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Abstract

This paper deals with the construction, analysis and computation of a numeri-

cal method to solve a moving boundary coupled nonlinear system of parabolic

reaction-diffusion equations, arising in concrete carbonation problems. By means

of a front-fixing transformation, the domain of the problem becomes fixed, and

the position of the moving carbonation front has to be determined together with

the mass concentrations of the involved chemical species. Qualitative properties

like positivity and stability of the numerical solution are established. Spatial

monotone behaviour of the solution is also proved. Numerical examples illus-

trate these results.

Keywords: Concrete carbonation chemical corrosion, Free boundary

problems, Nonlinear PDE system, Numerical analysis, Finite difference

methods.

1. Introduction

The effect of concrete carbonation in buildings and civil works is a relevant

issue in civil engineering construction and architecture due to the deterioration
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of building materials and its potential incidence in the citizens safety.

This matter is also related to environment, public health and ecology because5

the carbonation effect is in part due to the influence of traffic and industries.

This problem may be regarded as a particular case inside of the wide area

of materials corrosion. Apart from the concrete carbonation, other damaging

processes are those related to the effects of sulfuric acid attack, [6], or chloride

penetration in concrete structures, [20, 25].10

The carbonation of concrete is a natural phenomenon that affects the per-

formance, serviceability and safety of concrete structures. The diffusion of the

environmental carbon dioxide in the dry parts and its reaction in the unsatu-

rated concrete pores, cause a drop in pH of the alkaline components near the

steel bars, and the oxide film around the steel surface declines its ability to pro-15

tect bars from corrosion. Thus, carbonation process leads to the corrosion of the

embedded reinforcing bars, reducing the service life of concrete structures such

as bridges, sewage pipes and seawalls. The annual carbon dioxide concentration

growth rate has increased from 1.4 parts per million (ppm) per year during the

period 1960-2005 to 1.9 ppm per year during the period 1995-2005. Follow-20

ing the current tendency, studies estimate that atmospheric CO2 concentration

could increase from 379 ppm in 2005 over 1000 ppm by the year 2100, resulting

in an increase of corrosion risk, see [1, 8].

The presence of carbon dioxide under normal atmospheric conditions and

also emitted as industrial output, enters the gaseous phase of the pores. Carbon25

dioxide is transported by diffusion and dissolved in the aqueous phase, where

it is further transported towards the place where carbonation reaction takes

place. The other reactant, calcium hydroxide, is initially in the solid matrix of

cement. By means of a dissolution process, it arrives in the aqueous phase of the

pores and reacts with CO2 present in the aquaeus phase. The reaction products30

are water together with calcium carbonate. Several experimental studies have

addressed the problem of concrete carbonation, studying the behaviour of the
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position of the interface that separates the carbonated and non carbonated part,

for large times, [3, 9, 10, 18, 23, 24].

The concrete carbonation depth needs to be estimated and there is need of35

models capable to predict the depth of CO2 penetration in concrete structures

accurately, see [15]. In [15, 16, 17], the authors propose a moving interface

model to forecast the position of the carbonation front and the profiles of the

active concentrations, showing qualitative properties of the mass concentration

solutions, such as positivity and upper boundedness. Numerical simulations40

of the solution of the model using the finite element method are performed in

[15, 16]. The model involves the unknown moving boundary and the concentra-

tions of involved species by means of the solution of a coupled nonlinear system

of parabolic reaction-diffusion equations. As the best model may be wasted

with a disregarded computation, its numerical analysis is necessary. Dealing45

with boundary-value problems whose boundary of the domain is not known

in advance but has to be determined as part of the solution, the term ”free

boundary problem” is commonly used when the boundary is stationary and a

steady-state problem exists. On the other hand, moving boundaries, like the

problem studied in this paper, are associated with time-dependent problems.50

However it is usual to include both types of problems under the single term

”free boundary problem” [4]. Recent works on numerical analysis of finite dif-

ference methods for free boundary problems can be found, for instance, in [21]

for a two-phase Stefan problem of melting and in [19] for a moving boundary

problem in population dynamics.55

Other recent different model of concrete carbonation phenomenon is exposed

in [11], where an initial boundary value problem is used to study carbon dioxide

transport in a bounded domain of R3.

The concrete element is supposed to be a sample with thickness equal to

L. The space variable x is measured from the exposed boundary x = 0 to

the sealed boundary x = L, and the unknown carbonation front or moving
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boundary is denoted by x = S(t), satisfying 0 < S(t) < L. The whole domain

[0, L] is divided in two subdomains, the so called carbonated zone Ω1(t) =

[0, S(t)[ and uncarbonated zone Ω2(t) =]S(t), L]. The chemical species present

in Ω1(t) are CO2(aq), CO2(g), CaCO3(aq) and H2O, and the species in Ω2(t)

are Ca(OH)2(aq) and H2O. Here, (aq) and (g) refer to species in aqueous and

gaseous environments, respectively. CaCO3(aq) is created in the carbonation

front according to the reaction

CO2(aq) + Ca(OH)2(aq) −−→ CaCO3(aq) + H2O, (1)

and at any time t is uniformly distributed in Ω1(t) = [0, S(t)[, [16].

The mass concentrations of the species are represented by the following vari-

ables, where time takes values in the interval 0 ≤ t ≤ T ,

Ū1(x, t) = [CO2(aq)], Ū2(x, t) = [CO2(g)], Ū5(x, t) = [H2O], 0 ≤ x ≤ S(t),

Ū3(x, t) = [Ca(OH)2(aq)], Ū6(x, t) = [H2O], S(t) ≤ x ≤ L,

Ū4(t) = [CaCO3(aq)], (2)

where T > 0 is the time horizon.60

Throughout this work, we will use the notation Ūi = Ūi(x, t), 1 ≤ i ≤ 6,

i 6= 4, and Ū4 = Ū4(t) for the unknown concentrations. Note that the unknown

Ū4 depends only of the time because it refers to the concentration of CaCO3(aq)

at the unknown carbonation front S(t).

The porosity of the concrete sample is given by the parameter φ, while

air and water fractions of the pores are denoted by φω and φa, respectively.

According to [5], it is assumed that the exchange of CO2 between the gas and

liquid phases is modeled by linear Henry laws of the type

f1,Henry = −P1(φφωŪ1 −Q1φφaŪ2), f2,Henry = P2(φφωŪ1 −Q2φφaŪ2), (3)

where P1, P2 are mass transfer parameters through the interface air-water and65

Q1, Q2 are the positive Henry-like constants.
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The dissolution rate for Ca(OH)2(aq) is given by

fDiss = −S3,diss(Ū3 − U3,eq), (4)

where S3,diss is a mass transfer coefficient and U3,eq = U3,eq(t) is an equilibrium

concentration, see [14], [16], [17].

The production rates of CaCO3(aq) and H2O at the carbonation front are

modeled by the function

fReacΓ =
[

κφφω(Ū1)
p(Ū3)

q
]

Γ(t)
, (5)

where

Γ(t) = (S(t), t), (6)

and the notation [f ](x,t) = f(x, t) has been used. Parameter κ > 0 is the reaction

constant and p ≥ 1, q ≥ 1, denote the partial reaction orders. In addition, the

precipitation rate of CaCO3(aq) is not considered in the model, that is

fPrec = 0. (7)

Let Di i,∈ {1, 2, 3} represent diffusion coefficients for each species Ūi, and

let φD5, φD6 stand for transport coefficients of water content in the carbonated70

and uncarbonated zone, respectively. It is assumed that each Di, 1 ≤ i ≤ 6,

i 6= 4, is a positive constant ([17]).

