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Abstract

Novel advances in the field of metamaterial research have permitted the engi-
neering of devices with extraordinary characteristics. Here, we explore the pos-
sibilities in transformation acoustics to implement a model for the simulation of
acoustic wave propagation on the Poincaré half-plane—the simplest model pos-
sessing hyperbolic geometry and also of considerable historical interest. We start
off from a variational principle on the given spacetime manifold to find the design
description of the model in the laboratory. After examining some significant ge-
ometrical and physical properties of the Poincaré half-plane model, we derive a
general formal solution for its acoustic wave propagation. A numerical example
for the evolution of the acoustic potential on a rectangular region of the Poincaré
half-plane concludes this discussion.
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1. Introduction

In recent years metamaterials have provided researchers and engineers with
unprecedented tools for the design and construction of artificial devices with prop-
erties exceeding the possibilities found in nature. While optical metamaterials
have been the focus of continued interest for the last decade, acoustic metamate-
rials have only recently drawn the attention of researchers [1]. The central idea
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of metamaterial research is to depart from the traditional assumption of the Eu-
clidean predicate of the underlying physical 3-space geometry, which is the clas-
sical view e.g. in optics and acoustics. Instead, one exploits the remarkable prop-
erties of metamaterials to simulate optical and acoustic phenomena with curved
background spacetimes, leading to such impressive effects as metamaterial cloak-
ing and superlenses [2, 3]. In general, the study of physical phenomena with
curved spacetimes does not only pose challenges in engineering, but also raises
fundamental questions beyond their possible experimental verification, see e.g.
Ref. [4].

In this work, we demonstrate the use of a novel technique based on a funda-
mental variational principle in combination with powerful differential-geometric
methods to model acoustic wave propagation on a curved spacetime [5, 6, 7]. In
particular we show how to implement acoustic wave propagation on the Poincaré
half-plane model, H2

+ = {(x, y) ∈ R2 : y > 0} endowed with the Poincaré
metric [8]. It is the simplest and one of the most thoroughly investigated non-
Euclidean models of two-dimensional hyperbolic geometry (see e.g. [9]), which
makes it a suitable spacetime candidate for the implementation and study of an
acoustic metamaterial and a particularly fascinating model.

We will comment on the design and implementation of such a spacetime with
acoustic metadevices via the corresponding constitutive equations which relate
the physical acoustic parameters to the underlying curved spacetime, following
our general approach already proposed in 2012, see Refs. [5, 7].

Finally, we outline how to derive within this framework the partial differen-
tial equation for the acoustic potential which describes wave propagation on the
Poincaré half-plane. Apart from the harmonic time and x-dependence of the po-
tential, it is possible to analytically solve the emerging Sturm-Liouville problem
for the y-dependence and formally describe the solutions for the acoustic potential
as a superposition of harmonics and modified Bessel functions. We conclude the
discussion with a numerical simulation of the acoustic potential on a rectangular
region of the Poincaré half-plane.

2. Field formulation of acoustics and variational principle

Variational principles are powerful methods in classical and field mechanics—
this includes optics as an electromagnetic field theory—to define in a very concise
manner the laws which govern their physical domain. The corresponding equation
of motions are extremal solutions of the postulated action integrals and completely
determine the physical behaviour of the system. Much of the mathematical charm
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and sophistication of variational principles lies in its coordinate-frame indepen-
dent formulation. Moreover, Noether’s theorem allows with almost no effort to
shed light on the underlying symmetries of the theoretical model. In this formal-
ism, physical laws have their equivalent in equations of motion with self-adjoint
differential operators acting on the related field variables [10]. This gives rise to
separable partial differential equations that frequently comprise Sturm-Liouville
problems for one of the variables, so that its solutions may be obtained in an ana-
lytical or at least semi-analytical way.

