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Abstract. Computed Tomography (CT) imaging technique is widely used in geological exploration, medical 
diagnosis and other fields. In practice, however, the resolution of CT image is usually limited by scanning devices 
and great expense. Super resolution (SR) methods based on deep learning have achieved surprising performance in 
two-dimensional (2D) images. Unfortunately, there are few effective SR algorithms for three-dimensional (3D) 
images. In this paper, we proposed a novel network named as three-dimensional super resolution convolutional 
neural network (3DSRCNN) to realize voxel super resolution for CT images. To solve the practical problems in 
training process such as slow convergence of network training, insufficient memory, etc., we utilized adjustable 
learning rate, residual-learning, gradient clipping, momentum stochastic gradient descent (SGD) strategies to 
optimize training procedure. In addition, we have explored the empirical guidelines to set appropriate number of 
layers of network and how to use residual learning strategy. Additionally, previous learning-based algorithms need 
to separately train for different scale factors for reconstruction, yet our single model can complete the multi-scale 
SR. At last, our method has better performance in terms of PSNR, SSIM and efficiency compared with 
conventional methods.  
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1 Introduction 

CT is a three-dimensional (3D) imaging technique which is widely used to provide detailed 

information for accurate analysis. Recently, CT, micro-CT and nano-CT have been the popular 

equipment to display real 3D rock sample images.1 Establishment of accurate 3D image of rock can 

provide rich structure information to help geological researchers analyze the physical properties of 

rocks2,3 and play an important role in the field of geological and petroleum exploration. As shown in 

Fig. 1, a complete 3D-CT image is actually composed of two-dimensional (2D) slice images. Due to 

its inherent limitations of CT devices, setting high resolution will not only need high cost, but will 

result in decrease of field of view (FOV), causing the loss of long-range properties of reservoirs 

rock.11 In many cases, there are only LR CT images available for analysis. Therefore, the use of 

super resolution(SR) algorithm is an effective method to improve the resolution of CT images, 

which can provide more clear sample data for subsequent geological research or medical diagnosis. 
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Fig. 1 CT images acquisition. 3D image acquisition is inconvenient, usually composed of a series of 2D slice images.  

SR reconstruction, having drawn extensive attention in computer vision field, is a handy method 

to improve quality of image.6 If external examples are given, learning-based SR algorithms are more 

plausible to acquire good results. Deep learning techniques12 recently have shown remarkable 

performance in the tasks of image classification16, object detection17, etc., and is superior to 

conventional machine learning algorithms. Dong et al. introduced deep learning to SR4 and raised a 

network SRCNN5 which only contains 3-layers CNN structure but outperforms former methods. 

Subsequently, Jiwon Kim found that deeper network structure shows a significant promotion and 

proposed VDSR13 to resolve issues in Dong’s work. 

In current research, scholars mainly focus on single 2D image SR rather than spatial 3D voxel. 

Specially, SR researches for 3D images are aiming at restoring magnetic resonance imaging (MRI). 

H. Greenspan et al. achieved SR of MRI images in slice direction using an iterative algorithm.8 

Manjon proposed a non-local MRI upsampling method7 where some of underlying high frequency 

information can be recovered. Iwamoto proposed a method based on sparse representation and 

self-similarity to improve resolution of MRI,9 which only improves the resolution in the slice 

direction, and have no effect in plane direction. 

Yuzhu Wang10 used neighbor embedding algorithm to improve resolution of CT image of rock 

samples, in the meanwhile, high frequency information was supplemented by high resolution 
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scanning electron microscopy (SEM) image. Li proposed a voxel SR reconstruction algorithm11 

based on sparse representation, which can improve the resolution in all directions.   

Zhang et al. extended adjusted anchored neighborhood regression algorithm (A+)14, to 3D and 

proposed high frequency modified 3DA+ algorithm15, where a correlative dictionary and mapping 

matrix between high frequency and low frequency was established. In reconstruction stage, the 

matched dictionary atom and mapping matrix were searched for each input of the 3D block to 

complete SR.  