The continuous model proposed in [16, 17] is described by a coupled sys-

tem of five partial differential equations (PDE) and one ordinary differential

equation (ODE) (balance equations); together with the initial, boundary and75

transmission conditions and the velocity law of the moving front. The five PDEs

and the ODE involving the unknown concentrations are presented as follows:

Carbon dioxide mass concentration in water phase, Ū1 = [CO2(aq)]:

∂

∂t
(φφωŪ1)−

∂

∂x

(

D1φφω
∂Ū1

∂x

)

= f1,Henry, 0 ≤ x < S(t), 0 < t < T. (8)
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Carbon dioxide mass concentration in air phase, Ū2 = [CO2(g)]:

∂

∂t
(φφaŪ2)−

∂

∂x

(

D2φφa
∂Ū2

∂x

)

= f2,Henry, 0 ≤ x < S(t), 0 < t < T. (9)

Calcium hydroxide present in the cement, Ū3 = [Ca(OH)2(aq)]:

∂

∂t
(φφωŪ3)−

∂

∂x

(

D3φφω
∂Ū3

∂x

)

= fDiss, S(t) < x ≤ L, 0 < t < T. (10)

The calcium carbonate creation in the carbonation front Ū4 = [CaCO3(aq)] is

given by
[

d

dt
(φφωŪ4)

]

Γ(t)

= fPrec + fReacΓ, 0 < t < T. (11)

Water content in the carbonated zone, Ū5 = [H2O],

∂

∂t
(φŪ5)−

∂

∂x

(

D5φ
∂Ū5

∂x

)

= 0, 0 ≤ x < S(t), 0 < t < T. (12)

The last balance equation for water content in the uncarbonated zone, Ū6 =

[H2O], is given by

∂

∂t
(φŪ6)−

∂

∂x

(

D6φ
∂Ū6

∂x

)

= 0, S(t) < x ≤ L, 0 < t < T. (13)

Initial position of the front is S(0) = S0 > 0 and initial concentrations in

their respective domains take the form

Ūi(x, 0) = Ūi0(x), 0 < x < S0, i ∈ {1, 2, 5}, (14)

Ū4(0) = Ū40, (15)

Ūi(x, 0) = Ūi0(x), S0 < x < L, i ∈ {3, 6}. (16)
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With respect to the boundary conditions at the exposed boundary x = 0

and the sealed boundary x = L, one gets

φφωŪ1(0, t) = Λ1(t), φφaŪ2(0, t) = Λ2(t), φŪ5(0, t) = Λ5(t), 0 < t < T, (17)

∂Ū3

∂x
(L, t) = 0,

∂Ū6

∂x
(L, t) = 0, 0 < t < T. (18)

The transmission conditions at the free boundary x = S(t), 0 < t < T , are80

given by

(−δ1i + δ3i)

[

∂

∂x
(DiφφωŪi)

]

Γ(t)

= −ηΓ(Ū1, Ū3) + S′(t)[φφωŪi]Γ(t), i ∈ {1, 3},

(19)

−
[

∂

∂x
(D2φφaŪ2)

]

Γ(t)

= S′(t)[φφaŪ2]Γ(t), (20)

(−δ5i + δ6i)

[

∂

∂x
(DiφŪi)

]

Γ(t)

= δ5i
1

φω
ηΓ(Ū1, Ū3) + S′(t)[φŪi]Γ(t), i ∈ {5, 6}.

(21)

Finally, the velocity law for propagation of the carbonation front takes the

form

S′(t) = [ακ(Ū1)
p(Ū3)

q−1]Γ(t), (22)

where α > 1 ([16], pp. 544), and the function ηΓ is defined for a couple of

functions V1(x, t) and V3(x, t) as

ηΓ(V1, V3) = κφφω(V1(S(t), t))
p(V3(S(t), t))

q , 0 < t < T, (23)

so that ηΓ(Ūi, Ūi) = fReacΓ, see (5).

As the active concentrations are small, the constant porosity assumption is
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valid (see [2, 13, 22]), thus in this paper the parameters porosity φ > 0 as well

as water and air fractions φω > 0 and φa > 0 are constants. Let us consider the

suitable transformation of variables:

Ûi(x, t) = φφωŪi(x, t), i ∈ {1, 3}, (24)

Û2(x, t) = φφaŪ2(x, t), Û4(t) = φφωŪ4(t), (25)

Ûi(x, t) = φŪi(x, t), i ∈ {5, 6}. (26)

Under the new variables Ûi(x, t), i ∈ {1, 2, 3, 5, 6}, Û4(t) and using Kro-

necker’s symbol δij , problem (8)-(22) can be written in a compact form

(δ1i + δ2i + δ5i)
∂Ûi

∂t
−Di

∂2Ûi

∂x2
= (1− δ5i)(−1)iPi(Û1 −QiÛ2),

0 ≤ x < S(t), 0 < t < T, i ∈ {1, 2, 5}, (27)

∂Ûi

∂t
−Di

∂2Ûi

∂x2
= δ3i(−S3,diss(Û3−U3,eq)), S(t) < x ≤ L, 0 < t < T, i ∈ {3, 6},

(28)

dÛ4

dt
= κ(φφω)

1−p−q[(Û1)
p(Û3)

q]Γ(t), 0 < t < T. (29)

The transformed initial conditions become S(0) = S0 > 0 and

Û1(x, 0) = Û10(x) = φφωŪ10(x), Û2(x, 0) = Û20(x) = φφaŪ20(x),

Û5(x, 0) = Û50(x) = φŪ50(x), 0 < x < S0, (30)

Û4(0) = Û40 = φφωŪ40, (31)
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Û3(x, 0) = Û30(x) = φφωŪ30(x), Û6(x, 0) = Û60(x) = φŪ60(x), S0 < x < L,

(32)

and the transformed boundary conditions are

Ûi(0, t) = Λi(t), 0 < t < T, i ∈ {1, 2, 5}, (33)

∂Ûi

∂x
(L, t) = 0, 0 < t < T, i ∈ {3, 6}. (34)

85

Finally, the transformed interface conditions for x = S(t), 0 < t < T , become

−
[

Di

∂Ûi

∂x

]

Γ(t)

= (δ5i − δ1i)(φφω)
−p−qηΓ(Û1, Û3) + S′(t)[Ûi]Γ(t), i ∈ {1, 2, 5},

(35)

[

Di

∂Ûi

∂x

]

Γ(t)

= −(δ3i)(φφω)
−p−qηΓ(Û1, Û3) + S′(t)[Ûi]Γ(t), i ∈ {3, 6}, (36)

and the velocity law is

S′(t) = ακ(φφω)
1−p−q[(Û1)

p(Û3)
q−1]Γ(t). (37)

In this paper, a finite difference method to solve the moving boundary prob-

lem (8)-(22) is proposed, obtaining sufficient step sizes conditions to guarantee

positivity and stability of the numerical solution. The paper is organized as

follows. In Section 2, after a front-fixing transformation, the original problem is90

transformed into another one in a fixed domain, where the moving boundary be-

comes a new unknown of the problem. In Section 3, we propose a coupled finite

difference scheme whose unknowns are [CO2(aq)], [CO2(g)], [CaCO3(aq)] and

[H2O] in the carbonated zone, [Ca(OH)2(aq)] and [H2O] in the uncarbonated
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zone, together with the square power values of the expanding front. In Section95

4, positivity, boundedness and stability of the numerical solution is treated.

Spatial monotonicity properties of the solution is addressed in Section 5. Ex-

periments illustrating the qualitative properties of the numerical solution are

included in the corresponding sections.

2. Front-fixing transformation100

For the sake of simplicity, and taking advance of the fact that (S2(t))′ =

2S(t)S′(t), in the following we will consider as unknown the square of the free

boundary R(t) instead of the free boundary itself S(t) in order to obtain a more

simplified PDE system, i. e.

R(t) = S2(t). (38)

In order to transform the PDE problem with moving domain into a fixed

domain one, let us consider the following change of spatial variable inspired by

the well known Landau transformation, ([4, 12]):

z(x, t) =























(

x/
√

R(t)
)

− 1, 0 ≤ x <
√

R(t), 0 ≤ t ≤ T,

0, x =
√

R(t), 0 ≤ t ≤ T,

(

x−
√

R(t)
)/(

L−
√

R(t)
)

,
√

R(t) < x ≤ L, 0 ≤ t ≤ T.