For acoustics with a smooth background spacetime M (endowed with Lorentzian
metric g and negative signature such that g = det g < 0), we postulate [5] that the
action integral A is stationary with respect to variations of the acoustic potential
φ : M → R:

δ

δφ
A [φ] =

δ

δφ

∫
Ω

dvolg L (x, φ,∇φ) = 0, (1)

where the integration domain Ω ⊆ M is a bounded, closed set of spacetime and the
invariant volume element is denoted by dvolg =

√
−g dx0 ∧ . . . ∧ dx3 with x ∈ M.

If P denotes the ambient space [11] of the acoustic potential, the explicit form of
the Lagrangian function L : M × T P → R is constrained by several symmetry
requirements:

(i) locality (only first-order derivatives of the potential);
(ii) free-wave propagation (independence of the potential itself):

(iii) energy-momentum conservation (independence of spacetime position).

Therefore the simplest possible choice is [5]:

L (∇φ) = 1
2 g(∇φ,∇φ). (2)

This expression represents a kinetic term in covariant form. In Ref. [5] we have
shown that Eq. (2) reduces to the classical acoustic Lagrangian in flat space [12,
p. 248], corresponding to an isotropic acoustic wave equation.

In the following, we choose the notation that Latin indices run over the spatial
values of tensors alone, whereas Greek indices will be used for the full range of
spacetime values. As usual, comma and semicolon denote partial and covariant
derivatives, respectively, and the Einstein summation convention is implied for co-
and contravariant index pairs. Thus, in local coordinates xµ ∈ M, the Lagrangian
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of Eq. (2) may be rewritten as1

L (φ,µ) = 1
2 gµνφ,µφ,ν. (3)

Note that if v denotes the local fluid velocity, p the acoustic pressure, %0 the den-
sity, and c > 0 the time-independent wave speed of the acoustic metamaterial, the
gradient appearing in Eq. (3) is

φ,µ =

(
p/c%0

−v

)
. (4)

This expression encapsulates elementary relations of acoustics [13] and holds
within a fixed laboratory frame.

Finally, substituting Eq. (2) into Eq. (1) yields the Euler-Lagrange equation for
the acoustic potential. It is the wave equation which fully determines the dynamics
of the acoustic system with underlying spacetime (M, g).

For the actual implementation of such spacetime (M, g) the acoustic engi-
neer requires to fine-tune the mass-density tensor % and bulk modulus κ in the
laboratory—also called physical space—and relate them to their magnitude in
the corresponding space with known acoustic wave propagation—called virtual
space. Labelling the virtual space by barred quantities, both spaces are connected
by the constitutive relations [5]:

κ =

√
−g
√
−ḡ

κ̄, ρ0ρ
i j =

√
−ḡ
√
−g

ḡi j, (5)

where without loss of generality ρ̄/ρ0 ≡ 1. For most cases the quantities in virtual
space may be conveniently chosen κ̄ = 1 and ḡi j = δi j.

3. The Poincaré half-plane and acoustic wave propagation

Poincaré’s half-plane H2
+ = {(x, y) ∈ R2 : y > 0} is the upper 2D half-plane

endowed with the Poincaré metric, the simplest case of two-dimensional hyper-
bolic geometry or, alternatively, a surface with a constant negative Gaussian cur-
vature [8]. The line element of the pseudo-Riemannian manifold M = R × H2

+,

1Recall that for a scalar quantity the covariant derivative is the same as the partial derivative.
Thus, it is irrelevant whether we use comma or semicolon for the derivative of φ. Also note that by
the index contraction no full Lorentz invariance is implied as acoustics is obviously no relativistic
theory.
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representing spacetime, is given at point x ∈ M in terms of the nonholonomic
basis 1-forms θµ ∈ T ∗x M:

ds2 = −( cdt︸︷︷︸
θ0

) ⊗ (cdt) +
dx
y︸︷︷︸
θ1

⊗
dx
y

+
dy
y︸︷︷︸
θ2

⊗
dy
y
. (6)

Thus, in local coordinates, the components of the metric g = gµνdxµ ⊗ dxν have
the following simple diagonal form

gµν =

 −1 0 0
0 1/y2 0
0 0 1/y2

 , with
√
−g =

√
− det(gµν) = 1/y2. (7)