Unfortunately, the aforementioned algorithms are focused on 2D images, in view of the fact of 

3D-CT images of rock, the following issues remain to be solved: First, the computational intensity 

and memory of 3D image data is far greater than the 2D images, so the method to handle with 2D 

images can’t be directly transferred to 3D model; Second, CT samples are not as convenient as 2D 

images to obtain, that is to say, it's not easy to get substantial alignments of rock CT samples to 

training network. In addition, CT image of rock has the characteristics of low contrast, single texture, 

and complex pore structure, which all bring difficulty to task of SR; Third, during training network 

and reconstruction stage, the calculation and time complexity have to be taken account to ensure our 

work can be carried out on the general computing equipment. Hence, it is desirable to devise a new 

network to cope with SR for voxel images. 

In order to enhance resolution of CT images of rock from three directions (i.e., x, y ,z), we 

propose a novel network, termed as 3D super-resolution convolutional neural network (3DSRCNN), 

to promote resolution for volumetric images. Before training, cropping initial samples of large size 

to sub-blocks is necessary for a promising result and we give reasonable explanation about it. 

Deeper network architecture may cause gradient exploding and slow convergence, so we employed 

some feasible strategies, including residual learning, gradient clipping, and adjustable learning rate, 

etc., to optimize training process. Experiments show the proposed network can be applied to 

different scale factors and performs equally to method that separately train network with different 

scale.  
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In summary, we introduce 3DSRCNN to realize the SR reconstruction of 3D CT images. 

Furthermore, we have experimentally investigated the influence of network depth on the 

reconstruction quality. Thus employing a moderate number of network layers is of significance. 

Subsequently, we demonstrate that it is necessary to use the residual learning when the number of 

network layers goes deeper. Consequently, we make corresponding adjustments on network 

architecture and training strategies, so as to achieve a trade-off between the accuracy and speed. 

Moreover, we have addressed the problems existing in pre-processing CT images such as 

consuming too much memory, etc. The proposed 3DSRCNN have achieved the state-of-art 

performance in terms of PSNR and SSIM, while ours have fairly faster reconstruction speed on 

GPU. 

The remainder of paper is organized as follows. In Sec. 2, we firstly introduced the concept of 

SR and the implementation of deep learning on it. Then, in Sec. 3, the proposed 

network--3DSRCNN was described in detail. In Sec. 4, we investigated how to design the network 

and pursuit better performance of accuracy and speed by experiments. Besides, we also tested and 

compared 3DSRCNN with state-of-the-art methods. In Sec. 5, conclusion and future studies of our 

work were given. 

2 Related Works 

In this section, the conception of SR and the corresponding method of using CNN will be briefly 

introduced. 

2.1 Image Super-Resolution 

Single image super resolution (SISR) is an ill-posed problem due to lacking of detailed information. 

There are two traditional methods to recover low resolution (LR) images to high resolution (HR) 

images, one is using context correlation in LR image yet has inborn defects that it cannot acquire 

more specific high frequency information; The second is the learning-based method that can acquire 

the prior information via training given images. The process of SISR is interpreted as following, for 
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a ground truth image (i.e. HR images) X , and LR images Y .  

( )X F Y                               (1) 

Here, we try to find a function as ( )F Y , which can restore LR to HR to a certain extent. It is an 

under-determined problem and most of recent state-of-art methods adopted learning based strategy 

to solve it. SR reconstruction based on learning method is to learn the mapping relation between low 

frequency information and high frequency information by iteratively training paired LR and HR 

images. The classical ones such as sparse-representation method17,19, is basically composed of three 

steps: (1) LR features extraction; (2) Learning the mapping relation between LR and HR patch; (3) 

Reconstruction of HR images using learned mapping relation. In A+ algorithm14 , the non-linear 

mapping relationship from low resolution space to high resolution space is transformed into 

mapping matrix instead of continuous iteration for optimal solution, which can be realized by deep 

learning technique. 

2.2  Convolutional Network for Super-Resolution 

Dong et al. considered that deep convolutional neural network is equivalent to the aforementioned 

pipeline, which can directly learns an end-to-end mapping relation. While SRCNN have achieved 

good result in 2D image datasets, there are still limitations as following: First, its single model 

works only for single scale, which cannot be applied on different upscaling factors; Second, training 

of SRCNN converges too slowly. 

