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Abstract

The fundamental origins of metamorphic rocks as sedimentary or igneous are integral to the

proper interpretation of a terrane’s tectonic and geodynamic evolution. In some cases, the

protolith class cannot be determined from field relationships, texture, and/or compositional

layering. In this study, we utilize machine learning to predict a metamorphic protolith from its

major element chemistry so that accurate interpretation of the geology may proceed when the

origin is uncertain or to improve confidence in field predictions. We survey the efficacy of several

machine learning techniques to predict the protolith class (igneous or sedimentary) for whole

rock geochemical analyses using 9 major oxides. The data are drawn from a global geochemical

database with >533 000 geochemical analyses. In addition to metamorphic samples, igneous

and sedimentary analyses are used to supplement the dataset based on their similar chemical

distributions to their metamorphic counterparts. We train the classifiers on most of the data,

retaining ∼10% for post-training validation. We find that the RUSBoost algorithm performs

best overall, achieving a true-positive rate of >95% and >85% for igneous- and sedimentary-

derived samples, respectively. Even the traditionally-difficult-to-differentiate metasedimentary

and metaigneous rocks of granitic-granodioritic composition were consistently identified with

a >75% success rate (92% for granite; 85% for granodiorite; 88% for wacke; 76% for arkose).

The least correctly identified rock types were iron-rich shale (58%) and quartzolitic rocks (6%).

These trained classifiers are able to classify metamorphic protoliths better than common dis-

crimination methods, allowing for the appropriate interpretation of the chemical, physical, and
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tectonic contextual history of a rock. The preferred classifier is available as a MATLAB func-

tion that can be applied to a spreadsheet of geochemical analyses, returning a predicted class

and estimated confidence score. We anticipate this classifier’s use as a cheap tool to aid geosci-

entists in accurate protolith prediction and to increase the size of global geochemical datasets

where protolith information is ambiguous or not retained.

Keywords: data processing, machine learning, protolith discrimination, igneous geochemistry,

sedimentary geochemistry

1. Introduction1

Accurately identifying a protolith is crucial to unravelling the geologic evolution of ter-2

ranes, allowing one to understand past tectonic and geodynamic environments. Differentiation3

between igneous and sedimentary protoliths is often determined based on field relationships,4

mineral grain habits, and/or evidence of inherited relict structures such as bedding (Bucher5

and Grapes, 2011). Another common method of protolith discrimination, particularly for fel-6

sic gneisses, is examination of the zircon date spectrum. Sedimentary protoliths typically have7

more complex date spectra due to the integration of multiple sources of differing dates. Igneous8

protoliths tend to have uni- or bimodal zircon date spectra indicating the timing of crystalliza-9

tion and a record of ensuing metamorphic event. However, recrystallization, severe deformation,10

and/or partial melting can mask the diagnostic indicators of an original protolith. It is also11

common for geochemical databases to exclude sufficient descriptions of geological samples that12

readily indicate the protolith. For instance, it is common for many rocks to be identified simply13

as gneiss or schist within geochemical databases (Hasterok et al., 2018), a textural description14

that is ambiguous with regard to the protolith type.15

In some cases, the protolith class can be reasonably inferred through the use of chemical16

scatter plots. Several chemical classification methods have been devised (e.g., Moine and De17

La Roche, 1968; Irvine and Baragar, 1971; Tarney, 1977; Roser and Korsch, 1988), but over-18

lapping chemical ranges between igneous and sedimentary fields add uncertainty that results19

in misclassification (e.g., Lindsey, 1999). At present, no single method developed to identify20

a metamorphic protolith is optimized for the global geochemical dataset (Gard et al., 2019).21

The use of multiple discrimination diagrams can reduce uncertainty where the chemical ranges22

overlap, but the potential combinations of such diagrams are so numerous that it is difficult to23
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produce an optimal scheme by trial and error.24

Machine learning methods are well-suited to developing predictive models from multidimen-25

sional datasets and have been used effectively in geologic settings. Carranza and Laborte (2015)26

used Random Forests to investigate epithermal gold deposits in the Philippines. In addition27

to Random Forests, Rodriguez-Galiano et al. (2015) used neural networks, regression trees and28

support vector machines to identify areas of mineral prospectivity. Machine learning has also29

been used to predict lithology from soil geochemistry or chemically altered samples (Kirkwood30

et al., 2016; Hood et al., 2018). Cracknell and Reading (2014) used a number of these methods31

to investigate their potential to develop geologic maps based on remotely sensed geophysical32

data.33

Here we evaluate the accuracy of several machine learning methods for predicting a meta-34

morphic protolith as either igneous or sedimentary on the basis of major element composition.35

Because we wish to identify a method that has broad applicability, we focus only on major el-36

ements as part of this study. We utilize a large whole-rock global geochemical dataset to train37

and validate these classification methods. We also explore the prepossessing steps, including38

log-ratio transforms and principal component analysis, to yield the best predictive capability.39

Finally, we detail the success of the model in distinguishing protoliths among a variety of rock40

types.41

2. Existing Chemical Discriminants42

Several methods to predict a protolith class from geochemistry have been employed but a43

comprehensive comparison of methods has not been made. The discrimination method em-44

ployed by studies is chosen to suit the chemistry of the protoliths. As only methods which45

perform well are highlighted for publication, it is unknown what additional tests were at-46

tempted but disregarded because of poor performance. Consequently, there is little guidance47

in the literature for a best performing set of chemical discrimination tools that accurately48

identifies protoliths in a majority of cases. Below we highlight a few of the more general dis-49

crimination methods. In this study, we refer to a protolith as broad term that describes igneous50

or sedimentary samples, either metamorphosed or unmetamorphosed. In Figure 1 we demon-51

strate three discrimination methods, displaying the igneous and sedimentary distributions in52

two-dimensional histograms.53
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Several studies employ TiO2 as a metamorphic protolith discriminator in combination with54

other elements (Misra, 1971; Tarney, 1977; Winchester et al., 1980; Werner, 1987). For instance,55