(39)

The new unknown variables of the problem are

Ui(z, t) = Ûi(x, t), i ∈ {1, 2, 5}, −1 ≤ z ≤ 0,

U4(t) = Û4(t),

Ui(z, t) = Ûi(x, t), i ∈ {3, 6}, 0 ≤ z ≤ 1. (40)

In a similar way as in (6), let us denote

γ(t) = (0, t). (41)
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Then, the new PDE system in the fixed domain |z| ≤ 1 is

(δ1i + δ2i + δ5i)

(

R(t)
∂Ui

∂t
−R′(t)

z + 1

2

∂Ui

∂z

)

−Di

∂2Ui

∂z2

= (1− δ5i)(−1)iPi(U1 −QiU2)R(t), −1 ≤ z < 0, 0 < t < T, i ∈ {1, 2, 5},
(42)

(

R(t) + L2 − 2L
√

R(t)
)∂Ui

∂t
+

(

R′(t)

2

(

L
√

R(t)
− 1

))

(z − 1)
∂Ui

∂z
−Di

∂2Ui

∂z2

= −δ3i
(

R(t) + L2 − 2L
√

R(t)
)

S3,Diss(U3 − U3,eq), 0 < z ≤ 1, 0 < t < T, i ∈ {3, 6},

(43)

dU4(t)

dt
= κ(φφω)

1−p−q [(U1)
p(U3)

q]γ(t), 0 < t < T, (44)

together with the initial conditions

U1(z, 0) = U10(z) = φφωŪ10((z + 1)S0), U2(z, 0) = U20(z) = φφaŪ20((z + 1)S0),

U5(z, 0) = U50(z) = φŪ50((z + 1)S0), −1 < z < 0, (45)

U4(0) = U40 = φφωŪ40, (46)

U3(z, 0) = U30(z) = φφωŪ30(z(L− S0) + S0),

U6(z, 0) = U60(z) = φŪ60(z(L− S0) + S0), 0 < z < 1, (47)

the boundary conditions

Ui(−1, t) = Λi(t), 0 < t < T, i ∈ {1, 2, 5}, (48)

∂Ui

∂z
(1, t) = 0, 0 < t < T, i ∈ {3, 6}, (49)
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and the interface conditions at z = 0, 0 < t < T ,

−
[

Di

∂Ui

∂z

]

γ(t)

= (δ5i − δ1i)(φφω)
−p−qηγ(U1, U3)

√

R(t) +
1

2
R′(t)[Ui]γ(t), i ∈ {1, 2, 5},

(50)

[

Di

∂Ui

∂z

]

γ(t)

= −(δ3i)(φφω)
−p−qηγ(U1, U3)

(

L−
√

R(t)

)

+

(

R′(t)

2

(

L
√

R(t)
− 1

))

[Ui]γ(t), i ∈ {3, 6}, (51)

R′(t) = 2ακ(φφω)
1−p−q

√

R(t)[(U1)
p(U3)

q−1]γ(t), (52)

where the function ηγ is defined for a couple of functions V1(z, t) and V3(z, t)

analogously to (23)

ηγ(V1, V3) = κφφω(V1(0, t))
p(V3(0, t))

q, 0 < t < T. (53)

From (51) for i = 3 and (52), one gets

[

D3
∂U3

∂z

]

γ(t)

= (α− 1)κ(φφω)
1−p−q[(U1)

p(U3)
q]γ(t)

(

L−
√

R(t)

)

. (54)

Equation (54) shows that [∂U3/∂z]γ(t) is positive. This fact will be used in

Section 3 dealing with the numerical solution.105

3. Discretization and numerical scheme construction

In this Section we construct a finite difference scheme for solving numerically

the coupled system (42)-(52). Let M and N be positive integers, so that the

domain [−1, 1]×[0, T ] is partitioned in (2M+1)×(N+1)mesh points denoted by

12



(zj , t
n), where zj = jh, −M ≤ j ≤ M and tn = nk, 0 ≤ n ≤ N . Here the step110

sizes discretizations h and k verify hM = 1 and kN = T , respectively. Numerical

approximations of the involved variables are denoted by uni,j ≈ Ui(zj , t
n), i ∈

{1, 2, 3, 5, 6}, un4 ≈ U4(t
n), rn ≈ R(tn), while we denote λni = Λi(t

n), i ∈
{1, 2, 5}.

Partial derivatives at the interior points are approximated using forward in115

time and centered in space finite difference expressions:

un+1
i,j − uni,j

k
≈ ∂Ui

∂t
(zj, t

n), ,
uni,j+1 − uni,j−1

2h
≈ ∂Ui

∂z
(zj , t

n),

uni,j+1 − 2uni,j + uni,j−1

h2
≈ ∂2Ui

∂z2
(zj , t

n), i ∈ {1, 2, 3, 5, 6}, (55)

un+1
4 − un4

k
≈ dU4

dt
(tn),

rn+1 − rn

k
≈ R′(tn). (56)

With respect to the discretization of the first derivatives of the transformed

transmission conditions at the carbonation front z = 0, we use one side second

order finite difference approximations. We take left hand side approximations

with three points for the discretization at the carbonated zone:120

3uni,0 − 4uni,−1 + uni,−2

2h
≈ ∂Ui

∂z
(0, tn), i ∈ {1, 2, 5}, (57)

and the right side approximations for the discretization at the uncarbonated

zone
−3uni,0 + 4uni,1 − uni,2

2h
≈ ∂Ui

∂z
(0, tn), i ∈ {3, 6}. (58)

Using the approximations (55)-(58), equations (42)-(44) become discretized
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at the interior mesh points in the following way

(

δ1i + δ2i + δ5i
)

rn
un+1
i,j − uni,j

k
− 1 + zj

2

(

rn+1 − rn

k

)

uni,j+1 − uni,j−1

2h

−Di

uni,j+1 − 2uni,j + uni,j−1

h2
= (1− δ5i)(−1)irnPi(u

n
1,j −Qiu

n
2,j),

−M + 1 ≤ j ≤ −1, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5},

(59)

(

rn + L2 − 2L
√
rn
)un+1

i,j − uni,j
k

+
zj − 1

2

(

rn+1 − rn

k

)(

L√
rn

− 1

)

uni,j+1 − uni,j−1

2h

−Di

uni,j+1 − 2uni,j + uni,j−1

h2
= −δ3i

(

rn + L2 − 2L
√
rn
)

S3,diss(u
n
3,j − un3,eq),

1 ≤ j ≤M, 0 ≤ n ≤ N − 1, i ∈ {3, 6}.
(60)

In equation (60), for j =M , it appears the concentrations uni,M+1, i ∈ {3, 6},
corresponding to the mesh point zM+1 = (M+1)h out of the numerical domain.

To find the value of uni,M+1, the finite difference approximations of the boundary

conditions at the sealed surface are used as follows, see (49),

uni,M+1 − uni,M−1

2h
= 0, 0 ≤ n ≤ N, i ∈ {3, 6}, (61)

obtaining uni,M+1 = uni,M−1.

The discretization of the ODE (44) takes the form

un+1
4 − un4

k
= κ(φφω)

1−p−q(un1,0)
p(un3,0)

q, 0 ≤ n ≤ N − 1. (62)

Initial concentrations given in (45)-(47) take the discrete form

u01,j = U10(zj) = φφωŪ10(zjS0), u02,j = U20(zj) = φφaŪ20(zjS0),

u05,j = U50(zj) = φŪ50(zjS0), −M + 1 ≤ j ≤ −1, (63)

u04 = U40 = φφωŪ40, (64)
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u03,j = U30(zj) = φφωŪ30(zjS0), u06,j = U60(zj) = φŪ60(zjS0), 1 ≤ j ≤M.

(65)

Boundary conditions at the exposed surface take the values

uni,−M = λni , 0 ≤ n ≤ N, i ∈ {1, 2, 5}. (66)

The discretization of the Stefan-like conditions (50)-(52) takes the form

−Di

3uni,0 − 4uni,−1 + uni,−2

2h
= (δ5i − δ1i)κ(φφω)

1−p−q
√
rn(un1,0)

p(un3,0)
q

+
1

2

rn+1 − rn

k
uni,0, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5}, (67)

−Di

3uni,0 − 4uni,1 + uni,2
2h

= −δ3iκ(φφω)1−p−q

(

L−
√
rn
)

(un1,0)
p(un3,0)

q

+
1

2

rn+1 − rn

k

(

L√
rn

− 1

)

uni,0, 0 ≤ n ≤ N − 1, i ∈ {3, 6}, (68)

and the discretization of the propagation velocity of the carbonation front

rn+1 − rn

k
= 2ακ(φφω)

1−p−q
√
rn(un1,0)

p(un3,0)
q−1, 0 ≤ n ≤ N − 1. (69)

Equations (59) and (60) provide the numerical solution at the interior points.