Jiwon Kim introduce VDSR that adopt a deeper network structure of 20 layers to break through 

the limitations in SRCNN and pointed out stacking more CNN layer allows convolutional filters to 

become increasingly global, which conceptually benefits to learn mapping relation. In Ref. 13, they 

have experimentally validated the viewpoint –‘the deeper, the better’. The SR technique of single 

2D image has been very mature, but these can’t be directly converted into a 3D model. Because the 

amount of data used to calculate in 3D image is far larger than the 2D image, it’s necessary to 

redesign network architecture. Furthermore, acquisition of 3D image sample is not as easy as 2D 
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images. We try to use a relatively small samples to complete the training of the network as far as 

possible.  

3 Three-dimensional Super-Resolution Convolutional Neural Network 

In this Section, we introduce the structure of the 3DSRCNN that consist of 12-layers of 3D-CNN. 

Besides, some strategies for optimizing training process are employed to our network 3DSRCNN. 

Next, we describe production of training data in detail. 

3.1  Network Structure 

We proposed the 3D network structure, named as 3DSRCNN, to achieve SR for volumetric CT 

images as shown in Fig. 2. 

Input Output

Conv.12Conv.1

Residual

 

Fig. 2 Network structure of 3DSRCNN contains 12 layers 3D-CNN which exploit 3D spatial information. Each 

3D-CNN has 64 filters to capture diverse features. LR image goes through layers and transforms into an HR image. 

Whole 12-layers of network actually yields the prediction of the residual image. We combine residual image and input 

as the final output as HR image.   

For volumetric super resolution, we employ a network composed of 12 layers each of that has 

64 channel filters (i.e. convolutional kernel). The first layer is responsible to extract low frequency 

patch from LR images; The middle 10 layers learns mapping relationship between LR and HR 

volumetric block; The last layer combine learned mapping relation and initial LR images to finally 

formulate SR images. 

The convolution network actually extracts spatial correlative information which contains 

diverse pattern features. Recent study20,22,23 shows increasing depth using an architecture with very 

small convolution filters (3×3), which shows that a significant improvement on image recognition, 
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etc. Simultaneously, when the input image continues to pass through the CNN, the extracted feature 

becomes global and has a larger receptive field. Consequently, the depth of network layers will 

affect the reconstruction accuracy and training time. Due to original images containing rich texture 

information, the deeper network structure has better SR ability as Jiwon pointed in their work13. 

Computation complexity, however, is a non-negligible topic which directly influence the practical 

application of our algorithm. The whole computation complexity of network can be calculated as  

                              
3 3

1
1

D

l l
l

M K C C

                               (2)

 

Where D  is the depth of CNN layers, l  identify the current layer number, C  is the number 

of channels, M is the feature map size. It is obvious to find that dense network structure would 

increase the computational complexity.  

SRCNN has no padding before convolutional operation, causing boundary pixel missed. On the 

contrary, padding is necessary for our network because that processing 3D image will typically 

occupy a lot of memory. In order to save memory, we divide the initial CT image to sub-blocks with 

small size. Given that the layers of network is 12, the input size is relatively small, which will cause 

majority loss of internal information without padding during forward propagation. Hence, we use 

zero padding and subsequent experimental have proved the correctness of this scheme. 

Because the SRCNN network has only three layers of network, it not only completes learning 

mapping relation between LR and HR but also remains initial LR feature during forward 

propagation. When largely increase layers, the information of the input LR feature will be lost in the 

continuous convolution process, which leads to training unstable and discard initial information. We 

consider residual learning can be used to solve the above problems. After each CNN, we utilize 

Rectified Linear Unit (ReLU)30 as activation function on output of last layer. 

Re ( ) max(0, )LU X WX b                       (3) 

Where ,X W denote input and weight parameter respectively, b is bias.  

3.2  Pre-process of Training-Set 
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Before training, we should crop and transform initial CT sample to suitable shape. Specifically, the 

step of crop original CT samples is introduced as follows.  

