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Abstract

Digital modeling of the microstructure is important for studying the physical and transport properties of porous media.

Multiscale modeling for porous media can accurately characterize macro-pores and micro-pores in a large-FoV (field

of view) high-resolution three-dimensional pore structure model. This paper proposes a multiscale reconstruction

algorithm based on multiple dictionaries learning, in which edge patterns and micro-pore patterns from homology

high-resolution pore structure are introduced into low-resolution pore structure to build a fine multiscale pore structure

model. The qualitative and quantitative comparisons of the experimental results show that the results of multiscale

reconstruction are similar to the real high-resolution pore structure in terms of complex pore geometry and pore surface

morphology. The geometric, topological and permeability properties of multiscale reconstruction results are almost

identical to those of the real high-resolution pore structures. The experiments also demonstrate the proposal algorithm

is capable of multiscale reconstruction without regard to the size of the input. This work provides an effective method

for fine multiscale modeling of porous media.
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1. Introduction

Numerical modeling, seepage simulation and physical properties analysis for core microstructure are important

auxiliary means for oil and gas exploration and development [1, 2, 3, 4, 5, 6]. Accurate modeling of core 3D pore

structure is of fundamental significance to the study of physical and transport properties [7, 8, 9, 10, 11]. The digital

core [12, 13, 14, 15, 16, 17, 18, 19] is a popular technique for modeling 3D core pore structure, which can be obtained

by imaging equipment, such as X-ray Computed Tomography (micro-CT). Generally, imaging equipment captures

only a single length-scale core feature in a single imaging session. Moreover, due to the tradeoff between resolution
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and field of view (FoV), it is difficult to obtain high-resolution core images with large-FoV that simultaneously char-

acterize macro-pores and micro-pores [20]. Figure 1 shows micro-CT images of the same core sample at different

resolutions. The length-scale of (a) is 13.29µm, and (b) is 2.35µm, and the FoV of low-resolution image (a) is larger

than that of high-resolution image (b). Macro-pores and the skeleton of pores are easily captured by low-resolution

images (LRI). On the contrary, the high-resolution images (HRI) captures micro-pores and fine pore edges in addition

to part of macro-pores. Compared with the high-resolution 3D pore model with large-FoV, whether 3D pore models

based on LRI with large-FoV or HRI with small-FoV have limitations in describing the core structure. That is, on the

one hand, HRI with small-FoV are insufficient to represent the whole core sample, and on the other hand, LRI with

large-FoV lack high-scale pore features (micro-pores and fine pore edge). Although the physical properties of cores

such as porosity and permeability are mainly determined by the macro-pores. Micro-pores, pore geometry and pore

surface morphology are also affecting the adsorption and desorption of oil and gas [21, 22, 23]. Micro-pores and fine

pore edges are also important for accurate modeling of pore structure. In conclusion, imprecise pore structure model-

ing may introduce errors in numerical simulation. The combination of LRI with large-FoV and HRI with small-FoV

to build a fine multi-scale 3D pore structure model with large-FoV is of great significance to improve the accuracy of

numerical simulation and seepage analysis.
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Figure 1: The micro-CT images of the core sample.

Multiscale reconstruction [24, 25, 26, 27, 28] is a feasible way to model fine multi-scale 3D pore structures with

large-FoV. In recent years, multiscale reconstruction has attracted tremendous attention of researchers. Yao et al

[29] adopted the simulated annealing (SA) method to reconstruct the low-resolution 3D pore structure containing

macro-pores, and Markov Chain Monte Carlo (MCMC) method to reconstruct the high-resolution 3D pore structure

containing micro-pores, then superposed them to construct the multi-scale 3D pore structure. Marina V et al [30]

proposed an image fusion method to convert CT images of different scales to the same resolution, and then super-

posed them to construct a multiscale soil structure model. Tabmasebi [31] used similarity mapping to determine the

corresponding region of a small-size fine-scale image in a large-size coarse-scale image, and then adopted HPPYS
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algorithm to iteratively refine the coarse image to contain fine-scale information. Wu et al [22] proposed a multiscale

modeling algorithm for complex rocks based on template matching, which fused different structural patterns into one

image. Ji et al [32] adopted CCSIM-TSS algorithm to generate 3D pore structures based on different resolutions CT

images, and proposed a multicomponent superposition algorithm to integrate 3D models of different components in

shale. The above methods are committed to transform images of different resolutions (or scales) to the same resolution

(or scale) by some technologies or algorithms, and construct multiscale model according to the designed superposition

rule. However, some of them [30, 33] are difficult to avoid errors caused by the overlap of pores or phases in images

at different scales in the complicated superposition process, even with the corresponding improvement. In addition,

there are methods (such as [22, 25, 31]) that mainly deal with 2D images. First, the corresponding regions of the

small-scale image in the large-scale image are matched, and then the reconstruction algorithm is used to reconstruct

other regions in the large-scale image. Due to the lack of spatial information, these methods only generate a 2D

multiscale image. Moreover, the corresponding regions of HRI and LRI are difficult to match in practice.

