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Abstract

In this paper we have considered the Barenblatt-Gilman equation which mod-

els the nonequilibrium countercurrent capillary impregnation. The equation of

this model is a third-order equation and the unknown function concerns to the

effective water saturation.

We have applied the classical method to get the Lie group classification with

respect to unknown function and we have constructed the equivalence transfor-

mations. We have also obtained the invariant solutions for some forms of the

equation, including travelling wave solutions based on the Jacobi elliptic sine

function.

Keywords: Barenblatt-Gilman equation, Lie group analysis, equivalence

transformations, travelling wave solutions

1. Introduction

Naturally, the study of partial differential equations plays a vital role in

the physical sciences. These equations are often non-linear and solving them

requires unique and creative methods. Most well-known techniques have a com-

mon feature: they exploit symmetries.5
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Symmetry analysis have continuously been in focus of research, it is appli-

cable to both linear and nonlinear differential equations, so it is a powerful and

fundamental tool. Nowadays several well-known authors are researching in this

field [1], [2], [3], [4], [5], [6], even generalizing the method to study systems of

the first order ODEs [7], fractional differential equations [8], [9] and obtaining10

conservation laws [10], [11]. Along the same line we have applied this method,

its theory and detailed description can be found in [12], [13], [14], [15] and so

on, to the Barenblatt-Gilman equation.

In broad strokes we can find the Lie algebra of admitted operators for dif-

ferent forms of unknown coefficient function and use certain subalgebras to15

construct invariant solutions.

To solve the classification problem completely, we have also obtained the

equivalence transformations which transform the given equation in another one

of the same class, preserving the differential structure. A practical guide for

calculation of invariants for families of linear and nonlinear differential equations20

with special emphasis on the use of infinite equivalence Lie algebras can be find

in [16]. Equivalence transformations are playing an important role in equations

or systems with arbitrary functions, allowing to select suitable forms of the

arbitrary functions. In [17], [18], [19], [20] it is possible to find a description and

application of the equivalence transformations, including examples for systems25

of differential equations and fractional differential equations.

Equation considered in the present paper is based on theory of counterflow

capillary impregnation of a porous medium. It has been studied extensively

due to its applications in various fields such as soil science, petroleum, crystal

growth and flip chip underfilling [21], [22], [23] and [24].30

In [25] the physical model of the non-equilibrium effects in a simultaneous

flow of two immiscible fluids in porous media is presented. The Barenblatt-

Gilman equation is as follows

ut = α4 Φ(u) + αλ (4Φ(u))t (1)

where the function Φ is the effective water saturation.
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2. Equivalence generators35

An equivalence transformation of the equation (1) is a change of variables

(t, x, u) −→ (t̄, x̄, ū) carrying the equation into an equation of the same form.

That way, the resultant equation and the original are said to be equivalent and

where the function Φ̄ may, in general, be different from the original function Φ.

There are two main methods for calculating the equivalence transformations:40

the direct search for equivalence transformations and the infinitesimal method

suggested by Ovsyannikov [26]. In this paper, we obtained the equivalence

transformations by means of the second method.

As before, now we have differentiated two cases. The first with α 6= 0 and

λ = 0 and another with α and λ non zero.45

Let us consider first the case with α 6= 0 and λ = 0. To start, we have

extended the space of variables, adding Φ as a new variable, and then we looked

for Y the generator of the continuous group of equivalence transformations that

have the form

Y = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+ µ

∂

∂Φ
(2)

where ξ1, ξ2 and η depend on x, t, u and µ depends on x, t, u, Φ.50

Next, we have written Barenblatt-Gilman equation (1), considering λ = 0,

in the following extended form




ut = αΦuuu2
x + αΦuuxx

Φt = 0, Φx = 0
(3)

The prolongation of the operator (2) to all variables involved in equation (3) is

given by the usual prolongation procedure and has the form

Ỹ = Y + ζ1
∂

∂ut
+ ζ2

∂

∂ux
+ ζ22

∂

∂uxx
+ ω1

∂

∂Φt
+ ω2

∂

∂Φx
+ ω3

∂

∂Φu
+ ω33

∂

∂Φuu

where ζ1, ζ2 and ζ22 are given by the usual prolongation formula and the other

four coefficients ω1, ω2, ω3 and ω33 are obtained by applying the secondary
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prolongation procedure:

ζ1
∣∣
(3)

= ηt + ηuut − ξ1
t ut − ξ1

uu
2
t − ξ2

t ux − ξ2
uutux;

ζ2
∣∣
(3)

