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Abstract

A pore network modeling (PNM) framework for the simulation of transport of charged species, such

as ions, in porous media is presented. It includes the Nernst-Planck (NP) equations for each charged

species in the electrolytic solution in addition to a charge conservation equation which relates the

species concentration to each other. Moreover, momentum and mass conservation equations are

adopted and there solution allows for the calculation of the advective contribution to the transport

in the NP equations.

The proposed framework is developed by first deriving the numerical model equations (NMEs) cor-

responding to the partial differential equations (PDEs) based on several different time and space

discretization schemes, which are compared to assess solutions accuracy. The derivation also con-

siders various charge conservation scenarios, which also have pros and cons in terms of speed and

accuracy. Ion transport problems in arbitrary pore networks were considered and solved using both

PNM and finite element method (FEM) solvers. Comparisons showed an average deviation, in terms

of ions concentration, between PNM and FEM below 5% with the PNM simulations being over 104

times faster than the FEM ones for a medium including about 104 pores. The improved accuracy

is achieved by utilizing more accurate discretization schemes for both the advective and migrative

terms, adopted from the CFD literature. The NMEs were implemented within the open-source

package OpenPNM based on the iterative Gummel algorithm with relaxation.

This work presents a comprehensive approach to modeling charged species transport suitable for a

wide range of applications from electrochemical devices to nanoparticle movement in the subsurface.
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1. Introduction

The Nernst-Planck equations are widely used in the literature to describe the transport of ionic

species in electrochemical systems [24, 25]. With respect to porous media, the equations describe

ion transport in a wide variety of applications such as electrochemical cells [37] and certain redox

flow batteries [33]. They are also used to analyze ion conduction in biological structures of pores [6],

but probably the most common applications are for the study of ion transport mechanisms in clay

soils and concrete. Smith et al. [36] applied the NP equations to the analysis of transport through

platy-clay soils and Pivonka et al. [30] analyzed chloride diffusion in concrete for the estimation of

structural degradation due to corrosion. Moreover, it has been shown that simulations based on the

NP equations accurately predict ionic diffusion coefficients experimentally estimated on concrete

[26]. In a more recent work [4], the transport processes in a system including a concrete plug

surrounded by clay stone were modeled using the NP equations.

Another important field where the NP equations are used is modeling transport in capacitive charg-

ing and deionization [5, 10]. Comparisons between simulation results and experimental data [35]

highlighted the capabilities of the NP based simulations to help in the design of capacitive deion-

ization devices. While the transport of ionic species in the bulk of a solution flowing through a

porous medium is generally described using the NP equations, a charge conservation equation is

required to close the system. One option, perhaps the most accurate, uses the well-known Poisson

equation for the electrostatic potential [27]. The Poisson equation relates the electric charge density

to the Laplacian of the potential and describes the movement of the charged species in solution.

This yields the famous Poisson Nernst-Planck system of equations. Charge conservation can also

be enforced through a Laplace equation for the potential which allows for further mathematical

simplifications under certain assumptions [27]. In the presence of fluid flow, the solution of the

flow problem based on the mass and momentum conservation equations (Stokes or Navier-Stokes)

enables the calculation of the advective term in the NP equations.

Solving electrochemical problems in porous media at the pore-scale based on the NP equations is

generally carried-out using computational mesh that conforms to the real geometry of the system

being analyzed. Different methods have been used to numerically solve the transport equations such

as the finite difference [6, 24, 35] and finite element [4, 19, 25, 26, 34]. However, it is well-known that

direct numerical simulations (DNS) require significant computational resources. The same logic ap-
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plies to many other transport problems such as pure diffusion or dispersion in porous media. PNM,

as an alternative pore-scale modeling approach, requires substantially lower computing resources

(compared to pore-scale DNS) and have been successfully applied to study physics such as diffusion

reaction [13] and dispersion [32] in porous media. However, the use of PNM to study transport

of charged species is in its infancy. For instance, in a study of electrokinetic transport through

charged porous media [28], a steady-state PNM approach was used. This work [28] is one of the

first modeling electrochemical systems based on PNM. The used pore-scale microscopic transport

coefficients were simple analytical relations obtained by solving the NP equations in a cylinder. Re-

cently [18], a pore network model based on the NP equations was used to study porous electrodes

in electrochemical devices. However, their approach [18] was based on the upwind scheme, which

was recently shown to have high errors when Péclet number is above unity [32].

In this work, a more accurate method was developed and validated to solve the charge conservation

NP system in pore networks. This new method will ultimately allow for accurate pore-scale simula-

tion of transport in electrochemical systems with substantially lower computational cost compared

to DNS approaches such as FEM. One aim of the present work is to identify the best approach

among various options and to establish a numerically accurate and robust algorithm. Future work

can then build on this solid foundation.

Although the simplifications related to PNM may induce additional errors into the numerical so-

lution, it has been shown through comparisons between results of advection diffusion simulations,

that the PNM approach provides reasonably accurate solutions [40] compared to those obtained

from DNS using lattice Boltzmann and finite volume methods. This work presents a novel PNM

framework for the simulation of charged species transport. The framework is based on highly ac-

curate discretization schemes in addition to several charge conservation options. It also supports

transient simulations and handles non-linear source terms.

