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Consistent clustering of entries in large pairwise comparison

matrices

J. Beńıtez∗, S. Carpitella†, A. Certa‡, A.E. Ilaya-Ayza§, J. Izquierdo¶

Abstract

In multi-attribute decision making the number of decision elements under considera-
tion may be huge, especially for complex, real-world problems. Typically these elements
are clustered and then the clusters organized hierarchically to reduce the number of ele-
ments to be simultaneously handled. These decomposition methodologies are intended to
bring the problem within the cognitive ability of decision makers. However, such method-
ologies have disadvantages, and it may happen that such a priori clustering is not clear,
and/or the problem has previously been addressed without any grouping action. This is
the situation for the case study we address, in which a panel of experts gives opinions
about the operation of 15 previously established district metered areas in a real water dis-
tribution system. Large pairwise comparison matrices may also be found when building
comparisons of elements using large bodies of information. In this paper, we address a
consistent compression of an AHP comparison matrix that collapses the judgments corre-
sponding to a given number of compared elements. As a result, an a posteriori clustering
of various elements becomes possible. In our case study, such a clustering offers several
added benefits, including the identification of hidden or unknown criteria to cluster the
considered elements of the problem.

Keywords: pairwise comparison; AHP; Miller’s magic number seven; water distribu-
tion system (WDS); management and operation of a WDS; decision-making.

1 Introduction

Various decision-making techniques rely on pairwise comparisons (PCs). Traditionally, PCs
are provided by experts. Due to human cognitive limitations, and the number of compared
elements, the size of pairwise comparison matrices (PCMs) must be small. However, in the
current information era, the information collected from databases and the internet is also
susceptible to being handled as pairwise comparisons – and these collections can be huge (see
[1, 2, 3], among others). In general, in highly complex problems, the number of elements to be
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compared may be very large. One of the issues limiting PC applicability to large-scale decision
problems is the so-called curse of dimensionality, that is, many pairwise comparisons need to
be elicited from a decision maker (DM), or built from a body of information. Traditionally, for
the analytic hierarchy process (AHP), Saaty [4] recommends that to obtain a reasonable and
consistent PCM judgments issued by experts, the number of comparison elements (criteria or
alternatives) should be at most seven.

Unfortunately, many decision problems, either coming from expert judgments or from
other bodies of information, far exceed this maximum threshold. There are various ways to
reduce the size of numerous comparisons. One approach is based on decomposition method-
ologies [5, 6, 7, 8, 9, 10]. These methodologies overcome the limited cognitive processing
power of a DM by decomposing a complex problem into smaller parts to make it more easily
understood [11], an aspect we address later on. Unfortunately, these methods also have dis-
advantages. For example, when a set of elements is decomposed into subsets, the obtained
relative weights of the elements are valid only within those subsets. The validity of such
weights is not guaranteed at the moment of aggregation. To overcome this problem, a pivot
element is arbitrarily selected and assigned to all the subsets and used as a basis for compar-
ing the criteria across all the disjoint subsets. The global weights can then be estimated as
in [5, 12, 10]. However, pivot element selection is a challenging issue as the decisions should
reduce the number and inconsistency of the pairwise comparisons. These methodologies also
lack guidelines for assigning the decision elements for respective subsets since they are made
arbitrarily. This does not guarantee that the elements within subsets are independent. This
may prevent users from addressing such types of decompositions. Finally, the number of
subsets must be known a priori and are subject to DM biases and judgement errors. To
overcome these problems, [13] proposes a method to reduce the number and inconsistency of
the pairwise comparisons in a large-scale decision set by using a binary integer programming
model that segments PC elements into smaller mutually exclusive subsets. The references
[14, 15] present other examples of clustering alternatives in decision-making problems. How-
ever, it may happen that a large comparison matrix may have already been produced that
needs further treatment.

Next, in this introduction, we argue that, in the case of expert judgment, PCs with more
than seven elements may well make sense and convey valid information, in special cases.

Taking the DM cognitive ability further, in [16] and [17], it is considered that the maximum
number of elements handled simultaneously should be seven plus two because of the general
limitations on human performance. This limit is widely known in the literature (see Miller
[18]) as ‘channel capacity’, a measure of our ability to process information. This refers to the
number of items that can be held in short term memory at any one time.