The values at the natural boundaries (exposed z = −1 and sealed z = 1) are

given by (66) and (61), respectively.

With respect to the unknown concentrations at the interface boundary z =

0 at each temporal step n, uni,0, i ∈ {1, 2, 3, 5, 6}, the driving equations take

the form (67), (68) and (69), building a nonlinear system involving also the

discretized transformed interface boundary rn+1. Note that, from (67) and

(68), the unknown uni,0, 1 ≤ i ≤ 6, i 6= 4 depend on three unknown rn+1, un1,0

and un3,0, i. e. u
n
i,0 = ξi(r

n+1, un1,0, u
n
3,0). Also, from (69), rn+1 depends on un1,0

and un3,0. Thus, rn+1 = ψ(un1,0, u
n
3,0). Hence, let us consider the subsystem of

three equations (67) fixing i = 1, (68) fixing i = 3 and (69), whose unknows
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are un1,0, u
n
3,0 and rn+1. After straightforward manipulations of these equations,

one gets firstly un3,0 from

h
1
p

√
rn

(

(

L−
√
rn
)

(α − 1)

)
1
p

D3

2
(−3un3,0 + 4un3,1 − un3,2)(u

n
3,0)

p+q

p

+ h
1
p

(

(

L−
√
rn
)

(α− 1)

)

p+1

p

D1

2
(4un1,−1 − un1,−2)(u

n
3,0)

p+q

p

−
(

L−
√
rn
)

(α − 1)κ−
1
p (φφω)

p+q−1

p
3D1

2

(

D3

2
(−3un3,0 + 4un3,1 − un3,2)

)
1
p

un3,0

−
√
rnακ−

1
p (φφω)

p+q−1

p

(

D3

2
(−3un3,0 + 4un3,1 − un3,2)

)

p+1

p

= 0, 0 ≤ n ≤ N − 1.

(70)

Note that expression (70) is well defined when un3,0 is positive and the basis125

of the powers arising in (70) are also positive. Since α > 1 and the carbonation

front
√
rn is on the left of the sealed boundary z = 1, one gets that coefficient

(

L−
√
rn
)

(α− 1) is positive. Otherwise, from (58) for i = 3, and positivity of

the partial derivative [∂U3/∂z]γ(t) in (54), it holds that (−3un3,0 + 4un3,1 − un3,2)

is positive for small enough values of h.130

The discussion of existence and uniqueness of solution of (70) will be treated

at the end of this section.

Once the value un3,0 is found, un1,0 is calculated using (67) for i = 1 and (69)

by

un1,0 =

{

D3

−3un3,0 + 4un3,1 − un3,2
2h

(

κ(φφω)
1−p−q(un3,0)

q
(

L−
√
rn
)

(α− 1)

)

−1} 1
p

,

0 ≤ n ≤ N − 1, (71)

and for the discretized free boundary value rn+1 one gets

rn+1 = rn + 2kακ(φφω)
1−p−q

√
rn(un1,0)

p(un3,0)
q−1, 0 ≤ n ≤ N − 1. (72)
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Note that carbonation front rn is time increasing while un3,0 be positive,

because in such situation un1,0 will be also positive.

Then, values un1,0, u
n
3,0 and rn+1 are obtained, the solution of system (67)-

(68) provides the values of the remaining unknowns uni,0, i = 2, 5, 6. From (67),

for i = 2

un2,0 =
D2

2h
(4un2,−1 − un2,−2)

(

1

2

rn+1 − rn

k
+

3D2

2h

)

−1

, 0 ≤ n ≤ N − 1. (73)

From (67), for i = 5

un5,0 =

(

D5

2h
(4un5,−1 − un5,−2)− κ(φφω)

1−p−q
√
rn(un1,0)

p(un3,0)
q

)(

1

2

rn+1 − rn

k
+

3D5

2h

)

−1

,

0 ≤ n ≤ N − 1. (74)

And finally, from (68), for i = 6

un6,0 =
D6

2h
(4un6,1 − un6,2)

(

1

2

rn+1 − rn

k

(

L√
rn

− 1

)

+
3D6

2h

)

−1

, 0 ≤ n ≤ N − 1.

(75)

From equations (59)-(60) the solutions at the interior points at time level

n+ 1 are given by:

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ1ikP1Q1u

n
2,j + δ2ikP2u

n
1,j,

−M + 1 ≤ j ≤ −1, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5},
(76)

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ3ikS3,dissu

n
3,eq,

1 ≤ j ≤M, 0 ≤ n ≤ N − 1, i ∈ {3, 6},
(77)

where

ani,j =











Dik
h2rn

− 1+zj
4h ∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3

+
zj−1
4h rn

∆n
1∆

n
2

∆n
3

, i ∈ {3, 6},
(78)

bni,j =











1− 2Dik
h2rn

− δ1ikP1 − δ2ikP2Q2, i ∈ {1, 2, 5},

1− 2Dik
h2∆n

3

− δ3ikS3,diss, i ∈ {3, 6},
(79)
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cni,j =











Dik
h2rn

+
1+zj
4h ∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3

+
1−zj
4h rn

∆n
1∆

n
2

∆n
3

, i ∈ {3, 6},
(80)

and

∆n
1 =

rn+1

rn
− 1, ∆n

2 =
L√
rn

− 1, ∆n
3 =

(

L−
√
rn
)2

, 0 ≤ n ≤ N − 1. (81)

Finally, from (62), the concentration of CaCO3(aq) in the carbonation front

at the step n+ 1 is given by

un+1
4 = un4 + kκ(φφω)

1−p−q(un1,0)
p(un3,0)

q, 0 ≤ n ≤ N − 1. (82)

We conclude this Section with the solvability for un3,0 of the nonlinear equa-

tion (70). Note that this equation (70) can be rewritten in the compact form

Fn(ξ) = An(Bn − 3ξ)ξ
p+q

p + Cnξ
p+q

p −Dn(Bn − 3ξ)
1
p ξ − En(Bn − 3ξ)

p+1

p = 0.

(83)

Here, coefficients of equation (83) are given by

K1,n =
(

L−
√
rn
)

(α− 1), K2,n = 4un3,1 − un3,2, K3,n = 4un1,−1 − un1,−2,

An = h
1
p

√
rn(K1,n)

1
p
D3

2
, Bn = K2,n, Cn = h

1
p (K1,n)

p+1

p K3,n
D1

2
,

Dn = K1,nκ
−

1
p (φφω)

p+q−1

p
3D1

2

(

D3

2

)
1
p

, En = α
√
rnκ−

1
p (φφω)

p+q−1

p

(

D3

2

)

p+1

p

.

(84)

From the positivity of the involved coefficients of the expression of En given

in (84), it is clear that En > 0. Since α > 1 and the carbonation front
√
rn is on

the left of the sealed boundary x = L, one gets that coefficient K1,n is positive.

Hence, coefficients An and Dn are also positive. Positivity of coefficients K2,n

and K3,n can be proved in a similar way; for the sake of brevity we will state

just that K2,n > 0 for small enough values of h. In fact, from the continuous
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spatial differenciability of the theoretical exact solution U3(z, t) ([17], Theorem

3.6) and the mean value theorem, one gets

un3,2 = un3,1 + h
∂U3

∂z
(ξ, tn); h < ξ < 2h. (85)

Let en be defined by

en = max

∣

∣

∣

∣

∂U3

∂z
(z, tn)

∣

∣

∣

∣

, 0 ≤ z ≤ 1, (86)

from (85) and (86)

|un3,2 − un3,1| < enh. (87)

Hence, taking h < 3u3,1/en, one gets

K2,n = 4un3,1 − un3,2 = 3un3,1 + (un3,1 − un3,2) > 3un3,2 − enh > 0. (88)

The positivity of K3,n for small enough values of h can be stated in an135

analogous way.