Note that on the Poincaré half-plane for a smooth curve with parametrization γ :
I ⊂ R → H2

+, the length between its initial and final point is determined by
evaluating

` =

∫
γ(I)

d` =

∫
I

γ∗d` =

∫
I

√
(γ∗gi j)(γ∗dxi)(γ∗dx j), (8)

where the pullback is as usual denoted by an upper star. Identifying x ∈ I = [a, b]
as parameter, Eq. (8) readily reduces to

` =

b∫
a

dx

√
gi j(x)

dxi

dx
dx j

dx
=

b∫
a

dx

√
1 + y′2

y
, (9)

where in the last step we have substituted Eq. (7). The shortest path between the
points γ(a), γ(b) ∈ H2

+ is given by the extremal requirement δ`/δx = 0 for Eq.(9),
which by straightforward calculation produces the differential equation

yy′′ + y′2 + 1 = 0. (10)

It is not difficult to check that the solutions of this equation, being the geodesics
on the Poincaré half-plane, are either straight vertical lines (θ1 = 0), semicircles
centered on the x-axis or their partial arcs, which is a well-known result (see e.g.
Ref. [14]).

The previous observations for the geodesics imply that the spacetime M =

R × H2
+ is curved. Cartan’s structure equations allow to efficiently compute the

curvature 2-form in the nonholonomic frame.
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One starts out with Cartan’s first structure equation in the local frame θµ ∈
T ∗x M to determine the curvature 1-forms ωµ

ν:

Dθµ = dθµ + ωµ
ν ∧ θ

ν = 0, (11)

where D denotes the exterior covariant derivative and no torsion is implied. Using
Eq. (6) in the condition provided by Eq. (11), one readily obtains

ωµ
ν =

 0 0 0
0 0 −θ1

0 θ1 0

 . (12)

Cartan’s second structure equation defines the curvature 2-forms Ωµ
ν by applying

once more the covariant derivative:

Ωµ
ν = dωµ

ν + ωµ
λ ∧ ω

λ
ν. (13)

From Eq. (12) it follows in this case that ωµ
λ ∧ ω

λ
ν = 0, which then yields for

Eq. (13):

Ωµ
ν = dωµ

ν =

 0 0 0
0 0 −dθ1

0 dθ1 0

 =

 0 0 0
0 0 −θ1 ∧ θ2

0 θ1 ∧ θ2 0

 . (14)

As expected Ω1
2 = −Ω2

1 is the only independent and non-vanishing component
in the matrix of Eq. (14) representing all possible curvature 2-forms.

From the relation between curvature form and Riemann curvature tensor, Ω1
2 =

R̂1
212 θ

1 ∧ θ2 = −dθ1 = (−1)θ1 ∧ θ2, it also follows that the only independent com-
ponent of the Riemann tensor is R̂1

212 = −1. All other components vanish. As
usual, the Ricci tensor and scalar are obtained by contraction. The components
of the Ricci tensor in the nonholonomic frame are R̂00 = 0 and R̂11 = R̂22 = −1.
Thus, the Ricci scalar in both frames, nonholonomic and coordinate frame, is
R = R̂ = −2.

Putting this information together, the associated Einstein tensor, Gµν, is also
identical in the nonholonomic and coordinate frame with only the following non-
zero component

G00 = R00 + η00 = −1. (15)

Matching Eq. (15) with the stress-energy tensor of a perfect fluid,

Tµν =

 ρ0 c2 0 0
0 p0 0
0 0 p0

 = −
c4

8πG
Gµν,
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implies that for an observer falling along a geodesic the spacetime R × H2
+ is

pressure-free and it only consists of exotic matter. More concretely, the spacetime
R × H2

+ has constant negative mass-energy density

ρ0 = −
c2

8πG
, (16)

where c is the speed of light and G is the gravitational constant. Precisely this
mass-energy distribution would generate R × H2

