
ar
X

iv
:1

60
3.

01
37

2v
1 

 [
m

at
h.

N
A

] 
 4

 M
ar

 2
01

6

Numerical CP Decomposition of Some Difficult Tensors
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Abstract

In this paper, a numerical method is proposed for canonical polyadic (CP)
decomposition of small size tensors. The focus is primarily on decomposition
of tensors that correspond to small matrix multiplications. Here, rank of
the tensors is equal to the smallest number of scalar multiplications that are
necessary to accomplish the matrix multiplication. The proposed method
is based on a constrained Levenberg-Marquardt optimization. Numerical
results indicate the rank and border ranks of tensors that correspond to
multiplication of matrices of the size 2× 3 and 3× 2, 3× 3 and 3× 2, 3× 3
and 3×3, and 3×4 and 4×3. The ranks are 11, 15, 23 and 29, respectively.
In particular, a novel algorithm for multiplying the matrices of the sizes 3×3
and 3× 2 with 15 multiplications is presented.

Keywords: Small matrix multiplication, canonical polyadic tensor
decomposition, Levenberg-Marquardt method

1. Introduction

The problem of determining the complexity of matrix multiplication be-
came a well studied topic since the discovery of the Strassen’s algorithm
[1]. The Strassen’s algorithm allows multiplying 2 × 2 matrices using seven
multiplications. A consequence of this algorithm is that n × n matrices can
be multiplied by performing of the order n2.81 operations. More recent ad-
vances have brought the number of operations needed even closer to the n2

operations. The current record is O(n2.373) operations due to Williams [2].
The problem of the matrix multiplication can be rephrased as a problem

of decomposing a particular tensor according to its rank [3]. The tensor
rank is equal to the lowest number of the scalar multiplications needed to
compute the matrix product. The focus of this paper is not on improving
the above asymptotic results but on numerical decomposition of tensors that
correspond to multiplication of small matrices and determining their rank
[4]. Although the problem is quite old, only partial results are known so far.
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The matrix multiplication tensor for the 2 × 2 matrices is already com-
pletely clear [5]. Its rank is 7 and its border rank is 7 as well. The border
rank is the lowest rank of tensors that approximate the given tensor. For the
3×3 case, an algorithm for computing the product with 23 scalar multiplica-
tions was found by Laderman [6]. It means that the rank is at most 23. For
multiplying two 4 × 4 matrices, one can use twice the Strassen’s algorithm,
and therefore the rank is at most 49. Multiplication of 5 × 5 matrices was
studied by Makarov [7] with the result of 100 multiplications (rank 100).

In this paper we present a numerical decomposition of the matrix mul-
tiplication tensors. For now, we are not able to improve the known results
of Strassen, Laderman and Makarov, we rather show a method of the de-
composition with these ranks and numerical results indicating that further
improvements are probably not possible. Moreover, the numerical methods
allow to guess the border rank of the tensors. As a new result, we have
derived a novel algorithm for multiplying two matrices of the size 3× 3 and
3× 2 through 15 multiplications.

Traditional numerical tensor decomposition methods include the alternat-
ing least squares method (ALS) [8], improved ALS through the enhanced line
search (ELS) [9], damped Gauss-Newton method, also known as Levenberg-
Marquardt (LM) method [10], and different nonlinear optimization methods,
e.g. [11]. For decomposition of the multiplication tensors we have developed
a special variant of the constrained LM method. Once an exact fit solution is
found, we propose a method of finding another solution such that the factor
matrices only contain nulls, ones and minus ones.

The rest of the paper is organized as follows. The tensors of the matrix
multiplication are introduced in Section 2. The numerical method of their
decomposition is presented in Section 3. Section 4 presents numerical results
and section 5 concludes the paper.

2. Tensor of Matrix Multiplication

Consider two matrices E and F of the sizes P×Q and Q×S, respectively,
and their matrix product G = EF of the size P × S. The operation of
the matrix multiplication can be represented by a tensor TPQS of the size
PQ×QS × PS which is filled with nulls and ones only, such that

vec(G) = TPQS ×1 vec(E
T )T ×2 vec(F

T )T (1)

regardless of the elements values of E and F. Here, ×i denotes a tensor-
matrix multiplication along the dimension i, and vec is an operator that
stacks all elements of a matrix or tensor in one long column vector.
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Note that the number of ones in the tensor TPQS is PQS; it is the num-
ber of scalar multiplications needed for evaluating the matrix product by a
conventional matrix multiplication algorithm.