Tarney (1977) suggests igneous and sedimentary rocks can be discriminated by a single division56

in SiO2–TiO2 space. Tarney’s calibration works poorly on the global dataset (Figure 1a and b),57

resulting in 52% igneous and 55% sedimentary true positive rates. From a global geochemical58

dataset (Section 3), we suggest that samples with > 2.5 wt.% TiO2 are more likely igneous,59

which identifies 13% of igneous samples as probably igneous and 2% of sedimentary samples60

as probably igneous. However, this simple test does not allow prediction of the protolith for61

igneous samples <2.5 wt.% TiO2 or any samples as sedimentary. Taking cells within a 2-62

dimensional histogram that contain a single class will identify 8.8% of igneous samples and 1%63

of sedimentary samples (Figure 1a and b). Hence, the range of both classes overlap such that64

it is very difficult to clearly identify either class definitively.65

Ternary systems are a popular way of examining three rather than two dimensions, poten-66

tially separating samples better than a simple Cartesian plot. Commonly used ternary systems67

A–C–F, A–CN–K, and MgO–CaO–FeOT are used to suggest a protolith for a suite of rocks68

(Misra, 1971; Winkler, 1979; Best, 1982; Ehlers and Blatt, 1982). For example, rocks with69

negative A values on a A–C–F diagram are typically igneous (Figure 1c and d). However,70

sedimentary samples do extend into the negative field.71

More complex combinations and/or ratios of elements are also used to predict protoliths such72

as Niggli indices (Winkler, 1979) and discriminant function analysis (Roser and Korsch, 1988).73

The igneous field, as identified by Simonen (1953), performs considerably better than the TiO274

discriminate above, identifying 60% true positive igneous and 88% true positive sedimentary.75

(Figure 1e and f). Given the distribution of protolith chemistries within the global dataset,76

Simonen’s igneous field may not be optimal. While the region occupied by igneous rocks is77

more concentrated, it overlaps most of the sedimentary class range as only 12% of cells contain78

one class. As a result, any growth in the size of the igneous field to increase the accuracy of79

igneous identification will reduce the sedimentary accuracy because of the overlapping chemical80

ranges.81
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3. Geochemical Dataset82

3.1. Global geochemical database83

We use a global dataset of whole rock major element data from a combination of online84

databases, government reports, and ∼2000 journal papers. A full description of the database85

and sources is given by Gard et al. (2019), which is updated from Hasterok and Webb (2017)86

and Hasterok et al. (2018). The data extracted for use in this study as described below, can87

be found archived at Zenodo.org (Hasterok et al., 2019). The full database contains over one88

million samples and is derived from EarthChem.org linked databases, governmental reports and89

data releases, and the academic literature (Gard et al., 2019). About 17% of the samples within90

the database are sedimentary and ∼9% are metamorphic. Nearly half the metamorphic samples91

include sufficient descriptions that igneous and sedimentary protoliths may be identified.92

In order to ensure consistent treatment of the data we normalize 9 major elements (SiO2,93

TiO2, Al2O3, FeOT , MgO, CaO, Na2O, K2O, P2O5) to 100%, creating an Aitchison simplex94

geometry (Aitchison, 1986). Only data which contain all the required major elements above95

detection limits are used. The remaining dataset for analysis contains 533 360 samples, with96

497 401 igneous and 35 959 sedimentary samples. Below detection limit (BDL) values can be97

used to improve classifier accuracies in some cases (Templ et al., 2016). However, we choose98

not to include BDL data because the detection limits vary by orders of magnitude with respect99

to K2O and P2O5 depending on the study and method of analysis. Many studies simply report100

BDL, but do not report the detection limit, thus limiting the utility of these for classification.101

Excluding BDL values could potentially bias the results, but the compositional spaces occupied102

by such samples are likely filled by others given the size of the remaining dataset.103

It is recommended that log-ratio rescaling to a Euclidean geometry from an Aitchison sim-104

plex will improve machine learning performance. Two transformations are commonly employed,105

the centered log-ratio (clr) and isometric log-ratio (ilr) transformations (Egozcue et al., 2003).106

The clr transformation is of equivalent dimensionality to the original simplex whereas the ilr107

transformation reduces the dimensionality by one component. Because compositional data108

sum is normalized to 1 (sum to 100%), there is one less degree of freedom than the number109

of compositional variables. The ilr transformation removes this redundancy to create a set of110

compositional vectors that form an independent basis (Egozcue et al., 2003).111
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3.2. Protolith chemistry112

3.2.1. Metamorphosed versus unmetamorphosed113

To discriminate metaigneous and metasedimentary samples on the basis of chemistry an ob-114

servable difference must exist. However, the set of metamorphic samples in the global database115

is comparatively small relative to the number of igneous and sedimentary samples. Before116

supplementing the metamorphic dataset, it must be shown that the chemistry of protoliths117

are negligibly changed by metamorphic processes (Figure 2). The chemical variability of nine118

major oxides bear similarities between the metamorphic samples and those not indicated as119

metamorphic. There are no clear trends in chemistry between igneous and metaigneous or120

sedimentary and metasedimentary that suggests a significant chemical alteration process in121

response to metamorphism. Hence the majority of metamorphic systems may be chemically122

closed or at least isochemical (i.e., no change in major element cations) when partial melting123

has not resulted in extraction of melt.124

There are some peaks observed in the igneous and metamorphic rocks that are not visible125

or as prominent in the metamorphic data (Figure 2). For example, igneous carbonatites with126

high CaO, low Al2O3 and low SiO2 are not visible in among the metaigneous samples. There is127

a similar concentration of sedimentary and metasedimentary samples coincident with this high128

CaO igneous peak associated with marbles. It is possible that many metamorphic carbonatites129

are indistinguishable from marbles and are misclassified in the database (Le Bas et al., 2002).130

