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Abstract

In this paper, we develop an online basis enrichment method with the mortar mixed finite element
method, using the oversampling technique, to solve for flow problems in highly heterogeneous media.
We first compute a coarse grid solution with a certain number of offline basis functions per edge,
which are chosen as standard polynomials basis functions. We then iteratively enrich the multiscale
solution space with online multiscale basis functions computed by using residuals. The iterative
solution converges to the fine scale solution rapidly. We also propose an oversampling online method
to achieve faster convergence speed. The oversampling refers to using larger local regions in computing
the online multiscale basis functions. We present extensive numerical experiments(including both 2D
and 3D) to demonstrate the performance of our methods for both steady state flow, and two-phase
flow and transport problems. In particular, for the time dependent two-phase flow and transport
problems, we apply the online method to the initial model, without updating basis along the time
evolution. Our numerical results demonstrate that by using a few number of online basis functions,
one can achieve a fast convergence.

Keywords: Multiscale; Mixed finite element; Mortar; Two-phase flow and transport

1 Introduction
Many real world problems, such as reservoir simulations, involve multiple scales and high contrast. In
order to recover all the details of the media properties, one needs to adopt a very fine grid, which will
inevitably lead to large dimensional linear system that is hard or even impossible to solve. In order
to alleviate the computational burden, researchers developed a lot of model reduction approaches, such
as upscaling and multiscale methods. For example, in upscaling methods [13, 25], one homogenizes the
media properties based on some rules and then solve the problems on a coarse grid. In multiscale methods
[14, 17, 1, 9, 8, 22, 24, 3], one still solves the problems on a coarse grid but with precomputed multiscale
basis functions that carry small scale information of the media.

In this paper, we present an enrichment algorithm in the framework of mortar mixed finite element
method in solving flow problems in heterogeneous media. We first compute a coarse grid solution with
offline basis, which are chosen as standard polynomials basis functions. Then we iteratively compute
basis functions based on the previous solution in the online stage, thus we call it an online method.
The method in this paper is an extension of the online Generalized Multiscale Finite Element Methods
(GMsFEM) [10, 7, 11] to the mortar mixed case.

Mortar mixed finite element methods [19, 2] are a modification of mixed finite element methods by
introducing a Lagrange multiplier to impose the continuity of flux. These methods enjoy some advantages,
such as mass conservation which is very important in flow problems, nonconforming grid discretization,
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and allowing domain decomposition setting which yields a symmetric and positive definite bilinear form
that defined only on the interfaces of the grid. Recently, multiscale mortar mixed finite element methods
[3, 4] were designed to reduce the degree of freedom of the mortar mixed finite element method and provide
an approximate solution. In these methods, the construction of the mortar space is a key part. Polynomial
or homogenized multiscale basis functions are used to form the mortar space. However, polynomials are
only sufficient for very smooth media, while homogenized multiscale functions lack global information
which is still insufficient for accurate simulation of coupled flow and transport problems(the transport
velocity is a solution to a heterogeneous flow problem) if there are long range channels inside the media
[26]. Developing efficient domain decomposition preconditioners [4] to solve the fine scale problem is a
good method to tackle this kind of problem. However, if one can equip the mortar space with basis
functions that can capture global information with the evolving of time, then we can avoid solving the
fine problems. Basis functions with limited global information [16] had proven to be an effective strategy
using mixed finite element and finite volume coupling for the flow and transport problem. However, it
fails to work in the framework of mortar mixed coupling based on our numerical study. Online basis
functions developed in this paper are able to keep global information of complicated media, and we can
use multiple online basis functions to compute the velocity for the transport equation.

Residual driven GMsFEM is an iterative algorithm that drives coarse-grid solutions converging to the
fine-grid solutions, see [10, 7, 11] for the case of finite element coupling method. The algorithm essentially
includes the following steps: (1) compute an initial coarse grid solution with offline basis which can be
polynomials or multiscale basis functions, (2) for each edge-wised coarse neighborhood, compute online
basis by solving a homogeneous Dirichlet problem with local residual as source, (3) compute new solution
with updated basis space and then return to step (2) until a residual is less than the use-defined threshold.
We also propose an oversampling online algorithm motivated by the restricted domain decomposition [6].
The idea is quite similar to the offline oversampling [20], that is we use a larger domain than an edge-
based neighborhood to solve the local problem, and then take the restriction of the solution on the coarse
edge as online basis function. This small modification turns out to be very effective in terms of iteration
number since it includes distant information, and removes some boundary effects.

We present some numerical results to show the convergence behavior of the method for various het-
erogeneous permeability fields. We study the influence of the local problem size to the convergence speed.
We also investigate the effects of different number of initial basis functions and different order of contrast
of the media. We apply our approach to solve two-phase flow and transport problems. In two-phase flow
and transport, we solve the transport equation with finite volume method on a fine grid. We adopt the
online algorithm to compute the basis functions of the initial model, and use these basis functions to
solve the flow equation on a coarse grid without adding online basis in time. We show that by adding a
small number of online basis functions, the coarse-grid solution can approximate the fine-scale solution
very well.

The paper is organized as follows. In section 2, we first describe the coarse and fine discretization of the
domain, then present the framework of mortar mixed finite element method, followed by the description
of the domain decomposition method. In section 3, we introduce the iterative algorithm together with
some analysis. In section 4, we present an oversampling online method. Numerical examples are given in
section 5, and conclusions are made in the last section.