Therefore, the researchers came up with an alternative way: to reconstruct 3D multiscale pore structure by in-

troducing high-resolution (or high-scale) 2D/3D image information into 3D low-resolution (or low-scale) structures

[34, 35, 36, 37]. For instance, Li et al [20] proposed a method to fuse spatial information from 2D high-resolution im-

age into a 3D low-resolution pore structure, which reconstruct multiscale pore structure with large-FoV by combining

high-resolution 2D pore image with small-FoV and low-resolution 3D pore structure with large-FoV, but this method

did not consider the pore geometry. Wang et al [38] proposed a local-similarity statistic reconstruction (LSSR) method

to reconstruct 3D high-resolution porous structure by combining a set of increasing resolution and decreasing FoV

micro-CT images. With the application of deep learning in this field [10, 39, 40, 41, 42, 43] some researchers proposed

the multiscale reconstruction method based on Generative Adversarial Network (GAN). Shams et al [44] used coupled

Generative Adversarial and Auto-Encoder neural network to reconstruct 3D multiscale porous media that contains

inter-grain and intra-grain pores simultaneously. Yang et al [45] used conditional Generative Adversarial Network

(cGAN) to reconstruct 3D multiscale pore structure from low-resolution core images. These GAN-based techniques

generate multi-scale pore structures effectively, but they also have some disadvantages such as large amount of train-

ing data and long training time. In general, although studies on multiscale reconstruction has increased, there are still

some problems to be solved.

In this paper, a multiscale reconstruction algorithm based on multiple dictionaries learning is proposed. This

method introduces the pattern information (macro-pore edge patterns and micro-pore patterns) of the high-resolution

3D core structure with small-FoV into the low-resolution 3D core structure with large-FoV. The introduction of high-

scale patterns can modify the pore edges in low-resolution 3D core structure and adds micro-pores that cannot be
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captured in low-resolution images. The two structures (low- and high- resolution structure) can be extracted from

different regions of the same core, which means that their locations do not have to be matched. Through experiments

on simulation data (real HRI and simulation LRI data pair), the effectiveness of reconstruction results is proved from

quantitative (physical properties and seepage characteristics) and qualitative (visualization of reconstruction results)

comparisons. Furthermore, the conclusions of this paper are also verified by real sample experiments.

The reminder of this paper is presented as: Section 2 describes the methodology. The multiscale reconstruction

results are presented and analyzed in Section 3. In Section 4, we make concluding remarks.

2. Methodology

HR gray

HR pore structure
LR pore 

structure

LR gray

Figure 2: Different resolutions 2D core images and corresponding pore structure.

To realize the multiscale reconstruction, both FoV and length-scale of image should be considered. The relation-

ship of core image FoV, length-scale and image size are as follows:

iFOV = iL× iS (1)

where iFoV is FoV of image, iL is length-scale and iS is image size. Length-scale iL decreases as the image res-
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olution increases. Different resolutions 2D core images and corresponding pore structure are shown Figure 2. The

low-resolution gray image is obtained by downsampling the high-resolution gray image. In the low-resolution pore

structure, the main structure of most pores is preserved. Red boxes mark the details of the two images, which reflects

the difference in the local patterns of the two images. High-resolution pattern contains edge and micro-pore, and low-

resolution pattern contains pore skeleton. Although some image processing algorithms (such as image upsampling)

can improve image resolution (reduce the iL), it is difficult to accurately model fine multiscale pore structures without

imaging with high-resolution equipment. This is because low-resolution gray images do not capture details features

such as micro-pores and fine pore edges. It is instructive that multiscale reconstructions can be seen as introducing

details features from HRI with small-FoV into the enhanced resolution LRI with large-FoV for joint modeling.

At the micro scale, cores have local similarity. Arguably, if the main structure of two patterns is similar on the

same scale, then their edges are also similar [38, 46, 47]. Even from different regions of the same core, LRI pore

edges can be effectively modified as long as HRI contains sufficient information. Therefore, based on the above

assumptions, multi-scale reconstruction can be simply divided into the following steps (as shown in Figure 3):

1) Enhance LR pore structure resolution by upsampling (reduce iL of LRI);;

2) Modify edges by matching LR and HR patterns of the same scale;

3) Padding micro-pores that LR cannot capture.

Reconstruction
iR=2.35μm 

LR
iR=4.7μm

Pseudo-HR
iR=2.35μm

Upsampling

128×128

256×256 256×256

Modify the 
edges

padding 
micro-
pores

Figure 3: The flowchart of multiscale reconstruction.

This paper builds edge pattern dictionary (EPD) and micro-pore dictionary (MPD) from HRI. It is worth noting

that multiple dictionaries of edge patterns with different scales are built. The pore edges of LRI are modified in

stages by matching the patterns in different scale edge pattern dictionaries. Then, the micro-pore patterns from the

micro-pore dictionary are random padded into LRI.

5



2.1. Upsampling Mapping

Pending
-Point

LR block

Pseudo-HR block

Ф

Rock 
point

Pore 
point

Skeleton-
Locator

Figure 4: The Upsampling Mapping.

Traditional image upsampling can increase the iS and reduce the iL by interpolating the original pixels. As shown

in Figure 4, this paper defines an Upsampling Mapping Φ:

pseudo-HR = Φ(LRI) (2)

The pseudo-HR block consists of Skeleton-Locator (SL) and Pending-Points. Pixels of LR block (include rock points

and pore points) are taken as the Skeleton-Locator to guidance the neighboring pixels (Pending-Points). The Skeleton-

Locator is the framework for the pattern, which represents the main structure of the pores. Pending-Points reflect the

development of pore edges, which are determined by matching similar Skeleton-Locator in edge pattern dictionary.