Hence, the remaining coefficients Bn and Cn become also positive for small

enough values of h. The function Fn(ξ) given by (83) is well defined, continuous

and differentiable as a function of ξ in the interval 0 ≤ ξ ≤ Bn/3 and its sign

changes in both extremes:

Fn(0) = −En(Bn)
p+1

p < 0, Fn(Bn/3) = Cn(Bn/3)
p+q

p > 0. (89)

Thus, the equation (83) admits a solution and now we will prove that the

solution is unique under appropriate conditions. Taking derivatives in the ex-
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pression of Fn(ξ) and using that 0 ≤ ξ ≤ Bn/3 one gets

F ′

n(ξ) = −3An

(

2p+ q

p

)

ξ
p+q

p + (AnBn + Cn)

(

p+ q

p

)

ξ
q

p

+

(

3En

(

p+ 1

p

)

−Dn

)

(Bn − 3ξ)
1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p

p

≥ −3An

(

2p+ q

p

)

Bn

3
ξ

q

p + (AnBn + Cn)

(

p+ q

p

)

ξ
q

p

+

(

3En

(

p+ 1

p

)

−Dn

)

(Bn − 3ξ)
1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p

p

=

(

−AnBn

(

2p+ q

p

)

+ (AnBn + Cn)

(

p+ q

p

)

)

ξ
q

p

+

(

3En

(

p+ 1

p

)

−Dn

)

(Bn − 3ξ)
1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p

p . (90)

Note that if

(AnBn + Cn)

(

p+ q

p

)

≥ AnBn

(

2p+ q

p

)

, 3En

(

p+ 1

p

)

≥ Dn, (91)

then the nonnegativity of the derivative F ′

n(ξ) is guaranteed.

Taking into account (84), note that conditions (91) hold true when

ρ1 ≤
√
rn

L
≤ ρ2,n, (92)

where

ρ1 = 1− α

(α − 1)

D3

D1

(

p+ 1

p

)

, ρ2,n = 1− 1

(α− 1)

D3

D1

(

p

p+ q

)

K2,n

K3,n
. (93)

Note that this means that un3,0 is uniquely determined and positive while the

carbonation front
√
rn satisfies condition (92), i. e., when the carbonation front

lies in the set [ρ1L, ρ2,nL] ∩ [0, L].140

As we wrote above, see (72), the positivity of un3,0 guarantees that the car-

bonation front is time increasing, as it is expected.

We can summarize the construction of the numerical solution in the proce-

dure exposed in Algorithm 1.
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Algorithm 1: Calculation procedure for uni,j, i ∈ {1, 2, 3, 5, 6}, un4 and rn

Data: Initial conditions (63)-(65); Boundary conditions (66)-(61).

Result: Solution (uni,j , u
n
4 , r

n), i ∈ {1, 2, 3, 5, 6} of the problem (59)-(69).

1 n=0;

2 while n ≤ N do

3 Compute un3,0 solving (83) by Newton-Raphson method:

Data: (un3,0)
0, Initial estimate of un3,0; e, Tolerance.

Result: un3,0.

4 i=0;

5 (un3,0)
1 = (un3,0)

0 − Fn((u
n
3,0)

0)/F ′

n((u
n
3,0)

0);

6 while

∣

∣

∣

(un
3,0)

i+1
−(un

3,0)
i

(un
3,0)

i+1

∣

∣

∣
≥ e do

7 i=i+1;

8 (un3,0)
i+1 = (un3,0)

i − Fn((u
n
3,0)

i)/F ′

n((u
n
3,0)

i);

9 end

10 Compute un1,0 using (71);

11 Compute rn+1 by (72);

12 Compute un2,0 using (73);

13 Compute un5,0 using (74);

14 Compute un6,0 using (75);

15 Compute uni,M+1, i ∈ {3, 6} using (61);

16 while n ≤ N − 1 do

17 for j = −M + 1, . . . ,−1 do

18 Obtain un+1
i,j , i ∈ {1, 2, 5} by (76);

19 end

20 for j = 1, . . . ,M do

21 Obtain un+1
i,j , i ∈ {3, 6} by (77);

22 end

23 Obtain un+1
4 by (82);

24 end

25 n=n+1;

26 end
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4. Numerical analysis: stability and positivity145

Dealing with concentrations, the numerical solution of the scheme (76)-(82)

together with the values at the boundaries have to be positive. As the best

model may be wasted with a disregarded numerical analysis, apart from the

positivity it is convenient to study the stability of the numerical solution. Thus,

the numerical solution of our scheme will preserve the qualitative properties of150

the theoretical solution proved in [17], Theorem 3.3.

In this section, we assume the hypothesis of the continuous model about the

bounds of initial and boundary concentrations of CO2(aq) and CO2(g) relation-

ships,

Q1G̃2 ≤ G̃1, G̃1 ≤ Q2G̃2, (94)

where G̃1 is the upper bound of carbon dioxide mass concentration in water

phase, and G̃2 is the upper bound of carbon dioxide mass concentration in air

phase, for both at the exposed boundary in any time and in the carbonated zone

at the initial time, together with the condition on the equilibrium concentration

of calcium hydroxide,

un3,eq ≤ G̃3, (95)

see [17], Section 3, pp. 240. Here Q1 and Q2 are introduced in expression (3).

In addition, we will assume the existence of an upper bound G̃5 for the water

content for both at the exposed boundary in any time and in the carbonated

region at the initial time. Regarding the uncarbonated zone, we will suppose155

that mass concentration of Ca(OH)2(aq) and water content are upper-bounded

by G̃3 and G̃6, respectively, at the initial time, see [17], Section 3, pp. 239-240.

Let Ui0(zj), 1 ≤ i ≤ 6, i 6= 4, be the initial conditions given by (63)-(65) and

let λni , i ∈ {1, 2, 5}, be the exposed boundary conditions given by (66). Then,

according to the above hypotheses, one can write

λni ≤ G̃i, i ∈ {1, 2, 5}, 0 ≤ n ≤ N, (96)
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and

u0i,j = Ui0(zj) ≤ G̃i, −M + 1 ≤ j ≤ −1, , i ∈ {1, 2, 5},

u0i,j = Ui0(zj) ≤ G̃i, 1 ≤ j ≤M, i ∈ {3, 6}. (97)

We will find sufficient conditions on the discretization step sizes h and k

under which the numerical solution {uni,j} and {un4} of the scheme (76)-(82) is

positive and bounded. The results are obtained using the induction principle160

on the temporal index n, uniformly on the spatial index j.

Firstly, let us derive some numerical results based on the approximation of

the spatial partial derivatives of the concentrations at the carbonation front.

The right-hand side approximation of the spatial partial derivative of the con-

centrations of chemical species in the carbonated zone Ui(z, t) at (0, t
n) can be

written in the form

−3uni,0 + 4uni,1 − uni,2
2h

=
∂Ui

∂z
(0, tn) +O(h2), i ∈ {1, 2, 5}, (98)

where the artificial values uni,1 and uni,2 vanish for 0 ≤ n ≤ N and i ∈ {1, 2, 5},
because they are outside of the real carbonated region.

Otherwise, the left-hand side backward approximation of the spatial partial

derivative behaves, according to (57),

3uni,0 − 4uni,−1 + uni,−2

2h
=
∂Ui

∂z
(0, tn) +O(h2), i ∈ {1, 2, 5}. (99)

From (98)-(99), one gets

6uni,0 = 4uni,−1 − uni,−2 +O(h3), i ∈ {1, 2, 5}. (100)

On the other hand, let us consider the left-hand side approximation of the

spatial partial derivative of Ui(z, t) at (0, t
n)

3uni,0 − 4uni,−1 + uni,−2

2h
=
∂Ui

∂z
(0, tn) +O(h2), i ∈ {3, 6}, (101)

where the artificial values uni,−1 and uni,−2 vanish.
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The right-hand side backward approximation of the spatial partial derivative

is, according to (58)

−3uni,0 + 4uni,1 − uni,2
2h

=
∂Ui

∂z
(0, tn) +O(h2), i ∈ {3, 6}, (102)

and from (101)-(102), it follows that

6uni,0 = 4uni,1 − uni,2 +O(h3), i ∈ {3, 6}. (103)

Equations (100)-(103) will be used in the study of the boundedness of {uni,0}165

for both indexes 0 and n.