We separately use factor =2,3, 4 to downsample ground truth CT datasets { }Y in different 

samples, then we use bicubic interpolation to upsample them by same size and these are used as LR 

images{ }X . Original CT images are cropped to sub-3D-blocks for producing training set. HR 

images {Y} is viewed as label to calculate loss function, and LR images {X} are fed in network. 

The whole process is shown in Fig. 3. 

Acquired CT 
samples

HR CT images
LR CT images 
(small size)

LR CT images

Down Sampling

With x2,x3,x4 
factor

Bicubic 
interpolation

Return to 
original size

Label dataset 
{Y}

Input dataset 
{X}

Crop
Transform to 

sub-blocks
100x100x100

Training 
dataset

{X,Y}

Crop
Transform to 

sub-blocks
100x100x100

Resize to 

unified size

 

Fig. 3 Procedure of producing training set.  

When deal with CT images, crop is significant for training and there are mainly three points as 

following: 

(1) In this way, a larger quantity of training samples can be obtained via image cropping under the 

condition of limited number of CT samples. These sub-blocks are viewed as small size ‘images’ 

rather than ‘patch’. 

(2) Cropping promises our program running in general computer since training 3D-block will 

occupy amounts of memory. When large CT block is cropped into small blocks, it enables 

computing devices to calculate under low load. 



 9

(3) The sub-blocks are overlapping containing redundant information, in the sense that training set 

have rich contexture that is advantageous to learn mapping relationship. 

Assuming that the input is a cubic block, the specific number of training samples after cropping 

can be counted with following: 3( )inp

sub

I

stride I
, Where inpI is the length of a single side of initial 

images, subI is sub-block’s length, stride is span length when cropping. Cropping initial images to 

small subI can produce a large datasets, but it will also cause LR feature pattern incomplete. 

After the cropping, datasets is composed of paired{ , }X Y that are used as input and label for 

training, respectively. Experiments show that setting subI  as 25 is appropriate.    

3.3  Training Strategies 

Our proposed network is constituted of massive tensors which represent end-to-end mapping 

relationship. Weight parameters of network is initialized by Gaussian distribution (zero mean and 

standard deviation 0.001). Through continuous iterative training, is increasingly optimized by 

Mean Squared Error (MSE) loss function. However, directly using standard stochastic gradient 

descent (SGD) takes long time to converge. We employ some strategies to optimize our network 

structure and training data.  

(1) Residual Learning 

In spite of stacking more layers may have significant effects, the vanishing/exploding gradients 

problem will emerge.24,25 We find MSE error would suddenly increase in a certain training iteration 

when depth exceed 10 layers. In addition, deeper layer model produce higher training error which 

makes training process unstable. On the other hand, In Ref. 13, author consider that input detail is 

discarded after passing convolutional operation in deep layers , which gives birth to that the output 

only use learned features to generate images. He Kaiming et al. have introduced a deep residual 

learning framework26 to and got excellent scores in task of images recognition. Residual-learning 




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strategy is also adopted in our network to solve these problems. We define input as x , output as y , 

and residual image r y x  , where ( )f x denotes the output of data passing through network. Given 

training set{ , }X Y , and loss function based on MSE is interpreted as following: 

                                                          (4) 

Where n is the number of training batch samples. One point must be stressed is that residual 

learning is not necessary in all cases. When the number of layers is not deep, the use of the residual 

network have no obvious effect, or degrade instead. 

(2) Adjustable Learning Rate 

In SRCNN, it is found that the training with small learning rate converges very slowly. High 

learning rate help boost training yet can lead to gradients exploding. We apply the adjustable 

learning rate strategy for avoiding gradient exploding yet speeding up training. In early epochs, 

setting relatively high learning rate will be beneficial for accelerating training process. As training 

epoch going on, learning rate is reduced with following rules.  

( )

*0.1
epoch

steplr lr                             (5) 

Where epoch counts current training times, and step is predefined to control decay of learning 

rate. 