Miller himself stated that his magic number was for items with one aspect or attribute,
and reported this to be true for many tasks. The objective was to determine how well humans
can distinguish between differing levels of intensity of particular stimuli, such as frequency,
loudness, saltiness, position in an interval, size, and so on. However when more attributes are
included, then we can remember more, depending on our familiarity and the complexity of
the subject. As expressed in [19], Miller’s magical number seven is only true with information
that has one memory attribute or function – and we can work with many more. Using one
of the examples provided by Miller, Marnell [20] states that ‘tonal frequencies according to
a provided legend and unravelling the meaning of a map, block...’ (this last part of the
comparison refers to more complex information structures). Marnell also says that Miller’s
paper discusses what he calls the span of immediate memory (also known as the capacity of
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our short-term memory), and clarifies that ‘the capacity of our short-term memory might well
be relevant to our ability to take in and comprehend material at the atomic level ... but at
the molecular level ... its relevance is doubtful’, and that ‘... short-term memory is the very
stuff of Miller’s paper, especially its role in judgment, attention and recall’. Marnell claims
that this theory ‘needs to be radically updated to bring it into line with current knowledge
in cognitive psychology’, and he quotes [21] in conclusion that ‘a limit of 7± 2 is yesterday’s
guesstimate. Today it is 4± 1 for unrelated items and 15 for... [related concepts]’.

We claim that in special cases, for example when a recognized expert, or group of experts,
on a subject is confronted with a large number of related items, and there is no clear possibility
of clustering them following some homogeneity criteria as suggested in [16], then comparison
matrices of more than the traditional 7 ± 2 elements may be valid. This is the most salient
feature of the case study we address in this paper: a water distribution system (WDS)
previously divided into 15 metered areas (sectors) [22] within a project intended to optimally
transform intermittent into continuous supply. A team of experts working on a daily basis
with the management and operation of the water system were confronted with the problem of
clarifying the ease of operation of the individual sectors following their subjective perception
about the operating difficulties experienced in each sector, since that level of difficulty would
greatly influence the transition process [22]. The comparison matrix was eventually built and,
according to our previous arguments, and considering the profound expertise in the problem,
the matrix is considered to contain reliable information.

There are various problems associated with dealing with so many elements, for example,
when working further with alternatives, as in [23, 24], in various AHP problems or when
including the PCs into an analytic network process (ANP) solution of the problem as in
[25] and [26], among many others. Moreover, regarding our case study, we have observed
certain structured patterns in the matrix. Consequently, we thought of devising a method
to consistently shrink or compress the comparison matrix and thus reduce the size of the
problem. The paper provides a technique for a posteriori reducing the size of large pairwise
comparison matrices, while maintaining consistency. Although originally devised for expert
judgment PCMs, the technique can also be used for other large PCMs obtained when handling
other pools of data.

The process we describe in this paper is thus a type of pre-process on a large PCM that
consistently reduces the number of elements if there is no a priori clear interdependence among
the compared elements. It goes without saying that, in the case of judgment-based PCMs,
the final approval of the panel of experts is deemed absolutely necessary. In the paper, we
develop such a compressing technique so that certain elements may be synthesized to produce
a new PCM that:

(i) reduces the size of the problem, thus making it more manageable;

(ii) compresses the PCM while maintaining, in the case of expert-based PCMs, their expe-
rience, perception, and consistency; and as a result,

(iii) gathers elements into clusters that may produce additional input to the problem or
unveil hidden features.

This size reduction may be useful for a number of goals: for example, to avoid PCs when
clarifying alternatives with respect to the sectors; reciprocally, the number of comparisons will
also be lower when providing PCs among the sectors for any of the potential alternatives (if the
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ANP methodology is used). For the specific case study we consider later, we additionally point
out the potential of this technique for producing interesting results regarding the eventual
grouping of sectors that would be useful in the project. Such a method could then be used as
an additional criterion in a potentially dynamic sectorization of the network in the process of
transforming intermittent into continuous supply.

This PCM compression technique may also be useful in other interesting contexts that
consider large PCMs (either from expert judgment or other available information), such as,
for example, the merging of companies in shared markets to avoid the whole process of PCs
from scratch, once an alliance has been produced.

In the next section we provide a short review of the process of linearization already
introduced by the authors [27], and in which our compressing tool is based.

2 Brief review of the linearization process in AHP

Throughout this paper, the symbols Mn,m, M+
n,m, Mn, M+

n will denote the sets of n × m
real matrices, n × m positive matrices, n × n real matrices, and n × n positive matrices,
respectively. Any k-dimensional real vector v ∈ Rk will be considered a k × 1 matrix (i.e., a
column vector). The trace and the transpose of a real matrix A will be denoted by tr(A) and
AT , respectively. Finally, the identity matrix of order n will be denoted by In.