For n = 0, initial concentrations u0i,j , 1 ≤ i ≤ 6, i 6= 4, −M ≤ j ≤M , j 6= 0,

and u04 ≥ 0 are given and non negative. From the results of Section 3, one gets

the positivity of u0i,0, 1 ≤ i ≤ 6, i 6= 4. Using (72) for n = 0, the transformed

carbonation front verifies r1 > r0 > 0. Let G̃i be the positive bounds, such that

0 ≤ u0i,j ≤ G̃i, 1 ≤ i ≤ 6, i 6= 4. (104)

Using (100), (103) and (104), one gets

u0i,0 ≤ 2

3
u0i,−1 ≤ G̃i, i ∈ {1, 2, 5},

u0i,0 ≤ 2

3
u0i,1 ≤ G̃i, i ∈ {3, 6}. (105)

Let us assume the induction hypothesis, i. e., concentrations uni,j satisfy

0 ≤ uni,j ≤ G̃i, −M ≤ j ≤M, 1 ≤ i ≤ 6, i 6= 4. (106)

The behaviour of concentration un4 is different and will be treated later and

separately. Note that from (76)-(77), the numerical solution un+1
i,j at the points

−M + 1 ≤ j ≤ M is guaranteed to be non negative if coefficients ani,j , b
n
i,j and

cni,j are non negative.170

The coefficients cni,j in equations (76)-(77) and (80) are unconditionally pos-

itive. The nonnegativity of the coefficients ani,j , i ∈ {1, 2, 5}, in equations (76)-

(77) and (78) will be proved using the value of the difference rn+1 − rn that
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appears in the transmission conditions (67). Using the induction principle, posi-

tivity of un3,0 and u
n
1,0 and equations (71)-(72), one gets that rn+1 > rn > r0 > 0.175

Using (67) and (100) for i = 1, one gets

rn+1 − rn = 3D1
k

h
+ 2kκ(φφω)

1−p−q
√
rn(un1,0)

p−1(un3,0)
q +O(kh2), (107)

and from (76) and (81), taking into account that −1 < zj < 0, one gets

an1,j >
k

h2

(

D1

4rn
− h

2
κ(φφω)

1−p−q
(un1,0)

p−1(un3,0)
q

√
rn

+O(h3)

)

. (108)

Note that the time horizon T is chosen so that the carbonation front does

not reach the sealed boundary, L−
√
rn > 0, T = Nk, 0 ≤ n ≤ N . At any time

0 ≤ tn ≤ T , 0 ≤ n ≤ N , the carbonation front takes the value
√
rn between

the initial and the final position. This value
√
rn does not reach the sealed

boundary. Thus, there exists a positive number β such that
√
r0/L < β < 1,

verifying

0 <
√
r0 <

√
rn <

√
rN ≤ βL < L. (109)

Hence, using the induction hypothesis (106) for i = 1, i = 3 and j = 0, and

expression (109), coefficients an1,j in equation (108) are positive for −M + 1 ≤
j ≤ −1, with the condition on the spatial step size

h1 <
D1

2βLκ(φφω)1−p−q(G̃1)p−1(G̃3)q
. (110)

For i = 2, using (67) and (100), it follows that

rn+1 − rn = 3D2
k

h
+O(kh2), (111)

and from (76) and (81), using that −1 < zj < 0,

an2,j >
k

h2

(

D2

4rn
+O(h3)

)

, (112)

and coefficients an2,j are positive for −M + 1 ≤ j ≤ −1.
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And finally, for i = 5, using (67) and (100), it follows that

rn+1 − rn = 3D5
k

h
− 2kκ(φφω)

1−p−q
√
rn

(un1,0)
p(un3,0)

q

un5,0
+O(kh2), (113)

and from (76) and (81), using that −1 < zj < 0,

an5,j >
k

h2

(

D5

4rn
+
h

2
κ(φφω)

1−p−q
(un1,0)

p(un3,0)
q

√
rnun5,0

+O(h3)

)

. (114)

Hence, coefficients an5,j are positive for −M + 1 ≤ j ≤ −1.

Now, regarding the concentrations of the chemical species in the uncarbon-

ated zone, the positivity of the coefficients ani,j , i ∈ {3, 6}, in equations (76)-

(77) and (78) will be probed in analogous way using the value of the difference180

rn+1 − rn that appears in the transmission conditions (68).

For i = 3, using (68) and (103), it follows that

rn+1 − rn = 3D3
k

h

√
rn

L−
√
rn

+ 2kκ(φφω)
1−p−q

√
rn(un1,0)

p(un3,0)
q−1 +O(kh2),

(115)

and from (77) and (81), using that 0 < zj ≤ 1,

an3,j >
k

h2

(

D3

4
(

L−
√
rn
)2 − h

2
κ(φφω)

1−p−q
(un1,0)

p(un3,0)
q−1

(

L−
√
rn
) +O(h3)

)

. (116)

Note that the last expression (116), in an analogous way to the equation

(108), presents a negative term, and positivity of (116), for 1 ≤ j ≤ M , is

guaranteed using the same arguments regarding the boundedness of un1,0 and

un3,0, that was proved above for each time level n, with the following condition

on the spatial step size

h3 <
D3

2
(

L−
√
r0
)

κ(φφω)1−p−q(G̃1)p(G̃3)q−1
. (117)

Finally, for i = 6, taking into account (68) and (103), it follows that

rn+1 − rn = 3D6
k

h

√
rn

L−
√
rn

+O(kh2), (118)
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and from (77) and (81), using that 0 < zj ≤ 1,

an6,j >
k

h2

(

D6

4
(

L−
√
rn
)2 +O(h3)

)

, (119)

and coefficients an6,j are positive for 1 ≤ j ≤M .

In conclusion, from (110) and (117), coefficients ani,j , 1 ≤ i ≤ 6, i 6= 4, are

positive under the condition on the spatial step size

h < h0 = min{h1, h3}. (120)

Since 0 < r0 < rn, the nonnegativity of the coefficients bni,j, i ∈ {1, 2, 5}, see
(79), of the explicit scheme (76) is guaranteed, independently of the value of n,

under the following respective conditions between the step sizes h and k

k1 ≤ h2r0

2D1 + h2r0P1
, k2 ≤ h2r0

2D2 + h2r0P2Q2
, k5 ≤ h2r0

2D5
, i ∈ {1, 2, 5}.

(121)

The coefficients related to the uncarbonated zone bni,j , i ∈ {3, 6}, see (79),

of the explicit scheme (77) are non negative, independently of the value of n,

under the following conditions between h and k

k3 ≤ h2L2(1− β)2

2D3 + h2L2(1− β)2S3,diss
, k6 ≤ h2L2(1− β)2

2D6
, i ∈ {3, 6}. (122)

Then, coefficients bni,j , 1 ≤ i ≤ 6, i 6= 4, are positive under the condition

k < k0 = min{ki}, 1 ≤ i ≤ 6, i 6= 4. (123)

Consequently, from previous comments and induction argument, the numer-

ical solution at time level n+1 is non negative, un+1
i,j ≥ 0, i 6= 4, −M ≤ j ≤M ,

under conditions (120) and (123). Now, let us study the boundedness of the185

numerical solution.