Let the length-scale of LRI be iLLR, and after n times Upsampling Mapping is performed:

iLn
LR =

iLLR

2n
, n = 0, 1, 2, . . . (3)

The maximum value of n should meet the following conditions:

iLLR

2n+1
≤ iLHR ≤

iLLR

2n
(4)

Theoretically, the resolution of multiscale structures with the highest resolution that can be reconstructed by the

algorithm can be determined according to Inequation (4). The multiscale structure highest resolution is iLLR
2n when n

is maximum.

2.2. Multiple Scale of Edge Pattern Dictionaries

Figure 5 shows the edge pattern dictionary element. In this paper, a 53-size template is used to scan HRI to build

edge pattern dictionary. The edge pattern dictionary element consists Skeleton-Locator (EPDSL) and Edge-Locator
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Rock 
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Pore 
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Edge pattern dictionary element

Ф-1

Figure 5: The edge pattern dictionary element.

(EPDEL). Φ−1 is used to extract Skeleton-Locator from HR block:

EPDSL = Φ−1(HR block) (5)

where (EPDSL) and (EPDEL) capture the main structure and rich edge details of the patterns respectively. Removing

redundant patterns, a single scale edge pattern dictionary is expressed as:

EPD =
∑
i

EPDSLi

(∑
ij

EPDELij

)
, (i, j = 1, 2, . . .) (6)

The EPDSLi
indicates the i-th class Skeleton-Locator in the EPD. The EPDELij

indicates the j-th Edge-Locator in

i-th class Skeleton-Locator. Patterns from pores with different scales may have the same Skeleton-Locator, so a single

scale EPD will confuse their Edge-Locator and leads to a mismatch. It is corrected by building multiple edge pattern

dictionaries of different scales.

In general, image downsampling decreases the resolution while loses the high-scale features and retains the low-

scale features. Therefore, a lower-scale pattern dictionary can be built by scanning the downsampled HRI. Let the

length-scale of HRI be iLHR. The edge dictionary built by HRI is EPD1. The HRI is downsamped m times, and the

resolution of HRI becomes

iLm
HR = 2m · iLHR, m = 0, 1, 2, . . . (7)

The corresponding edge pattern dictionary is EPDm. The maximum value of m should meet the following condi-
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tions:  2m · iLHR ≤ iLLR ≤ 2m+1 · iLHR

iSHR
2m
≥ template size.

(8)

When m is the maximum value, it means that the feature scale of HRI is similar to LRI after m times of downsam-

pling.

2.3. Edge Pattern Matching and multi-stage reconstruction

Pseudo HR block

Ф

Skeleton-
Locator Edge-Locator 1 Edge-Locator 2

Matching

LR 
block

Edge pattern dictionary

Padding

The Modification 
block

x
y

z

N

N

The Modified block LR block

N

N

N

N

The Modification block

(a) (b)

Figure 6: (a) shows the process of edge pattern matching. (b) is the edge modification process.

Figure 6 vividly illustrates the single-stage reconstruction process. Considering the connectivity of pores, the

matching mechanism is divided into two steps. First, LRBlock and EPDSL are matched according to the following

formula:

arg min (|LRBlock(x, y, z)− EPDSLi(x, y, z)|) , i = 1, 2, . . . (9)

Formula (9) is used to match the most similar i-th class Skeleton-Locator in the EPD. Then, the Edge-Locator with

the best connectivity is matched according to the following formula:

arg min

(∑
r

∣∣∣Mod(r)
ij (x, y)− Adj(r)(x, y)

∣∣∣) , j = 1, 2, . . . (10)

The Modj is the Modification block padded with j-th Edge-Locator that in i-th class Skeleton-Locator. The Mod(r)

indicates the r-th direction surface of Mod and the Adj(r) is the corresponding adjacent surface is in the modified
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block.

In order to reconstruct the edge that is more similar to the real edge, the reconstruction of the edge is multi-

stage. The LRI pore edges are reconstructed in stages by matching edge pattern dictionaries that is low-scale to

high-scale. Let m be the maximum. The Rec(,) indicates the single-stage reconstruction process. So, the multi-stage

reconstruction can express as:



PMS1 = Rec (LRI,EPDm)

PMS2 = Rec
(
PMS1,EPDm−1

)
. . .

PMSm = Rec
(
PMSm−1,EPD1

)
(11)

The PMSm represents the multiscale structure that reconstructed by m-stage EPDs modification edge. After multi-

stage edge reconstruction, the iFoV and iL of the PMSm are as follows:

iFoVPMSm = iFoVLR

iLPMSm =
iLLR

2m

(12)

2.4. Micro-pore pattern dictionary and micro-pore padding

Besides the edge reconstruction, the padding of micro-pores is also important. The smallest Connected Component

(CC) that can be counted in PMSm is a single pixel. The corresponding number of pixels in PMSm is
(⌈

iLm
PMS

iLHR

⌉)3
.

Moreover, the corresponding number of pixels in HRI is
(⌈

iLLR
iLHR

⌉)3
. Therefore, the Connected Component of HRI

(CCiLHR ) contains micro-pores that not be captured by PMSm. The range of CCiLHR is following:

CCiLHR ⊆

[(⌈
iLPMSm

iLHR

⌉)3

,

(⌈
iLLR

iLHR

⌉)3
]

(13)

Two-Pass method [48] is a classical image processing algorithm to mark the Connected Component (CC) of binary

image. In this paper, the Two-Pass method is adopted to mark CCs in the range of
[(⌈

iLPMSm
iLHR

⌉)3
,
(⌈

iLLR
iLHR

⌉)3]
in HRI

to build a micro-pore pattern dictionary. MPD elements are extracted by 3D Bounding Rectangler of these Connected

Components.