2. Background

This work considers single-phase, isothermal, incompressible flow of a dilute electrolytic solution,

treated as a Newtonian fluid, in a non-deformable porous medium. Assuming flow in the viscous-

dominated regime [1, 2], the movement of the electrolytic solution can be described using the

following steady-state momentum and mass conservation (Stokes) equations

µ∇2u−∇p = 0, (1)

and

∇ · u = 0, (2)
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where u is the velocity of the solution, p its pressure, and µ its dynamic viscosity and is considered

to be constant. Using the NP equation, the flux of ionic species n in the solution is given by

[5, 27, 35]

Nn = −Dn∇cn + ucn − DnznF

RT
cn∇φ, (3)

where cn is the ion concentration, φ is the electrostatic potential, Dn is the diffusion coefficient of

species n and zn its valence, and F is the Faraday constant. Eq. 3 as written follows several authors

[27, 35] defining the mobility based on the Nernst-Einstein equation, unmob = Dn/(RT ), where R

is the universal gas constant and T a constant absolute temperature. The flux as defined by Eq.

3 consists of three terms, representing different transport mechanisms namely, molecular diffusion,

bulk advection, and electrostatic migration. Moreover, a mass conservation equation is considered

for each of the ionic species n as follows

∂cn

∂t
= −∇ ·Nn. (4)

Substituting the flux from the Nernst-Planck equation (Eq. 3) into the conservation equation (Eq.

4), yields an equation for each of the ionic species as follows

∂cn

∂t
= −Dn∇2cn + u · ∇cn − DnznF

RT
∇ · (cn∇φ). (5)

The governing equations for fluid flow and concentration of species (Eqs. 1, 2, 5) are now defined.

However, an additional equation is required to close the system of equations since the electrostatic

potential is unknown. In this work, three different approaches were considered. Using the Gauss

electrostatic theorem [27], one could relate the distribution of ions in the electrolytic solution to the

variation of the electric field through a Poisson equation as follows [34, 36]

∇ · (εεr∇φ) = −F
∑
n

(zncn), (6)

such that ε is the vacuum permittivity and εr is the relative permittivity of the electrolytic solution.

The quantity on the right-hand side (rhs) of equation 6 is the electric charge density per unit volume.

The solution of the Poisson equation is numerically challenging due to numerical instabilities [16, 25]

and stabilization techniques are often required [24]. More stable and simpler alternatives to Eq.

6 can be used to close the system and enforce charge conservation. However, these alternative

equations, discussed in what follows are derived based on specific assumptions and hence, their

validity should be limited to specific cases [20, 21]. In fact, charge conservation can be imposed as

follows

∇ · i = 0, (7)

where i is the current density and is given by

i = F
∑
n

(znNn). (8)
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Replacing the flux Nn in Eq. 8 by its value from Eq. 3 yields

i = −F
∑
n

(znDn∇cn) + Fu
∑
n

(zncn)− F 2

RT
∇φ

∑
n

(
zn2Dncn

)
. (9)

Then, by virtue of electroneutrality,
∑

n z
ncn = 0, the second term on the rhs of Eq. 9 is zero.

Insertion of Eq. 9 into Eq. 7 gives

∇ · (K∇φ) = −F
∑
n

[zn∇ · (Dn∇cn)], (10)

where K is the conductivity of the electrolytic solution and is given by

K =
F 2

RT

∑
n

(
zn 2Dncn

)
, (11)

Finally, for negligible concentration gradients and assuming a uniform conductivity K, Eq. 10

reduces to a Laplace equation for the potential as follows

∇2φ = 0. (12)

3. Pore Network Modeling Formulation

The pore network is a simplified representation of a real porous medium geometry, consisting of

pore bodies interconnected by throats. Figure 1 shows a pore-throat-pore conduit of a pore net-

work. For the sake of simplicity regarding the conservation equations to be considered, idealized

shapes are assigned to pores and throats. In this sense, and for a three-dimensional (3D) medium,

pores and throats are generally represented by spheres and circular cylinders, respectively. For a

two-dimensional (2D) geometry, pores and throats are described by circles and rectangles, respec-

tively.

The conductance of the pore-throat-pore assembly or conduit for a given transport mechanism tr

(see Fig. 1) is given, from the linear resistor theory for resistors in series [13], by

Gtr
ij =

(
1

gtri
+

1

gtrij
+

1

gtrj

)−1

. (13)

Efficient algorithms for the extraction of pore networks from 2D and 3D images are available in the

literature [8, 12, 31], even for dual networks [17], within the open-source image analysis package

PoreSpy [14].

This work assumes perfect mixing of the solute within the pore space, unlike more sophisticated

approaches to be discussed below. In addition, conservation of physical quantities are enforced

in the pores only. Therefore, for a time dependent transport problem, the total void volume of
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tr 1/ gij

tr 1/ g j
tr

li=di / 2
lj=dj / 2

lij=dij / 2

d i d j

d ij  
   

 

Figure 1: Pore-throat-pore assembly as a single conduit in PNM. Conduit made of throat ij and halves of the neighbor

pores i and j of diameters dij , di, and dj and lengths lij , li, and lj and opposing resistances to a transport mechanism

tr (from i to j and vice versa) of 1/gtrij , 1/gtri , and 1/gtrj , respectively. Conductance of the assembly is given by Eq.