The tensor TPQS can be obtained by reshaping an order-6 tensor with
elements

T (PQS)
ijkℓmn = δiℓδjmδkn for i, k = 1, . . . , P ; ℓ,m = 1, . . . , R; j, n = 1, . . . , S

(2)
to the format PQ×QS × PS.

For example,

T222 =











1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1











. (3)

This tensor has the size 4× 4× 4, the vertical lines separate the four frontal
slices of the tensor.

A canonical polyadic decomposition of the tensor TPQS is a representation
of the tensor as a sum of R rank-one components

TPQS =
R
∑

r=1

ar ◦ br ◦ cr

where {ar}, {br}, {cr} are columns of so called factor matrices A,B,C, sym-
bolically TPQS = [[A,B,C]]. For example, a CP decomposition of the tensor
T222 in (3) corresponding to the Strassen algorithm [2] is T222 = [[A,B,C]]
with

A =











1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1











B =











1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1











C =











1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0











The multiplication tensors have the following properties:
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1. Ranks of these tensors exceed the tensors’ dimensions.

2. The CP decompositions are not unique.

3. The border ranks of the tensors might be strictly lower than their true
ranks.

4. Tensors TNNN are invariant with respect to some permutations of in-
dices. Using the matlab notation we can write TNNN = permute(TNNN , [2, 3, 1]) =
permute(TNNN , [3, 1, 2])

5. Tensors TPQS are invariant with respect to certain tensor-matrix mul-
tiplications [1].

Let us explain the last item in more details. Since it holds G = EF =
(EX)(X−1F) for any invertible matrix X, we have

vec(G) = TPQS×1vec(E
T )T×2vec(F

T )T = TPQS×1vec(X
TET )T×2vec(F

TX−T )T .

The multiplication with X and X−1 can be absorbed into TPQS, because

vec(XTET ) = (I⊗XT )vec(ET )

vec(FTX−T ) = (X−1 ⊗ I)vec(FT )

where I is identity matrix of an appropriate size. Therefore

TPQS = TPQS ×1 S1(X)×2 S2(X)

where S1(X) = I⊗XT and S2(X) = X−1 ⊗ I.

3. Numerical CP Decomposition

For numerical CP decomposition of the multiplication tensors we propose
a three–step procedure.

1. Finding an “exact fit” solution, if it exists.

2. Finding another solution which would be as much sparse as possible.

3. Finding a solution with factor matrices containing only integer (or ra-
tional) entries.

Step 1: Finding an Exact Fit

We seek a vector of parameters θR = [vec(A)T , vec(B)T , vec(C)T ]T of the
size 3N2R× 1 that minimizes the cost function ϕ(θ) = ‖TN − T̂ (θ)‖2F in the
compact set {θ ∈ R

3N2R; ‖θ‖2 = c}, where c is a suitable constant.
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The ordinary (unconstrained) LM algorithm updates θ as

θ ← θ − (H+ µI)−1g (4)

where

H = JTJ, J =
∂vec(T̂ (θ))

∂θ
, g = JTvec(TN − T̂ (θ)) (5)

and µ is a damping parameter, which is sequentially updated according to
a rule described in [12]. Closed-form expressions for the Hessian H and
gradient g can be found in [10].

Optimization constrained to the ball is performed by minimizing the cost
function in the tangent plane {θ; (θ− θ0)

T θ0 = 0} first, where θ0 is the latest
available estimate of θ which obeys the constraint. Let θ′1 be the minimizer
in the tangent plane. Then, θ′1 is projected on the ball by an appropriate
scale change, θ1 = θ′1

√
c/‖θ′1‖.