+ in physical spacetime.
The analogous acoustic space is implemented by a suitable choice of the phys-

ical parameters % and κ. For this we only require the components of metric g,
immediately read off from Eq. (6), and the constitutive equations, Eqs. (5). Thus,
we obtain the following simple prescription for the acoustic analogue of R × H2

+:

κ =

(
y
y0

)2

κ̄, ρ0ρ
i j =

(
y0

y

)2

δi j, (17)

where y0 > 0 is just a constant to fix the dimension.
The acoustic wave equation on the Poincaré half-plane agrees with the geodesics

for field φ on a curved spacetime with the underlying metric provided by Eq. (6).
Applying the variational principle, Eq. (1), for this spacetime gives the associated
Euler-Lagrange equation

∆R×H2
+
φ =

(
−

1
c2

∂2

∂t2 + y2 ∆R2

)
φ = 0, (18)

where ∆M denotes the Laplace-Beltrami operator on manifold M.
Standard techniques [15] yield for the free-wave solution φ(t, x, y) of Eq. (18) a

harmonic dependence on time variable t and for the propagation along the x-axis,
so that we may write

φ(t, x, y) =
[
A cos

(√
λct

)
+ B sin

(√
λct

)]︸                                 ︷︷                                 ︸
φ0(t)

[
Ã cos

(√
µx

)
+ B̃ sin

(√
µx

)]︸                               ︷︷                               ︸
φ1(x)

φ2(y),

(19)
where A, B, Ã, B̃ ∈ R are integration constants, and λ, µ > 0 are the constants
related to the eigensolutions of the harmonic oscillators. As expected, all of the
non-trivial behaviour resides in the propagation along the y-axis, which is con-
tained in the contribution φ2(y).
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In order to determine φ2(y), we substitute Eq. (19) into the wave equation,
Eq. (18), and obtain following problem of Sturm-Liouville type:

φ′′2 +

(
λ

y2 − µ

)
φ2 = 0. (20)

The differential equation Eq. (20) has a regular singular point at y = 0, and in the
limit y → ∞ the metric Eq. (7) degenerates, i.e.,

√
−g → 0. Moreover, in this

limit damping occurs for µ > 0. The physical significance of this damping effect
is that the free acoustic pressure wave, p = ρ0∂φ/∂t, will eventually die down
when propagating in direction of the y-axis. This effect is due to the character of
the underlying hyperbolic space, in which the distances measured by the spatial
components of the metric gi j are “squeezed” together with growing height.

In order to solve Eq. (20), we identify f (y) = φ2(y)/
√

y with y = x/
√
µ, and

λ = −α2 + 1/4, to obtain upon substitution

x2 f ′′(x) + x f ′(x) − (x2 + α2) f (x) = 0, (21)

which is just the modified Bessel differential equation.2 Its two independent solu-
tions are the modified Bessel functions [16] of the first and second kind, Iα(x) and
Kα(x), respectively, where the former is an exponentially growing and the latter is
an exponentially decaying function.

The general solution of Eq. (20) for the nontrivial y-dependence of the wave
equation, Eq. (18), is therefore given by

φ2(y) =
√

y
[
C1I 1

2

√
1−4λ(

√
µy) + C2K 1

2

√
1−4λ(

√
µy)

]
, (22)

where C1 and C2 are arbitrary constants.
Finally, by the superposition principle and combining Eqs. (19) and (22), the

most general formal solution can be given by the expression

φ(t, x, y) =

∫
dλ

∫
dµ

[
A(λ, µ) cos

(√
λ ct

)
+ B(λ, µ) sin

(√
λ ct

)]
×

[
Ã(λ, µ) cos

(√
µ x

)
+ B̃(λ, µ) sin

(√
µ x

) ]
(23)

×
√

y
[
C1(λ, µ) I 1

2

√
1−4λ(

√
µy) + C2(λ, µ) K 1

2

√
1−4λ(

√
µy)

]
.