13.

the porous medium is assigned to the pores whereas the throats are considered to have a zero

volume. The volume of the throats is distributed among their neighboring pores. This approach

offers simplicity and computational efficiency which allows for pore-scale simulations at relatively

lower computational costs compared to DNS.

The assumption of perfect mixing is robust for transport problems involving pure diffusion. When

additional transport mechanisms such as advection come into play, this assumption remains valid at

low Péclet numbers (Péclet numbers smaller than unity) where the Péclet is the ratio of advective

to diffusive contributions. The validity of the perfect mixing assumption was extended to pore-scale

Péclet numbers up to 257 by Mehmani and Balhoff [22] and by Yang et al. [40] in disordered sphere

packs and up to 10 by Sadeghi et al. [32] in cubic networks of random pore sizes. Thus, the mixed-

cell method can be used for modeling transport phenomena in disordered porous structures where

moderate deviations from pure diffusion exist. The structural disorder refers in the present work to

the randomness in the pores and throats sizes and in the coordination number of pores. Deviations

from pure diffusion considered in this study (see section 4) result from advective and migrative

fluxes. For ordered porous structures, the mixed-cell method should be reserved only for diffusion

dominated problems. Furthermore, the mixed-cell method ignores the impact of non-uniform ve-

locity profiles in pores and throats on the transport of chemical species. In the same manner as for

the perfect mixing assumption, uniform velocity profiles were found to have a negligible effect on
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transport in disordered media [22, 40]. Consequently, the PNM method is appropriate to perform

pore-scale simulations of advection diffusion problems (and advection diffusion migration problems

as will be shown below) in disordered porous media at low computational costs. An alternative

to the mixed-cell method when high concentration gradients are expected within the pore space,

although computationally more expensive, is the streamline splitting approach [23].

3.1. Stokes Flow

Given steady-state Stokes flow (Eqs. 1 and 2) of a Newtonian fluid, corresponding to the electrolytic

solution, the mass conservation equation for an arbitrary pore i, is

Ni∑
j=1

Gh
ij(pi − pj) = 0, i = 1, 2, . . . , Np, (14)

where the subscripts i and j correspond to the considered pore and the neighboring ones, respec-

tively, and pi and pj are the pressure values in pores i and j, respectively. In Eq. 14, Ni is the

number of pores neighboring of pore i, Np is the total number of pores in the network, and Gh
ij is

the hydraulic conductance of the pore-throat-pore assembly and is given by Eq. 13 where tr = h,

Gh
ij =

(
1/ghi + 1/ghij + 1/ghj

)−1
. The hydraulic conductance of pore i, ghi , can be calculated using

the Hagen-Poiseuille model [38] as follows

ghi =
π

128µ

(
d4i
li

)
, (15)

with di being the diameter of pore i and li its length. It should be noted here that the length of a

pore refers to its radius. The hydraulic conductance of throat ij and pore j are computed in the

same manner as for pore i. Equation 15 is valid for a 3D configuration where the conduit has a

cylindrical shape. For a 2D network, where throats are represented by rectangles, the hydraulic

conductance is given, from the analytical solution of a plane Poiseuille flow, by

ghi =
1

12µ

(
d3i
li

)
, (16)

3.2. Nernst-Planck Equations

Special attention was paid to the derivation of the NMEs required to model transport of charged

chemical species. In fact, Eq. 5 is discretized in both time and space using various schemes with the

resulting accuracy assessed in section 4. For the sake of brevity in what follows, only semi-discrete

forms are presented. First, with a discretized accumulation term (time discretization) and then,

with space discretization. One can easily obtain the NME corresponding to Eq. 5 by combining

the two semi-discrete forms.
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The semi-discrete form of equations 4 or 5, after time discretization, results in the following species

n conservation equation[
ϕb
cn

∆t
− ϕa(−∇ ·Nn)

]t1
=

[
ϕb(1− ϕa)(−∇ ·Nn) + ϕb

cn

∆t

]t0
, (17)

where ∆t is the time step, t0 the previous time value, t1 the new time value, and ϕa and ϕb are

constants used to set the time scheme. Values ϕa = 1 and ϕb = 1 result in an implicit, first order

accurate, time scheme. Whereas setting ϕa = 0.5 and ϕb = 1 corresponds to the second order

accurate Crank-Nicolson scheme. Finally, ϕa = 1 and ϕb = 0 yields the steady-state form of the

conservation equation.

Focusing on the space discretization of equation 5, the semi-discrete form can be given by,

Ni∑
j=1

[
Gn,d

ij + max
(
qij −mn

ij , 0
)]
cni −

Ni∑
j=1

[
Gn,d

ij + max
(
−qij +mn

ij , 0
)]
cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np, (18)

such that cni and cnj are the concentrations of species n at pore i and neighbor pores j, respectively,

Gn,d
ij the diffusive conductance (of species n) of the pore-throat-pore assembly, qij is the throat flow

rate, mn
ij is the migration rate, and vi the volume of pore i. Note that the upwind discretization of

the advective and migrative terms should be carried-out considering both terms at the same time

as done on Eq. 18. It was found in this work that considering these terms separately leads to higher

errors.