2 Preliminaries
We consider the following second order elliptic equation in mixed formulation:

u + κ∇p = 0 in Ω, (1a)
∇ · u = f in Ω, (1b)
u · n = 0 on ∂Ω, (1c)

where Ω ⊂ Rd(d = 2, 3) is a bounded polyhedral domain with outward unit normal vector n on the
boundary, f ∈ L2(Ω), κ represents the permeability field that may vary over multiple spacial scales.
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2.1 Coarse and fine grids
The online basis functions are constructed locally on a coarse grid. In this section we introduce coarse
and fine grids. Let Ω be divided into non-overlapping polygonal coarse blocks Ki with diameter Hi so
that Ω = ∪Ni=1Ki, where N is the number of coarse blocks. The decomposition of the domain can be
nonconforming. We call EH a coarse edge of the coarse block Ki if EH = ∂Ki ∩ ∂Kj or EH = ∂Ki ∩ ∂Ω.
Let EH(Ki) be the set of all coarse edges on the boundary of the coarse block Ki and EH = ∪Ni=1EH(Ki)
be the set of all coarse edges.

We further partition each each coarse block Ki into a finer mesh with mesh size hi. Let Th =
∪Ni=1Th(Ki) be the union of all these partitions, which is a fine mesh partition of the domain Ω. We use
h = max1≤i≤nhi to denote the mesh size of Th. In addition, we let Eh(Ki) be the set of all edges of the
partition Th(Ki) and E0

h(Ki) be the set of all interior edges of the partition Th(Ki) and let Eh = ∪Ni=1Eh(Ki)
be the set of all edges in the partition Th. Figure 1 gives an illustration of the constructions of the two
grids. The black lines represent the coarse grid, and the gray lines represent the fine grid. For each
coarse edge Ei, we define a coarse neighborhood ωi as the union of all coarse blocks having the edge Ei.
Figure 1 shows a coarse neighborhood ωi in the blue color.

Ei: coarse edge (red)

ωi: Coarse neighborhood (blue)

ω+
i : Oversampling rigion (orange)

K1
i

K2
i

Figure 1: Illustration of a coarse edge Ei, and its coarse neighborhood ωi, oversampling rigion ω+
i .

2.2 Variational form
We introduce the following spaces

L2(Ki) =

{
p :

∫
Ki

p2 <∞
}
,

H(div;Ki) =
{
v ∈ L2(Ki)

d : div(v) ∈ L2(Ki)
}
.

Denote (·, ·)Ki for the L2(Ki) or L2(Ki)
d inner product, and 〈·, ·〉∂Ki

for the duality pairing on boundaries
and interfaces, d is the dimension of the space. For each subdomain i, define

Vi = {v ∈ H(div;Ki) : v · n|∂Ω∩∂Ki = 0} and V = ⊕Ni=1Vi,

Wi = L2(Ki) and W =

{
w ∈ L2(Ω) :

∫
Ω

w = 0

}
,

Mi = H1/2(Ei), and M = ⊕Ni=1Mi.
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The variational form for the system (1a)-(1c) using mortar mixed finite element method is formulated
as: find u ∈ V, p ∈W and λ ∈M such that for each 1 ≤ i ≤ N ,

(κ−1u,v)Ki
− (p,∇ · v)Ki

+ 〈λ,v · ni〉Ei
= 0 ∀ v ∈ V i, (2a)

(∇ · u, w)Ki
= (f, w)Ki

∀ w ∈Wi, (2b)
N∑
i=1

〈u · ni, µ〉Ei
= 0 ∀ µ ∈M. (2c)

2.3 The finite element approximation
Let Vh,i ×Wh,i ⊂ Vi ×Wi be any of the mixed finite element spaces satisfying the inf-sup condition for
which ∇ ·Vh,i = Wh,i, e.g., the Raviart-Thomas spaces. Define Vh = ⊕Ni=1Vh,i and Wh = ⊕Ni=1Wh,i/R
for the global discrete flux and pressure. Let MH,i,Mh,i ⊂ L2(Ei) be the local coarse and fine mortar
finite space respectively, andMH = ⊕1≤i≤NMH,i,Mh = ⊕1≤i≤NMh,i be the entire coarse and fine mortar
finite element spaces. We also denote the restriction ofMh on EH asMf

H , which impliesMH is a subspace
of Mf

H .
We formulate the finite element approximation as: find uh ∈ Vh, ph ∈ Wh and λH ∈ MH such that

for each 1 ≤ i ≤ N ,

(κ−1uh,vh)Ki
− (ph,∇ · vh)Ki

+ 〈λH ,vh · ni〉Ei
= 0 ∀ vh ∈ V h,i, (3a)

(∇ · uh, wh)Ki = (f, wh)Ki ∀ wh ∈Wh,i, (3b)
N∑
i=1

〈uh · ni, µH〉Ei
= 0 ∀ µH ∈MH . (3c)

We note that the coarse mortar space is used in this system. Similar system holds using fine mortar
space λh ∈ Mh. Local conservation is enforced by (3b), and (3c) enforces weak continuity of flux across
the interfaces with respect to the mortar space MH .

2.4 Interface problem
The main feature of the mortar mixed finite element method is that it could be implemented by just
solving a global system on the coarse mesh together with the solutions of some local problems.