Towards computing θ′1, let the following second-order approximation of
the cost function be minimized,

ϕ(θ) ≈ ϕ(θ0) + gT (θ − θ0) +
1

2
(θ − θ0)

TH(θ − θ0) (6)

under the linear constraint (θ− θ0)
T θ0 = 0. We use the method of Lagrange

multiplier to get

θ′1 = θ0 −H−1g +
θT0 H

−1g

‖θ0‖2
H−1θ0 . (7)

Instead of using (4) directly, we propose replacing H−1 by (H + µI)−1 as in
the LM method.

We need to do multiple random initializations to get close to the global
minimum of the cost function; in the optimum case it is the exact fit solution,
i.e. with ϕ(θ) = 0. The method works well for small matrices. For example,
for decomposition of the T333 and constraint c = 150 we need only a few
random trials to obtain an exact fit solution. On the other hand, for tensor
T444 the false local minima are so numerous that it is almost impossible to
get an exact fit decomposition when the algorithm is started from random
initial conditions.

Step 2: Finding a Sparse Solution
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For simplicity, we describe a method of finding a sparse CP decomposi-
tion in the case of tensors TNNN . Let TNNN = [[A,B,C]] be an exact CP
decomposition with certain A,B,C. We have

TNNN = [[S1(X)A,S2(X)B,C]] (8)

where X is an arbitrary invertible matrix of size N ×N .
First, we seek a matrix X of determinant 1 such that ‖S1(X)A‖1 +

‖S2(X)B‖1 is minimized, and update A,B as A← S1(X)A, B← S2(X)B.
We use the Nelder-Mead algorithm for the minimization.

Second, we seek another X such that ‖S1(X)B‖1 + ‖S2(X)C‖1 is mini-
mized, and update B and C.

Third, we seek another X such that ‖S1(X)C‖1 + ‖S2(X)A‖1 is mini-
mized, and update C and A.

The sequence of three partial optimizations is repeated until convergence
is obtained.

As a result, we obtain TNNN = [[A,B,C]] where many elements of
A,B,C are nulls.

Step 3: Finding a Rational Solution

We continue to modify the exact fit solution obtained in the previous
step by constraining some other elements of θR to be 1 or -1. We do this
by sequentially increasing the number of elements of θR to be in the set
{0, 1,−1}. In each step, the function ϕ(θR) is minimized, starting from the
latest available solution, with another free element of θR changed and fixed
to 1 or -1. If an exact fit cannot be achieved, another free element is tried
instead. At the very end, it might happen that none of the free elements of
θR can be set to 1 or -1. In that case, we suggest to try the values 2 or -2 or
higher. Some other elements of θR may become 1/2 or −1/2.

4. Experiments

4.1. Estimating the tensor rank

For the multiplication tensor T333, holds minϕ(θ23) = 0 under the con-
straint ‖θ23‖2 = 150. The exact fit can be obtained quite quickly. For a rank–
22 approximation of T333, even with a more relaxed constraint ‖θ22‖2 = 594,
the lowest possible value of the fit that we were able to find was minϕ(θ22) =
6.766 · 10−5 > 0 . These observations indicate that the rank of the tensor
T333 is 23. Similarly, if we attempt to decompose the tensor to 22 and 21
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TABLE I
Upper bounds for ranks and border ranks of multiplication tensors

acronym matrix sizes # of 1’s rank border rank
222 2× 2, 2× 2 8 7 7
232 2× 3, 3× 2 12 11 10
322 3× 2, 2× 2 12 11 10
332 3× 3, 3× 2 18 15 14
333 3× 3, 3× 3 27 23 21
343 3× 4, 4× 3 36 29 28
443 4× 4, 4× 3 48 40 39
444 4× 4, 4× 4 64 49 49

terms, minϕ(θ) converges to zero for c → ∞. However, for decomposition
to 20 terms, minϕ(θ) does not converge to zero. Therefore we make the
conjecture that the border rank of the tensor is 21.

A more complete table of numerical results obtained by the above de-
scribed procedure is as follows. The table shows rank of the exact-fit so-
lutions of the CP decomposition of the tensors obtained by the constrained
optimization. The numerical border rank was determined as the minimimum
rank for which minϕ(θ) constrained by ‖θ‖ = c converges to zero for c→∞.
It is not a mathematical proof that the border rank has the displayed values,
but an empirical observation. The true border ranks can be theoretically
smaller.