The diffusive conductance Gn,d
ij of Eq. 18 can be given, based on Eq. 13, setting the transport type

to tr = n, d to refer to transport of species n via diffusion by Gn,d
ij =

(
1/gn,di + 1/gn,dij + 1/gn,dj

)−1
.

The pore i diffusive conductance being, for a 3D configuration,

gn,di =
AiD

n

li
, (19)

such that Ai is the cross-section area of pore i, and the diffusion coefficient of species n, Dn, is

considered constant. In the same way as for pore i (Eq. 19), the diffusive conductances of pore j

and throat ij can be defined. For a 2D configuration, the cross-section area Ai in Eq. 19 should be

replaced by the diameter di. Furthermore, the volumetric flow rate of the electrolytic solution qij ,

appearing in Eq. 18, can be calculated as follows,

qij = Gh
ij(pi − pj), (20)

and finally, the migration rate of Eq. 18 can be given under the following form,

mn
ij = Gn,m

ij (φi − φj), (21)
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where Gn,m
ij =

(
1/gn,mi + 1/gn,mij + 1/gn,mj

)−1
is the migrative conductance and is also defined based

on Eq. 13 where tr = n,m to refer to transport of species n by migration. In these circumstances,

the migrative conductance of pore i is

gn,mi =
znF

RT
gn,di , (22)

In equation 18, while the diffusive flux is discretized based on the central differencing scheme,

which is second order accurate in terms of Taylor series expansion, a first order upwind scheme is

adopted for both the advective and migration fluxes. However, in a recent work [32], a more accurate

discretization of the advective and diffusive fluxes was proposed based on the finite difference power-

law discretization scheme. Using the power-law discretization for advection and diffusion and the

upwind scheme for the migration, the following species conservation equation, that is more accurate

than Eq. 18, can be written

Ni∑
j=1

Gn,d
ij max

(1−
∣∣adPenij∣∣

10

)5

, 0

+ max (qij , 0) + max
(
−mn

ij , 0
)cni −

Ni∑
j=1

Gn,d
ij max

(1−
∣∣adPenij∣∣

10

)5

, 0

+ max (−qij , 0) + max
(
mn

ij , 0
)cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np,

(23)

where adPen is the advective Péclet number corresponding to species n and is given by the ratio of

advective to diffusive contributions as follows

adPenij =
qij

Gn,d
ij

. (24)

While the discretization given by Eq. 23 is more accurate than Eq. 18, the migration term,

discretized based on an upwind scheme, is only first order accurate and may be a source of non-

negligible errors. Indeed, it was shown by Sadeghi et al. [32], for advection diffusion problems in pore

networks, that the first order upwind discretization of the advective term results in network average

relative deviations, in terms of species concentration, of up to 10% compared to FEM simulations.

For this reason, an alternative form of the NME was derived where the migration flux was also

treated as a power-law. In this form, the advection and migration fluxes in Eq. 3 are grouped

together to give rise to a single term that encompasses both advection and migration effects. This

leads to an augmented Péclet number ad,migPen which corresponds to the ratio between advective

migrative effects and the diffusive ones as follows,

ad,migPenij =
qij −mn

ij

Gn,d
ij

. (25)
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Accordingly, the species conservation equation takes the following form,

Ni∑
j=1

Gn,d
ij max

(1−
∣∣ad,migPenij

∣∣
10

)5

, 0

+ max
(
qij −mn

ij , 0
)cni −

Ni∑
j=1

Gn,d
ij max

(1−
∣∣ad,migPenij

∣∣
10

)5

, 0

+ max
(
−qij +mn

ij , 0
)cnj = vi

∂cni
∂t

,

i = 1, 2, . . . , Np.

(26)

For a 2D problem, the volume vi, appearing in Eqs. 18, 23, and 26 has to be replaced by the surface

area si to ensure units consistency.

Finally, following the same logic, one can define a migrative Péclet number which corresponds to

the ratio of migrative to diffusive effects,

migPeij =
−mn

ij

Gn,d
ij

. (27)

It can be noticed that migPe, unlike adPen and ad,migPen, does not depend on the chemical species

n. The migPe will prove useful in section 4.

3.3. Charge Conservation Laws

As stated above, three different approaches for enforcing charge conservation were considered in this

work. The PNM form of each approach is described below. These laws describe the relationship

between the electrostatic potential of the solution and the spatial distribution of electric charges in

the solution.

3.3.1. Poisson Equation

The discretization of the Poisson equation for the electrostatic potential (Eq. 6) is performed based

on the second order accurate central differencing scheme. The relative permittivity of the electrolytic

solution, εr, is considered constant and does not depend on the local concentrations. The obtained

pore-scale NME, valid for a 3D problem, is given by

Ni∑
j=1

KPoisson
ij φi −

Ni∑
j=1

KPoisson
ij φj = −viF

∑
n

zncni , i = 1, 2, . . . , Np, (28)

whereas for a 2D situation, the volume vi appearing on Eq. 28 must be replaced by the pore’s

surface area si. In Eq. 28, KPoisson
ij is the ionic conductance of the electrolytic solution for the
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conduit ij. It is given, as on Eq. 13, by KPoisson
ij =

(
1/kPoisson

i + 1/kPoisson
ij + 1/kPoisson

j

)−1
such

that the pore i ionic conductance, for a 3D problem, is

kPoisson
i =

Aiεεr
li

, (29)

and, for a 2D configuration, it becomes kPoisson
i = diεεr/li. The ionic conductances of pores j

neighboring i and the throat ij is computed in the same way as with Eq. 29.

