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Abstract

Fire activity has a huge impact on human lives. Different models have been proposed to pre-
dict fire activity, which can be classified into global and regional ones. Global fire models focus
on longer timescale simulations and can be very complex. Regional fire models concentrate on
seasonal forecasting but usually require inputs that are not available in many places. Motivated
by the possibility of having a simple, fast, and general model, we propose a seasonal fire prediction
methodology based on time series forecasting methods. It consists of dividing the studied area into
grid cells and extracting time series of fire counts to fit the forecasting models. We apply these
models to estimate the fire season severity (FSS) from each cell, here defined as the sum of the fire
counts detected in a season. Experimental results using a global fire detection data set show that
the proposed approach can predict FSS with a relatively low error in many regions. The proposed
approach is reasonably fast and can be applied on a global scale.

Keywords: Global fire activity, Wildfire, Fire season length, Fire severity, Climate change, Time
series prediction

1. Introduction

Wildfires have a fundamental role in the environment and a huge impact on human lives
(M. C. Pereira et al., 2008; Chen et al., 2010; Brando et al., 2014). They affect biodiversity,
cause damage to forests and properties, influence global climate, and pose direct risks to human
health (Flannigan et al., 2006; Spessa et al., 2015; Dey and Schweitzer, 2018). Forecasting fire
activity thus brings many benefits for fire management and control (M. C. Pereira et al., 2008;
Flannigan et al., 2013).
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Models have been used to predict fire occurrence in global and regional scales. Global fire
models focus on long-term predictions (decades to centuries) and include a complex set of dynamic
factors related to climate, vegetation, and human activity (Bowman et al., 2009), which are linked
to the presence and flammability of vegetation biomass, and sources of ignitions (Arroyo et al.,
2008). Their high level of detail and precision lead to satisfactory results in long-term predictions
but were not intended for seasonal forecasting (Rabin et al., 2017). Regional models are mainly
applied for projections at the seasonal timescale. They provide good forecasting results for specific
regions but require input data like vegetation (fuel), topography and weather, that may not be
available for other regions (Roads et al., 2005). This limitation makes their application difficult
to specific regions (Westerling et al., 2003; Roads et al., 2010; Chen et al., 2011; Marcos et al.,
2015; Spessa et al., 2015). Some methods have been developed to predict seasonal fire activity
on a global scale (Chen et al., 2016; Turco et al., 2018). In general, they use burned area data,
which do not accurately account for smaller real fires (Hantson et al., 2013; Fornacca et al., 2017;
Earl and Simmonds, 2017; Fornacca et al., 2017). All these mentioned disadvantages motivate the
development of a simple, accurate, and widely-applicable seasonal forecasting method.

In this paper, we propose a seasonal fire prediction approach, which is simple, effective, relatively
fast, and can be generalized and used on a global scale. Our methodology is based on applying seven
different time series forecasting methods and evaluating their suitability as seasonal fire forecasting
predictors. It consists of dividing the studied area into grid cells and extracting time series of fire
counts to fit the models. We use these models to estimate the fire season severity (FSS) defined as
the sum of the fire counts detected in a season.

After applying our approach to a global fire detection data sets, the results reveal that the
forecasting errors are relatively low in the vast majority of the areas. These results indicate that
it is possible to predict worldwide FSS by employing fire count historical data and time series
forecasting methods. The proposed methodology can be especially useful for landscape managers
and planners that lack the expertise and/or data for building or use some specialized forecasting
model. It can also be applied to quickly estimate fire activity in large areas.

This manuscript is organized in the following form. We start by presenting in Section 2 the data
we use and the proposed forecasting methodology. In Sec. 3, we present our results and discussion
divided into three analyses: fire season length, fire season severity, and forecasting. Finally, we
present in Sec. 4 some conclusions and future works.

2. Material and Methods

2.1. Data
In our experiments, we use data from the Moderate Resolution Imaging Spectroradiometer

(MODIS) on-board NASA’s Terra and Aqua satellites. Specifically, we used the Global Daily Fire
Location Product (MCD14ML) Collection 6 from 2003 to 2017 (Giglio, 2015; Giglio et al., 2016;
Justice et al., 2002). This data set comprises active fire detection and is composed of geographic
location, date, detection confidence, and some additional information for each fire pixel detected
by the Terra and Aqua MODIS sensors. We consider only those fire records in the data set with
detection confidence higher than 75%. We disregard the years of 2001 and 2002 because they have
missing data. The data set is freely accessible (Giglio, 2015).