Among the igneous and metaigneous data there is a set of bimodal peaks centered at approx-131

imately 50 and 75 wt.% SiO2 (Figure 2). These are from sampling bias associated with mafic132

volcanics and felsic plutonics as noted by (Hasterok and Webb, 2017).133

Metamorphic samples have lower variance, but this does not prevent the datasets from be-134

ing meaningfully combined (Figure 2). First, many samples labeled as igneous or sedimentary135

in the global database experienced some degree of metamorphism—especially true for Precam-136

brian samples where few unmetamorphosed rocks exist. The decision to report metamorphism137

is generally related to the questions probed by a particular study (Hasterok et al., 2018), e.g.,138

metamorphic descriptions are often excluded from studies of igneous and sedimentary petrogen-139

esis. In many studies, metamorphic facies and textures are described in the text, but the tables140

may only provide a protolith’s igneous or sedimentary name. Some databases (e.g., GEOROC),141
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record data from tables but not the text losing this information. We make this claim based142

on comparisons between descriptions of samples from papers and samples contained within143

the global dataset. Therefore, the chemistry of igneous and sedimentary samples in the global144

database are not independent of their metamorphic counterparts.145

Second, we assume that the narrower chemistry of metamorphic samples within the database146

results from biased sampling. It is possible that a majority of metamorphic rocks in the global147

database are selected for their mineralogy that is useful for assessing metamorphic conditions148

as opposed to characterizing the natural variability in chemistry (M. Hand, pers. comm.). We149

see this phenomenon in rocks described as marbles, which are mostly pure calcite in outcrop150

but are more likely marls based on the compositions contained within the global database.151

Studies of igneous and sedimentary petrogenesis may not be so discriminating in their selec-152

tion of compositions and therefore display a larger range. Hence, we assume the igneous and153

sedimentary samples can be combined with the metaigneous and metasedimentary samples to154

develop a protolith classification scheme.155

3.2.2. Basic analysis of chemical differences156

The chemical ranges of igneous and sedimentary protoliths largely overlap making it difficult157

when only 2 to 3 compositional parameters are used to determine the protolith from bulk158

chemistry alone. But there are some differences in chemistry between the sets, possibly allowing159

for a relatively definitive determination of some samples (Figure 2). For example, sedimentary160

rocks rarely have TiO2 > 2.5 wt.% or MgO > 30 wt.%. This difference allows us to identify161

the likely origins of these chemical characteristics as igneous (Figure 2). However, the overlaps162

outside these chemical ranges are considerable making it difficult to predict the protolith for163

most of the data from these simple Harker diagrams alone.164

The Mahalanobis distance, D2, provides another metric for differences between multivariate165

data relative to a centroid (Maesschalck et al., 2000). We compute the Mahalanobis distance166

for the ilr transformed data (Figure 3), although the Aitchison and clr transformed data yield167

similar results. The distribution of D2 for the igneous and metaigneous data are very similar as168

are the sedimentary and metasedimentary data (Figure 3a and b). In each case, the distances169

rapidly decrease in frequency from the centroid, with a small fraction <10% of samples, extend-170

ing beyond D2 of 20. However, the cumulative distribution of D2 for the meta+sedimentary171
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data extend significantly farther beyond the meta+igneous centroid suggestive of chemical dif-172

ferences between the two subsets (Figure 3c). For example, a D2 of 20 from the meta+igneous173

centroid contains nearly 50% of the meta+sedimentary data while capturing ∼90% of the174

meta+igneous data.175

Principal component analysis (PCA) tends to highlight similarities rather than differences176

(Abdi and Williams, 2010), but it can also used to prefilter outlying data prior to applying177

machine learning techniques. PCA of the Aitchison compositions is dominated by the largest178

chemical components but may not reflect the underlying chemical processes that lead to the179

variations in rock chemistry (Figure 4a). Both clr and ilr transformed data return relatively180

similar principle component diagrams. Although the ilr transform reduces the dimensionality,181

it is apparent that many of the ilr basis vector components are similar to the clr results (Fig-182

ure 4b and c), indicating that the elements associated with the greatest variance are largely183

independent despite the restrictions on dimensionality.184

While the ilr transform eliminates the dependent dimension, the clr transformed data are185

more straightforward to interpret. The clr transformed PCA result indicates the greatest vari-186

ance in igneous rocks (∼60%, Figure 5) is explained predominantly by K2O and MgO and the187

largest coefficient for the second principle component is P2O5. The first two principal compo-188

nents account for ∼80% of the total variance. In contrast, the first two principal components189

of sedimentary rocks account for ∼44 and 17% of the total variance. CaO has the largest190

coefficient for the first principal component and Na2O is the largest for the second.191

Distinguishing between igneous and sedimentary-derived protoliths for the majority of sam-192

ples is not possible from PCA analysis. The sedimentary and igneous scores display considerable193

overlap for the majority of their respective distributions, but there are significant differences in194

the data density where one class may be more likely (Figure 6). Machine learning techniques195

can exploit these variations to produce an optimal classification method.196

4. Methods197

4.1. Machine Learning Techniques198

There are a number of machine learning classification schemes that have been developed199

(Kotsiantis, 2007). In this study, we focus on using several common approaches that are200
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included in the MATLABR© Classification App (MATLAB R©, 2018): discriminant analysis,201

logistic-regression analysis, support vector machines (SVM), nearest neighbor classifiers (KNN),202

and decision trees (for reviews of the various methods see Kotsiantis, 2007; Crisci et al., 2012;203

Praveena and Jaiganesh, 2017). In this study, we test the effectiveness of each of these methods204

to develop an accurate protolith classifier. Below we discuss a few selected models that are205

singled out for additional study due to their performance. We are using MATLAB version206

9.4.0.813654 (R2018a) to perform our analysis, which gives us the ability to test these methods207

under a simple common framework. However, one is not limited to MATLAB as these methods208

are also available within the R and Python programming languages.209

For all of the training methods, we use 5-fold cross-validation to select hyperparameters.210

The k-fold cross-validation, k = 5 in our study, is an option for MATLAB machine learning211

algorithms that randomly splits the data into k subsets. Each group as a holdout to score the212

performance of a model trained on the remaining subsets. This process is repeated for each213

subset and the scores of each test are summarized. This cross-validation processes reduces214

overfitting in the classifier model. We performed some early trials with larger k values (7 and215

10), but we found a negligible change in performance while significantly increasing the training216

time, so a k of 5 was deemed acceptable.217

Although we tested a number of machine learning algorithms mentioned above, only a select218

few, KNN and ensemble decision trees, were chosen for more in-depth analysis based on their219

performance. In the interests of space, we limit our summary to these methods in greater depth220

below.221

4.1.1. K-Nearest Neighbor222

The KNN classifier is perhaps the simplest of the methods tested. The KNN algorithms223

produce a classifier by collecting a subset of data near a point within the compositional space.224