Two basic subsets of M+
n are particularly interesting in AHP theory, namely, the set of

reciprocal matrices and the set of consistent matrices. A matrix A = (aij) ∈ M+
n is said

to be reciprocal when aijaji = 1 for any 1 ≤ i, j ≤ n. A matrix A = (aij) ∈ M+
n is said

to be consistent when aijajk = aik for any 1 ≤ i, j, k ≤ n. It can be easily proven that any
consistent matrix is reciprocal.

If A ∈ M+
n is a reciprocal matrix, then there is a unique consistent matrix XA ∈ M+

n

such that
d(A,XA) ≤ d(A,X) ∀ X ∈M+

n consistent. (1)

See Theorem 2.3 in [27] for the existence of such a matrix and Theorem 2.5 in [27] for an
explicit expression of this matrix. In (1), d(·, ·) is the following distance defined in M+

n :

d(M,N) = ‖L(M)− L(N)‖F ,

where L : M+
n → Mn, (L(M))ij = log(Mij) and ‖ · ‖F is the Frobenius norm, i.e., ‖A‖F =(

tr(AAT )
)1/2

for A ∈Mn. The inverse of the mapping L will be useful and will be denoted
by E, which simply is the entrywise exponential (in other parlance, E : Mn →M+

n is given
by (E(M))ij = exp(Mij)).

ObtainingXA from the reciprocal matrix A is based on a linearization process, described in
[27], and summarized in the scheme (2). We will denote by An the set of n×n skew-symmetric
matrices and Ln = {L(A) : A is an n× n consistent matrix}. It can be proven (see Theorem
2.2 in [27]) that Ln is an (n−1)-dimensional linear subspace. Evidently, for A ∈M+

n we have
that A is reciprocal if and only if L(A) ∈ An. Since any consistent matrix is reciprocal, we
obtain Ln ⊂ An. Furthermore, we will denote by pn : Mn →Mn the orthogonal projection
onto Ln when Mn is endowed with the scalar product 〈A,B〉 = tr(ABT ).

A︸︷︷︸
Reciprocal

L−→ L(A)︸ ︷︷ ︸
∈An

pn−→ YA︸︷︷︸
∈Ln

E−→ XA = E(YA)︸ ︷︷ ︸
Consistent

(2)
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From now on, we will denote 1n the column vector of Rn all of whose components are 1
and Un,m = 1n1

T
m. For the sake of simplicity, Un = Un,n.

Although in Theorem 2.5 in [27] an expression of pn(X) was given when X ∈ Mn, as
is easily seen in the scheme (2), in AHP theory, it is sufficient to manage pn(X) when X is
skew-symmetric. In Theorem 3 in [28] it is proven that if X ∈Mn is skew-symmetric, then

pn(X) =
1

n

[
(XUn)− (XUn)T

]
. (3)

This expression is particularly useful because there is no multiplication to perform.
Another useful mapping is the following: φn : Rn →Mn given by

φn(v) = v1Tn − 1nvT . (4)

The following properties of φn will be useful (see Theorem 2.2 in [27]): φn is linear, Im φn =
Ln, and kerφn = span {1n}.

The remainder of the paper is structured as follows. Sections 3 and 4 provide the body
of theory upon which the paper is based: including suitable definitions, detailed proofs of
lemmas and theorems, as well as synthetic illustrative examples. Section 5 presents the case
study, and discusses the obtained results. Finally, Section 6 provides the conclusions.

3 Clustering of entries in reciprocal matrices

As said in the introduction, in some concrete situations, it may be a useful approach to
collapse several opinions or judgements into just one, while trying to maintain the ‘non-
collapsed’ judgements as faithful to the original as possible. In the following paragraphs we
address this problem. Prior to the solution, we present some preliminaries.

If a matrix A ∈ M+
n is reciprocal, to find its closest consistent approximation, we must

project L(A) onto Ln. As L(A) is skew-symmetric, in the following reasoning, only skew-
symmetric matrices are involved instead of reciprocal matrices.

Let M ∈Mn+m be a skew-symmetric matrix. Let us partition M as follows

M =

[
M1 −M2

MT
2 M3

]
∈Mn+m, M1 ∈Mn, M3 ∈Mm, (5)

M1 and M3 being skew-symmetric (this is because M is skew-symmetric). The relations
between the last m judgments of M are reflected in the block M3, and the relations between
the first n judgments and the last m judgments are reflected in the block M2 (let us note that
M2 can be a non-square matrix —in case n 6= m holds).