Define bilinear forms aH,i : MH,i ×MH,i → R, i = 1, · · · , N by

aH,i(λ, µ) = −〈u∗h(λ) · ni, µ〉 |Ei
,

and aH : MH ×MH → R by

aH =

N∑
i=1

aH,i(λ, µ),

where
(
u∗h(λ), p∗h(λ)

)
∈ Vh ×Wh solves (λ given, f = 0)(

κ−1u∗h(λ),vh
)
Ki
−
(
p∗h(λ),∇ · vh

)
Ki

= −〈λ,vh · ni〉Ei
∀ vh ∈ V h,i, (4a)(

∇ · u∗h(λ), wh
)
Ki

= 0 ∀ wh ∈Wh,i, (4b)

for each 1 ≤ i ≤ N.
Define linear functionals gH,i : MH,i → R by

gH,i(µ) = 〈ūh · ni, µ〉 |Ei
,
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and gH : MH → R by

gH(µ) =

N∑
i=1

gH,i(µ),

where (ūh, p̄h) ∈ Vh ×Wh solves (λ = 0, f given) for 1 ≤ i ≤ N(
κ−1ūh,vh

)
Ki
−
(
p̄h,∇ · vh

)
Ki

= 0 ∀ vh ∈ V h,i, (5a)(
∇ · ūh, wh

)
Ki

= (f, wh)Ki
∀ wh ∈Wh,i. (5b)

Define the coarse variational interface problem about the mortar pressure as: find λH ∈ MH such
that

aH(λH , µ) = gH(µ) ∀ µ ∈MH . (6)

It is proven in [2] that the interface problem (6) produces the solution of (3a)-(3c) via

uh = u∗h(λ) + ūh, ph = p̃h −
1

|Ω|

∫
Ω

p̃h,

where p̃h = p∗h(λ) + p̄h.
The solution of the interface problem (6), interpreted from the point view of multiscale method, is

to construct multiscale basis functions over the coarse blocks. First we design a basis for MH . For each
interface Ei, from the set of mortar basis λH associated with this interface, we can obtain the multiscale
basis u∗h(λH) over the coarse domains Ki1 and Ki2 . From these, we get a system of equations from (6)
directly, and solve it in any appropriate way.

The interface bilinear form aH(·, ·) is symmetric and positive semi-definite on MH and this system
can be solved by preconditioned conjugate gradient method. See [3, 12] and reference therein for more
details. The goal of this paper is to design residual driven based online enriched space MH . We will use
the notation ah(·, ·) and gh(·) if aH(·, ·) and gH(·) act on the space Mh.

Remark 1. One can obtain the snapshot solution by taking MH = Mf
H and solve the problem on the

coarse mesh . By solving the system corresponding to ah(ξh, µ) : Mh ×Mh → R equals the linear form
gh(µ) : Mh → R, we can get the fine scale solution. Note that the snapshot solution is equivalent to the
fine scale solution.

2.5 Offline space
To obtain online basis functions by using residuals, we first compute an offline solution from an offline
mortar space Moff

H . There are various choices for the offline space, the simplest one is polynomials on
the coarse edge E. Another choice is trigonometric functions. One can also use homogenized multiscale
basis (see [5, 26]) and GMsFEM based multiscale basis (see [27]). We remark that using offline multiscale
basis is more expensive than using continuous basis like polynomials. In this paper we consider using
polynomial functions as offline basis functions to compute the initial offline solution for simplicity and
for cheap computational cost. In the next section, we discuss the construction of online basis by using
residuals.

3 Residual driven online basis
Using the offline space mentioned earlier is a promising choice in various scenarios. However, in some
applications such as the reservoir simulation, it is very hard to obtain a satisfiable velocity field for the
accurate simulation of the transport of flows in highly heterogeneous media with only a small number of
offline basis (see [5, 26]). Even the multiscale basis may fail to work in some cases since the offline basis
only includes local information of the media. Therefore it is important to construct multiple multiscale
basis functions that can capture the global information of the complicated media systemically. Next, we
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describe our algorithm to construct such locally-supported basis functions in the coarse grid. These new
basis functions are computed in the online stage of computations. Therefore, we call them online basis
functions. Next, we describe the algorithm for constructing these online basis.

3.1 Algorithm
Before we present the algorithm, we first introduce some notations. Denote the seminorm ||λ||Mf

H
=

afH(λ, λ)1/2 induced by afH(·, ·) on Mf
H , we also define linear functional on Mf

H by RfH(λ) = gfH(λ) −
afH(λms, λ). The norm we use is given by

||Rωi
||2
Mf,∗

H

= sup
λ∈Mf

H

RfH(λ)

||λ||Mf
H

For each coarse edge Ei, let ωi = K1
i ∪K2

i be its neighborhood (see Figure.1). LetMf
H,i be the restriction

of Mf
H on the ∪i=1,2∂Ki, then we define afH,i(·, ·) be the restriction of afH(·, ·) on Mf

H,i, and R
f
H,i(λ) be

the restriction of RfH(λ) on Mf
H,i. Similarly, the norm of this subspace is ||λ||Mf

H,i
= afH,i(λ, λ)1/2. The

norm for RfH,i(λ) can be defined by

||Rωi
||2
Mf,∗

H,i

= sup
λ∈Mf

H,i

RfH,i(λ)

||λ||Mf
H,i

We will iteratively enrich the offline space by constructing new online basis functions based on the solution
computed in the previous solution space. Let the index l ≥ 0 be the enrichment level. At the level l, we
use M l

H to denote the corresponding global coarse space and λlms is the corresponding solution on the
coarse edges. M l

H,i is again the restriction of M l
H on ∪i=1,2∂Ki. M

0
H consists of the offline basis, i.e.,

polynomials, while the space M l
H(l ≥ 1) contains both the offline and online basis functions. For each

l = 0, 1, 2, · · · , we perform the following calculations:
Online iterative algorithm:
Step 1: Find the multiscale solution in the current space M l

H . That is, find λlms ∈ M l
H such that

aH(λlms, λ) = gH(λ) for all λ ∈M l
H .