The score for each class is determined by the number of data for said class near the investigation225

point. The winning class is assigned by the highest score. The KNN methods may be improved226

by changing the number of points included in the subset and by weighting the samples contri-227

bution to the score by some distance metric (e.g., inverse square, Gaussian). MATLAB includes228

an ensemble option for the KNN method which allows for a set of models to be produced by229

using a subspace, with randomly selected combinations of a reduced set of predictor variables.230
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4.1.2. Decision trees231

Decision trees produce a sequence of binary tests (branches) that split the dataset until a232

branch terminates in a leaf that contains a single class (Breiman et al., 1984). The number233

of branches is limited to reduce the likelihood of over-fitting, at which point the leaves are234

determined by majority vote from the distribution of classes it contains. The branch tests235

are randomly generated and chosen based on the test that results in the best discrimination236

between the leaves and nucleating the next branch. A single decision tree is produced from the237

process which results in an optimal tree that discriminates the most classes properly.238

4.1.3. Ensemble Trees239

While the single decision tree methods search for an optimal tree, it may not be optimal for240

certain compositional subsets. For example, a tree that works well for silicate-dominated rocks241

may not perform well on carbonates. In this case, an ensemble of individually less accurate242

trees are combined to produce an overall more accurate result (Breiman, 1996). There are243

several methods for developing ensemble decision trees. We focus on testing three algorithms:244

Bagged, AdaBoost, and RUSBoost trees. There is no one algorithm that performs best for all245

applications, so it is important to test multiple ensemble methods.246

Bagged trees is a bootstrapping method that develops several trees using several random247

subsets of the data (Breiman, 1996). The collection of random trees is then used to produce248

a set of predicted classes for each sample. The final predicted class is then determined by a249

simple majority vote for each sample.250

AdaBoost generates data weights following production of each classification tree and pro-251

duces a final classifier based on a weighted average of the individual classifiers. MATLAB uses252

the AdaBoost algorithm by Freund and Shapire (1996).253

The RUSBoost algorithm is a modified boosting method, similar to AdaBoost, that includes254

random sampling of the training dataset, similar to bagging (Seiffert et al., 2010). The advan-255

tage of the RUSBoost algorithm is improved performance when the training dataset is highly256

skewed towards a single class, which is beneficial as the global dataset contains >90% igneous257

samples.258
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4.2. Preparation of training and post-training validation datasets259

We test several approaches that prepare the dataset for classification to identify which260

procedure results in the best metamorphic protolith classifier. The approaches follow three261

separate choices: (1) 10% reserve or equal sampling; (2) prefiltering using PCA; and (3) using262

the Aitchison data or transforming using clr or ilr. As a result, we test 9 separate input263

datasets into the classification algorithms. Note the PCA analysis is not performed on the264

equal sampling datasets.265

For the first choice, we reserve a portion of the dataset for testing the trained classifier to266

independently validate its accuracy. We use two methods to select a training and post-training267

validation dataset. Hereafter, the post-training validation data are simply referred to as the268

validation data. In one case, we select an equal number of igneous and sedimentary data for269

training by randomly selecting 10% from the total number of sedimentary samples for the270

validation dataset. The remaining 90% are used to train the classifier. We then select an equal271

number of igneous samples for the training dataset and reserve the remainder for validation.272

The second method of sample selection is made by randomly selecting 10% of the total dataset273

for validation and using the remaining 90% for the training dataset. In the latter case, the274

percentages selected for training vary somewhat between the igneous and sedimentary datasets275

but are roughly proportional to the total dataset.276

For the three datasets created with PCA prefiltering, we select 95% of the data with the277

lowest Hotelling’s t2-statistic. In each of the three cases we use the ilr transformed data before278

computing the PCA and t2 results. This choice ensures consistent treatment of the data,279

although the choice of transform has little effect on the samples excluded by PCA filtering.280

The PCA filtering is only applied to the larger training datasets.281

5. Results282

To identify an accurate classification method, we conduct 332 tests from each of the 9283

training datasets. A full list of methods, parameters, and performance is provided in the284

Supplemental Material.285
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5.1. PCA filtering and log-ratio transforms286

A few gross observations are apparent from the classification results with different prepro-287

cessing methods. First, PCA prefiltering results in less accurate classification in most tests288

(Figure 7a). Because our dataset is quite large, PCA filtering may not help because the tails289

of our distributions are well-sampled. PCA filtering on the dataset cuts these tails off, thereby290

restricting the compositional range and increasing misclassification in the tail regions of com-291

positional space and resulting in less accurate classifiers. For example, notice the contraction292

in range that occurs with PCA filtering (i.e., change from the 99 to 95 percentile contours293

in Figure 6). Second, we find that transforming the dataset does systematically improve the294

classifier performance (Figure 7b). The differences in true-positive rate are typically within 2%295

and varies whether Aitchison or log-ratio transforms are best. Therefore, we see no particular296

advantage to transforming the data in order to predict a protolith class.297

5.2. Comparison of classification methods298

When the subsets of igneous and sedimentary samples are equal, most of the classification299

methods perform well, correctly identifying >80% of sample protoliths. Accuracy of sedimen-300

tary protoliths identification is typically 10% lower than for igneous protoliths (Supplementary301

Table). There are two methods that consistently have true-positive rates >90% regardless of the302

data geometry: weighted KNN and the bagged trees ensemble. The Gaussian SVM and KNN303

ensemble also achieve >90% true-positive rates for the Aitchison geometry. These methods304

typically have a <4% difference between the accurate identification of igneous and sedimentary305

protoliths.306

Many of these methods perform well when each class size is roughly equal but perform

poorly when a single class dominates the dataset (Figure 8). Because of our disparity in subset

size, a classifier that identifies all samples as igneous obtains an overall true positive rate of

93.2% and is therefore, a relatively meaningless measure of performance. We prefer to examine

the true-positive rate of classification of the igneous and sedimentary classes separately or as

the average of each class’s accuracies, which we refer to as the normalized true-positive rate,

normalized true-positive rate =
1

2

(

TPig.