3.3.2. Charge Conservation Equation with Electroneutrality

Charge conservation can also be enforced using Eq. 10 assuming electroneutrality. The correspond-

ing NME is given as follows

Ni∑
j=1

Kelec
ij φi −

Ni∑
j=1

Kelec
ij φj =

− F
∑
n

zn

 Ni∑
j=1

Gn,d
ij c

n
i −

Ni∑
j=1

Gn,d
ij c

n
j

, i = 1, 2, . . . , Np, (30)

whereKelec
ij is the ionic conductance of the electrolytic solution in which electroneutrality is assumed.

It is given based on the linear resistor theory for resistors in series (see Eq. 13) by Kelec
ij =(

1/keleci + 1/kelecij + 1/kelecj

)−1
with the ionic conductance for the pore i, in a 3D configuration,

being,

keleci =
F 2

RT

Ai

li

∑
n

(
zn 2Dncni

)
, (31)

and for a 2D problem, keleci =
[
F 2di/(RTli)

]∑
n

(
zn 2Dncni

)
. Conductances of pores j and throats

ij are defined in the same manner as in Eq. 31. For the ionic conductance of throat ij, kelecij , the

concentration of species n at the considered throat, cnij , is required. However, since cnij is not solved

for, it can be defined based on a volume (or surface for a 2D problem) weighted average using the

concentrations at the two neighbor pores. It is given, for a 3D configuration, by

cnij =
vic

n
i + vjc

n
j

vi + vj
, (32)

and, becomes cnij =
(
sic

n
i + sjc

n
j

)
/(si + sj), in a 2D problem.

3.3.3. Laplace Equation

Finally, another way to enforce charge conservation, is using the Laplace equation for the potential

(Eq. 12) in situations where the electrolytic solution is electroneutral and the space variations of

the concentration are neglected. The corresponding pore-scale NME is given by,

Ni∑
j=1

KLaplace
ij φi −

Ni∑
j=1

KLaplace
ij φj = 0, i = 1, 2, . . . , Np. (33)
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where KLaplace
ij is the ionic conductance of the electrolytic solution and is given by KLaplace

ij =(
1/kLaplacei + 1/kLaplaceij + 1/kLaplacej

)−1
, in the same manner as for other conductances. The ionic

conductance for the pore i is

kLaplacei =
Ai

li
, (34)

for a 3D problem, and becomes kLaplacei = di/li, for a 2D configuration.

3.4. Solution Algorithm

The procedure developed in this work to numerically solve the flow problem (Eqs. 1 and 2) coupled

with the transport of charged species (NP, Eq. 5, and charge conservation, Eq. 6 or 10 or 12

depending on the situation) is described in this section. The solver was implemented within the

open-source PNM package OpenPNM [11]. Although source terms are not considered in sections 2

and 3, the approach followed to handle them is described here. Pore-scale NMEs obtained from

the time and space discretization of the PDEs (Eqs. 1 and 2, Eq. 5, and Eq. 6 or 10 or 12) are

presented in section 3. These NMEs yield linear systems of equations solved iteratively based on

the algorithm described on Fig. 2.

First, the initial and boundary value problem (IBVP), the physical properties of the electrolytic

solution, and the solver settings need to be defined. Solver settings include inputs such as the time

and space discretization schemes, the different tolerances and maximum number of iterations, type

of linear solvers, initial and final time values, the time step, etc. Then, the flow problem (Eqs. 1

and 2 corresponding to NME 14) is solved and a converged steady-state pressure field is obtained

(see Fig. 2). Pressure values are used to compute the advective flux in the NP equations.

Subsequently, time marching starts and for each time value, the charge conservation (Eq. 6 or 10

or 12 corresponding to NMEs 28 or 30 or 33, respectively) and NP (Eq. 5 corresponding to NMEs

17 and 18 or 23 or 26) system is solved based on the Gummel method [16]. Linear systems are

decoupled and solved iteratively and may all be subject to Picard iterations [29] in the presence

of non-linear source or sink terms. Picard convergence is reached once the value of the solved

quantity satisfies the linearized system of equations within a certain tolerance or the maximum

number of iterations is reached. The linearization is performed around the value at the previous

Picard iteration or the initial value. Gummel iterations are repeated until convergence is obtained

or when the maximum number of iterations is reached. A Gummel iteration consists of solving the

charge conservation equation, updating the potential values, and solving a NP equation for every

species present in the electrolytic solution and finally updating the concentration values. Gummel

convergence is achieved when the difference between the values, for both the concentrations and

potential, of two successive iterations falls bellow a predefined tolerance. For numerical stability,

under-relaxation can be applied to both quantities solved for and/or source or sink terms.
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Figure 2: Solution algorithm implemented on OpenPNM [11] to solve time dependent problems of transport of charged

chemical species coupled with fluid flow. Fluid flow is described by Eqs. 1 and 2 and the corresponding NME is Eq.