(3) Momentum Acceleration 

Due to the magnitude of complexity in dealing with 3D images, the convergence of using standard 

SGD28 is very slow. We employ momentum SGD to accelerate training process. Momentum is a 

commonly used acceleration technique in gradient descent. It accumulates the momentum before it 

replaces the real gradient. The implementation of SGD with Momentum in our work subtly differs 

from Sutskerver’s work.29 Considering the specific case of momentum, the gradient update formula 

is written as a new form: 

2

1

1
( ) || ( ; ) ||

n

i
i

L r f x
n 

   
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Algorithm：Momentum SGD 

Require：learning rate lr，momentum coefficient  , weight parameters  , velocity v； 

while do: 

Batch samples : LR images 1 2{ , , , }mx x x , residual images as 1 2{ , , , };mr r r    

Update Gradient: 
1

1
( , , );

m

i i
i

g L x r
m




     

Update velocity: * ;v v g   

Update weight parameters: - * ;lr v   

end 

Where ( )L x denotes MSE loss function, and , , ,g v  are the weight parameters in network, 

gradients, velocity, and momentum factor, respectively. In our experiments, momentum factors are 

all set to 0.9. 

(4) Gradient Clipping  

Gradient clipping21 is usually applied in training RNN network in case of gradient 

exploding/vanishing. One simple way is pre-defining a threshold to clip them whenever they go over 

the threshold. In VDSR13, they use this technique to limit gradients to a certain range. In our work, 

we directly clip gradients to range [- , ]  , where   is predefined clipping range. 

4 Experiments and Results 

In this Section, we first introduces experimental basis and evaluation metric, peak signal-to -noise 

ratio (PSNR) and structural similarity index (SSIM), which are widely used to assess image quality. 

Next, we investigate the influence of important parameters on the accuracy of reconstruction, and 

analyze the reasons. At last, extensive experiments are conducted to compare our method with 

others. 

4.1  Experimental Datasets and Evaluation Criteria 

Deep learning generally benefits from big data training, considering the actual situation, it is not 
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easy to get rock CT images, we attempt to use a relatively small number of CT samples to making 

training set. In order to make the experimental results more convincing, we selected a batch of 

training samples which come from diverse rock types with representative characteristics. The 

displayed in Fig. 4 are training CT images of rock samples. The test samples are different from 

training set which both are consistent with the identical selection rules to guarantee convinced 

results as shown in Fig. 5. Each selection of CT images has dimensions of 400×400×400 pixels, and 

each pixel equals to actual length ( m -level) as demonstrated in Fig. 4. 

 

(a) sample1        (b)sample2      (c)sample3         (d)sample4       (e)sample5 

Fig. 4 Five sets of original CT images of rock as training CT samples: (a)(b)(c)are Sandstone with resolution of 3.8 m  

(d) is carbonate rock with resolution of 1.07 m  (e) is sandstone with resolution of 1.07 m   

  

(b) sample1        (b)sample2      (c)sample3         (d)sample4       (e)sample5 

Fig. 5 Five sets of original CT images of rock as testing CT samples. 

Results of reconstruction are validated by PSNR and SSIM. PSNR is widely used to measure 

the quality of image restoration. For a 3D image ( , , ; )f x y z  with a size of D H W  , PSNR is 

calculated as follows: 

               (6) 

                       (7) 

2

1 1 1

[ ( , , ) ( , , ; )]D H W

z y x

f x y z f x y z
MSE

D H W



  

 


 


2

10PSNR 10 log ( )IMAX

MSE

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Where ( , , )f x y z


denotes original HR images, LMAX is maximum gray level. The higher PSNR 

value indicates that reconstructed CT images are more similar with ground truth. PSNR is based on 

pixel error, however, it does not take into account the visual features of human eyes. Wang et al. use 

SSIM25 to represent the structure information of the image from the brightness, contrast and 

structure of the image, and it is more consistent with the sense of the human performance. Range of 

SSIM value is [0,1], and the higher the SSIM indicates the closer it is to the actual samples. 

4.2  Work Platform Details    

Detailed hardware and software are listed in Table 1. In order to ensure program running 

successfully, computing device must have enough memory at least 8Gb. Owing to huge time 

consumption in CPU, a method that utilizes CUDA to invoke GPU resources is adopted to speed up 

the training process. 

Table 1 Hardware and software platform. 