To avoid overlap, Connected Component in the PMSm is marked with MASK. The MASKs are calculated by

morphological dilation operation. To facilitate understanding, the 2D image in Figure 7 as an example. Connected

Components in the PMSm is marked (the gray area of Mask image), and then MPD elements (the yellow area of Mask

image) are randomly padded into the non-pore area (the black area of PMSm) to form a fine multiscale pore structure

(MS).
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MASK imagePMS 
m

MS

Figure 7: Micro-pore padding process.

In particular, micro-pores in image are composed of two types of pores: a) Intragranular pores; b) Fragmen-

tary intergranular pores caused by the lower resolution imaging. These intergranular pores are formed by the dense

arrangement of rock particles. At the microscopic scale, they are relatively evenly distributed throughout the rock

sample. Therefore, the number distribution of micro-pores in the reconstructed MS is similar to that of HRI. The FoV

of MS is
(

iFoVLR
iFoVHR

)3
times that of HR pore structure. Thus, based on the similarity homology and statistical similarity,

the elements of MPD are repeatedly padded
(

iFoVLR
iFoVHR

)3
times in PMSm to approximate the micro-pore distribution of

the HR pore structure.

3. Result and discussion

In this study, simulation data experiment and real data experiment are designed to prove the effectiveness of the

proposal algorithm by comparing quantitative (physical properties, seepage characteristics) and qualitative (visualiza-

tion of reconstruction results). As shown in Figure 8, experimental core samples include sample 1 and sample 2. The

length-scale of (a) is 2.35µm and (b) is 13.29µm. (a) and (b) are obtained by imaging 2.5cm and 3mm (diameter)

cores in sample 1, respectively. The (c)’s length-scale is 1µm, which is obtained by imaging 2mm (diameter) core in

sample 2.

(a) (b) (c)

Sample 1 Sample 2

Figure 8: Example of CT images of experimental core sample
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3.1. Simulation data experiment

The simulation data experiments are designed to facilitate comparison with real 3D high-resolution pore structures.

The simulation data is processed as follows: First, two volumes of the same size are cut out of the CT image. Then,

one of the them is used as the HRI, and the other is down-sampled by bicubic interpolation [49] as the simulation

LRI. Finally, their pore structure is extracted using Otsu method [50]. Simulation data experiments are proceeded on

sample 1(b) and sample 2(c).

3.1.1. Simulation data experiment for Sample 1(b)

Sample 1(b)

Cut two volumes 
of size 2563 
randomly

Gray (Layer1) Down-
sampling

Pore structure

HRI to dictionaries Real HRI
Simulation

   LRI

2563 2563 

643 

Figure 9: Simulation data for sample1(b).

Simulation data for sample 1(b) are produced following the processing in section 3.1, as shown in Figure 9. Thus,

the length-scale of the HRI is 2.35µm and the simulation LRI is 9.4µm. The size of HRI is 2563 and the simulation

LRI is 643. Multiple dictionaries (include multiple edge dictionaries and micro-pore dictionary) are built by HRI.

According formula (8), the simulation LRI should be refined edges by a 2-stage edge reconstruction. Figure 10 shows

the qualitative comparison of reconstructions with the original HRI. To prove the effectiveness of the multiscale edge

dictionaries, the results of reconstruction using single edge dictionary are compared. To prove the stability of the

algorithm, multiple EPD and single EPD are using to reconstructed three times respectively. Figure 10 only shows

the results of one reconstruction.

According the 3D and Orthogonal row in Figure 10, the simulation LRI, multiple EPD-1 and single EPD-1

skeletons are similar to the real HRI, indicating that the multi-stage edge reconstruction preserves pore skeleton
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Simulation LRI (643) Multiple EPD (2563)
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Real HRI (2563) Single EPD (2563)

Figure 10: The qualitative comparison of the reconstructions with the real HRI on sample 1(b) simulation data experiment.
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features. Furthermore, the 3D structures of both multiple EPD-1 and single EPD-1 are padded with a number of

micro-pores that cannot be captured by simulation LRI. In Layer rows of Figure 10, the pore edges of the simulation

LRI are rough, by multi-stage edge reconstruction, the multiple EPD-1 and single EPD-1 edges are both refined.

However, compared to single EPD-1, the pore edges of multiple EPD-1 are more similar to real HRI, because multiple

EPD-1 matches the corresponding scale edge patterns in EPDs at each stage of edge reconstruction.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4
0 . 1 6
0 . 1 8
0 . 2 0
0 . 2 2
0 . 2 4

a n d  s i n g l e  E P D - a v e    r = 4 0  p i x e l  

r ( p i x e l s )

S 2(
r)

 s i m u l a t i o n  L R I
 H R I
 m u l t i p l e  E P D - 1
 s i n g l e  E P D - 1

S 2 ( r )  d i s t a n c e  o f  S i m u l a t i o n  L R I    r = 1 0  p i x e l

S 2 ( r )  d i s t a n c e  o f  R e a l  H R I ,  m u l t i p l e  E P D - a v e  

Figure 11: The comparison of the two-point correlation function (S2) on sample 1(b) simulation data experiment.