Step 2: Pick non-overlapping neighborhoods. We select non-overlapping neighborhoods ω1, ω2, · · · , ωI
⊆ Ω.
Step 3: Compute online basis. For each ωi, we solve for µH,i ∈Mf

H,i such that

afH,i(µH,i, λ) = RfH,i(λ) ∀λ ∈Mf
H,i,

Those µH,i’s are the new online basis. The new coarse mortar space can be updated by setting M l+1
H =

M l
H

⊕
span{µH,1, µH,2, ..., µH,I}.

We will repeat these steps until error indicator is small or we have reached certain number of basis
functions.

In the above algorithm, all the computations are performed on the space Mf
H , we do not recover the

full solution until the last step. To achieve this, we need to assemble the corresponding finite element
matrix of the bilinear form a(·, ·) and linear functional g(·) on the space Mf

H , denoted by AfH and F fH
respectively. These involve solving nike zero source Dirichlet boundary value problems for each coarse
block Ki, where nike is the number of fine grid edges on the boundary of Ki. This may be expensive
(although it can be parallelized naturally), one can also consider another equivalent algorithm which will
be introduced in Section 4.

Remark 2. Step 3 is equivalent to solve a local zero Dirichlet boundary condition problem with the full
recovered local residual as source. But if we have assembled matrix AfH and factorized local component
of AfH for each coarse edge before the online iteration. Then iterative computation cost is cheap since in
this case the dominant computation can be done with parallelization before the online iteration.
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Remark 3. Here we only consider the uniform enrichment, one can also do adaptive enrichment by
using an error indicator and setting a pre-defined tolerance to decide which coarse neighborhoods need to
be enriched, see ([7]).

4 Residual driven online basis with oversampling
We can also apply the idea of oversampling [20] in the above algorithm. The implementation of oversam-
pling we introduce here is different from the no oversampling case. We can not directly use the residual
that only defined onMf

H . Instead, we need to recover the global residual that lives onMh by solving a zero
source Dirichlet problem on each coarse elementKi. Again, we denote the seminorm ||λ||Mh

= ah(λ, λ)1/2

induced by ah(·, ·) onMh, we also define linear functional onMh by Rh(λ) = gh(λ)−ah(λms, λ). We note
here that the ah(·, ·) and gh(·) require solve a number of zero source non-homogeneous Dirichlet problems
for each fine grid element in Th. However, there is some linear relationship between the solution and the
coefficient (single constant), so the computation is cheap. We denote Ae and Fe be finite element matrix
corresponding to ah(·, ·) : Mh ×Mh → R and gh(·) : Mh → R. Our goal is still to find an online basis to
enrich MH which is defined on all coarse edges, however we will no longer solve the local problem in step
3 on ωi, instead we will use a sightly larger domain to compute the local online basis. More specifically,
for each coarse edge Ei, we consider a domain ω+

i ⊃ Ei (see Figure 2 for the illustration of ω+
i ) as the

target local domain to perform local computation. Let Mω+
i

h be the restriction of Mh on ω+
i . Let ah,i(·, ·)

and gh,i(·) be the restriction of ah(·, ·) and gh(·) on Mω+
i

h .
We keep the notation in Section 3, then we have
Oversampling online iterative algorithm:
Step 1: Find the multiscale solution in the current space M l

H . That is, find λlms ∈ M l
H such that

a(λlms, λ) = g(λ) for all λ ∈M l
H .

Step 2: Pick oversampled neighborhoods. For each coarse edge Ei, we select an oversampled coarse
neighborhood ω+

i (see Figure 2). We repeat this selection for coarse edges E1, E2, · · ·EI . Then we ob-
tain oversampled neighborhoods ω+

1 , ω+
2 , · · · , ω+

I ⊆ Ω. The index {1, 2, ..., I} can be chosen such that⋃
i=1,··· ,I

ωi (not ω+
i ) form a non-overlapping partition of Ω.

Step 3: Compute the global full scale solution. Compute the global solution λh(ξ) ∈Mh by solving zero
source problem with the restriction of λlms on coarse blocks as Dirichlet boundary conditions.
Step 4: Compute online basis. For each ω+

i , we solve for µ+
h,i ∈Mh,i such that

ah,i(µ
+
h,i, λ) = Rh,i(λ) ∀λ ∈Mh,i.

Step 5: Take the restriction. We take the restriction of µ+
h,i on coarse edges Ei, denoted by µH,i

Those µH,i’s are the new oversampling online basis, and then the new basis space can be updated
accordingly by adding them to the previous solution space. We can also pre-compute and factorize the
matrix associated with ah,i(·, ·), whose computational cost may be cheaper than the no oversampling
case, since the number of fine scale edges in ω+

i may be less than those of ω. The major differences of
oversampling and no oversampling approaches are: (1) the domain that used to compute the local online
basis for the oversampling is larger than the standard domain ωi in terms of the direction of Ei. (2)
the computation of no oversampling can be done on space Mf

H , there is no necessary to compute the
residual on Mh, therefore the online iterative computation of the no oversampling case is cheaper than
the oversampling case.
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Ei
ω+
i

d11 d11

d12

H

d12

Ei

ω+
i

d21 H d21

d22

d22

Figure 2: Illustration of an oversampled neighborhood associated with the coarse edge Ei.

5 Numerical examples
In this section, we present several representative examples to show the performance of our method. We
consider three models with permeability κ depicted in Figure 3. For model 1 in Figure 3(a), we note that
κ = 1 in the blue region and κ = η in the red region, where η will be specified in each example. As it
is shown, the first model contains high contrast, long channels, and isolated inclusions. The second (the
first 30 layers of the SPE10 model) and third model (the last 30 layers of the SPE10 model) are selected
from the tenth SPE comparative solution project (SPE 10) [21]. The SPE 10 model (its full model has
60×220×85 cells) is used as a benchmark to test different upscaling techniques and multiscale methods,
and is therefore a good test case for our methodology.