Using (100) and (103), it holds

uni,0 <
2

3
uni,−1 ≤ G̃i, i ∈ {1, 2, 5},

uni,0 <
2

3
uni,1 ≤ G̃i, i ∈ {3, 6}. (124)
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Hence, from (76)-(77) and (78)-(80), together with assumptions (94) and

(95), one gets

un+1
1,j ≤ (an1,j + bn1,j + cn1,j)G̃1 + kP1Q1G̃2 = (1− kP1)G̃1 + kP1Q1G̃2

≤ G̃1, −M + 1 ≤ j ≤ −1, (125)

un+1
2,j ≤ (an2,j + bn2,j + cn2,j)G̃2 + kP2G̃1 = (1− kP2Q2)G̃2 + kP2G̃1

≤ G̃2, −M + 1 ≤ j ≤ −1, (126)

un+1
3,j ≤ (an3,j + bn3,j + cn3,j)G̃1 + kS3,dissu

n
3,eq

= (1− kS3,diss)G̃3 + kS3,dissu
n
3,eq ≤ G̃3, 1 ≤ j ≤M, (127)

un+1
5,j ≤ (an5,j + bn5,j + cn5,j)G̃5 = G̃5, −M + 1 ≤ j ≤ −1, (128)

un+1
6,j ≤ (an6,j + bn6,j + cn6,j)G̃6 = G̃6, 1 ≤ j ≤M. (129)

From the induction proof for un1,0 and un3,0, and their bounds, we have

0 < un1,0 <
2

3
G̃1, 0 < un3,0 <

2

3
G̃3. (130)

From (82) and (130), taking into account the initial value u04 = U40,

un4 > un−1
4 ; un4 ≤ U40 + κT (φφω)

1−p−q

(

2

3
G̃1

)p(
2

3
G̃3

)q

, 1 ≤ n ≤ N. (131)

Using a mathematical induction argument and summarizing, under hypothe-

ses (94)-(97), the following theorem shows that the numerical solution of prob-

lem (8)-(22), obtained from the scheme (76)-(77) and (82), preserves the qual-

itative properties satisfied by the theoretical solution obtained in Section 3 of190

[17]:

Theorem 1. Under hypotheses (94)-(97), for small enough values of the step

size h, verifying (110), (117) and (120), together with the step sizes conditions

(121)-(123), the following conclusions hold true at the mesh points of the nu-

merical domain:195
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i) Approximate concentrations uni,j, i ∈ {1, 2, 5} of the scheme (76) in the

carbonated zone are positive and uniformly bounded,

0 ≤ uni,j ≤ G̃i, −M ≤ j ≤ −1, 0 ≤ n ≤ N. (132)

ii) Approximate concentrations uni,j, i ∈ {3, 6} of the scheme (77) in the un-

carbonated region and uniformly bounded are positive,

0 ≤ uni,j ≤ G̃i, 1 ≤ j ≤M, 0 ≤ n ≤ N. (133)

iii) The solution un4 of the scheme (82) for the calcium carbonate concentration

is positive, increasing and bounded,

un4 ≤ U40 + κT (φφω)
1−p−q

(

2

3
G̃1

)p(
2

3
G̃3

)q

, 0 ≤ n ≤ N. (134)

iv) Approximate concentrations uni,0, 1 ≤ i ≤ 6, i 6= 4 at the carbonation front

are positive and uniformly bounded for 0 ≤ n ≤ N .

v) The carbonation front is positive and increasing, 0 < r0 < r1 < . . . < rN .

As a consequence of the boundedness of the mass concentrations, the sta-

bility of the numerical solution is also proved. For this purpose, let us de-200

note the supremum norm of a vector x = (x1, x2, ..., xn)
T in R

n as ‖x‖∞ =

max(|x1|, |x2|, ..., |xn|).

Amongst the many definitions of stability that exist in the literature, we will

choose the following:

Definition 1. With previous notation, let us denote the vectors of concentra-

tions uni = [uni,−M , u
n
i,−M+1, . . . , u

n
i,0]

T , i ∈ {1, 2, 5}, and uni = [uni,0, u
n
i,1, . . . , u

n
i,M ]T ,

i ∈ {3, 6}. We say that the numerical solution {uni,j, 1 ≤ i ≤ 6, i 6= 4, un4 , 0 ≤
n ≤ N} is ‖ · ‖∞-stable if there exist positive constants Ci, 1 ≤ i ≤ 6, indepen-

dent of n, k and h, such that

‖uni ‖∞ ≤ Ci, 1 ≤ i ≤ 6, 0 ≤ n ≤ N. (135)
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Thus, scheme (76)-(82) is ‖ · ‖∞-stable under assumptions (94)-(97), with

the step sizes conditions (110), (117) and (120), together with (121)-(123), by

taking

Ci = G̃i, 1 ≤ i ≤ 6, i 6= 4, (136)

and

C4 = U40 + κT (φφω)
1−p−q

(

2

3
G̃1

)p(
2

3
G̃3

)q

. (137)

Note that the results of Theorem 1 are conditioned to the step sizes restric-205

tions stated there. The following example illustrates that these conditions can

not be removed. Example 1. Consider the carbonation model (8)-(22) with

parameters listed in the Table 1, see [16], with partial reaction orders p = 1.0,

q = 1.0 and time horizon T = 1 year, we obtain h0 = 0.0041 and k0 = 0.0089.

Taking step sizes with values h = 0.05 and k = 0.0106, the positivity condition210

is broken. Figure 1 shows that positivity does not hold. Units in x-axis are

taken in cm and y-axis in g cm−3.
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Magnitude Value

Initial concentrations (g cm−3)

Ū10(x), 0 < x < S0 0.0020

Ū20(x), 0 < x < S0 0.0016

Ū30(x), S0 < x < L 0.0120

Ū40 0.0000

Ū50(x), 0 < x < S0 0.0050

Ū60(x), S0 < x < L 0.0050

Exposed boundary concentrations (g cm−3)

Λ1(t) 0.0020

Λ2(t) 0.0016

Λ5(t) 0.0050

Equilibrium concentration of Ca(OH)2 (g cm−3)

U3,eq 0.0050

Diffusion constants (cm2 day−1)

D1 0.62

D2 3.50

D3 0.86

D5 1.00

D6 1.00

Model parameters

α 12500

κ (year−1) 750

φ 0.10

φω 0.50

φa 0.50

P1 = P2 (day−1) 0.025

Q1 = Q2 1.250

S3,diss (day−1) 0.0075

Sample length and bounds of the carbonation depth

L (cm) 12.00

S0 (cm) 5.00

β 0.70

Table 1: Data for numerical examples.
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Figure 1: Numerical solution Ū1(x, t) of Example 1 for t = 0.95 years, when positivity condi-

tion is broken.

Next example illustrates the positivity and ‖ · ‖∞-stability of the solutions

when conditions (110), (117) and (120), together with (121)-(123) are satisfied.

Example 2. With notation and model parameters listed in the Table 1,215

with p = 1.5, q = 1.0 and time horizon T = 10 years, we get h0 = 0.0917 and

k0 = 0.0089. Choosing step sizes h = 0.05 and k = 0.005, the positivity and

stability of the solutions are guaranteed by Theorem 1, as Figure 2 shows. Units

in x-axis are taken in cm and y-axis in g cm−3. Furthermore, taking these step

size values, the inequality (92) is satisfied, since L = 12 cm, ρ1 = −1.3120 and220

the numerical carbonation front
√
rn measured in cm together with the non-

dimensional ρ2,n take the values shown in Figure 3. Thus, nonlinear equation

(70) for un3,0 is solvable and Algorithm 1 can be initiated. Units in x-axis are

taken in years and y-axis in cm. Table 2 shows CPU time taken in calculations

for h = 0.05 and several values of k, using MATLAB R2017b on processor225

Intel(R) Core(TM) i3-3110M CPU 2.40GHz.
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Figure 2: Numerical concentrations Ūi(x, t), i ∈ {1, 2, 5}, and Ūi(x, t), i ∈ {3, 6}, in Example

2 for t = 9 years, under stability conditions (110), (117) and (120), (121)-(123) .
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Figure 3: Position of the numerical carbonation front
√
rn, and values of ρ2,n, in Example 2,

as a function of time.

k 0.008 0.006 0.004 0.002
√
rN (cm) 5.1200 5.1200 5.1201 5.1201

CPU time (s) 1.081 1.676 2.683 6.899

Table 2: Dependence of process time on the temporal step size.

5. Monotonicity of the numerical solution

In this section, we present monotone properties of the numerical solution of

the scheme (76)-(77), according to the following definition, see [7]:

Definition 2. Let F (wn
j ) = 0 be a numerical scheme, where index n refers to230

the time and j to the space, j ∈ J , n ∈ N . We say that the numerical scheme

F (wn
j ) = 0 is spatial monotone time preserving if, assuming that wn· is a spatial

monotone sequence at time level n, then so is wn+1· for all time index n.
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We will state that the scheme (76)-(77) preserves the monotone decreas-

ing spatial behaviour of the numerical concentrations uni , i ∈ {1, 2, 5}, in the235

carbonated zone, while the concentrations uni , i ∈ {3, 6}, in the uncarbonated

zone are monotone increasing in space, for all time level n. We will prove this

property using the induction principle on the temporal index n.