In Figure 11, the two-point correlation function (S2) is used to evaluate the spatial correlation of the simulation

LRI, reconstructions and real HRI. multiple EPD-ave, single EPD-ave represent the average of three reconstructions

using multiple EPD and single EPD respectively. The two-points correlation distance of reconstructions (r ≈ 40

pixel) is equal to that of the real HRI, which is 4 times that of the simulation LRI (r ≈ 10 pixel). The reconstructions

are consistent with the S2 of the real structure, due to the multiscale reconstruction does not alter the skeleton of the

pore structure. The S2 of reconstructions is almost identical to the real HRI, demonstrating that the proposal method

is stable. However, since the spatial correlation is mainly determined by the large pores (skeleton), S2 cannot reflect

changes in the pore edges.

Geometrical and topological features are important physical parameters to evaluate the accuracy of the recon-

structions. Figure 12 depicts the comparison of pore radius distribution, throat radius distribution, pore shape factor

distribution, pore shape factor-pore radius distribution and coordination number distribution. The Figure 12(a) shows

the count and cumulative frequency of pore radius. Simulation LRI cannot capture micro-pores (here radius smaller

than 2.5µm), whereas the real HRI and reconstructions all capture micro-pores. It is possible that the difference about

the number of micro-pores is caused by the insufficient number of micro-pore patterns in the MPD, but the cumulative

frequency curve of multiple EPD-1 is very similar to that of real HRI. It is worth noting that the same MPD is used,

but single EPD-1 has fewer micro-pores than multiple EPD-1. This is because multiple EPD-1 introduces pattern
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(b) throat radius distribution
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Figure 12: The comparation of pore radius distribution (a), throat radius distribution (b), shape factor distribution (c) and pore shape factor-pore
radius distribution (d), coordination number distribution (e) on sample 1(b) simulation data experiment.
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information of corresponding scale at each stage of edge reconstruction, which can re-separate some pores adhered to

large pores due to low-resolution imaging. From the distribution of throat radius Figure 12(b) and shape factor Figure

12(c), the curve trend of multiple EPD-1 is more similar to that of real HRI. The fitted curve that counts the shape

factor and radius for each pore is the pore shape factor-pore radius distribution, reflecting the trend of the pore shape

factor with the pore radius in the pore structure. The shape factor reflects the geometric feature of the pore shape

and edges, with the smaller the shape factors the more complex the shape and edges of the pore. From Figure 12(d)

the comparison of shape factor-pore radius distribution, compared with simulation LRI, real HRI and reconstructions

have smaller shape factors for pores with the same radius, indicating that the shapes and edges of high-resolution pore

structures are more complex. Particularly, the curve of multiple EPD-1 is most consistent with that of the real HRI,

which demonstrates the effectiveness of multi-stage edge reconstruction by progressively introducing corresponding

scale pattern. From Figure 12(e) the comparison of coordination number distribution, in real HRI, about 98.38% of

the pores has coordination numbers distributed within [0,12], compares to 94.29% and 91.13% for multiple EPD-1

and single EPD-1, respectively. The distribution of coordination number for the multiple EPD-1 is more similar to

the real HRI. The results in Figure 12 show that reconstructions using multiple edge pattern dictionaries of different

scales are in better agreement with the geometric and topological of real samples, and the proposal algorithm is an

efficient multiscale reconstruction method.

Table 1: The comparison of the porosity, average pore radius, average throat radius, average coordination number and permeability on sample 1(b)
simulation data experiment.

Simulation Real Multiple Error (%) with Single Error (%) with
LRI HRI EPD-1 Real HRI EPD-1 Real HRI

Average pore radius/ µm 9.72 3.96 4.68 18.18 6.58 66.16
Average throat radius /µm 17.83 16.46 17.26 4.96 18.47 12.21
Average coordination number 3.34 2.25 2.76 22.67 2.94 30.67
Permeability /× 10−13m2 3.9924 3.4471 3.5224 2.18 3.6890 7.02

The permeability of the core is influenced by a variety of properties such as connectivity, pore shape and pore

surface shape. From Table1, the permeability of simulation LRI is 3.9924 × 10−13µm2 and the real HRI is 3.4471 ×

10−13µm2. High-resolution pore structures (real HRI) contain richer details (fine edges and micro-pores) than low-

resolution structures (simulation LRI). The pores and throats of the real HRI are finely divided, resulting in smaller

average pore radius, average throat radius, and average coordination numbers. Therefore, compared to the simulation

LRI, the connectivity of real HRI is less well, while the pore geometry and pore surface morphology are more complex,

resulting in lower permeability. By introducing edge patterns and micropore patterns that from other volumes in same

core sample, the simulation LRI is reconstructed as a fine multiscale pore structure (multiple EPD-1) similar to that

of real HRI. This is reflected again in the results in Table 1, the average pore radius, average throat radius and average
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coordination number of multiple EPD-1 are close to that of real HRI. By multiscale reconstruction, the permeability of

multiple EPD-1 is 3.5224×10−13µm2, with an error of only 2.18% from the real HRI. Through the above experiments

and analysis, the effectiveness of the proposal algorithm is proved.

3.1.2. Simulation data experiment for sandstone Sample 2(c)

Sample 2(c)

Cut two volumes 
of size 7003 
randomly

Gray (Layer1) Down-
sampling

HRI to dictionaries Real HRI
Simulation

   LRI

7003 7003 

1753 

Pore structure

Figure 13: Simulation data for sample 2(c).