2Note that interestingly enough and quite suitably in this context, the modified Bessel differen-
tial equation is sometimes also called the hyperbolic Bessel differential equation.
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The numerical evaluation for given boundary conditions may be worked out
by a finite-element analysis of φ(t, x, y). In case the time and x-dependence of
the acoustic potential φ can be expressed as a sum of a few lower-frequency har-
monics, a semianalytical approach might be carried out by using an expansion
of φ2(y) in terms of a modified Neumann series [16, 17], while at the same time
maintaining the superposition of the explicit harmonic solutions of the form φ0(t)
and φ1(x), viz. Eq. (19). Frequently, in these Neumann series only the modified
Bessel functions of the second kind Kα(

√
µy) appear, because the first-kind func-

tions produce unphysical results due to the divergent behaviour Iα(
√
µy) → ∞ in

the asymptotic limit y→ ∞.
We conclude this discussion with the following Cauchy problem for a acoustic

wave propagation on the Poincaré half-plane with spacetime M = R × H2
+:

∆Mφ︷                        ︸︸                        ︷
−
∂2φ

∂t2 + y2
(
∂2φ

∂x2 +
∂2φ

∂y2

)
= 0 on R = [−10, 10]×]0, 5] with t ∈ [0, 2π]

φ = e−5(x− 3
2 )2

+(y− 3
2 )2

for t = 0, (x, y) ∈ R

∂φ

∂t
= 0 for t = 0

φ = 0 for (x, y) ∈ ∂R
(24)

At instant t = 0, the potential starts with an exponential peak located at position
(1.5, 1.5) on the rectangle R = [−10, 10]×]0, 5] lying within the Poincaré half-
plane. Another assumption we make is that initially ∂φ/∂t = 0, which implies that
at t = 0 the acoustic pressure vanishes. Moreover, at all times the potential shall
be zero on the rectangle border ∂R.

To carry out the numerical simulation of the Cauchy problem, Eq. (24), com-
puting the acoustic potential φ, we use the method-of-lines technique implemented
with the software package Mathematica 11.1, see [18]. Figure 1 shows several
snapshots for successive increments within the time interval [0, 2π]. The wave
fades out with increasing height y, which is not only due to the boundary condi-
tion on ∂R for this particular case, but mainly due to the asymptotic behaviour of
the metric for y→ ∞, as was already observed before.
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4. Conclusions

The analogue model of the Poincaré half-plane in transformation acoustics is
a particularly fascinating model, since the original approach was among the first
with hyperbolic geometry to be throughly studied in history. In oder to create
such a spacetime, in Einstein’s theory of gravity space would have to be filled
with exotic matter, a substance which will perhaps never be attainable. However,
we have shown that the implementation within an acoustic metamaterial requires
a bulk modulus and isotropic mass-energy density which display a specific depen-
dence on height, viz. Eq. (17). This might be a workable alternative for testing in
a laboratory in the foreseeable future.

To derive the wave equation for the acoustic potential on the Poincaré half-
plane, we have started from a covariant variational principle and arrived at a com-
plete description of acoustic free-wave phenomena with the underlying spacetime
R × H2

+. The formal analytical solution for the acoustic wave equation can be
expressed by the superposition principle as a combination of harmonic frequency
modes and modified Bessel functions.

For a numerical simulation, we have chosen a Cauchy problem with a confined
rectangular region of the Poincaré half-plane. As expected, we observe a damping
effect of the amplitude with increasing height.

In summary, it is hoped that the variational spacetime approach to transforma-
tion acoustics supplies a powerful and tractable tool for the study and design of
acoustic metadevices. It may facilitate new research pathways in this field, over-
coming pending challenges in the engineering of acoustic phenomena with curved
spacetime backgrounds.
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Figure 1: Graphical representation of the solution to the Cauchy problem Eq. (24), describing
the evolution of the acoustic potential φ on the Poincaré half-plane H2

+. For the time interval
t ∈ [0, 2π], 15 snapshots are taken.


