

in a restricted region of the visual

field, which is called the receptive

field of those neurons [24].

In artificial neural networks, this

approach is realized by convolutional

and pooling layers. A convolutional

layer consists of a number of filters,

each of which is trained to respond to

a specific pattern. Filters are iterated

over the input tensor, and the Hadamard product of filter weights and corre-

sponding input values is calculated for each visited position. The sum of the

elements in the resulting matrix is then passed on. The subset of input values,

analyzed by a filter at a given step, is called the receptive field of the filter.

This generalization of a biological approach offers a number of advantages,

such as shift-invariance and parameter sharing [25]. But the most important

point in the context of the task at hand is the emphasis given to the spatial
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structure of the data. As porosity depends greatly on the number and shapes of

pores, the ability to treat input voxels which are close to each other differently

from voxels which are far away is invaluable for estimating both local and global

spatial structure of the rock sample.

CNNs are often used to analyze images, most commonly represented as 3D

tensors, where the first two dimensions correspond to directions in the image,

and the third dimension corresponds to color channels (red, green, blue) for

a given pixel. In our work, we used 2D convolutions with 3D rock samples

the same way as for images. But instead of vectors of color channels, we used

vectors of voxel values on other layers: the three color channels are replaced by

100 values, each corresponding to a layer of the sample. After a series of other

convolutions, max-pooling operations and fully connected layers, the predicted

value for sample permeability is calculated.

Figure 3: Receptive field for 5 × 5 × 5 filter of

3D CNN

However, this approach has the

significant disadvantage that each fil-

ter works with 5× 5× 1 tensors, dis-

regarding information from neighbor-

ing layers. This nuance is mitigated

for 3D CNNs, where each filter exam-

ines the local region across all three

dimensions of a 3D rock sample.

3D convolutional neural networks.

3D CNNs are based on the same idea

as 2D CNNs, but 3D filters are used

for convolutional layers. For purposes

of permeability prediction, this allows

a given filter to receive the local in-

formation for a given voxel not just

from the same layer, but also from neighboring layers. As rock pores are three-

dimensional, such an approach provides more practical information to each net-

9



work unit.

5. Model Evaluation and Results

We compared the predictive power of feature sets and we also compared

different prediction methods. The selection of methods used the criteria of

interpretability and relatively straightforward modus operandi.

All prediction methods were compared with each other. For better inter-

pretability of results, we used a special metric, denoted as ABSq :

ABSq =
1
nΣn

i=1|yi − ŷi|
P99(y)− P1(y)

.

Here, yi denotes the true permeability value for sample i, ŷi is a predicted

permeability value for sample i, and Pj(y) is the jth percentile of a true per-

meability histogram for a given cube. This metric is more informative than

mean squared error. Conventional error does permit comparison of algorithmic

approaches with each other, but provides zero information about how large the

error is compared with variability of the data. Our approach takes account of

such difference.

XgBoost. The results for selected feature types and feature type combinations

using the XgBoost approach are presented below. The last row of each table cor-

responds to the feature group combination, which yields the best result for the

given method. Only error values below the 90th percentile were used to produce

the charts, as each method generates strong outliers in terms of permeability.

Here and below, VGG-PCA corresponds to introduced VGG-PCA descrip-

tors, NET corresponds to rock sample network features, and MX corresponds

to Minkowski functionals for an X-rescaled cube.
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Figure 4: XgBoost permeability prediction errors (<90th percentile)

Table 2: Evaluation of permeability prediction for selected feature group combinations

Feature Groups Used Validation ABSq

VGG-PCA 0.0451

NET 0.0417

M1 0.0421

M1 + M2 + M5 + M10 + M25 0.0406

M2 + M5 + M10 + NET 0.0368

To further improve the results, training and prediction were carried out

with logarithms of permeability, and ABSq was computed for the exponent of

prediction. This empirical technique has proved to give better results in some

cases.
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Figure 5: XgBoost logarithmic permeability prediction errors (<90th percentile)

Table 3: Evaluation of logarithmic permeability for selected feature group combinations