= ηx +
(
ηu − ξ2

x

)
ux − ξ1

uutux − ξ2
uu

2
x − ξ1

xut;

ζ22

∣∣
(3)

= ηxx +
(
2ηxu − ξ2

xx

)
ux +

(
ηu − 2ξ2

x

)
uxx +

(
ηuu − 2ξ2

xu

)
u2
x

−ξ1
xxut − 2ξ2

xutx − 2ξ1
xuuxut − ξ1

uuxxut − 2ξ1
uuxutx − ξ1

uuu
2
xut

−ξ2
uuu

2
x − 3ξ2

uuxuxx;

ω1

∣∣
(3)

= µt − Φuηt;

ω2

∣∣
(3)

= µx − Φuηx;

ω3

∣∣
(3)

= µu + ΦuµΦ − Φuηu;

ω33

∣∣
(3)

= µuu + Φuu (µΦ − ηu) + Φu (2µΦu − ηuu) + Φ2
uµΦΦ;

Then, taking into account that the infinitesimal invariance test for the system

(3) has the form




(
−ζ1 + 2αΦuuζ2ux + αΦuζ22 + αω3uxx + αω33u

2
x

) ∣∣∣∣
(3)

= 0

ω1

∣∣
(3)

= 0, ω2

∣∣
(3)

= 0

and substituting here the expressions for ζ1, ζ2, ζ22, ω1, ω2, ω3 and ω33 and

splitting the resultant equations we have determined

ξ1(t) = C1t+ C4

ξ2(x) = C2x+ C5

η(u) = (C1 − 2C2 + C3)u+ C6

µ(Φ) = C3Φ + C7

where C1, C2, C3, C4, C5, C6 and C7 are constants.

Finally, based on the above results, the equivalence algebra for the equation

(3) is a seven-dimensional Lie algebra spanned by

Y1 = t
∂

∂t
+ u

∂

∂u

Y2 = x
∂

∂x
− 2u

∂

∂u

Y3 = u
∂

∂u
+ Φ

∂

∂Φ

Y4 =
∂

∂t
, Y5 =

∂

∂x
, Y6 =

∂

∂u
, Y7 =

∂

∂Φ
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On the other hand, let us consider now the case with α 6= 0 and λ 6= 0. The

generator of the continuous group of equivalence transformations have the same55

form (2) as before and the extended form of the Barenblatt-Gilman equation is




ut = λαΦuuuu2
xut + 2λαΦuuuxuxt + λαΦuuutuxx + λαΦuuxxt

αΦuuu2
x + αΦuuxx,

Φt = 0,

Φx = 0.

(4)

Following the process, we have prolonged the operator (2) to all variables in-

volved in equations (4) and it has the form

Ỹ = Y + ζ1
∂

∂ut
+ ζ2

∂

∂ux
+ ζ21

∂

∂uxt
+ ζ22

∂

∂uxx
+ ζ221

∂

∂uxxt
+ ω1

∂

∂Φt

+ω2
∂

∂Φx
+ ω3

∂

∂Φu
+ ω33

∂

∂Φuu
+ ω333

∂

∂Φuuu

whose coefficients were calculated as before, ζ1, ζ2, ζ21, ζ22 and ζ221 are given

by the usual prolongation formula and ω1, ω2, ω3, ω33 and ω333 are obtained

by applying the secondary prolongation procedure.

In such a way that the infinitesimal invariance test for the system (4) has

the form







−ζ1 + λαω333u
2
xut + λαΦuuu2ζ2uxut + λαΦuuuζ1u2

x

+2λαω33uxuxt + 2λαΦuuζ2uxt + 2λαΦuuζ21ux

+λαω33utuxx + λαΦuuζ1uxx + λαΦuuζ22ut + λαω3uxxt

+λαΦuζ221 + 2αΦuuζ2ux + αΦuζ22 + αω3uxx + αω33u
2
x




∣∣∣∣∣∣∣∣∣∣∣∣
(3)

= 0

ω1

∣∣
(3)

= 0, ω2

∣∣
(3)

= 0

At the end, substituting the expressions for ζ1, ζ2, ζ21, ζ22, ζ221, ω1, ω2, ω3,

ω33 and ω333 and splitting the equations, we have obtained the equivalence

algebra for the equation (4)

Y1 = x
∂

∂x
+ u

∂

∂u
+ 3Φ

∂

∂Φ

Y2 =
∂

∂t
, Y3 =

∂

∂x
, Y4 =

∂

∂u
, Y5 =

∂

∂Φ
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3. Lie symmetry analysis60

Lie classical method is specially useful in the study of Barenblatt-Gilman

equation (1) due to its arbitrary function because while we are searching for

symmetries it will provide a set of special forms for the unknown function Φ

where it is possible to choose.