The proposal method focuses on multiscale reconstruction of large-FoV low-resolution structures using pattern

features from small-FoV high-resolution structures. So, this method can realize multiscale reconstruction without

the limitation of the size of the low-resolution input pore structure. Simulation data for sample 2(c) are produced

following the same processing in section 3.1. Here, the length-scale of the HRI is 1µm and the simulation LRI is

4µm. The size of HRI is 7003 and the simulation LRI is 1753, as shown in Figure 13. According formula (8), the

simulation LRI should be refined edges by a 2-stage edge reconstruction.

Figure 14 shows the qualitative comparison of reconstructions with the real HRI. Visually, sample 2(c) is hetero-

geneous. By multiscale reconstruction, multiple EPD acquired edge features similar to real HRI. Even for larger size

images (7003), the multiscale reconstructed pore structure of multiple EPD is almost agreement to that of real HRI.

A comparison of the geometric and topological features in Figure 15 further demonstrates the effectiveness of the

proposal algorithm. As shown in Figure 15(a), the real HRI and multiple EPD all capture micro-pores (here radius

smaller than 1µm) that cannot be captured in simulation LRI. From the distribution of throat radius Figure 15(b),
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Figure 14: The qualitative comparison of the reconstructions with the real HRI on sample 2(c) simulation data experiment.

shape factor Figure 15(c) and shape factor-pore radius Figure 15(d), all curves trend of multiple EPD are similar to

that of real HRI. The coordination number distribution of multiple EPD is also similar to the real HRI, Figure 15(e).

In real HRI, about 92.09% of the pores has coordination numbers distributed within [0,6], compares to 90.45% for

multiple EPD. The results in Figure 15 show that the proposal algorithm is also effective for multiscale reconstruction

of heterogeneous cores. Moreover, experiments based on two sets of different sizes images have also demonstrated

that the algorithm is capable of multiscale reconstruction regardless of the input size.

Table 2: The comparison of the porosity, average pore radius, average throat radius, average coordination number and permeability on sample 2(c)
simulation data experiment.

Simulation Real Multiple Error (%) with
LRI HRI EPD Real HRI

Average pore radius/ µm 7.97 6.22 6.64 6.75
Average throat radius /µm 26.48 24.94 24.90 0.16
Average coordination number 2.65 1.97 2.13 8.127
Permeability /× 10−13m2 0.3482 0.3278 0.3355 2.35

Although the physical parameters of heterogeneous cores such as permeability are mainly determined by macro-

pores. But the skeleton of the high-resolution pore structure is similar to that of the low-resolution pore structure,

and the high-resolution pore structure has a finer delineation of edges and pore throats, so it can be used to calculate

more accurate physical parameters. By multiscale reconstruction, fine multiscale pore structures similar to real HRI
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Figure 15: The comparation of pore radius distribution (a), throat radius distribution (b), shape factor distribution (c) and pore shape factor-pore
radius distribution (d), coordination number distribution (e) on sample 2(c) simulation data experiment.
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structures can be obtained. From Table2, the average pore radius, average throat radius and average coordination

number of multiple EPD are close to that of real HRI. The permeability of multiple EPD is 0.3355×10−13µm2 , with

an error of only 2.35% from the real HRI (0.3278 × 10−13µm2). The above results demonstrate the effectiveness of

the proposal algorithm.

3.2. Real data experiment

Sample 1(a)

Cut a volume of size 
1503 randomly

1503 LRI

Sample 1(b)

Cut a volume of size 
5123 randomly

Pore structure

5123 HRI to dictionaries 

Figure 16: Real data experiment for sample 1(a) and sample 1(b).

The real data experiment is conducted to verify the practicality of the proposal algorithm. Sample 1(a) and

sample 1(b) are low-resolution images and high-resolution CT images of the same core sample, respectively. The

data processing is shown in Figure16. Here, the length-scale of the HRI is 2.35µm and the LRI is 13.29µm. Multiple

dictionaries (include multiple scale edge dictionaries and micropore dictionary) are built by HRI. According formula

(4) and formula (8), the LRI is refined edges by a 2-stage edge reconstruction, and the resolution of the reconstructed

multiscale pore structure is approximately 3.32µm.

Table 3: The comparison of the porosity, average pore radius, average throat radius, average coordination number and permeability on real data
experiment.

LRI Multiple EPD
Average pore radius/ µm 46.63 7.42
Average throat radius /µm 39.14 36.18
Average coordination number 4.95 2.74
Permeability /× 10−13m2 52.7318 46.2224

Visually, the multiple EPD has finer pore edges than the LRI, while capturing the micro-pores (here radius smaller

than 4µm), in Figure17. From Table 3, the average pore radius and average throat radius, and the average coordination
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number have decreased. This indicates that the pores and throats of multiple EPD are finely divided, because the

multiscale reconstruction introduces rich edge information and micropore information. Moreover, the permeability

is reduced from (LRI) 52.7318 × 10−13µm2 to (multiple EPD) 46.2224 × 10−13µm2, which is consistent with

the conclusions of the simulation data experiments. The effectiveness and practicality of the proposal algorithm is

demonstrated by real data experiment.
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Figure 17: The qualitative comparison of the reconstructions with the real HRI on real data experiment.