Feature Groups Used Validation ABSq

VGG-PCA 0.0367

NET 0.0372

M1 0.0391

M1 + M2 + M5 + M10 + M25 0.0370

VGG-PCA + M1 + M5 + M25 + NET 0.0338

The VGG-PCA features perform much better when used with logarithmic

permeability. Despite not being able to provide the best results individually, we

found that the VGG-PCA features are among the 25 top-scoring feature type

combinations. It is interesting that the result using VGG-PCA features is much

worse for usual permeability. However, examining the cause for that would

require an excursion into VGG-16 architecture specifics, which goes beyond the

scope of the present article. These results should be regarded with a degree of

caution, as, strictly speaking, they only correspond to the predictive power of

these feature groups for a given sandstone sample, and only for the XgBoost
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model.

Table 4: Used MLP architecture

Dense (units=2048, activation=”relu”)

Dense (units=2048, activation=”relu”)

Dense (units=1024, activation=”relu”)

Dense (units=512, activation=”relu”)

Dense (units=256, activation=”relu”)

Dense (units=1, activation=None)

Deep neural networks. To evalu-

ate the predictive power of fea-

ture groups paired with neural

networks, we used three feature

group combinations: VGG-PCA,

M1 + M2 + M5 + M10 + M25

and VGG-PCA + M1 + M2 +

M5 + M10 + M25. The number

of considered feature group combinations was restricted in order to reduce time

spent on training the models, since neural networks are much more computa-

tionally demanding.

We evaluated several straightforward multilayer perceptron (MLP) architec-

tures for each feature group combination, and the best one was selected for

comparison. It is presented in Table 4.

Table 5: Evaluation of logarithmic permeability for selected feature group combinations

Feature Groups Used Validation ABSq

VGG-PCA 0.0287

M1 + M2 + M5 + M10 + M25 0.0441

VGG-PCA + M1 + M2 + M5 + M10 + M25 0.0384

The only difference between the best architectures is that Minkowski func-

tionals seem to provide better results when a batch normalization layer is added

before the output unit. In the following table we present ABSq value for all

considered feature group combinations.

The addition of VGG-PCA descriptors to Minkowski functionals reduces

prediction error. However, the best result is achieved when they are used sep-

arately from the other features. This is because the network was not given

enough training time to nullify excess information coming from the Minkowski

functionals, which introduced additional error.

The number of training epochs was limited to 50 for all tested architectures,
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batch size was set to 8, and the Adam optimizer with a learning rate of 0.001

was used. All remaining hyperparameters were set to default. Early stopping

was used in order to determine the best validation score.

Convolutional neural networks. Below we present the best performing 2D and

3D CNN architectures. Similarly to other approaches, logarithmic permeability

was used as an output value.

Used 2D CNN architecture is inspired by the VGG-16 network [25], which

was used to compute VGG-PCA descriptors. We consider each sample to have

100 channels, each corresponding to an individual layer. The model was trained

using the Adam optimizer with default parameters, for 20 epochs and a batch

size of 32.
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Table 6: Best performing 2D CNN, ABSq = 0.0406

2D Convolutional (filters=64, kernel size=3, activation=”relu”, padding=”same”)

2D Convolutional (filters=64, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=64, kernel size=3, activation=relu, padding=same)

Max Pooling (pool size=(2, 2), strides=(2, 2))

2D Convolutional (filters=128, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=128, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=128, kernel size=3, activation=relu, padding=same)

Max Pooling (pool size=(2, 2), strides=(2, 2))

2D Convolutional (filters=256, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=256, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=256, kernel size=3, activation=relu, padding=same)

Max Pooling (pool size=(2, 2), strides=(2, 2))

2D Convolutional (filters=512, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=512, kernel size=3, activation=relu, padding=same)

2D Convolutional (filters=512, kernel size=3, activation=relu, padding=same)

Max Pooling (pool size=(2, 2), strides=(2, 2))

Dense (1024, activation=relu)

Dropout(0.5)

Dense (512, activation=relu)

Dropout(0.5)

Dense (1, activation=None)

Used 3D CNN architecture was inspired by VoxNet [26], which was initially

used for object recognition. Compared with 2D convolutions, the application

of 3D CNN is straightforward. The model was also trained using the Adam

optimizer with default parameters for 20 epochs and a batch size of 32. Valid

padding was used for all convolutional layers.