Name Specification 

CPU Intel i7-6770K 4.0G Hz 

RAM DDR4 16GB 

OS Ubuntu 16.04 

GPU Nvidia GTX 1080 

Framework Pytorch 0.31 

We use open source deep learning framework, pytorch 0.31, to build network and complete 

reconstruction. 

4.3   Multi-scale and Single-scale for Training   

A single model enabling to be implemented into multi-scale scenarios is critical for practical work. 

We consider model trained with upscaling factor= 2, 3, 4   (the corresponding training set/testset 
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are ,train testS S ) have better PSNR and SSIM on different samples. The ,train testS S are constituted of 

samples which are randomly selected by same proportions from three scale datasets, respectively. In 

training stage, average MSE using with multi-scale, is higher than single-scale in the early epochs. 

Nevertheless, from Table 2, after convergence of both network, PSNR of multi-scale surpass 

counterpart 0.32dB and 0.46 dB in the case of { 2, 4}testS    and nearly be equal in { 3}testS   . We 

consider that using multi-scale training-set is more preferable. The following experiments are 

conducted by multi-scale training sets. 

Table 2 Comparison of PSNR using multi-scales and single-scale model for SR in different upscaling factors 

testsets. 

Method 
Scale 

×2 ×3 ×4 

3DSRCNN(single) 39.68 35.03 32.01 

3DSRCNN(multi) 40.00 35.02 32.47 

4.4  Analysis of Training and Reconstruction 

If training sets are blended up with multi-scale samples, the yielded model can be applied to 

different scale interpolation images which can save the cost of storing network. In Fig. 6, it is 

observed that the trend of the curves in different scale factors is basically same. There is slight 

fluctuation in some epoch, yet the overall curves are smooth and converges quickly. This is because 

the loss function of the network uses the MSE function, and MSE helps to train a higher network of 

PSNR values, but with SGD optimization, the loss function may fall into a bad local minimum, 

resulting in a slight drop in the PSNR during the training process. Note that not the low MSE value 

in training stage means that the reconstruction effect is better. In training phase, the calculation of 

MSE is based on one batch that is currently taken out from the training set, which can’t be deemed 

as the criterion of reconstruction quality. It is supposed to use trained model to complete process of 
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reconstruction to compare performance. 

If more high frequency details were lost during downsampling, learning mapping relationship 

between low feature and high feature is relatively more difficult, thus brings intrinsic limitation on 

SR ability. It is evident to find there are higher gains in { 2}testS   and lower gains in the other 

testsets. Using the work platform of Table 1, it takes about 2.29 hours for each training epoch. In 

general, with the continuous iteration of the network, the PSNR will give higher value yet converge 

to a certain value due to the limitations of generalization ability of network and given training sets. 

In our work, it need about 20 epochs to converge. 

 

Fig. 6 Average PSNR of 3DSRCNN on testsets with 2 3 , 4 upscaling factors. The three curves are smooth, 

and we can find that residual learning can boost convergence. 

 The trained network model is actually a set of tensors storing the weight parameters of each 

neuron. Although trained CT image sets are divided into small blocks, in reconstruction stage, there 

is no requirement about the size of input images. The ultimate goal of our work is to acquire HR 

images by identical size, but if directly send the images with relatively large pixels to the network, it 

will consume a lot of memories (e.g. Reconstruction of data with size of 400 400 400  takes up 

about 352G memory, tested in Pytorch 0.31). Therefore, we first crop input CT images to smaller 

sub-blocks with size of 100 100 100  . Then, we assemble all reconnoitered sub-blocks to 
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complete size HR images.  

 

(a)Original CT image (b)Bicubic interpolation（c)MRI       (d)3DA+         (e)3DSRCNN 

 

 

(f)original slice    (g) Bicubic interpolation  (h)MRI         (i)3DA+           (j)3DSRCNN 

Fig. 7 SR results of different algorithm in scale factor = 4 testset of Sandstone rock sample. We can find that the 

zoom-in image of 3DSRCNN contains more clear texture than other method. 

4.5  Training Parameters and Trade-offs 

Network parameters, including network depth and convolution kernel size, will affect reconstruction 

accuracy and time. In most cases, increasing training epoch is conducive to a better performance. 