If we want to collapse the i-th judgments (i = n + 1, . . . , n + m) of M to only one, then
we are forced to consider the following n+ 1 square block matrix:

N =

[
M1 −v
vT 0

]
∈Mn+1, v ∈ Rn. (6)

Observe that the ‘north-west’ blocks of M and N must be equal if we want that the preser-
vation of the judgments in this collapsed matrix N to be as faithful possible. Our purpose is:
how to find vector v?
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If this ‘collapse’ is coherent, then the information concerning the 1, . . . , n judgments must
not be changed. In other words, since the orthogonal projection onto Ln+m and Ln+1 provide
the best approximations, if

pn+m(M) =

[
X −Y
Y T Z

]
, pn+1(N) =

[
X ′ −y
yT 0

]
, X,X ′ ∈Mn, (7)

then one must have X = X ′.
Once the vector v in matrix N written in (6) is found, the expert(s) that filled the matrix

M must be asked (in a feedback process) if this vector v (which reflects the relations between
the 1, . . . , n judgements and the collapsed one) is adequate.

The next auxiliary lemma will be useful to prove the main results of this paper.

Lemma 1. If M ∈Mn is skew-symmetric, then Um,nM1n = 0.

Proof. Let {e1, . . . , em} be the standard basis of Rm. The lemma will be proven if we demon-
strate eTi Um,nM1n = 0 for i = 1, . . . ,m. Since eTi Um,n = 1

T
n we obtain eTi Um,nM1n =

1
T
nM1n. Let us bear in mind that 1TnM1n is a scalar, and so, coincides with its transpose.

Since M = −MT we have 1TnM1n = (1TnM1n)T = 1
T
nM

T
1n = −1TnM1n. Hence 1TnM1n = 0

and the proof of the lemma is ended.

Also, the next result (Theorem 4, [28]) will play an essential role in the sequel, and we
include it for the sake of readability. Let us recall that the mapping φn is defined in (4) and
pn : Mn → Ln denotes the orthogonal projection onto Ln.

Theorem 1. Let M ∈Mn be skew-Hermitian and v ∈ Rn. Then φn(v) = pn(M) if and only
if there exists α ∈ R such that v = 1

nM1n + α1n.

The main results of the paper follow below.

Theorem 2. Let M ∈ Mn+m and N ∈ Mn+1 be skew-symmetric matrices decomposed as
in (5) and (6), respectively. Let pn+m(M) and pn+1(N) be decomposed as in (7). Then the
following conditions are equivalent:

(i) X = X ′.

(ii) There exists α ∈ R such that

v =
n+ 1

n+m
M21m +

m− 1

n+m
M11n + α1n. (8)

Under this equivalence, one has

y =
1

n+m
[−M11n + (In + Un)M21m] + α1n.

Proof. Let us recall that

pn+m(M) =
1

n+m

[
(MUn+m)− (MUn+m)T

]
. (9)

6



Since

MUn+m =

[
M1 −M2

MT
2 M3

] [
Un Un,m

Um,n Um

]
=

[
M1Un −M2Um,n M1Un,m −M2Um

MT
2 Un +M3Um,n MT

2 Un,m +M3Um

]
.

(10)
Therefore, from (7) and (9) we obtain

X =
1

n+m

[
(M1Un −M2Um,n)− (M1Un −M2Um,n)T

]
.

We have, from the definition of φn given in (4),

M2Um,n − (M2Um,n)T = M2(1m1
T
n )− [M2(1m1

T
n )]T

= (M21m)1Tn − [(M21m)1Tn ]T

= (M21m)1Tn − 1n(M21m)T

= φn(M21m).

Hence,

X =
1

n+m

[
(M1Un)− (M1Un)T − φn(M21m)

]
=

1

n+m
[npn(M1)− φn(M21m)] . (11)

Analogously we obtain

X ′ =
1

n+ 1

[
(M1Un − v1Tn )− (M1Un − v1Tn )T

]
=

1

n+ 1
[npn(M1)− φn(v)] . (12)

(i) ⇒ (ii). From X = X ′, (11), and (12) we obtain

1

n+m
[npn(M1)− φn(M21m)] =

1

n+ 1
[npn(M1)− φn(v)] .

Therefore, by recalling that φn and pn are linear mappings

φn

(
1

n+ 1
v − 1

n+m
M21m

)
= pn

((
n

n+ 1
− n

n+m

)
M1

)
.

Let us recall that M1 is skew-symmetric. From Theorem 1, there exists α ∈ R, such that

1

n+ 1
v − 1

n+m
M21m =

1

n

(
n

n+ 1
− n

n+m

)
M11n + α1n.