14. A Nernst-Plank equation, Eq. 5 corresponding to NMEs 17 and 18 or 23 or 26, is adopted for every charged species

present in the electrolytic solution. Charge conservation is enforced through Eq. 6 or 10 or 12 and the corresponding

NMEs are Eqs. 28 or 30 or 33, respectively.
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The concentrations and potential fields obtained from the solution of the charge conservation NP

system correspond to current time value. The time marching is ended when the predefined final

time is reached or if a stationary solution is obtained. Otherwise, a new time iteration will begin

after updating all the concentrations and potential values. Stationarity, or transient convergence as

shown on Fig. 2, is obtained once the variation between both concentrations and potential, at two

successive time values falls bellow a given tolerance.

4. Comparisons with Reference Solutions

Ion transport problems over arbitrary disordered porous media were considered here. It is worth

recalling that the structural disorder refers to the randomness in pores and throats sizes and in the

coordination number of pores. The considered problems were solved numerically based on the PNM

approach and, for the sake of comparison, based on the FEM. To assess the accuracy of different

NMEs presented in section 3, PNM simulations were performed using three different NMEs. The

NMEs consist of Eqs. 18, 23, and 26 and are referred to as upwind upwind, power-law upwind, and

power-law, respectively. Comparisons focused on the concentration fields only and without losing

generality, only one charge conservation scenario was considered for brevity.

4.1. Initial Boundary Value Problem

The problem under consideration is that of the transport of saline water over an arbitrary porous

medium Ω. The real geometry of the 2D porous medium was modeled using a network of pores as

shown on Fig. 3. Despite the fact that the topology of the medium is simplified, analyses based on

pore networks were shown to play an important role in diverse applications for the study of flow

and transport phenomena in porous media [39].

First, a network was generated with 23 × 15 pores, connected by throats, consisting of a square

lattice with a spacing of 1µm. Pores and throats were assigned random sizes based on a uniform

distribution. The pores at the corners and the throats connecting the boundary pores one to

each other were removed for better agreement with the FEM simulations. Finally, the average

coordination number of the network was reduced to an average 3 by deleting random throats not

belonging to the minimum spanning tree found using the Kruskal algorithm with random weights

assigned to each throat. This increases the structural randomness to more closely mimic real media

while remaining geometrically perfectly known. Four boundary regions were defined, namely, left,

right, bottom, and top, and an internal region internal = Ω \ (left ∪ right ∪ bottom ∪ top). The

electrolytic solution (i.e., saline water) is composed of water (solvent) and salt (electrolyte) dissolved

and separated into cations, Na, and anions, Cl. The physical properties of the solution and its

components are reported in Tab. 1.
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Figure 3: A 2D porous realization Ω made of 341 pores in a uniform square lattice and connected by throats.

Pores and throats have random sizes and spacing between neighbor pores centers is 1µm. Four boundary regions are

defined; left, right, bottom, and top, and one internal region; internal = Ω \ (left ∪ right ∪ bottom ∪ top), with the

corresponding initial and boundary conditions.

The flow of the mixture is described by Eqs. 1 and 2 whereas the movement of ions is modeled using

Eq. 5 and the charge conservation is enforced through Eq. 12. The initial and boundary conditions

associated with this system of equations are included in Fig. 3. Boundary concentrations are

cleft = 10mol/m3, cright = 20mol/m3, cNa
bottom = cCl

top = 5mol/m3, and cNa
top = cCl

bottom = 30mol/m3.

Although the considered transport problem is arbitrary and is only used for comparisons between

different methods, the configuration is comparable to what occurs in a spacer of a desalination

unit by capacitive deionization [15]. The analysis is performed in terms of the network’s arithmetic

mean of the absolute values of the dimensionless numbers adPeNa and migPe referred to as 〈adPeNa〉
and 〈migPe〉, respectively. These numbers were varied by considering different values for the pairs

pleft pright and φbottom φtop, respectively. The considered simulation conditions are such that both

〈adPeNa〉 and 〈migPe〉 were varied within a range from 0.1 to 5 considering all possible combinations.

The network-scale advective forces were always kept acting from right to left by enforcing pright >

pleft. On the other hand, migration influences the transport of ions in a perpendicular direction

depending on the ions valence. For Na, migration occurs from bottom to top since φbottom >

φtop.
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Table 1: Physical properties of the mixture (saline water) and its components Na and Cl at temperature T = 298.15 K

and pressure p = 101325 Pa.

mixture Na Cl

Dynamic viscosity (µ) [Pa. s] 0.89557× 10−3 – –

Relative permittivity (εr) 78.303 – –

Diffusivity (Dn) [m2/s] – 1.33× 10−9 2.03× 10−9

Valence (zn) – +1 −1

  

Figure 4: Computational domain modeling the geometry of Fig. 3 with the corresponding grid used for FEM

simulations.

4.2. Numerical Considerations

The transport problems were solved numerically based on the PNM approach described on section

3 using OpenPNM [11]. The FEM simulations were performed using COMSOL [7].

For FEM simulations, the boundary pores defined on Fig. 3 were trimmed at the plan passing

through their centers as shown on Fig. 4. The boundary conditions are then imposed on the

resulting boundary edges. This approach is adopted in order to impose comparable simulation

conditions on both the PNM and FEM simulations since boundary conditions are imposed at the

pore centers in the PNM simulations. For FEM simulations, the computational domain was meshed,

after a mesh sensitivity analysis, using a grid comprised of 97598 elements for a medium including

341 pores. Triangular and quadrilateral elements were used (see Fig. 4).