To analyze this spatiotemporal data set, we divide the globe into 65,612 hexagonal grid cells
of approximated 7,774 km2 each (Barnes, 2017). The main advantage of the hexagonal grid, when
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compared to the traditional rectangular longitude-latitude one, is that the former generates cells
with more uniform coverage area and avoid distortions. Since the vast majority of the grid cells are
located in regions without fire, like in the oceans or poles, we discard many cells. Only cells with
at least one fire record per season were considered. After selecting only those cells with fire, we end
up with 6486 ones. For each of those cells, we construct a time series with the daily fire records
detected by the satellites. We use the term “fire counts” (FC) to refer to these time series similarly
as previous works (Chen et al., 2011; Earl and Simmonds, 2018).

Our choice for using fire counts instead of other types of fire data, such as burned area products,
is simply justified by the characteristics of our analyses. This kind of data is easy to divide into grid
cells and to interpret. Burned area information, on the other hand, would need to be reprocessed
to be spatially reorganized into grid cells, adding complexity and not contributing with crucial
information to our analyses. Another reason for using an active fire product is the availability of
a daily timescale, required in our analysis. Furthermore, active fire data sets like the MCD14ML
tend to detect smaller fires than burned area products (Earl and Simmonds, 2017; Fornacca et al.,
2017), which leads to a satisfactory level of accuracy for our study.

2.2. Fire Season Estimation
To estimate the length of the fire seasons, we propose a simple method: First, we apply a moving

average (window size of seven days) to smooth the historical time series of fire counts. Then, we
count the largest periods without fire. We remove these periods and consider the other ones as fire
seasons. In Fig 1, we illustrate this process using three FC time series from different regions.
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Figure 1: Fire seasons estimation. Each time series represents the daily fire counts (FC) detected in grid cells
located in three different regions: Brazil, India, and Mali. After the smoothing, we count the periods without fire
(in blue) and consider the other periods (in red) as fire seasons.

We define fire seasons as the time window centered in the month with the historical highest
occurrence of fire in each cell (Chen et al., 2011). We use the fire season estimation method here
proposed to define a single proper time window length to be used for all the cells. Specifically, this
method was applied to the time series from all grid cells and verified the empirical distribution
of fire season mean lengths. We remove outlier season lengths, i.e., values higher than the third
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quartile (Q3) + 1.5 × interquartile range (IQR). Outlier lengths appear for multiple reasons. In
some cases, these uncommonly long activities are accounted for false fire detections like in regions
with hot bare soils (Oom and Pereira, 2012). In other cases, they represent volcanoes or gas flares
from oil and gas exploration. The outlier removal minimizes the effect of these uncommon cells.
After removing outliers, we choose the 99% season length percentile as the global season length (see
Sec. 2.2). This method guarantees that the FC time series from all cells have the same length and
well represents the periods with more fire. The fire season severity (FSS) is the sum of fire counts
(FC) in a season (Chen et al., 2011).

2.3. Forecasting methods and evaluation
In our experiments, we discard the first and last season to avoid measuring broken seasons,

resulting in 13 years of data. We also opt for using the monthly-accumulate fire counts (MA-FC)
of each season to fit the forecasting models. The reason is the lack of FSS samples (13 in total),
making it unfeasible to train the forecasting models. Since every season has seven months, the
MA-FC has 91 values. We opt for using just the MA-FC in the seasons to train the models because
the period outside the seasons is mainly formed by zeros (see Sec.3).

For each cell, we separate the first ten seasons to train the model and the last three ones to test.
We performed a Box-Cox transformation in both the train and test time series, and the parameter
lambda was calculated using the method proposed by Guerrero (1993). The FSS forecast is the sum
of the MA-FC predicted for a season. Our forecasting methodology is illustrated in Fig. 2, using
three MA-FC time series (the same from Fig. 1) as examples with relatively high (Brazil), medium
(India), and low (Mali) interannual variability for the peak months. In the three examples, the
forecasting method (Prophet (Taylor and Letham, 2018b)) can reproduce the seasonal variations
and accurately predict (in red) the test seasons.
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Figure 2: Forecasting methodology. The three time series are the monthly-accumulate fire counts (MA-FC) for the
examples in Fig. 1. The first 10 seasons (blue background) are used to train the forecasting models and the last
three ones (red background) are used to test. The time series in red are the result of the prediction using one of the
methods (Prophet (Taylor and Letham, 2018b)). The final FSS forecast is the sum of the monthly forecasts from
each season.
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In the following, we briefly describe the forecasting methods:

• Naive forecasting : one of the simplest forecasting methods, it considers the last observation in
a non-seasonal time series as the prediction for the next value (Hyndman and Athanasopoulos,
2018). In a seasonal time series, the seasonal naive forecasting (snaive) method considers
each forecast to be equal to the observed value in the same period in the previous season.
For example, the snaive monthly prediction for July 2020 is the observed value in July of
2019. Although its simplicity, this method provides proper results in many cases. We use this
method as a baseline.

• Autoregressive Integrated Moving Average models (ARIMA): aims to describe the autocorre-
lations on data given the past events, which is an approach widely employed for time series
forecasting. The procedure starts analyzing the lag regression of the variable, and then, per-
forming a moving average of errors from the linear combination of the past events. Therefore,
the prediction of a variable is assumed to be a linear function of previous data and random
errors. We employ the function in R that uses the Hyndman-Khandakar algorithm for au-
tomatic ARIMA modeling, which finds the best autoregression (AR) model and the moving
average (MA) of weighted linear combination to obtain the prediction method (Hyndman and
Khandakar, 2008; Liboschik et al., 2017).

• Exponential smoothing (ETS): is a data forecasting method that uses a sliding window func-
tion to specify weights that decay exponentially over time. The sliding function helps for
smoothing the series data, i.e., applying a low-pass filter to discard outliers or noise (Hynd-
man and Athanasopoulos, 2018). Thus, the previous data events are weighted with a geomet-
rically decreasing ratio, i.e., the older the event, the lower its relevance weight. ETS methods
can be used in datasets with seasonality, systematic trend, and other assumptions (Liboschik
et al., 2017). Besides, ETSs are considered a better option than the ARIMA methods be-
cause they are non-stationary and adopt exponentially decreasing weights calculated from
previous events. Conversely, ARIMA methods are stationary and used linear weights of the
past observations according to the moving average technique (Hyndman and Athanasopoulos,
2018).

• Short-term load forecasting (STLF): this approach can be defined as a time-series decompo-
sition by seasons and trends using a Loess forecasting modeling (Hyndman and Khandakar,
2008). The method assumes that a time series can be separated in error, trend and seasonal-
ity components. Then, the results of the decomposition are used as input for the forecasting
step. The time series is decomposed by a variation of a seasonal and trend function using
Loess (STL) (Cleveland et al., 1990), which deals with multiple seasonality and nonlinear
relationships. The returned multiple seasonal components are employed by a simple method
for adjusting the seasonality of data (Hyndman and Khandakar, 2008), and the forecasting is
the recombination process of the components. According to the authors, the method produces
good forecasts results in seasonal time series (Cleveland et al., 1990).

• TBATS : decomposes the time-series data into seasonal components and combines them in a
trigonometric representation (Livera et al., 2011). These components are the Fourier terms of
the series smoothed with an exponential Box-Cox transformation (Livera et al., 2011; Taylor
and Letham, 2018a). The trigonometric decomposition brings some advantages compared
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to traditional linear methods (Livera et al., 2011): it is possible to model non-integer sea-
sonal data or high-frequency series, detecting more refined patterns; the method works with
large parameter space not affecting the forecast results; it can process nested or not seasonal
components with nonlinear behavior, which is the case of real-world series data. Besides its
capabilities, the method is robust to autocorrelation data, involving a simpler but efficient
estimation procedure.

• Generalized linear model for count time series (TSGLM): the method uses the generalized lin-
ear model (GLM) approach for modeling the data events (observations) according to previous
conditional information (Liboschik et al., 2017). For this purpose, it considers that the data
are only composed of positive integers, i.e., count time series. In this way, TSGLM provides
a likelihood-based estimation capturing the dependence among data events (Liboschik et al.,
2017). This linear predictor provides a regression method over previous observations taking
into consideration the covariance effects. For this point, it employs a probability distribu-
tion function, like Poisson (used in our experiments) or negative binomial, to estimate the
maximum or quasi-likelihood of the distribution for obtaining the best statistical inference
model (Liboschik et al., 2017).