4. Conclusion

In this paper, a multiple dictionaries learning-based multiscale reconstruction method is proposed for reconstruct-

ing large-FoV high-resolution pore structures using large-FoV low-resolution pore structures and small-FoV high-

resolution pore structures. Based on the homology and statistical similarity, multiple dictionaries are built by extract-

ing the multiscale edge patterns and micro-pores pattern in HRI, and then reconstruct pore edges of LRI by matching

the corresponding scales edge patterns stage by stage. Meanwhile, masks are adopted to avoid the conglomeration

of micro-pore patterns to pore areas. Through experiments on simulation data and real data, the effectiveness and

practicality of this algorithm are proved from quantitative and qualitative comparison. Experiments show that multi-

scale reconstruction by introducing high-resolution edge patterns and micro-pore patterns from different volumes of

the same core, allows the results of multiscale reconstruction to obtain physical properties similar to those of high-

resolution core structures. The algorithm is capable of multiscale reconstruction without regard to the size of the

input. Moreover, it is all effective for multiscale reconstruction of homogeneity and heterogeneity core. In this paper,

20



the random padding of the micro-pores is primarily based on statistical quantity similarities in homology cores, but

the location of the micro-pores also affects the accuracy of the multiscale reconstruction, which will be explored in a

subsequent study.
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[12] S. Schlüter, A. Sheppard, K. Brown, D. Wildenschild, Image processing of multiphase images obtained via x-ray microtomography: a review,

Water Resources Research 50 (4) (2014) 3615–3639.

[13] Y. Ju, Y. Huang, W. Gong, J. Zheng, H. Xie, L. Wang, X. Qian, 3-d reconstruction method for complex pore structures of rocks using a small

number of 2-d x-ray computed tomography images, IEEE Transactions on Geoscience and Remote Sensing 57 (4) (2018) 1873–1882.

21



[14] S. Karimpouli, A. Faraji, M. Balcewicz, E. H. Saenger, Computing heterogeneous core sample velocity using digital rock physics: A multi-

scale approach, Computers & Geosciences 135 (2020) 104378.

[15] K. M. Gerke, M. V. Karsanina, T. O. Sizonenko, X. Miao, D. R. Gafurova, D. V. Korost, Multi-scale image fusion of x-ray microtomography

and sem data to model flow and transport properties for complex rocks on pore-level, in: SPE Russian Petroleum Technology Conference,

Springer, 2017.

[16] L. Zhang, W. Jing, Y. Yang, H. Yang, Y. Guo, H. Sun, J. Zhao, J. Yao, The investigation of permeability calculation using digital core

simulation technology, Energies 12 (17) (2019) 3273.

[17] M. Tan, M. Su, W. Liu, X. Song, S. Wang, Digital core construction of fractured carbonate rocks and pore-scale analysis of acoustic properties,

Journal of Petroleum Science and Engineering 196 (2021) 107771.

[18] J. Feng, Q. Teng, B. Li, X. He, H. Chen, Y. Li, An end-to-end three-dimensional reconstruction framework of porous media from a single

two-dimensional image based on deep learning, Computer Methods in Applied Mechanics and Engineering 368 (2020) 113043.

[19] P. C. Sanematsu, K. E. Thompson, C. S. Willson, Pore-scale modeling of nanoparticle transport and retention in real porous materials,

computers & Geosciences 127 (2019) 65–74.

[20] X. Li, Q. Teng, Y. Zhang, S. Xiong, J. Feng, Three-dimensional multiscale fusion for porous media on microtomography images of different

resolutions, Physical Review E 101 (5) (2020) 053308.

[21] B. Biswal, P.-E. Øren, R. J. Held, S. Bakke, R. Hilfer, Modeling of multiscale porous media, Image Analysis & Stereology.

[22] Y. Wu, P. Tahmasebi, C. Lin, C. Dong, A comprehensive investigation of the effects of organic-matter pores on shale properties: A multicom-

ponent and multiscale modeling, Journal of Natural Gas Science and Engineering 81 (2020) 103425.

[23] Y. Wu, P. Tahmasebi, C. Lin, L. Ren, C. Dong, Multiscale modeling of shale samples based on low-and high-resolution images, Marine and

Petroleum Geology 109 (2019) 9–21.

[24] C. P. Fernandes, F. Magnani, P. Philippi, J. Daian, Multiscale geometrical reconstruction of porous structures, Physical Review E 54 (2)

(1996) 1734.

[25] W. Lin, X. Li, Z. Yang, M. Manga, X. Fu, S. Xiong, A. Gong, G. Chen, H. Li, L. Pei, et al., Multiscale digital porous rock reconstruction

using template matching, Water Resources Research 55 (8) (2019) 6911–6922.

[26] L. Ruspini, P. Øren, S. Berg, S. Masalmeh, T. Bultreys, C. Taberner, T. Sorop, F. Marcelis, M. Appel, J. Freeman, et al., Multiscale digital

rock analysis for complex rocks, Transport in Porous Media 139 (2) (2021) 301–325.

[27] W. Zhang, L. Song, J. Li, Efficient 3d reconstruction of random heterogeneous media via random process theory and stochastic reconstruction

procedure, Computer Methods in Applied Mechanics and Engineering 354 (2019) 1–15.

[28] Y. Jiao, F. Stillinger, S. Torquato, Modeling heterogeneous materials via two-point correlation functions. ii. algorithmic details and applica-

tions, Physical Review E 77 (3) (2008) 031135.