We define the following errors for both pressure and flux to quantify the accuracy of the online
multiscale solution

ep :=
‖pms − pf‖L2,Ω

‖pf‖L2,Ω
, eu :=

‖ums − uf‖κ,Ω
‖uf‖κ,Ω

where ‖u‖2κ,Ω =
∫

Ω
κ−1u2.

Our method is tested on elliptic problems in Section 5.1, and on two-phase flow and transport problems
in Section 5.2. In Section 5.1, we show the performance of our method for elliptic problems. We see that
adding a few number of online basis functions per edge is able to produce fast convergence speed. In
particular, oversampling achieves even faster convergence. Moreover, our method is robust in the sense
that the convergence is independent of the order of contrast. In Section 5.2, we present numerical results
for a two-phase flow and transport problem. We only enrich the solution space of the initial problem,
and use this initial solution space for the rest of the simulation along the time. Our numerical results
show that the online basis functions produces accurate production file along the time.

8



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) κ1 (b) κ2 in log10 scale

(c) κ3 in log10 scale

Figure 3: Permeability fields.

5.1 Online method for elliptic problems
In this example, we compare the performance of oversampling and non-oversampling, as well as the use
of different number of offline and online basis functions. We also test the robustness of our method with
respect to different contrast orders.

In all simulations reported below, the computational domain D is divided into Nx×Ny(Nx×Ny×Nz
for 3D) square coarse elements, and in each coarse element, we generate a uniform n× n(n× n× n) fine
scale square elements. For model 1, a fixed fine-grid size with 200 is employed. We use coarse grid size
10× 10. The source function f is zero everywhere except that it is taken as four on the top left fine grid,
and negative four on the bottom right fine grid cell. For model 2 and model 3, the fine grid is of size
60×220×30 (the dimension of the fine system is 1209600) and is divided into 6×22×3 coarse elements.
The fine-grid solution is used as the reference solution in all numerical examples.
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We use
(
d11 d12

d21 d22

)
to define the local domain (see Figure 2) for the computation of the online

basis functions. In total, three cases given below are considered( these three cases can be extended to 3D
easily). Here as define earlier, n is the number of fine elements in a coarse block for each direction:

Case 1: no oversampling:
(

n 0
0 n

)
Case 2: oversampling case a:

(
n 1
1 n

)
Case 3: oversampling case b:

(
[n/2] 1

1 [n/2]

)

In the first case, the local domain is exactly the coarse neighborhood for a coarse edge, which is the no
oversampling case. In Case 2, one layer of fine cells is added to the coarse neighborhood in the direction
of the edge. Therefore, the oversampling domain is larger than the coarse neighborhood. In Case 3, the
layers of cells on both sides of the coarse edge are reduced to about a half of n, while one layer of fine
cells is added to the coarse neighborhood in the direction of this edge. Thus, the oversampling domain
in this case is smaller than the coarse neighborhood.

We compare the errors of using the three domain cases for online basis function computation, to see
the performance of oversampling and non-oversampling. All the three permeability fields κ1, κ2 and κ3

are considered. The results are given in Tables 1-6. Tables 1-2 are errors for model 1 by using 1 and
2 offline polynomial basis functions, respectively. First, we check the effect of the three computational
domains. Take Table 1 for example. In the first column, Nb stands for the number of basis functions for
each subdomain, and Dof stands for degree of freedoms. We start with 1 polynomial basis function for
each local subdomain. Then we use the online method to add basis functions iteratively until the number
of basis functions reaches to 7. The rest of the columns are errors from using the three computational
domains. By comparing Case 1 and Case 2, we see that the errors decay faster for Case 2 even that
only one layer of fine grid cell is added on each side in the coarse edge direction. The domain in Case
3 is smaller than that of Case 1. However, we still get faster convergence rate from Case 3 since one
layer of fine grid cell is added on each side in the coarse edge direction. By comparing Case 1 with the
rest two cases, we observe that the oversampling technique generally improves the convergence. Similar
results can be seen in Table 2, which are obtained by starting with 2 polynomial basis functions for each
local subdomain. Tables 3-4 presents errors for model 2 by starting with 1 and 4 offline polynomial basis
functions, respectively. We can get the same conclusion as for model 1. Tables 5-6 presents errors for
model 3 by starting with 1 and 4 offline polynomial basis functions, respectively. Compared with model
2, the errors decay slower for model 3, since the permeability field for model 3 is a spaghetti of channelling
system which is much more complicated.

Next, we check the effect of using different number of offline basis functions by looking at corresponding
columns in Tables 1-2. Look at the column for Case 1 in Table 1 and Table 2, the row with Nb = 6. In
total, 6 basis functions are used in each subdomain. Therefore, the sizes of the final system are the same.
However, for Table 1, the 6 basis functions consists of 1 offline and 5 online, while for Table 2, the 6 basis
functions consists of 2 offline and 4 online. The former needs one more iteration on each subdomain. For
both models, we see that the online solution converges to the fine grid solution whether we start with 1
or 2 offline basis functions.

Finally, we show the performance for different contrast orders. We vary the order of contrast, one
case is from 102, 104 to 106, and the other is from 10−2, 10−4 to 10−6. We plot both the pressure and
velocity errors against the number of online basis functions for model 1 by using the different contrast
values (Figures 4-5). In Figures 4 (a), we present the pressure and velocity errors against the number of
online basis functions for contrast order 102, 104 and 106, starting with 1 offline polynomial basis. The
left figure is for pressure and the right figure is for the velocity. We see that the convergence rate is
almost the same for the three contrast order examples. Figure 4 (b) is for the case of using 2 offline basis
functions. We observe similar results, that is, the change in the contrast has almost no effect on the
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errors. Figure 5 presents the results for contrast order 10−2, 10−4 and 10−6, which also shows that the
convergence lines of the three contrast cases agree well for both pressure and velocity. We conclude that
the online method is robust in the sense that its convergence rate is independent of the contrast order.

Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

1(180) 6.42e-01 9.01e-01 6.42e-01 9.01e-01 6.42e-01 9.01e-01
2(360) 8.17e-02 2.78e-01 6.32e-02 2.26e-01 6.00e-02 2.24e-01
3(540) 7.07e-03 6.20e-02 3.70e-03 3.44e-02 3.34e-03 3.41e-02
4(720) 6.37e-04 9.42e-03 2.20e-04 2.44e-03 1.63e-04 2.00e-03
5(900) 1.90e-05 4.22e-04 6.06e-06 6.70e-05 3.65e-06 4.50e-05
6(1080) 1.00e-06 8.08e-06 2.86e-08 3.89e-07 1.82e-08 2.64e-07
7(1260) 1.52e-08 1.85e-07 1.16e-11 3.41e-10 1.31e-11 4.05e-10

Table 1: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 1, N = 10, η = 104, using 1 offline basis function. "Nb" represents the total
number of basis functions per coarse edge, which includes 1 offline polynomial basis function. "Dof"
denotes the degree of freedom of the coarse system.

Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

2(360) 2.37e-01 5.15e-01 2.37e-01 5.15e-01 2.37e-01 5.15e-01
3(540) 2.66e-02 1.11e-01 1.83e-02 9.33e-02 1.78e-02 9.00e-02
4(720) 4.12e-03 1.81e-02 9.77e-04 6.40e-03 9.26e-04 6.31e-03
5(900) 1.67e-04 2.01e-03 1.89e-05 2.89e-04 1.73e-05 2.64e-04
6(1080) 3.56e-06 8.83e-05 6.53e-08 1.62e-06 5.84e-08 1.47e-06
7(1260) 3.04e-08 8.83e-07 1.04e-10 2.99e-09 1.18e-10 3.14e-09
8(1440) 5.42e-11 1.98e-09 2.71e-12 1.77e-12 2.63e-12 1.56e-12

Table 2: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 1, N = 10, η = 104, using 2 offline basis functions. "Nb" represents the total
number of basis functions per coarse edge, which includes 2 offline polynomial basis functions. "Dof"
denotes the degree of freedom of the coarse system.

Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

1(1404) 7.00e-01 7.58e-01 7.00e-01 7.58e-01 7.00e-01 7.58e-01
3(4212) 8.54e-02 1.55e-01 6.95e-02 1.20e-01 7.06e-02 1.21e-01
5(7020) 2.66e-02 4.73e-02 1.64e-02 2.94e-02 1.72e-02 3.01e-02
7(9828) 7.28e-03 1.82e-02 2.36e-03 7.94e-03 2.63e-03 8.50e-03
9(12636) 1.45e-03 6.51e-03 1.28e-04 2.00e-03 1.46e-04 1.11e-03
11(15444) 7.77e-05 1.04e-03 2.51e-06 2.68e-05 2.28e-06 4.07e-05
13(18252) 8.42e-06 1.06e-04 3.76e-08 3.25e-07 4.49e-08 3.49e-07

Table 3: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 2, using 1 offline basis function. "Nb" represents the total number of basis
functions per coarse edge, which includes 1 offline polynomial basis function. "Dof" denotes the degree
of freedom of the coarse system.
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Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

4(5616) 3.04e-01 5.89e-01 3.04e-01 5.89e-01 3.04e-01 5.89e-01
6( 8424) 1.56e-02 5.98e-02 9.47e-03 4.06e-02 9.68e-03 4.11e-02
8(11232) 2.10e-03 9.67e-03 1.15e-03 5.19e-03 1.24e-03 5.50e-03
10(14040) 5.52e-04 3.07e-03 1.73e-05 2.31e-04 1.52e-05 2.44e-04
12(16848) 9.53e-06 2.52e-04 2.98e-07 4.13e-06 3.12e-07 5.01e-06
14(19656) 3.88e-07 1.29e-05 1.22e-08 5.16e-08 1.22e-08 5.82e-08

Table 4: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 2, using 4 offline basis functions. "Nb" represents the total number of basis
functions per coarse edge, which includes 4 offline polynomial basis functions. "Dof" denotes the degree
of freedom of the coarse system.

Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

1(1404) 8.69e-01 1.15e+00 8.69e-01 1.15e+00 8.69e-01 1.15e+00
3(4212) 5.07e-01 4.80e-01 5.09e-01 6.59e-01 5.10e-01 6.55e-01
5(7020) 4.62e-01 8.72e-01 3.73e-01 3.61e-01 3.74e-01 3.60e-01
7(9828) 2.59e-01 3.03e-01 1.02e-01 1.72e-01 1.01e-01 1.73e-01
9(12636) 2.33e-02 8.98e-02 7.29e-03 3.67e-02 6.96e-03 3.59e-02
11(15444) 8.13e-03 2.50e-02 3.54e-04 3.54e-03 3.52e-04 3.49e-03
13(18252) 7.56e-04 7.18e-03 1.87e-05 1.63e-04 1.62e-05 1.80e-04

Table 5: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 3, using 1 offline basis function. "Nb" represents the total number of basis
functions per coarse edge, which includes 1 offline polynomial basis function. "Dof" denotes the degree
of freedom of the coarse system.