• Artificial neural networks (ANN): a model inspired by the biological neural networks consti-
tuted in animal brains. They are based on a set of connected units called artificial neurons
(Bishop, 1995). The architecture of ANN frequently contains multilayer perceptron and sig-
moid neurons, organized in layers and employing the stochastic gradient descent as the stan-
dard of the learning process. The ANNs are trained to learn the input-output relationships
through an iterative process, in which the weight of the neurons are adjusted to minimize
the error between the predicted and the true outputs. As a result, it is expected that the
ANN learns a suitable model that accurately generalize the response to new data. In our
experiments, we used Multi-Layer Perceptron (MLP) networks with a single hidden layer and
lagged inputs Hyndman and Khandakar (2008). We used just one seasonal lag as input and
the hidden layer has half of the number of input nodes plus 1. So the number of neurons
in the input, hidden, and output layers are respectively seven, five, and one. We repeat the
training process for this topology 20 times starting with random weights initialization and we
report only the best result.

• Prophet : this is an open-source software released by Facebook (Taylor and Letham, 2018a) and
used in several applications by the company for producing reliable forecasts in planning and
goal setting. The algorithm follows an additive model approach where a non-linear smoother
is applied to the regressor by yearly, weekly, and daily seasonality. The method analyzes
three main components (Taylor and Letham, 2018b) trend, seasonality, and holidays effect,
where the components are automatically detected from the data. According to the authors,
Prophet performs better than any other approach in most of the experimental results. They
showed the robustness of the method in the presence of outliers, missing data, and shifts in
the trend (Taylor and Letham, 2018b). Besides, the method is suitable for time-series that
present historical strong seasonal effects.
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In the experiments, we used the R programming language (R Core Team, 2017) with the pack-
ages: forecast (Hyndman and Khandakar, 2008), prophet (Taylor and Letham, 2018a), and
tscount (Liboschik et al., 2017). These packages provide implementations of the forecasting meth-
ods and automatically tune the parameters for fitting the models to the time series. For details
of implementation, we point the interested reader to the packages manuals and our source code
described in Section “Computer Code Availability”.

To find the best forecasting method of a single time series from a grid cell, we compared the
mean absolute error (MAE) (Hyndman and Athanasopoulos, 2018). Considering an observed (test)
time series Y of n values and F the predicted values for Y , the prediction error et in a time t is the
difference between an observed value and its forecast: et = Yt − Ft. The MAE is defined as:

MAE = n−1
n∑

t=1

|et|. (1)

The advantage of this measure is the easy interpretation of the error for a specific time series.
However, the MAE is a scale-dependent measure that cannot be used to asses the accuracy in
time series with different scales. The different scales make the accuracy interpretation not so
clear in different scenarios (grid cells). To make the interpretation easier, in our experiments, we
normalize the MAE by mean FSS values in each cell. The non-normalized results are presented in
the Appendix A.

We use the mean absolute scaled error (MASE) to compare the accuracies of different methods
in all cells (Hyndman and Koehler, 2006). The scaled forecasting error qt of a non-seasonal time
series Y is the error et divided by the MAE of the non-seasonal naive forecast method on the
training set:

qt =
et

1
n−1

n∑
t=2
|Yt − Yt−1|

. (2)

The scaled error qt of a time series Y with a seasonal period m is:

qt =
et

1
n−m

n∑
t=m+1

|Yt − Yt−m|
. (3)

If qt < 1, the forecasting method is better than the seasonal naive (snaive), otherwise snaive is
better. As its name indicates, the MASE is simply the mean of all scaled errors:

MASE = n−1
n∑

t=1

|qt|, (4)

where qt corresponds to Eq. 2 if the modeled time series Y is not seasonal or Eq. 3 otherwise. In
our experiments, we use the MASE with Eq. 3 to evaluate the seasonal MA-FCs predictions. We
use Eq. 2 to compare the non-seasonal FSS (sum of MA-FCs in a season) from the best model
in each cell with the result of linear regression. We opt to compare to a linear regression due to
the limited number of FSS values required to train other forecasting models. When MASE < 1,
the forecasting method gives, on average, smaller errors than the one-step errors from the naive
method. The best forecasting method has the lowest MASE values.
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3. Results and Discussion

3.1. Fire season Analysis
We propose in Sec. 2.2, a simple method to estimate the fire season length. In our first analysis,

we apply this method to all the grid cells. Since we have 15 years of fire data, we extracted the
same amount of fire seasons. In Fig. 3, we illustrate the fire season mean length and trend for each
cell. Some of the regions with the longest (more than 7 months) fire season lengths are Paraguay,
Southeast of the USA, north of Australia, and most parts of Africa. Since 99% of the cells have
fire seasons shorter than seven months (in the mean), we consider seven months a reasonable time
window to represent worldwide fire seasons. More than half of the cells (57%) present a decline
in the fire season lengths but some regions like in Northeast Brazil, Eastern Russia, and parts of
Africa show an increase in the fire season length.