The FEM simulations were performed using the Creeping Flow, Transport of Diluted Species,

and Laplace Equation modules. The system of non-linear equations was solved using Newton’s

method and at each of its iterations, the linearized system was solved using the multifrontal mas-

sively parallel sparse direct solver MUMPS [3]. For consistency, the same linear solver was used

with the PNM simulations.
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4.3. Simulation Results

Figure 5: Concentration of Na color map at steady state obtained from PNM simulations based on the power-law

NME (Eq. 26). Values at the throats are obtained from the interpolation of the neighbor pores concentrations.

Simulation conditions: (a) 〈adPeNa〉 = 0.1, 〈migPe〉 = 0.1, (b) 〈adPeNa〉 = 0.1, 〈migPe〉 = 5, (c) 〈adPeNa〉 = 5,

〈migPe〉 = 0.1, and (d) 〈adPeNa〉 = 5, 〈migPe〉 = 5.

Figure 5 shows the Na concentration color map obtained from the solution of the problem defined

above (section 4.1) for some of the considered configurations. These results were obtained based on

the PNM approach using the power-law NME (Eq. 26). This figure shows that, for the considered

problems, when advection and migration forces act with comparable intensities at the network

scale, more heterogeneous Na concentration distributions are obtained (Figs. 5 (a) and (d)). This

is due to the fact that boundaries over which these two forces are imposed are at different uniform

concentrations. When one of the these two transport mechanisms dominates, a more uniform

concentration field is observed (Figs. 5 (b) and (c)) since uniform concentration values are imposed

at the boundaries.

The solutions obtained from the FEM simulations are not shown on Fig. 5 as they are comparable

to the PNM ones with a negligible deviation discussed below. The deviation between PNM and

FEM simulations, in terms of concentration of species n at the center of pore i at steady state, is
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given by

En
i =

∣∣∣cni,PNM − cni,FEM

∣∣∣
cni,FEM

, n = Na, Cl, i = 1, 2, . . . , Np, (35)

where the FEM solution is considered as the reference one. In Eq. 35, cni,PNM and cni,FEM are

concentrations of species n at the center of pore i obtained from PNM and FEM simulations,

respectively. The analysis of the deviation was carried-out based on the arithmetic mean of
∣∣ENa

i

∣∣
over the entire network and is referred to as σ.

Values of σ obtained using the upwind upwind, power-law upwind, and power-law NMEs are shown

on Fig. 6. Although the deviation σ is always below an acceptable value of 9%, local deviations of

up to 50% were observed with the two former NMEs for certain configurations. This is consistent

with a recent work [32] where large deviations between PNM and FEM were observed on dispersion

problems in pore networks when the upwind scheme was used in PNM simulations. It was also

reported that, for certain advection diffusion problems, the deviation between PNM and FEM

simulations increases with the advective Péclet number [32]. This is also seen in the results reported

on Fig. 6. The difference in the dependence of σ on advective and migrative Péclet numbers at low

values can be attributed to the transport configuration adopted here where the advective, diffusive

and migrative driving forces act in different directions in the network.

Analysis of Fig. 6 also shows that similar behaviors are obtained with the upwind upwind and power-

law upwind NMEs although the latter globally presents slightly lower deviations. On the other hand,

a significant decrease in σ is obtained with the power-law NME. In fact the average deviation is

consistently below 5% and marginally exceeds this value when 〈adPeNa〉 = 5 and 〈migPe〉 ≥ 3.5.

For migration diffusion dominated transport (〈adPeNa〉 ≤ 0.1), which is of practical relevance for

applications such as battery simulations, a negligible (below 0.4%) deviation is observed. The same

applies when transport is advection diffusion dominated (〈migPe〉 ≤ 0.1), which is of importance

for dispersion problems, where σ ≤ 1. It can be concluded from this analysis that the power-law

NME should be used when performing PNM simulations to ensure a maximum accuracy.

The source of the deviations between the PNM and FEM simulations resulting from the use of

the upwind scheme were discussed in detail in a recent work [32]. They were attributed to the

fact that in the presence of moderate to important advective effects (i.e., Péclet numbers equal or

larger than unity), significant local concentration gradients appear, and the assumption of linear

concentration profiles between pores loses accuracy. This behavior also appears in Fig. 7. The

considered transport configuration gives rise to a high concentration front on the diagonal of the

porous medium from the upper left to the bottom right vertices (see Fig. 7 (a)). The high deviation

regions coincide with this front for the different NMEs (Figs. 7 (b), (c), and (d)).

Finally, the conclusions drawn from the analysis of Fig. 6, based on 〈adPeNa〉 and 〈migPe〉, can be
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Figure 6: Color map of σ versus advective 〈adPeNa〉 and migrative 〈migPe〉 Péclet numbers at steady state. σ is the

arithmetic mean of the absolute deviation between Na concentrations obtained from PNM and FEM simulations (see

Eq. 35). PNM simulations based on the upwind upwind (Eq. 18), power-law upwind (Eq. 23), and power-law (Eq.