We have started applying it to (1)

F (x, t, u, ut, ux, . . .) = 0

and considering the invariance of the equation under the Lie group transforma-65

tion with infinitesimal generator of the form

V = ξ(x, t, u)∂x+ ϕ(x, t, u)∂t+ η(x, t, u)∂u (5)

By Criterion of Invariance we have required that

Ṽ F = 0 when F = 0

where Ṽ = pr(3)V is the third prolongation of the vector field (5). This

yields to an overdetermined linear system of 31 equations for the infinitesimals

ξ(x, t, u, v), ϕ(x, t, u, v) and η(x, t, u, v). The solutions of this system depend on

the function Φ and α, λ parameters. Emphasise that with respect to equiva-70

lence transformations from section before, only non-equivalent Φ(u) functions

are listed.

We have obtained the following classification of (1) in two ways:

1. For α, λ 6= 0 :

• Case 1: Φ arbitrary function.

V1 =
∂

∂x
, V2 =

∂

∂t

• Case 2: Φ = eu75

Infinitesimal generators are V1, V2 and

V 1
3 = x

∂

∂x
+ 2

∂

∂u

6



• Case 3: Φ = lnu

Infinitesimal generators are V1, V2 and

V 2
3 = x

∂

∂x
− 2u

∂

∂u

• Case 4: Φ = uγ+1

Infinitesimal generators are V1, V2 and

V 3
3 = x

∂

∂x
− 2
γ
u
∂

∂u

• Case 5: Φ = u−1/3

Infinitesimal generators are V1, V2 and

V 4
3 = x

∂

∂x
− 3

2
u
∂

∂u
, V4 = x2 ∂

∂x
− 3xu

∂

∂u

• Case 6: Φ = u Infinitesimal generators are V1, V2 and

V 5
3 = u

∂

∂u
, Vχ = χ(x, t)

∂

∂u
,

where χ(x, t) is an arbitrary solution of the linear equation

αχxx + (αλχxx − χ)t = 0.

2. For λ = 0 the equation takes the form ut = α∆Φ(u)

• The cases from 1 to 5 admits the additional infinitesimal generator

V5 = x
∂

∂x
+ 2t

∂

∂t

• The case 6, with linear Φ (standard linear diffusion equation), have

3 more admitted operators than with λ 6= 0:

V4 = xu
∂

∂u
− 2αt

∂

∂x
, V5 = x

∂

∂x
+ 2t

∂

∂t

V6 = (ux2 + 2αt)
∂

∂u
− 4αtx

∂

∂x
− 4αt2

∂

∂t
.
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4. Reductions and exact solutions

In the first section we have obtained the vector fields of the Barenblatt-

Gilman equation. In this section, we have investigated the symmetry reductions80

and exact solutions of the equation (1) considering α 6= 0 and λ 6= 0.

• Case 1: If Φ is an arbitrary function from generator ωV1 + µV2 we have

obtained travelling wave reductions

z = µx− ωt, u(x, t) = h(z),

where h(z) satisfies

λα (h′)3
µ2ωΦhhh + (3λαh′h′′µ2ω − α (h′)2

µ2)Φhh+

(λαh′′′µ2ω − αh′′µ2)Φh − h′ω = 0
(6)

Let us assume that equation (6) has solution of the form h = H(z), where

H(z) is a solution of Jacobi equation

(H ′)2 = r + pH2 + qH4,

with r, p and q constants.

Substituting h = H(z) into equation (6) we can obtain an equation in the

form

α1Φhhh + α2Φhh + α3Φh + α4 = 0

where αi = αi(h) with i = 1, . . . , 4, which can be resolved for Φ.