Tig.
+

TPsed.

Tsed.

)

, (1)
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where TP is the number of true positives and T is the number of true values in the igneous307

(ig.) and sedimentary (sed.) classes, respectively.308

Generally, the true-positive rate of igneous protolith identification is>98% whereas sedimen-309

tary protolith identification is lower by typically >30% (Figure 8). One significant exception is310

the RUSBoost ensemble method, which produces more equitable performance between classes311

when a large disparity in class sizes exists. While RUSBoost has the lowest igneous true-positive312

rate in the initial test, it has the largest normalized true-positive rate of all the methods (Fig-313

ure 8). The SVM, discriminant and logistic regression methods perform very poorly and will314

no longer be considered. Single decision trees also perform poorly among sedimentary protolith315

identification. The KNN and ensemble methods perform relatively well, achieving igneous316

true-positive rates >98% and sedimentary true-positive rates >50%.317

5.3. Refined ensemble classifiers318

The ensemble methods are improved by increasing the number of learners, and for decision319

trees, branches as the number of branches (20) and learners (30) are relatively low in the initial320

tests. All further tests are conducted using a starting dataset with an Aitchison geometry321

without PCA filtering and utilizing 90% of the original dataset with 10% held for independent322

validation.323

5.3.1. Ensemble KNN method324

We test a few additional ensemble KNN classifiers, changing the number of subspace di-325

mensions or number of learners. An increase in learners results in a negligible improvement326

in accuracy (Supplementary Table). An increase in the number of subspace dimensions does327

improve the true-positive rate of sedimentary protoliths from 39.3% with 3 subspace dimen-328

sions to 68.7% with 7 subspace dimensions. The igneous protolith accuracy does not change329

much since the true-positive rate is >98% for all ensemble KNN classifiers. The number of330

subspace dimensions is limited by the number of data dimensions. None of the ensemble KNN331

unweighted classifiers perform as well as the single weighted KNN method. While the KNN332

method performed well on the training dataset, the true-positive rate was significantly lower333

on the validation dataset. Therefore, we do not consider the method as reliable as the methods334

described below for protolith determination.335
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5.3.2. Ensemble decision trees336

Bagging results are mildly better (∼1%) than AdaBoost for igneous protoliths. Bagging is337

the poorest method among the ensemble classifiers for correctly sorting sedimentary protoliths.338

The RUSBoost model performs best overall (>86% normalized true-positive rate), but worst339

among ensemble decision tree methods for igneous protolith classification—note that worst still340

identifies ∼95% true positive igneous samples.341

All of the ensemble decision trees improve with the number of branches. AdaBoost and342

Bagging are relatively unaffected by additional learners whereas RUSBoost experiences a drop343

in normalized and sedimentary true-positive rates with additional learners and an increase in344

igneous true-positive rate (Figure 9). The RUSBoost classifiers improve to about 1000 branches.345

We choose our preferred RUSBoost model to have 30 learners and 1000 branches because it346

represents the parameters for which the method performance plateaus and results in the highest347

normalized true-positive rate of the methods tested. The results of the RUSBoost classifier are348

nearly identical on both the training and validation dataset, both in gross performance (Table 1349

and Figure 10) and the performance on individual rock types (Figure 11). We generated350

two random testing and validation datasets for the suite of RUSBoost classifiers and find the351

performance to be very similar for both testing and validation datasets (Figure 9). Each352

identifies ∼95% of true igneous and >85% of true sedimentary protoliths correctly.353

6. Discussion354

6.1. RUSBoost performance355

Since the RUSBoost classifier performs better than typical discrimination methods (Sec-356

tion 2), we suggest machine learning provides an advantage over conventional methods.357

6.1.1. Sample scores358

Up to this point, we have examined the performance of classifiers using a set of metrics that

provide little insight into the reliability of individual predictions. A classifier can also provide a

score for each individual sample that indicates the certainty in the predicted class. MATLAB

returns a RUSBoost score, f(ξ), for a new sample, ξ, determined by

f(ξ) =

T
∑

t=1

αtht(x), (2)
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where

αt =
1

2
log

1− εt

εt
(3)

and the weighted classification error, εt is given by

εt =
N
∑

i=1

d
(t)
i
I(yi 6= ht(xi)). (4)

The values xi indicate a point within the training dataset, yi, is the true class, ht is the prediction359

hypothesis of index t, I is the indicator function, and d
(t)
i

is the weight of observation i at step360

t. The theoretical scores can range from (−∞,∞) with one score for each unique class. Since361

we only have two classes, the scores mirror in value.362

To simplify the interpretation, we use a single score that is normalized such that [-1,0)363

indicates the assigned class is sedimentary and (0,1] indicates the assigned class is igneous364

(Figure 10). For both true classes, the majority of samples have relatively high scores > |0.5|,365

indicating a high confidence in most predictions. The scores for each class have long tails366

that extend into the misclassified values, some of which predict the incorrect class with high367

confidence. As result it is difficult to remove all the misclassified samples by placing a threshold368

on the scores and one is likely to remove more correct than incorrect class determinations by369

doing so.370

Scores on both the training and validation datasets yield similar distributions (Figure 10),371

providing further confidence that the classifier will work on an independent dataset with un-372

known protolith classes.373

6.1.2. Performance by rock type374

The performance of the preferred classifier on the dataset as a whole is different than375

the performance on individual rock types (Table 2). Therefore, it is necessary to evaluate376

the performance as a function of rock types in order to properly assess the confidence in the377

classifier for a specific field site.378

Figure 11 and Table 2 identify the true rock types for the misclassified samples. To determine379

rock types, we employ several common chemical classification systems for igneous (Middlemost,380

1994; Le Bas and Streckeisen, 1991) and sedimentary rocks (Mason, 1952; Turekian, 1969;381

Herron, 1988). These systems are slightly modified to provide additional divisions among382
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the largest compositional fields (Hasterok et al., 2018). The foidolite field is divided into383

an ultramafic, mafic and intermediate field to allow finer compositional resolution. Mantle384

peridotite and pyroxenite fields are added to capture samples with <42 wt.% SiO2 and MgO385