3D CNNs of similar structure have proven to be an efficient way of addressing

the task of 3D shape retrieval [27], since they can learn efficient descriptors for

3D objects, which are bound to be effective for regression.
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Table 7: Best performing 3D CNN, ABSq = 0.0284

3D Convolutional (filters=32, kernel size=5, strides=2, activation=”relu”)

3D Convolutional (filters=32, kernel size=5, strides=2, activation=”relu”)

Max Pooling 3D (pool size=(2, 2), strides=(1, 1))

3D Convolutional (filters=32, kernel size=3, strides=1, activation=”relu”)

3D Convolutional (filters=32, kernel size=3, strides=1, activation=”relu”)

Max Pooling 3D (pool size=(2, 2), strides=(1, 1))

Dense (128, activation=relu)

Dense (64, activation=relu)

Dense (1, activation=None)

Below we present the boxplot of errors for neural network approaches for

permeability prediction. Once, again, strong outliers lying above the 90th per-

centile of errors were not used.

Figure 6: Neural network permeability prediction errors (< 90th percentile)

Overall evaluation of the methods. Below we present a comparison of the best

results for each considered method. Overall, 3D convolutional neural networks

proved to be superior both in terms of the ABSq metric and of error distribution.

We would therefore recommend focusing on 3D convolutional neural networks
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for the development of data-driven permeability prediction models.

Figure 7: Permeability prediction error distribution for the best models (< 90th percentile)

Table 8: Evaluation of best models for each considered approach

Model and Approach ABSq

M2+M5+M10+NET XGB 0.0368

VGG-PCA+M1+M5+M25+NET LOG XGB 0.0338

VGG-PCA MLP 0.0287

3D CNN 0.0284

6. Conclusions and Discussion

The results of this pilot study clearly demonstrate the significant potential of

machine learning for image-based permeability prediction. It can be seen that

the data-driven approach is a true game changer for Digital Rock technology

because it is extremely fast and scalable. Moreover, the approach appears to be

applicable not only to single-phase permeability prediction, but to prediction of

more complex properties relevant to petrophysics, structural geology and field

development. Such properties may include relative phase permeabilities, for-

mation factor and resistivity, dielectric permittivity, elastic and geomechanical

properties, NMR response and others. There are opportunities for enriching
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input data with information on mineral distribution, wettability and intergrain

contacts to obtain the highest possible predictive power. Clearly, there is no

shortage of themes for future study and it should also be noted that the recent

developments in Deep Learning are likely to enable prediction of the dynamics

of fluid displacement, and not merely of the static characteristics of digitized

rock samples of a single type. Assisted by a feature set containing information

about pore fluids, this will represent a promising direction for applications of

image-based Digital Rock in enhanced oil recovery work. We would emphasize

that this direction will need to be developed together with physics-driven pore

scale modeling [6], since, without the physics-based models, there will be no

actual data, on which to carry out training.

In future studies we plan to evaluate the use of more efficient DNN models

and methods. These include modern approaches to constructing ensembles of

regression models [28] and special methods for the initialization of DNN param-

eters [29].

We are also considering the adaptation of implemented models to other core

types using multi-fidelity regression modeling methods. These are examined in

[30, 31, 32]. Successful applications of such a technique include an application

in aerodynamics, examined in [33]

Another approach worth considering is to apply adaptive design of exper-

iments, devised for industrial engineering problems, to both increase the effi-

ciency of sensitivity analysis and improve utilization of the computational bud-

get when generating a training sample [34, 35].
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[3] H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm,

F. Krzikalla, M. Lee, C. Madonna, et al., Digital rock physics bench-

markspart i: Imaging and segmentation, Computers & Geosciences 50

(2013) 25–32.

[4] M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi,

A. Paluszny, C. Pentland, Pore-scale imaging and modelling, Advances in

Water Resources 51 (2013) 197–216.
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