Figure 3: Global Fire season description: (A) length means and (B) linear trends (slopes). The inset figures show
the respective probabilistic density functions (PDF).

After defining seven months as the fire season length, we find the months with the historical
highest occurrence of fire in each cell. Fig. 4 illustrates the months with peaks of fire activity and a
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histogram with the months’ distribution (inset). The months of historical maximum fire activity are
distributed following a bimodal distribution (aligned with previous results (Benali et al., 2017)). The
two groups in the distribution mainly represent the dry seasons in the tropical rain belt (northern
to the southern tropics). In the tropical zone, regions below the Equator have peaks of fire activity
between August and October while locations above the Equator have maximums between March
and May. Right on the equator, the fire activity is predominant at the end of the year (November
to January). Part of the high fire activity in April is accounted for the dry seasons in parts of
Russia and South Australia (Peel et al., 2007).

Figure 4: Months with the highest fire activity in each cell. The inset figure shows a histogram with the number of
cells with the highest fire activity in a month.

The fire seasons are the periods of seven months centered in the month with the highest occur-
rence of fire. In Fig. 5, we show the fire season severity (FSS) means and trends calculated for all
the cells. 50% of the global area has FSS mean lower than 100 FCs per year and 99% have less
than 1200 FCs on average. The highest number of fire counts concentrate in the tropics. In general,
there is a trend of decline in the mean FSS worldwide (61% of cells). However, in other regions
like Southern Africa, Far Eastern Russia, Eastern Ukraine, and the West Coast of the USA, we can
observe a notably increase tendency in the mean FSS.

Multiple reasons and factors can explain the trends in the fire seasons’ lengths and severity. Some
of the elements related to those variations are the increase or decrease of factors that lead to fire
ignitions, such as less deforestation or lower lightning occurrence (M. C. Pereira et al., 2008; Bowman
et al., 2009; Oom and Pereira, 2012). Climate phenomena, e.g. the El Niño-Southern Oscillation
(ENSO), also influence the fire activity in critical regions like tropical forests (M. C. Pereira et al.,
2008). Some previous works link the increase in global fire activity and seasonal length caused by
climate change (Flannigan et al., 2006, 2013; Kelly et al., 2013). Similarly to our results, the global
decrease in the fire activity was also observed in previous works that associate it to the worldwide
increase in population densities and cropland areas (Andela et al., 2017; Arora and Melton, 2018;
Earl and Simmonds, 2018).
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Figure 5: Global Fire season severity (FSS) description: (A) means (B) and linear trends (slopes). The inset figures
show the respective probabilistic density functions (PDF).

3.2. Fire season severity forecasting
The forecasting results for the monthly-accumulated fire counts (MA-FC) are illustrated in Fig.

6. On the top figure (6-A), we show the MAE for the best method normalized by the FSS mean
(Fig 5-A) and the density function for the MAE (inset). The regions with the higher relative MAEs
are Northern Australia, Ukraine, parts of Russia, and the USA. Although, all the cells present
MAE lower than the FSS mean, even in the African continent whose cells present that highest FSS
means (Fig. 5). These results indicate a low general forecasting error. Since we defined FSS mean
as a baseline, it is difficult to make general conclusions (especially in large regions) without taking
into account the characteristics of each cell. Therefore, we point the reader interested in specific
regions to the non-normalized MAEs, presented in the Appendix A (Fig. A.8).

In the bottom figure (6-B), we present a boxplot of the MASE for the entire world divided
by continent. The TBATS and the ANN models present the lowest and the highest median error
respectively. TBATS performs statistically better than the other methods except for the ETS (p ≤
0.001 – Friedman and Nemenyi tests (Demšar, 2006)). In 75% of the cells, the forecasting methods

10



provide results better (MASE < 1) than a seasonal naive forecasting method. Our results show
that MAEs and MASEs for the MA-FC time series are low, which suggests that it is possible to
apply historical detected active fire data to forecast fire seasons severities.