Firstly, we state that, under the positivity constraints (110), (117) and (120),

together with (121)-(123), and assuming

uni,j+1 ≤ uni,j , −M + 1 ≤ j ≤ −2, i ∈ {1, 2, 5}, (138)

then, the numerical solution at time level n+ 1 satisfies

un+1
i,j+1 ≤ un+1

i,j , −M + 1 ≤ j ≤ −2, i ∈ {1, 2, 5}. (139)

Let us start by considering i = 1. From (76) and (138) one gets

un+1
1,j ≥ an1,ju

n
1,j + bn1,ju

n
1,j + cn1,ju

n
1,j+1 + kP1Q1u

n
2,j

=

(

1− D1k

h2rn
−
(

1 + zj
4h

)

∆n
1 − kP1

)

un1,j +

(

D1k

h2rn
+

(

1 + zj
4h

)

∆n
1

)

un1,j+1

+ kP1Q1u
n
2,j, −M + 1 ≤ j ≤ −2, (140)

and

un+1
1,j+1 ≤ an1,j+1u

n
1,j + bn1,j+1u

n
1,j+1 + cn1,j+1u

n
1,j+1 + kP1Q1u

n
2,j+1

=

(

D1k

h2rn
−
(

1 + zj+1

4h

)

∆n
1

)

un1,j +

(

1− D1k

h2rn
+

(

1 + zj+1

4h

)

∆n
1 − kP1

)

un1,j+1

+ kP1Q1u
n
2,j+1, −M + 1 ≤ j ≤ −2. (141)

Using the positivity of coefficient bn1,j and ∆n
1 shown in Theorem 1, from (79)

for i = 1, (138) and (140)-(141), it follows that

un+1
1,j+1 − un+1

1,j ≤
(

bn1,j +
1

4
∆n

1

)

(un1,j+1 − un1,j)

+ kP1Q1(u
n
2,j+1 − un2,j) ≤ 0, −M + 1 ≤ j ≤ −2, (142)
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and then

un+1
1,j+1 ≤ un+1

1,j . (143)

For the sake of brevity and because of the analogy of the cases i = 2 and

i = 5, we omit the proofs of the decreasing monotone behaviour of wn
2,· and240

wn
5,·.

Regarding the concentrations in the uncarbonated zone uni,j , i ∈ {3, 6}, we
will prove that spatial increasing monotonicity requires some additional restric-

tions on the step sizes discretizations. Thus, under these additional restrictions,

and the positivity conditions (110), (117) and (120), together with (121)-(123),

if we assume

uni,j+1 ≥ uni,j , 1 ≤ j ≤M − 1, i ∈ {3, 6}, (144)

then, the numerical solution at time level n+ 1 satisfies

un+1
i,j+1 ≥ un+1

i,j , 1 ≤ j ≤M − 1, i ∈ {3, 6}. (145)

Let us start by considering the case i = 3. From (77) and (144), one gets

un+1
3,j ≤ an3,ju

n
3,j + bn3,ju

n
3,j + cn3,ju

n
3,j+1 + kS3,dissu

n
3,eq

=

(

1− D3k

h2∆n
3

+

(

zj − 1

4h

)

rn
∆n

1∆
n
2

∆n
3

− kS3,diss

)

un3,j

+

(

D3k

h2∆n
3

+

(

1− zj
4h

)

rn
∆n

1∆
n
2

∆n
3

)

un3,j+1 + kS3,dissu
n
3,eq, 1 ≤ j ≤M − 1,

(146)

and

un+1
3,j+1 ≥ an3,j+1u

n
3,j + bn3,j+1u

n
3,j+1 + cn3,j+1u

n
3,j+1 + kS3,dissu

n
3,eq

=

(

D3k

h2∆n
3

+

(

zj+1 − 1

4h

)

rn
∆n

1∆
n
2

∆n
3

)

un3,j

+

(

1− D3k

h2∆n
3

+

(

1− zj+1

4h

)

rn
∆n

1∆
n
2

∆n
3

− kS3,diss

)

un3,j+1 + kS3,dissu
n
3,eq, 1 ≤ j ≤M − 1.

(147)
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Using the positivity of bn3,j and ∆n
1 shown in Theorem 1, from (79) for i = 3,

(138) and (140)-(141), it follows that

un+1
3,j+1 − un+1

3,j ≥
(

bn3,j −
rn

4

∆n
1∆

n
2

∆n
3

)

(un3,j+1 − un3,j) ≥ 0, 1 ≤ j ≤M − 1.

(148)

Note that the left hand side of expression (148) is positive if the bracket

coefficient is also positive. From (72), (81) and (109), one gets

rn

4

∆n
1∆

n
2

∆n
3

=
rn+1 − rn

4
√
rn(L−

√
rn)

≤ kακ(φφω)
1−p−qG̃p

1G̃
q−1
3

2L(1− β)
. (149)

Thus, from (79) for i = 3, (148) and (149), the difference un+1
3,j+1 − un+1

3,j is

non negative under the following requirement linking spatial and temporal step

sizes:

k ≤ k∗3 =
2h2L2(1− β)2

4D3 + 2h2L2(1− β)2S3,diss + h2L(1− β)ακ(φφω)1−p−qG̃p
1G̃

q−1
3

.

(150)

Finally, for the case i = 6, using similar arguments, it is easy to show

that un6,· presents a spatial increasing monotone behaviour under the additional

condition on the relation between spatial and temporal step sizes:

k ≤ k∗6 =
2h2L2(1− β)2

4D6 + h2L(1− β)ακ(φφω)1−p−qG̃p
1G̃

q−1
3

. (151)

Summarizing, the following result can be established:

Theorem 2. Under hypotheses (94)-(97), assuming the positivity conditions

(120) and (123), and the temporal step size conditions (150) and (151), the

numerical scheme (76)-(82) is spatial monotone preserving in the sense of Def-245

inition 2.

Consequently, starting with u0i,· spatial monotone decreasing sequences, i ∈
{1, 2, 5}, the numerical solution remains monotone decreasing for all 1 ≤ n ≤
N . On the other hand, starting with u0i,· usual spatially monotone increasing
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sequences, i ∈ {3, 6}, the numerical solution remains monotone increasing for250

all n. Note that positive conditions are not satisfied in Example 1 and then

monotonicity is not guaranteed as it can be seen in Figure 1. Next Example 3

illustrates the monotone behaviour under constraints of Theorem 2.

Example 3. With data of Table 1, taking reaction orders p = 1.5, q = 1

and time horizon T = 10 years, with previous notation, we obtain h0 = 0.0917,255

k0 = 0.0089, k∗3 = 0.0059 and k∗6 = 0.0056. Choosing step sizes h = 0.05 and

k = 0.005 satisfying the monotonicity requirements of Theorem 2, Figures 3

and 4 show the monotone behaviour of the numerical solutions of Ū1(x, t) and

Ū3(x, t) for several equidistant fixed values of time.
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Figure 4: Numerical solution Ū1(x, t) of Example 3, for several equidistant times.

6. Conclusions260

From the applications point of view, a theoretical model needs to be checked

numerically. In this paper, we construct reliable numerical solutions of the con-

crete carbonation model proposed in [16] and [17]. In fact, we show that the

proposed numerical solutions are positive and preserve qualitative properties of

the theoretical solution such as concentrations boundedness. One the advan-265

tages of our approach is that concentrations monotonicity properties suggested
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Figure 5: Numerical solution Ū3(x, t) of Example 3, for several equidistant times.

in the experiments, although not proved theoretically in [17], are confirmed

throughout the behaviour of the numerical solution and illustrated with numer-

ical examples. The numerical analysis includes sufficient conditions on the step

sizes discretization, explicitly given in terms of the data in order to satisfy the270

above properties.
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