The mapping relationship that a network can learn from a given training set is yet limited to 

quantities of training data and structure of network. Appropriate increment of the network structure 

and training parameters is of crucial. In this section, we investigate the optimal setting to make a 

trade-off between performance and speed.  

4.5.1  Depth of Network 

For SR of single 2D images, Jiwon demonstrate the large depth help model to capture more 

contextual information and yield better performances than shallow ones. For training of 3D samples, 
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the amount of computation and memory occupation is very large. Too many layers could slow down 

the convergence and exponentially improve the computational complexity. As shown in Fig. 8, we 

found that the PSNR will be improved until layers are added up to 12. After that, there is no 

apparent promotion on accuracy of reconstruction. Deepening the network is indeed effective, but 

we find that the is not the point, ‘the deeper, the better’, which needs to be explored through 

practical experiments based on given datasets. We try training with small number of datasets, so that 

the mapping relation learned from prior information is inherently limited, so an excessive increase 

of the layers will not substantially improve the accuracy of the reconstruction, Unexpectedly, it will 

bring about degradation problem due to over-fitting. If other parameters setting are uniform, we 

observe that training 20-layers for one epoch takes almost five times as much as 5-layers in Table 3.  

Table 3 Comparison of consuming time for training one epoch with different number of layers. 

Number of layers 5 12 20 

Time(min) 26.7 82.2 138.9 

The 12-layers is about 0.15, 0.09 dB higher than 10-layers, 14-layers network in { 3, 4}testS    , 

respectively. In addition, 20-layers is even much lower than that of the 12-layers in { 2}testS   . On 

the other hand, PSNR of 12-layers is also relatively stable in whole testsets with different upscaling 

factors. These issues are also mentioned in Ref. 5, where improper increase of depth will cause 

degradation of SR accuracy, which also confirms our point that the number of layers of SR network 

should be proportional to the quantities of training data. 
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(a) The average PSNR curves in { 2}testS    

          

(b) The average PSNR curves in { 3}testS    

     

(c) The average PSNR curves in { 4}testS    
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Fig. 8 Average PSNR of networks with different number of layers on three upscaling factors testsets. The deeper 

network does not always give higher PSNR. 

4.5.2  Convolutional Kernel Size 

In this subsection, we explore network sensitivity to different convolutional kernel size. In Ref. 13, 

all the filters of CNN are set as same size of 3 3 . In Ref. 5, they examined the impact of different 

filter size, whereas their settings are inapplicable to ours due to the limitation of practical memory. 

Besides, the size of our input data is uniformly 25 25 25  , that means it is better to set relatively 

small filter. Based on previous experiment condition that number of layers is set to 12, we conduct 

three comparative trials with convolutional size of 3 3 3  , 5 5 5  and 7 7 7  . The experimental 

results can be seen in Table 4. We find that there is no evident improvement when widening kernel 

size to5 5 5  than3 3 3  . Instead, using 7 7 7  has a large reduction in quality. By using small 

convolution kernel, the larger receptive field can be achieved by increasing the network depth as 

well. According to Formula (2), increasing the size of the filter incurs higher complexity than that of 

increasing the network depth. We consider that small filter size is more preferable.  

Table 4 Comparison of consuming time for training a epoch with different convolutional kernel size. 

Size(pixel) 3 3 3   5 5 5   7 7 7   

Time(min) 81 250 428 

PSNR(dB) 40.00 39.74 36.79 

 

4.5.3 Residual vs Non-residual Learning 

Increasing network layer could cause the problems of the gradient explosion/vanishing. We start an 

experiment: network layers are set to 12 and compare using residual learning with non-residual 

learning. It is observed that network with residual learning gives more outstanding performance 

shown in Fig. 6 and 9. In the early process of training, it is found that the MSE loss is very high. As 
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shown in the Fig. 9, there is a dramatic wave during the training process of 5-10 epochs, even worse, 

PSNR has a large decline during the 7,8 epoch. Moreover, it will take long time to converge than 

using residual learning. Analogously, network with residual learning makes MSE converge to a 

smaller number in the first 3 epochs, and the network without residual learning needs more than 25 

epochs to converge. The final result shows that using non-residual learning on test { 3, 4}S    , is 

about 0.2dB, 0.1dB higher ,0.4dB lower than counterpart on { 2}testS   . Using residual learning can 

enhance the stability of training process. When the network is deeper, the necessity of residual 

learning will be more prominent.  