As a continuation we studied the procedure for h = sn(z, k) and we have85

obtained the following results: If

h(z) = sn(z, k) (7)

is the Jacobi elliptic sine function, by substituting (7) into (6) we have

obtained

(3λαJ2J3

(
−J3

2J1 − J2
2k2J1

)
µ2ω − αJ2

2J3
2µ2)Fhh

+
(
λα
(
4J3J1

2k2J2 − J3
3J2 − J2

3k2J3

)
µ2ω

−α
(
−J3

2J1 − J2
2k2J1

)
µ2
)
Fh + λαJ2

3J3
3µ2ωFhhh − J2J3ω = 0,

8



where J1 = sn(z,m), J2 = cn(z,m) and J3 = dn(z,m). Taking into

account that cn2(z, k) = 1 − sn2(z, k) = 1 − (h)2 and dn2(z, k) = 1 −
msn2(z, k) = 1− k (h)2 (see, e.g. [27]), F (h) must satisfy

α1Fhhh + α2Fhh + α3Fh − α4 = 0, (8)

where90

α1 = λα
(
1− kh2

)3
µ2ω, (9)

α2 = 3λα
(
1− kh2

) (
−
(
1− kh2

)
h−

(
1− kh2

)
k2h
)
µ2ω (10)

−α
(
1− kh2

)2
µ2,

α3 = λα
(

4
(
1− kh2

)
h2k2 −

(
1− kh2

)2 −
(
1− kh2

)2
k2
)
µ2ω(11)

−α
(
−
(
1− kh2

)
h−

(
1− kh2

)
k2h
)
µ2,

α4 =
(
1− kh2

)
ω. (12)

Solving (8) with αi given in (9)-(12) we have obtained the function F (h)

for which (7) is solution of equation (6). Consequently, an exact solution

of equation (1) is

u(x, t) = a snb(µx− λt,m).

As an example, for k = 0, equation (8) is

λαµ2ωFhhh + (−3λαµ2ωh− αµ2)Fhh + (−λαµ2ω + αµ2)Fhh− ω = 0

and setting H = F ′, we have obtained

λαµ2ωHhh + (−3λαµ2ωh−αµ2)Hh + (−λαµ2ω+αµ2)Hh−ω = 0 (13)

The solutions H of the equation (13) are the Kummer functions:

KummerM(γ, ν, z) and KummerU(γ, ν, z), for more information about

them see, e.g. [27].

Taking into account that sn(z, 0) = sin(z), we have concluded that

u(x, t) = sin(µx− ωt)

is a solution of equation (1).95

In similar way, it is possible to get solutions for subcases (ii) and (iii).

9



• Case 2: If Φ = eu, besides V1 and V2, we have found the infinitesimal

generator V1
3.

For V1
3 we have obtained the symmetry reduction

z = t, u = 2 ln(x) + h(z),

where h(z) satisfies

−2λα eh h′ + h′ − 2α eh = 0.

• Case 3: If Φ(u) = ln(u), furthermore V1 and V2 there is another infinites-

imal generator v2
3.100

For V2
3 the similarity variables and similarity solutions are:

z = t, u(x, t) = 1
x2h(z),

where h (t) = 2α t+ c0.

• Case 4: If Φ(u) = uγ+1, in addition to V1 and V2, the equation has an

extra symmetry V3
3.

For V3
3 the similarity variables and similarity solutions are:

z = t, u(x, t) = x
2
γ h(z), (14)

where h(z) satisfies105

2λαhγhzγ2 − hzγ2 + 2αhγ+1γ + 6λαhγhzγ + 4αhγ+1 + 4λαhγhz = 0.

(15)

If γ 6= 0 the solution in implicit form is

−2λαhγ log hγ2 + (6λαhγ log h+ 1) γ + 4λαhγ log h
2αhγγ + 4αhγ

= z + c0

• Case 5: If Φ(u) = u−1/3, as well as V1 and V2 the equation has an extra

symmetry, namely,

V4
3 = x

∂

∂x
− 3

2
u
∂

∂u
.

10



For V4
3 the similarity variables and similarity solutions are:

z = t, u(x, t) = 1

x
3
2
h(z),

where h(z) satisfies

4h
4
3 h′ + λαh′ − 3αh = 0.

For V4 the similarity variables and similarity solutions are:

z = t, u(x, t) = 1
x3h(z),

where h is a constant.

5. Conclusions

In this paper, we have considered the basic equation for the effective water

saturation reduces due to the incompressibility of both fluids. In sec. 2 we have

looked for the equivalence generators considering two different cases, the first110

one for α 6= 0, λ = 0 and the second one for α 6= 0, λ 6= 0. And we have got a

seven-dimensional equivalence algebra for the first case and a five-dimensional

algebra for the last one.

We have studied the Lie symmetries of Barenblatt-Gilman equation in section 3

and we have found the classification of functions Φ for which we have obtained115

the Lie group of point transformations admitted by the (1) equation and its Lie

algebra.

Finally, we have presented the symmetry reductions, similarity variables and the

reduced ODEs, in sec. 4, for all the different Φ functions. Without forgetting

that we have also obtained travelling wave solutions.120
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