>18 wt.% (Reverdatto et al., 2008). Because we often do not know if metaigneous samples are386

metavolcanic or metaplutonic we choose to group the compositions regardless of the igneous387

emplacement process.388

We use two metrics to assess the performance by rock type: the raw number of misclassified389

samples and the percentage misclassified for a given rock type (e.g., percentage of granites390

misclassified as sedimentary to all granites). The former metric provides an indication of the391

types of rocks that will make up the bulk of the misclassified samples for large chemically diverse392

datasets. Although a score can be determined from the classifier, the latter metric provides an393

indication of how likely a set of samples of a given rock type may be misclassified.394

In general, the percentages of individual rock types misidentified as igneous or sedimentary395

are relatively low (<5%). The performance of the RUSBoost classifier is very similar on both396

the training and validation datasets (Figure 11), an indicator of the reliability of the classifier.397

Igneous protoliths of granitic and granodioritic composition are the most commonly misiden-398

tified samples as sedimentary absolute number and percentage of the individual rock types (Ta-399

ble 2 and Figure 11a and c). The classifier scores for granitic and granodioritic igneous rocks400

generally have high confidence (Table 2 and Figure 12a and b). Because these compositions are401

in great abundance, the absolute number of misclassifications appear larger than when viewed402

as a percentage of the number of these specific rock types. The percentage of samples misiden-403

tified using the RUSBoost algorithm with respect to their overall abundance is <8% of granitic404

and <15% of granodioritic rocks. Quartzolitic rocks are the poorest classified igneous rocks405

with ∼94% misclassified. This result is unsurprising since quartzolitic samples contain nearly406

pure quartz, often occurring as vein quartz with little difference in major element chemistry to407

quartzite. The classifier also has difficulty with carbonatite and silicocarbonatites, which can408

be difficult to distinguish from marbles (i.e., limestone and dolomite) (Figure 12; Le Bas et al.,409

2002).410

It is unsurprising the sedimentary determination is less accurate as some sedimentary rocks411

are basically disaggregated igneous rocks with little chemical alteration (e.g., volcanoclastics412
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and arkose). The greatest number of misclassified true sedimentary protoliths are among iron-413

rich shale, arkose, shale and wacke (Table 2 and Figure 11b and d). These sedimentary com-414

positions are chemically similar to intermediate to felsic igneous rocks, explaining why granitic415

and granodioritic compositions are the most likely to be incorrectly predicted.416

Figure 12c to f shows the scores for common sedimentary rock types. Aside from iron-rich417

shales, the remaining rock types have significant peaks in scores at values <-0.5, indicating418

high confidence in a sedimentary class for most of the samples. However, the pattern of scores419

also have long tails that are relatively constant between -0.5 and 1. Iron-rich shale, is the worst420

classified sedimentary rock, also has a slight increase in scores above 0.5 suggesting a high421

confidence in the prediction as an igneous protolith. As a result, removing samples with low422

(0,0.5) igneous scores will not be able to filter out the majority of these misclassified samples.423

Iron-rich shales are a very common sedimentary protolith; representing ∼12% of sedimentary424

samples in the global database. However, because of the dominance of igneous samples in the425

database, filtering misclassified sedimentary rocks from the igneous predicted classes may not426

result in a significant bias in chemical analyses. Furthermore, while the misclassification rate of427

iron-rich shales is relatively high (>32%; Figure 11b and d), the identification of a metamorphic428

protolith within a large database will likely be correct in most cases.429

How well the classifier generally performs on individual units with unknown class is still430

uncertain. What we do not yet know from this analysis is whether the errors are due to431

wholesale misidentification of individual shale units, or whether a collection of samples within432

individual shale units each have a 20 to 30% probability of being misclassified. If the latter433

is true, then viewing the predicted protoliths as a collection of samples for the same unit will434

increase confidence in the accuracy of the prediction.435

6.2. Extrinsic uncertainties436

Beyond classification-based uncertainties that arise from these models, there are extrinsic437

uncertainties that are not addressed by this study. Beyond the large bias towards igneous438

rocks, the database is not necessarily representative of the proportions of specific rock types439

within Earth. The proportions of various rock types change between the continents and oceans,440

vertically within the crust, and from one terrane to another. Sedimentary rocks are more441

common in the shallow Earth whereas igneous and metaigneous rocks are more common with442
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depth (Wilkinson et al., 2009). Rifts are filled with sediments whereas arcs are constructed443

from volcanics and plutonics. Among igneous rocks, more felsic compositions are typically444

concentrated in the upper continental crust with more mafic concentrations in the lower oceanic445

crust (Rudnick and Gao, 2003). How these variations affect the reliability of the classifiers is446

beyond the scope of this study, but present interesting avenues of future work.447

7. Conclusions448

The first step to interpreting the tectonic and geodynamic history of a terrane requires449

the basic identification of protoliths as igneous or sedimentary, which can be obscured or de-450

stroyed by metamorphic processes. Existing methods of chemical discrimination of protoliths451

are generally poor and/or are not optimized for the observed global distribution of chemical452

compositions. Using a recent global geochemical compilation of whole-rock chemical analyses,453

we demonstrate utility of machine learning methods for estimating a metamorphic protolith as454

igneous or sedimentary based on major oxide composition. We combine unmetamorphosed and455

metamorphosed samples in this analysis based on the geochemical similarity between igneous456

protoliths and their metamorphosed counterparts and similar patterns among sedimentary and457

metasedimentary samples. The method is simple to implement and provides more accurate458

estimates of protolith discrimination than common discrimination methods.459

Machine learning improves the ability of protoliths to be discriminated by their major el-460

ement composition. We find that it is possible to accurately determine a sample’s protolith461

using ensemble decision tree classification schemes, specifically RUSboost (95% of true igneous462

and 85% of true sedimentary). Our preferred classifier contains 30 learners and 1000 branches.463