The results in the table are rather discouraging for multiplication of the
matrices 2×3 with 3×2 and 3×2 with 2×2. Our experiments indicate that the
necessary number of multiplications is 11 in these two cases. Corresponding
algorithm can be obtained by applying the Strassen algorithm to the 2 × 2
blocks. It is not interesting from the computational point of view.

The only novel results are obtained for the cases 3 × 3 with 3 × 2 and
3 × 4 with 4 × 3. The former case is studied in the next subsection in more
details.
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Fig. 1: Reconstruction error as a function of parameter c in the constraint

‖θR‖2 = c for N = 3, R = 22 and R = 23.
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Fig. 2: Reconstruction error as a function of parameter c in the constraint

‖θR‖2 = c for N = 4, R = 48 and R = 49.

4.2. Multiplication of Matrices 3× 3 and 3× 2

Consider multiplication of matrices 3× 3 and 3× 2 of the form







e11 e12 e13
e21 e22 e23
e31 e32 e33













f11 f12
f21 f22
f31 f32





 =







g11 g12
g21 g22
g31 g32





 (9)
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Standard algorithm for computing g11, . . . , g32 from {eij} and {fij} requires
18 scalar multiplications. We show that the computation can be accom-
plished through 15 scalar multiplications only.
The tensor representing the multiplication has dimension 9 × 6 × 6. A CP
decomposition of this tensor obtained by applying the proposed algorithm is
T332 = [[A,B,C]], where

A =



































−1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 0 1 0 0 1 0 0 0 0
0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 1
0 0 1 1 0 −1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 −1 0 0
1 1 0 0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 −1 −1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0



































B =





















1 1 0 1 0 −1 0 −1 0 0 0 0 0 0 1
−1 0 −1 −1 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 −1 −1 0
0 0 1 1 0 0 0 −1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 −1 0 0 0 1 1 1
0 1 0 0 −1 0 1 0 0 1 0 0 −1 −1 0





















C =





















0 0 1 −1 0 1 0 1 0 0 0 0 0 0 1
0 0 −1 1 0 0 0 −1 −1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 −1 1 0 0 1 0 1
1 −1 1 −1 0 1 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 −1 0 0 1 1 −1 0
0 0 0 0 0 0 1 0 −1 1 0 0 1 −1 0





















The 15 scalar multiplications are

m1 = −(f11 − f12)(e11 + e12 − e31)

m2 = −(f11 + f32)(e13 − e31)

m3 = −e21(f12 − f22)

m4 = −(e12 − e21)(f11 − f12 + f22)

m5 = (f31 − f32)(e32 − e13 + e33)

m6 = f11(e11 − e13 + e21)

m7 = e31(f12 + f32)

m8 = −e12(f11 − f12 − f21 + f22)

m9 = e23(f21 − f31)
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m10 = −f32(e23 + e31 − e33)

m11 = f21(e12 + e22 + e23)

m12 = f22(e21 + e22 − e32)

m13 = (e23 + e32)(f21 − f31 + f32)

m14 = e32(f21 − f22 − f31 + f32)

m15 = e13(f11 + f31)

Having computed these products, the elements gij in (9) can be written as






g11 g12
g21 g22
g31 g32





 =







m3 −m4 +m6 +m8 +m12 m1 −m2 +m3 −m4 +m6 +m7

−m3 +m4 −m8 −m9 +m11 −m3 −m9 +m12 +m13 −m14

m2 +m5 −m9 +m10 +m13 +m15 m7 −m9 +m10 +m13 −m14







5. Conclusions

The constrained LM algorithm may serve for decomposition of difficult
tensors that have the border rank lower than the true rank and when unique-
ness is not required. Numerical decomposition of tensors larger than T333,
e.g. T444, is still a challenging task. We have provided a decomposition of
T332 tensor to 15 rank-one terms, i.e. showed that product of the matrices
3× 3 and 3× 2 can be computed through 15 scalar multiplications. Matlab
codes of the proposed algorithms are available on the web page of the first
author.
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