26) NMEs. Initial and boundary value problem defined in section 4.1.
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Figure 7: (a) Concentration of Na color map at steady state obtained from FEM simulations. Color map of the

deviation between PNM and FEM simulations σ (see Eq. 35) such that PNM simulations are based on the (b)

upwind upwind (Eq. 18), (c) power-law upwind (Eq. 23), and (d) power-law (Eq. 26) NMEs. Simulation conditions:

〈adPeNa〉 = 1, 〈migPe〉 = 1. Initial and boundary value problem defined in section 4.1.
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Figure 8: Network scale augmented Péclet number 〈ad,migPeNa〉 versus the advective 〈adPeNa〉 and migrative 〈migPe〉
ones. Péclet numbers obtained from the network’s arithmetic mean of the absolute value of pore-scale Péclet numbers

given by Eqs. 24, 25 and 27. Initial and boundary value problem defined in section 4.1.
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Figure 9: Simulation time using the PNM (OpenPNM [11]) and FEM (COMSOL [7]) solvers and their ratio versus the

size of the porous medium (i.e., number of pores). Network scale advective and migrative Péclet numbers set to

〈adPeNa〉 = 1 and 〈migPe〉 = 1, respectively. Initial and boundary value problem defined in section 4.1. Simulations

run in parallel using two X5650 Intel Xeon CPUs at 2.67GHz with 12 cores in total.

generalized to be valid when one considers 〈ad,migPeNa〉. In fact, from Fig. 8, for the considered

problems, 〈ad,migPeNa〉 has a quasi-linear dependence upon 〈adPeNa〉 and 〈migPe〉. Hence, the

deviation between PNM and FEM increases with 〈ad,migPeNa〉.

4.4. Simulation Time

The reduced computational cost of the PNM approach over FEM is staggering. The size of the

medium was characterized considering the number of pores included while following the same ap-

proach described in section 4.1 to generate the domains. Simulations were run on two X5650 Intel

Xeon CPUs at 2.67GHz with 12 cores in total. The meshing time on the FEM simulations is not

included in the comparisons for consistency, although it also requires important computational re-

sources. In fact, meshing the largest domain (includes 10410 pores), performed in parallel on 12

cores, took 1219s for a total of ∼ 3.04 × 106 grid cells. Whereas generating a cubic network, even

with millions of pores is almost instantaneous.

Figure 9 shows the simulation time versus the number of pores, Np, for PNM and FEM approaches.

For the Np range investigated here, both approaches show a quasi-linear dependence upon Np. The

simulation time scales as TPNM (s) = 9.08× 10−5Np+ 0.89 and TFEM (s) = 2.05Np with the PNM

and FEM solvers considered in the present work, respectively. This means that for the considered

range of network sizes, the simulation time increases more than 22.5×103 times faster with the FEM

solver compared to the PNM one. For the largest computational domain analyzed here, comprising

10410 pores, solution of the transport problem was performed in just 1.83s using OpenPNM. On the
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other hand, ∼ 3.4h were needed for the FEM simulation using COMSOL. This result highlights the

significant decrease in simulation time which can be achieved adopting the PNM approach described

in section 3.4, even for the coupled non-linear multiphysics problem studied here.

The ratio between simulation times using the PNM (OpenPNM [11]) and FEM (COMSOL [7]) solvers

TFEM/TPNM versus the size of the porous medium is also reported on Fig. 9. It can be seen

that simulation speedup increases with the number of pores reaching a speedup factor of over 104

for a medium including ∼ 104 pores. The speedup is expected to increase for the same number

of pores when considering 3D porous media. In addition to the simulation speedup obtained with

the PNM approach compared to the FEM one, the PNM simulations can be run using limited

memory resources. In this study, carrying-out the FEM simulation on the largest domain considered

(comprising 10410 pores) required ∼ 96GB of memory while only 241.4MB were used on the PNM

simulation.

5. Conclusions

Ion transport problems in pore networks with random pore sizes and coordination numbers were

considered and solved numerically using PNM and FEM solvers. The transport was modeled based

on the NP equations for each charged species present in the electrolytic solution in addition to a

charge conservation equation which relates the concentration of different species one to each other.

In the presence of a fluid flow, the momentum and mass conservation equations, were adopted to

describe the fluid flow.

Several time and space discretization schemes were presented to derive the NMEs corresponding to

the considered PDEs. The accuracy of each scheme was compared to a reference solution generated

by FEM, and best agreement was found when a power-law approach was applied to both the

advection diffusion and migration terms. This is consistent with our previous work on advection

diffusion [32]. These model equations were implemented within the open-source package OpenPNM

[11] based on the Gummel algorithm with relaxation. Comparisons showed a maximum relative

deviation, in terms of ions concentration, between PNM and FEM below ∼ 5% with the PNM

simulations being over 104 times faster than the FEM ones on a medium including 104 2D pores.

The speedup is expected to increase for the same number of pores when considering 3D porous

media.

The PNM approach allows for simulations with significantly lower computational costs compared to

other DNS methods, while retaining reasonable accuracy. This will allow for more effective design

and analysis or operation for many electrochemical systems since computation can be performed on

large samples while retaining pore-scale resolution. Ultimately, this highly-efficient computational

framework could be used for optimization of electrode architectures and cell designs [9].
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Computer Code Availability

The developed solver for transport of charged species in porous media is available on OpenPNM [11]

public repository https://github.com/PMEAL/OpenPNM.
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