 

Fig. 9 PSNR with non-residual learning. It’s obvious to find that network with non-residual emerge shock waves in early 

stage. Non-residual learning will takes many epochs to maximum performance.  

4.6  Comparison to State-of-the-art 

The performance of our proposed network is experimentally analyzed compared with the benchmark 

bicubic interpolation, MRI7, sparse-representation11, 3D-A+15, in the Table 4., the average PSNR 

increases 4.72dB, 2.48dB, 2.92dB, and SSIM increases 0.037, 0.05, 0.111 than input images (i.e. LR 

images), respectively. In addition, we can see that the 3DSRCNN training model have surpassed 

previous methods on three upscaling testsets with evaluation of PSNR. Compared 3DSRCNN with 

previous top performing algorithm 3DA+, ours is higher 1.42dB, 0.13dB, 0.82dB than it on

{ 2, 3, 4}testS     . Therefore, it can be concluded that the neural network has a better learning ability 
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than the traditional way. The appropriate setting of the network parameters can make full use of the 

redundant texture in the training image, thus learning more prior information and finally achieve 

excellent performance. 

The reconstruction time and quality of 3DA+ is related to the selected size of the feature block. 

When the test feature block is large, the reconstruction quality is good. When the3 3 3  size block 

is selected, reconstructing the size of 400 400 400   is about 22 minutes on CPU. Our work uses 

GPU to run program, and reconstruction of the same size image only need 3 minutes, besides ours 

have better performance of PSNR. 

We selected regions with rich texture details to make visual contrast as enlarged areas. A 

selection of 70 70 pixels region, containing distinguishable texture, is zoomed-in to compare 

reconstruction quality of different methods, respectively. At the visual level, it can be seen 

3DSRCNN contains relatively clear details (see Fig. 7), in contrast, the reconstructed images using 

other methods are more blurry. 

Table 5 The average results of PSNR(dB), SSIM in comparison with other algorithm. 3DSRCNN(single) is separately 
trained and only works for corresponding upscaling factor. In contrast, 3DSRCNN(multi) can be applied in different 

upscaling factors. 

Evaluation Scale Bicubic MRI7 

Sparse 

representati

on11 

3DA+15 
3DSRCNN(

single) 

3DSRCNN(

multi) 

PSNR(dB) 

2 35.28 36.35 38.45 38.58 39.68 40.00 

3 32.54 33.15 34.74 34.89 35.03 35.02 

4 29.55 30.17 31.59 31.65 32.01 32.47 

        

SSIM 

2 0.950 0.965 0.983 0.983 0.986 0.987 

3 0.879 0.881 0.924 0.930 0.931 0.929 

4 0.738 0.799 0.817 0.828 0.850 0.849 

5 Conclusion  

In our work, we proposed a novel method, 3DSRCNN, based on deep learning to approach SR of 

voxel images. While using CNN to restore single LR image to high resolution have outperformed 



 22

tradition method, there are many challenges previously mentioned to accomplish CT sample 

super-resolution. Our proposed model employ 3D-convolutional operation to handle CT images, 

which ensures the spatial continuity in plane and slice direction. Through practical experiments, We 

explored empirical guideline, such as learning rate, depth of network, as well as size of 

convolutional kernel, on designing network and parameters-tuning in training process. Moreover, 

stacking moderate network layers and adopting training strategies will exert on the accuracy and 

time of reconstruction. We found that training and reconstruction will occupy a lot of memory, 

which need to draw more attention. To cope with aforementioned issues, we crop original CT 

images to small blocks. We have demonstrated our method surpasses previous methods, which is 

shown in Table 5. For future research, we want to theoretically explain the effect of network depth 

on SR. Meanwhile, we will study the better training techniques to deal with the issues of larger 

quantities of 3D data, thus greatly reducing training time. 
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