[29] J. Yao, C. Wang, Y. Yang, R. Hu, X. Wang, The construction of carbonate digital rock with hybrid superposition method, Journal of Petroleum

Science and Engineering 110 (2013) 263–267.

[30] M. V. Karsanina, K. M. Gerke, E. B. Skvortsova, A. L. Ivanov, D. Mallants, Enhancing image resolution of soils by stochastic multiscale

image fusion, Geoderma 314 (2018) 138–145.

[31] P. Tahmasebi, Nanoscale and multiresolution models for shale samples, Fuel 217 (2018) 218–225.

[32] L. Ji, M. Lin, G. Cao, W. Jiang, A multiscale reconstructing method for shale based on sem image and experiment data, Journal of Petroleum

Science and Engineering 179 (2019) 586–599.

[33] H. Okabe, M. J. Blunt, Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics, Water Resources

Research 43 (12).

22



[34] H. Li, P.-E. Chen, Y. Jiao, Accurate reconstruction of porous materials via stochastic fusion of limited bimodal microstructural data, Transport

in Porous Media 125 (1) (2018) 5–22.

[35] Y. Wang, Y. Yuan, S. S. Rahman, C. Arns, Semi-quantitative multiscale modelling and flow simulation in a nanoscale porous system of shale,

Fuel 234 (2018) 1181–1192.

[36] S. Song, M. Li, Q. Tu, A. Yuan, Z. Jiao, P. Li, W. Qian, H. Liu, N. Xu, An improved universal fusion algorithm for constructing 3d multiscale

porous media, Water Resources Research 57 (8) (2021) e2020WR029134.

[37] K. Wu, Z. Jiang, G. D. Couples, M. I. J. Van Dijke, K. S. Sorbie, Reconstruction of multi-scale heterogeneous porous media and their flow

prediction, in: International Symposium of the Society of Core Analysts, Calgary, Canada, 2007.

[38] Y. Wang, J.-Y. Arns, S. S. Rahman, C. H. Arns, Three-dimensional porous structure reconstruction based on structural local similarity via

sparse representation on micro-computed-tomography images, Physical Review E 98 (4) (2018) 043310.

[39] L. Mosser, O. Dubrule, M. J. Blunt, Reconstruction of three-dimensional porous media using generative adversarial neural networks, Physical

Review E 96 (4) (2017) 043309.

[40] F. Zhang, X. He, Q. Teng, X. Wu, X. Dong, 3d-pmrnn: Reconstructing three-dimensional porous media from the two-dimensional image

with recurrent neural network, Journal of Petroleum Science and Engineering 208 (2022) 109652.

[41] P. Xia, H. Bai, T. Zhang, Multi-scale reconstruction of porous media based on progressively growing generative adversarial networks, Stochas-

tic Environmental Research and Risk Assessment (2022) 1–21.

[42] K. M. Guan, T. I. Anderson, P. Creux, A. R. Kovscek, Reconstructing porous media using generative flow networks, Computers & Geosciences

156 (2021) 104905.

[43] Y. Wang, Q. Teng, X. He, J. Feng, T. Zhang, Ct-image of rock samples super resolution using 3d convolutional neural network, computers &

Geosciences 133 (2019) 104314.

[44] R. Shams, M. Masihi, R. B. Boozarjomehry, M. J. Blunt, Coupled generative adversarial and auto-encoder neural networks to reconstruct

three-dimensional multi-scale porous media, Journal of Petroleum Science and Engineering 186 (2020) 106794.

[45] Y. Yang, F. Liu, J. Yao, S. Iglauer, M. Sajjadi, K. Zhang, H. Sun, L. Zhang, J. Zhong, V. Lisitsa, Multi-scale reconstruction of porous media

from low-resolution core images using conditional generative adversarial networks, Journal of Natural Gas Science and Engineering (2022)

104411.

[46] Z. Li, X. He, Q. Teng, Y. Li, X. Wu, Reconstruction of 3d greyscale image for reservoir rock from a single image based on pattern dictionary,

Journal of Microscopy 283 (3) (2021) 202–218.

[47] K. Ding, Q. Teng, Z. Wang, X. He, J. Feng, Improved multipoint statistics method for reconstructing three-dimensional porous media from a

two-dimensional image via porosity matching, Physical Review E 97 (6) (2018) 063304.

[48] L. G. Shapiro, Connected component labeling and adjacency graph construction, in: Machine intelligence and pattern recognition, Vol. 19,

Elsevier, 1996, pp. 1–30.

[49] R. E. Carlson, F. N. Fritsch, Monotone piecewise bicubic interpolation, SIAM journal on numerical analysis 22 (2) (1985) 386–400.

[50] O. D. Trier, T. Taxt, Evaluation of binarization methods for document images, IEEE transactions on pattern analysis and machine intelligence

17 (3) (1995) 312–315.

23


	1 Introduction
	2 Methodology
	2.1 Upsampling Mapping
	2.2 Multiple Scale of Edge Pattern Dictionaries
	2.3 Edge Pattern Matching and multi-stage reconstruction
	2.4 Micro-pore pattern dictionary and micro-pore padding

	3 Result and discussion
	3.1 Simulation data experiment
	3.1.1 Simulation data experiment for Sample 1(b)
	3.1.2 Simulation data experiment for sandstone Sample 2(c)

	3.2 Real data experiment

	4 Conclusion