A classification function is constructed that can be used to classify unknown samples. The clas-464

sifier performs similarly well on a training and validation dataset. The true-positive rate varies465

for individual rock types, performing best for mafic igneous rocks and quartz-rich sedimentary466

samples. The classifier performs poorest—though a majority are still classified correctly (>75%467

correct)—among intermediate to felsic sedimentary rocks (i.e., iron-rich shales) because they468

are very similar chemically to felsic igneous rocks.469

The performance of the RUSBoost method is better than conventional chemical discrim-470

ination diagrams. Therefore, we recommend using the protolith classifier in cases where the471

protolith is unknown. While there is no substitute for field relationships, textural indicators472
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and zircon date spectra, the classifier can be used as a cheap and independent tool to improve473

confidence in observational-based predictions. Additionally, samples with ambiguous or miss-474

ing protolith origin in global geochemical databases (e.g., Earthchem.org or Gard et al. (2019))475

can be now be estimated to increase the potential size of datasets used to study specific rock476

types or environments. We provide a MATLAB function that can be applied to a spreadsheet477

of geochemical analyses, returning a predicted class and estimated confidence score.478
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à partir de leur composition chimique. CR Acad. Sci. Paris D 267, 284–287.565

Praveena, M., Jaiganesh, V., 2017. A literature review on supervised machine learning algo-566

rithms and boosting process. International Journal of Computer Applications 169, 32–35.567

doi:10.5120/ijca2017914816.568

Reverdatto, V., Selyatitskiy, A., Carswell, D., 2008. Geochemical distinctions between ‘crustal’569

and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic com-570

plexes. Russian Geology and Geophysics 49, 73–90. doi:10.1016/j.rgg.2008.01.002.571

22



Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M., 2015. Machine572

learning predictive models for mineral prospectivity: An evaluation of neural networks, ran-573

dom forest, regression trees and support vector machines. Ore Geology Reviews 71, 804–818.574

doi:10.1016/j.oregeorev.2015.01.001.575

Roser, B., Korsch, R., 1988. Provenance signatures of sandstone-mudstone suites determined576

using discriminant function analysis of major-element data. Chemical Geology 67, 119–139.577

doi:10.1016/0009-2541(88)90010-1.578

Rudnick, R., Gao, S., 2003. Composition of the continental crust, in: Rudnick, R. (Ed.),579

Treatise on Geochemistry: The Crust. Elsevier. volume 3. chapter 1, pp. 1–64. doi:10.1016/580

B978-0-08-095975-7.00301-6.581

Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V., Napolitano, A., 2010. RUSBoost: A hybrid ap-582

proach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics583

- Part A: Systems and Humans 40, 185–197. doi:10.1109/tsmca.2009.2029559.584

Simonen, A., 1953. Stratigraphy and sedimentary of the svecofenidic, early archean supracrustal585

rocks in south-western finland. Bull. Commun. Geol. Finland 160.586

Tarney, J., 1977. Petrology, mineralogy, and geochemistry of the falkland plateau basement587

rocks, site 330, deep sea drilling project, in: Initial Reports of the Deep Sea Drilling Project,588

36. U.S. Government Printing Office. doi:10.2973/dsdp.proc.36.123.1977.589

Templ, M., Hron, K., Filzmoser, P., Gardlo, A., 2016. Imputation of rounded zeros for high-590

dimensional compositional data. Chemometrics and Intelligent Laboratory Systems 155,591

183–190. doi:10.1016/j.chemolab.2016.04.011.592

Turekian, K., 1969. The oceans, streams and atmosphere, in: Handbook of geochemistry.593

Springer-Verlag Berlin, Heidelberg, New York. volume 1, pp. 297–323.594

Werner, C., 1987. Saxonian granulites: a contribution to the geochemical diagnosis of original595

rocks in high-metamorphic complexes. Gerlands Beitraege zur Geophysik 96, 271–290.596

Wilkinson, B.H., McElroy, B.J., Kesler, S.E., Peters, S.E., Rothman, E.D., 2009. Global597

23



geologic maps are tectonic speedometers–rates of rock cycling from area-age frequencies.598

Geological Society of America Bulletin 121, 760–779. doi:10.1130/b26457.1.599

Winchester, J.A., Park, R.G., Holland, J.G., 1980. The geochemistry of lewisian semipelitic600

schists from the gairloch district, wester ross. Scottish Journal of Geology 16, 165–179.601

doi:10.1144/sjg16020165.602

Winkler, H., 1979. Petrogenesis of Metamorphic Rocks. 5th ed., Springer-Verlag.603

24



Table 1: RUSBoost classifier overall performance using 30 trees and 1000 branches using the untransformed
and unfiltered dataset.

predicted protolith

igneous sedimentary

true N % N %
training dataset

igneous 447669 428440 95.7 19229 4.3
sedimentary 32355 3258 10.1 29097 89.9

validation dataset

igneous 49732 47475 95.5 2257 4.5
sedimentary 3604 530 14.7 3074 85.3
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Table 2: RUSBoost classifier performance for individual rock types using 30 trees and 1000 branches using the
untransformed and unfiltered dataset.

training dataset validation dataset

true false % true false %
rock typea positives negatives FN positives negatives FN

true igneous samples

quartzolite 36 563 94 5 66 93
granite 62077 5037 7.5 6704 573 7.9
granodiorite 31549 5538 14.9 3553 627 15
diorite 33692 1826 5.1 3659 206 5.3
gabbroic diorite 56262 610 1.1 6209 76 1.2
subalkalic gabbro 99156 306 0.3 11090 35 0.3
peridotgabbro 2626 67 2.5 313 4 1.3
crustal peridotite 621 26 4 62 2 3.1
syenite 7883 222 2.7 921 35 3.7
quartz monzonite 14400 822 5.4 1568 103 6.2
monzonite 15443 1010 6.1 1736 113 6.1
monzodiorite 18304 385 2.1 2020 39 1.9
monzogabbro 14227 111 0.8 1546 17 1.1
alkalic gabbro 27075 144 0.5 3077 19 0.6
foid syenite 3376 57 1.7 350 5 1.4
foid monzosyenite 1802 73 3.9 214 10 4.5
foid monzodiorite 2729 54 1.9 320 11 3.3
foid gabbro 12975 143 1.1 1498 19 1.3
ultra-high alkali igneous 280 7 2.4 36 4 10
foidolite 3377 91 2.6 399 12 2.9
sanukitoid 1931 84 4.2 190 8 4
picrite/alkali picrite 3021 45 1.5 313 6 1.9
komatiite/meimechite 3697 36 1 381 8 2.1
mantle peridotite/pyroxenite 2627 2 0.1 303 3 1
carbonatite 665 433 39.4 81 69 46
silicocarbonatite 924 284 23.5 87 36 29