Nb (Dof) Case 1 Case 2 Case 3
ep eu ep eu ep eu

4(5616) 8.36e-01 1.29e+00 8.36e-01 1.29e+00 8.36e-01 1.29e+00
6( 8424) 3.84e-01 6.28e-01 4.19e-01 7.06e-01 4.19e-01 7.06e-01
8(11232) 1.87e-01 2.80e-01 9.95e-02 1.60e-01 9.96e-02 1.60e-01
10(14040) 2.69e-02 6.89e-02 9.21e-04 8.77e-03 9.22e-04 8.89e-03
12(16848) 4.39e-03 1.17e-02 3.66e-05 4.93e-04 3.68e-05 4.84e-04
14(19656) 8.82e-05 6.23e-04 4.10e-07 5.36e-06 4.54e-07 5.90e-06

Table 6: Relative error between multiscale solution and fine scale solution with different type of local
problem cases for model 3, using 4 offline basis functions. "Nb" represents the total number of basis
functions per coarse edge, which includes 4 offline polynomial basis functions. "Dof" denotes the degree
of freedom of the coarse system.
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Figure 4: Relative error of online method using different number of offline basis functions and contrast
orders η = 102, 104, 106 for model 1.
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Figure 5: Relative error of online method using different number of offline basis functions and contrast
orders η = 10−2, 10−4, 10−6 for model 1.

5.2 A two phase flow and transport problem
In this section, we use our method to solve a two phase flow and transport model problem. First,
we summarize the underlying partial differential equations [15, 18] to simulate porous media flows. In
particular, we consider two-phase flow in a reservoir domain (denoted by Ω) with the assumption that
the fluid displacement is driven by viscous effects, that is, we neglect compressibility and gravity for
simplicity in our simulations. We consider water and oil phases which are assumed to be immiscible. By
the Darcy’s law, we get the following equation for each phase
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ul = −krl(sl)
µl

K∇p (7)

where ul is the phase velocity, K is the permeability tensor, krl is the relative permeability to phase
l (l = o, w), sl is saturation, and p is pressure. Throughout the paper, we use a single set of relative
permeability.

By the mass conservation law , the following equations for the two phases are obtained:

φ
∂sl
∂t

+∇ · ul = ql. (8)

Combining Darcy’s law, mass conservation, and the property sw + so = 1, we derive the following
coupled system of pressure and saturation equations (we use s instead of sw for simplicity):

∇ · u = qw + qo in Ω (9)

φ
∂s

∂t
+∇ · (fw(s)u) =

qw
ρw

in Ω (10)

u · n = 0 on ∂Ω (no flow at boundary) (11)
s(t = 0) = s0 in Ω (initial known saturation) (12)

where φ is the porosity, λ is the total mobility defined as

λ(s) = λw(s) + λo(s) =
krw(s)

µw
+
kro(s)

µo
(13)

fw(s) is the flux function,

fw(s) =
λw(s)

λ(s)
=

krw(s)

krw(s) + µw

µo
kro(s)

(14)

and u = uw + uo = −λ(s)K∇p is the total flux. Moreover, qw and qo are volumetric source terms for
water and oil.

Here, we follow the sequential formulation, that is at each time step one solves for the pressure and
velocity first and then uses the velocity to solve for the saturation. The pressure equation is solved by
using the offline basis functions together with the online basis functions computed at the initial time step,
and the saturation equation is solved by the finite volume method. We apply 10 times cheap Jacobi [23]
iterations to smooth the mortar multiscale solution.

The initial water saturation is taken to be zero. The velocity in Equation (10) is the fine grid velocity
which is obtained by projecting the multiscale velocity field onto the fine grid. Five wells are included in
the reservoir, with 1 producer in the middle and 4 injectors on the corners of the domain, i.e, the total
source term is zero everywhere except that it is taken as four on the corners of the fine grid, and negative
four in the middle fine grid cell. We report the relative saturation error at every 50 time steps, and the
end of simulation time is 2500. We define the relative saturation at time step i as

es(i) :=
‖sms(i)− sref (i)‖L2,Ω

‖sref (i)‖L2,Ω
.

Figure 6 (a) plots the relative saturation errors of adding different online basis functions to different
number of offline basis function against the time instants. In the figure, in the legend the number in the
form of x + y, the number x means the number of offline basis functions, and y means the number of
online basis functions. For example, 4+2 means 4 offline and 2 online basis functions are used. The errors
are greater than 20% for all the time instants if only 1 online basis is added (shown by the red line). The
errors drop to less than 15% if we add 3 online basis functions which is shown in the purple-circle line.
The errors of the rest cases are under 10%. We note that the online basis functions are only added at the
initial time step, then they are fixed for the rest of the simulation time. We also present the water-cut

14



(water flux fractional function fw(s)) in Figure 6 (b) corresponding to the cases in Figure 6 (a). In Figure
6 (b), the red line for the case of 1 offline and 1 online basis is far away from the black reference line,
which is no surprise since we already know that the relative saturation errors are large for this case. By
adding more online basis functions, the water-cut lines get closer to the reference line. Figure 7 shows
similar results for model 3, we can see that for this model, more online basis functions are needed to get
satisfactory results.