Figure 6: Monthly-accumulated fire counts (MA-FC) forecasting. (A) The MAE from the best model for each cell
normalized by the FSS mean (Fig 5-A) and the PDF (inset). (B) Models comparison using the MASE (Eq. 3) for
the seasonal MA-FC from each cell divided by continent and the global. Outliers removed in both figures.

Given the MA-FC forecasting errors, we adopt the best model for each cell to make the FSS
prediction. In Fig. 7, we present the normalized MAEs and MASEs achieved comparing the best
model for each cell with the FSS forecasting results from a linear regression. The non-normalized
MAEs are reported in the Appendix A (Fig. A.9). In some regions, like north Australia and
Ukraine, the normalized MAE is higher than 1, denoting that the errors are higher than the FSS
mean values. Conversely, in most of the regions (95%), the MAEs are lower than the FSS mean
values. This result indicates worldwide predictability in the FSSs. The median MASEs are lower
than one for the best models, which means that predictions are better than the naive forecasting
method in at least 50% of the cells (outliers removed). The best models for each cell statistically
outperform the linear regression (according to the Wilcoxon paired test (Demšar, 2006)), except
in Europe where the errors are not statistically different. This result reinforces the worldwide
predictability of FSSs in most of the regions.
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Figure 7: FSS forecasting. (A) The MAE from the best model for each cell and the PDF (inset). (B) Forecasting
comparison between the best model achieved with MA-FCs and the linear regression in each cell. Accuracy was
measured using the MASE (Eq. 2) for the non-seasonal FSS from each cell divided by continent and the global
(outliers removed). The significance thresholds are: not significant (ns), p < 0.05 (*) and p ≤ 0.001 (***).

4. Conclusions

In this paper, we have analyzed global fire season severity, defined here as the accumulated fire
counts detections in a season. We divided the globe into hexagonal grid cells and extracted time
series of fire counts in each cell. We propose a very simple method to estimate the fire seasons.
Our results show that 99% of the cells have seasons shorter than seven months. We observed
that the length of fire seasons are decreasing in general. However, in some regions like Southern
Africa, Northeast Brazil, and Eastern Russia the fire seasons are increasing. Most of the cells (61%)
presented a decline in the FSS, excluding some regions like Southern Africa, Far Eastern Russia,
Eastern Ukraine, and the West Coast of the USA. One possible explanation for the declining fire
activity is the global agricultural expansion and intensification (Andela et al., 2017).

We have also shown that it is possible to forecast the FSS in many regions around the world.
Since the FSS time series are very short, we used the monthly-accumulated fire counts (MA-FC)
to train and test seven forecasting models. In this timescale, all the cells presented mean absolute
error (MAE) lower than the FSS mean. The MAEs for the predicted FSS (sum of predicted MA-FC
in a season) is lower than the FSS mean values in 95% of the cells, indicating predictability in the
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global FSS. In general, the TBATS forecasting model provides the best results. We conclude that
time series forecasting methods can be used to estimate worldwide fire seasons in a simple, fast and
general way.

It is important to mention that our results are based on the historical data of active fire detec-
tions, which is short and limited. The historical data may not take into account climate change,
which may considerably modify the fire seasons in the future. Our results are aligned with previous
results (Andela et al., 2017; Arora and Melton, 2018; Earl and Simmonds, 2018) but they might
not reflect the future if the climate keeps changing.

This work can be extended in many directions. Here we focused on global analysis but a natural
next step is the thorough analyses of specific regions and the deep reasons that explain fire activity
variations. Other variables, like socioeconomic projections and climate indices, can be included in
the forecasting methods to improve the prediction. Other forecasting methods and machine learning
tasks can also be explored on this data set. Tasks including fire seasons classification, clustering,
and anomaly detection. These techniques might reveal new patterns about the interplay between
anthropogenic activity and global fire dynamics.
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https://lnferreira.github.io/global_fss_analysis_forecasting/

13

https://lnferreira.github.io/global_fss_analysis_forecasting/


Appendix A. Forecasting Errors

Figure A.8: Monthly-accumulated fire counts (MA-FC) forecasting. The MAE from the best model for each cell
and the PDF (inset).

Figure A.9: FSS forecasting. The MAE from the best model for each cell and the PDF (inset).
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