true sedimentary samples

quartzite 3087 57 1.8 328 10 3
quartz arenite 147 0 0 24 0 0
litharenite 1300 10 0.8 156 2 1.3
sublitharenite 171 0 0 16 0 0
arkose 1953 455 18.9 222 72 24.5
subarkose 261 0 0 26 0 0
wacke 6136 478 7.2 639 84 11.6
shale 7129 617 8 754 96 11.3
iron-rich shale 3167 1469 31.7 304 219 41.9
iron-rich sand 1464 16 1.1 148 4 2.6
laterite/bauxite 308 1 0.3 37 2 5.1
limestone 2539 3 0.1 276 7 2.5
dolomite 1433 151 9.5 144 34 19.1

Only plutonic names for igneous rocks. See Figure 11 for volcanic equivalents.
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Figure 1: Examples of geochemical plots previously employed to identify igneous and sedimentary protoliths.
Although extremes of igneous protoliths are distinguishable from sedimentary protoliths, the vast majority of
igneous and sedimentary rock compositions overlap in discrimination diagrams designed to differentiate the
two. The various shades of grey represent the number of data contained within each bin and share the same
range located in the center of the figure. (a,b) TiO2 content. The solid line represents the predicted division
between sedimentary (above) and igneous (below) protoliths (Tarney, 1977). The dashed line indicates 2.5 wt.%
TiO2 with likely igneous field above the line. (c,d) ACF ternary system, where A is Al2O3 − Na2O − K2O,
C is CaO − 10/3P2O5, and F is FeO + MgO − TiO2, all expressed as molar quantities. (e,f) The parameters
are determined from the Niggli indices (al = 100Al2O3/n; c = 100CaO/n; alk = 100(Na2O + K2O)/n; fm =
100(FeO +MgO)/n; and si = 100SiO2./n; where n = Al2O3 + CaO + Na2O + K2O + FeO + MgO). The field
encompasses the predicted igneous field (Simonen, 1953), digitized from Li et al. (2018). The data are the global
geochemical database used throughout this study (Section 3).
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Figure 2: Harker diagrams illustrating variations in major oxides with respect to SiO2 for igneous and sedi-
mentary protoliths normalized on a volatile free basis to 100%. Because the igneous and sedimentary protoliths
are similar to their metamorphosed counterparts, they may be used to increase the size of the dataset used to
develop a machine-learning based classification scheme. The grey regions are regions of no data.
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Figure 3: To measure the difference between igneous and sedimentary protolith compositions with many com-
positional parameters we use the Mahalanobis distance. Comparison of Mahalanobis distances for (a) igneous
and metaigneous, (b) sedimentary and metasedimentary and (c) igneous + metaigneous and sedimentary +
metasedimentary samples computed with reference to the (a) igneous centroid, (b) sedimentary centroid, and
igneous + metaigneous centroid. PDF, probability density function and CDF, cumulative density function.
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Figure 4: Principle component analysis is used to identify the source of dominant compositional variations
within the geochemical dataset. Three methods are used to examine these as there are potential issues with
simply using raw data due to the compositional dominance of SiO2 and a redundant compositional dimension.
Variations in chemistry with respect to the first two principal components for igneous + metaigneous (blue)
and sedimentary + metasedimentary (red) samples. Principle components are computed for (a) raw data, and
the (b) centered log-ratio (clr) and (c) isometric log-ratio (ilr) transformed data. The ilr vectors are labeled
with numbers rather than major oxides because the transformation removes the redundancy created by N
compositional dimensions that sum to a fixed value. As a result, the scores (now N − 1) no longer represent
individual compositional dimensions, instead each score becomes a variable combination of all the major oxides.30
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Figure 6: An examination of differences between the igneous and sedimentary protolith data using principle
component analysis. Principle component scores for ilr transformed composition data with igneous (blue)
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Figure 7: A test of log-ratio transforms of geochemical data on machine learning performance with respect to
the untransformed normalized data. Comparison of models: (a) percent change in normalized true-positive rate
of PCA filtered data trained classifier to unfiltered data trained classifier; and (b) percent change in normalized
true-positive rate of clr or ilr transformed data trained classifier relative to untransformed (Aitchison) data
trained classifier. A full list of models is provided in the supplementary material. Clusters occur as a result of
changes to different parameter options for individual machine learning algorithms.
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Figure 8: An assessment of classifier performance trained using a variety of machine learning algorithms.
True positive igneous and sedimentary fractions for all classifiers trained in this study (Supplementary Table).
Classifiers trained with equal set sizes (open circle), classifiers with 90% of the dataset randomly selected for
training (light grey), RUSBoost classifiers with 90% of the dataset randomly selected for training (dark grey),
and weighted KNN classifiers with 90% of the dataset randomly selected for training.
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Figure 10: An assessment of the confidence in the predicted protolith class using the preferred classifier. Nor-
malized scores for the preferred RUSBoost classifier (2019-02-26, 30 trees and a maximum of 1000 branches).
Classifier scores for (a) true igneous (b) true sedimentary samples. The left axes correspond to the results for
the training dataset (blue), whereas the right axes correspond to the results for the validation dataset (orange).
The scores have been normalized such that the scores range from -1 to 1, with 0 demarcating the boundary
between the assigned classes. Negative scores are predicted as sedimentary and positive values are predicted as
igneous. The training dataset is the same as Figure 9 and the validation dataset represents the 10% of the data
withheld from training.
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Figure 11: Misclassified protoliths by rock type for the preferred RUSBoost classifier within the training (a,b)
and validation datasets (c,d), respectively. The bar lengths and color indicate the percentage of samples mis-
classified with respect to their total true rock type (a,c igneous and b,d sedimentary). The training dataset is
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