In Figure 8, the saturation plots (at time t = 2500) for model 2 are given. Figure 8 (a) is the reference
solution. Figure 8 (b) is the multiscale solution by using 1 offline and 1 online basis functions, which fails
to capture much information compared to the reference solution. The relative saturation error is 21.9%.
After adding 5 online basis functions, the error drops to 4.8%, whose saturation plot is given in Figure 8
(c). Figure 9 presents the saturation plots (at time t = 2500) for model 3. Starting with 1 offline basis
function, and using 4 online basis functions, the relative saturation error is 30.7%, whose corresponding
saturation profile is given in Figure 9(b). This saturation profile has large discrepancy compared to the
reference one. By adding 8 online basis functions, the error drops to 4.9%. Figure 9(e) is for the case of 4
offline and 3 online basis functions. From Figure 8 and Figure 9, we see that due to the more complicated
feature of the permeability field for model 3, more online basis functions are needed in general to get
accurate resutls.
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Figure 6: (a) Saturation error advancing in time for different number offline and online basis functions;
(b) Watercut for different number offline and online basis functions for the first 30 layers of SPE 10 as in
Figure 3(b)
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Figure 7: (a) Saturation error advancing in time for different number offline and online basis functions;
(b) Watercut for different number offline and online basis functions for the last 30 layers of SPE 10 as in
Figure 3(c)
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(a) Reference solution (b) Ms-solution with 1 offline basis and 1 online basis, rela-
tive L2 error is 21.9%

(c) Ms-solution with 1 offline basis and 5 online basis, rela-
tive L2 error is 4.8%

(d) Ms-solution with 1 offline basis and 7 online basis, rela-
tive L2 error is 2.3%

(e) Ms-solution with 4 offline basis and 2 online basis, rela-
tive L2 error is 4.3%

(f) Ms-solution with 4 offline basis and 4 online basis, rela-
tive L2 error is 2.3%

Figure 8: Saturation comparison at t = 2500, for the first 30 layers of SPE 10 as in Figure 3(b).
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(a) Reference solution (b) Ms-solution with 1 offline basis and 4 online basis, rela-
tive L2 error is 30.7%

(c) Ms-solution with 1 offline basis and 8 online basis, rela-
tive L2 error is 4.9%

(d) Ms-solution with 1 offline basis and 10 online basis, rel-
ative L2 error is 3.4%

(e) Ms-solution with 4 offline basis and 3 online basis, rela-
tive L2 error is 23.2%

(f) Ms-solution with 4 offline basis and 7 online basis, rela-
tive L2 error is 3.0%

Figure 9: Saturation comparison at t = 2500, for the last 30 layers of SPE 10 as in Figure 3(c).
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6 Conclusions
We have developed an online adaptive multiscale mortar mixed finite element method for flow problems
in heterogeneous porous media. We start with a cheap coarse grid solution which are computed by using
polynomial functions. The residual from this coarse grid solution is used to compute multiscale basis
functions. From the space consisting of both the new basis functions and the previous one, we then
get a new solution, then a new residual, and then new basis functions. We also propose oversampling to
compute the online basis functions. We compare the results of oversampling and non-oversampling, which
shows that oversampling yields faster convergence speed. An important application of the method is for
solving 3D flow and transport problems. We only enrich the solution space of the initial problem, and
use this initial solution space for the rest of the simulation along the time. Our numerical results show
that the online basis functions produces accurate production file along the time. Our method is efficient
and accurate for two-phase flow and transport problem since we do not need to update the multiscale
solution space at later time steps.

Convergence of the algorithm
In this section, we will give some convergence analysis of the online iterative algorithm. We see that
the sequence of solutions {λlms} generated by our online enrichment algorithm satisfies a contraction
property (equation (16)). Moreover, the convergence rate is computable, and is related to the residual
of the current solution. To begin, we prove the following lemma, which gives an a-posteriori error bound
for the solution.

Lemma 1. We have

||λfH − λms||Mf
H
≤ C

|EH |∑
i=1

||Rωi ||Mf,∗
H,i

(15)

where C is a constant that does not depend on the mesh size.

Proof: Define PH as the L2 projection from Mf
H to MH . Let λ ∈ Mf

H be an arbitrary function in
space Mf

H . We have

aH(λfH − λms, λ) =gH(λ)− aH(λms, λ)

=gH(λ− PHλ) + gH(PHλ)− aH(λms, λ)− aH(λ− λms,PHλ)

=gH(λ− PHλ)− aH(λms, λ− PHλ)

=

|EH |∑
i=1

RfH,i(λ− PHλ)

≤
|EH |∑
i=1

||Rωi
||Mf,∗

H,i
||λ− PHλ||Mf

H,i

≤C
|EH |∑
i=1

||Rωi ||Mf,∗
H,i
||λ||Mf

H

The inequality (15) follows by letting λ = λfH − λms.

Theorem 1. Using the notation in last subsection, we have

||λfH − λ
l+1
ms ||2Mf

H

≤

(
1−

I∑
i=1

||Rωi
||2
Mf,∗

H,i

C

|EH |∑
i=1

||Rωi
||Mf,∗

H,i

)
||λfH − λ

l
ms||2Mf

H

(16)
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Proof: Let λfH be the snapshot solution. From aH(λl+1
ms , λ) = gH(λ) for all λ ∈ M l+1

H , we can get
||λfH − λl+1

ms ||2Mf
H

= inf
λ∈M l+1

H

||λfH − λ||
2
Mf

H

. Let λl+1
ms = λlms + α1µH,1 + α1µH,2 + · · ·+ αIµH,I , then

||λfH − λ
l+1
ms ||2Mf

H

≤||λfH − λ
l
ms + α1µH,1 + α1µH,2 + · · ·+ αIµH,I ||2Mf

H

=||λfH − λ
l
ms||2Mf

H

+ ||α1µH,2 + · · ·+ αIµH,I ||2Mf
H

− 2aH(λfH − λ
l
ms, α1µH,2 + · · ·+ αIµH,I)

=||λfH − λ
l
ms||2Mf

H

−
I∑
i=1

||Rωi
||2
Mf,∗

H,i

.

Then, inequality (16) can be obtained from the lemma above.
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