By performing some easy computations and renaming (n+1)α to α, we obtain the expression
of v given in the statement of the theorem.

(ii) ⇒ (i): We know that exists α ∈ R, such that

v − n+ 1

n+m
M21m =

1

n

n(m− 1)

n+m
M11n + α1n.

By Theorem 1 and since n(m−1)
n+m M1 is skew-symmetric, we obtain

φn

(
v − n+ 1

n+m
M21m

)
= pn

(
n(m− 1)

n+m
M1

)
.
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Now, the linearity of pn and φn, together with (11) and (12) lead to

X ′ =
1

n+ 1
[npn(M1)− φn(v)]

=
1

n+ 1

[
npn(M1)−

(
φn

(
n+ 1

n+m
M21m

)
+ pn

(
n(m− 1)

n+m
M1

))]
=

n

n+m
pn(M1)−

1

n+m
φn(M21m)

= X.

This proves the first part of the theorem.
To find y, which appears in (7), we use pn+1(N) = [NUn+1 − (NUn+1)

T ]/(n + 1). Since
(we have marked with ? the entries that we are not interested in)

NUn+1 =

[
M1 −v
vT 0

] [
Un 1n

1
T
n 1

]
=

[
? M11n − v

vTUn ?

]
,

we obtain (recall that Un is symmetric)

pn+1(N) =
1

n+ 1

[
? M11n − v − Unv
? ?

]
.

Hence, by using Un1n = n1n, the first part of the theorem, (7), and Lemma 1,

(n+ 1)y = −M11n + v + Unv

= −M11n +
n+ 1

n+m
M21m +

m− 1

n+m
M11n + α1n+

+ Un

(
n+ 1

n+m
M21m +

m− 1

n+m
M11n + α1n

)
= − n+ 1

n+m
M11n +

n+ 1

n+m
M21m + (n+ 1)α1n +

n+ 1

n+m
UnM21m.

The proof is finished.

It is noteworthy that the vectors v and y in Theorem 2 are independent in block M3. In
other words, to collapse the criteria n+ 1, . . . , n+m we can ignore the pairwise comparisons
among these criteria.

However, the arbitrariness of the scalar α appearing in Theorem 2 leads us to impose
another condition. Let us motivate it with the following example. Let M1 ∈ Mn be skew-

symmetric and v ∈ Rn. Set M = N =
[
M1 −v
vT 0

]
. By using Theorem 2 (observe that m = 1)

we obtain that the presence of α is awkward. If we look at (7), we can think on y as a
‘mixture’ of Y . In fact, we shall impose that y is the arithmetic mean of Y .

Theorem 3. Let M ∈Mn+m and N ∈Mn+1 be skew-symmetric matrices decomposed as in
(5) and (6), respectively. Let pn+m(M) and pn+1(N) be decomposed as in (7) with X = X ′.
If

1

m
Y 1m = y,
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then the scalar α appearing in Theorem 2 is

α = S
1−m

(n+m)m
, (13)

where S is the sum of all the components of M2.

Proof. We shall use the notation of Theorem 2 and its proof. By (9) and (10),

−Y 1m = [Block (1,2) of pn+m(M)]1m

=
1

n+m

[
M1Un,m −M2Um − (MT

2 Un +M3Um,n)T
]
1m

=
1

n+m

[
M1Un,m1m −M2Um1m − UnM21m − Un,mM

T
3 1m

]
.

Let us observe that Un,m1m = m1n, Um1m = m1m and Un,mM
T
3 1m = 0 (because M3 is

skew-symmetric and using Lemma 1). Therefore,

− 1

m
Y 1m =

1

n+m

[
M11n −M21m −

1

m
UnM21m

]
=

1

n+m
[M11n −M21m − UnM21m] +

1

n+m
UnM21m

− α1n + α1n −
1

m(n+m)
UnM21m

= −y +
1

n+m

(
1− 1

m

)
UnM21m + α1n.

But, as one can easily see, UnM21m = S1n, where S is the sum of all of components of M2.
Therefore,

− 1

m
Y 1m = −y +

(
m− 1

m(n+m)
S + α

)
1n.

The proof is finished.

Definition 1. Let M ∈Mn+m be a skew-symmetric matrix decomposed as in (5). If α ∈ R
is given by (13), v ∈ Rn is given by (8), and N ∈Mn+1 is given by (6), then we say that the
collapse of the last m judgements of M produces N .

Example 1. We close this section with a rather artificial example. Let A be the following
reciprocal matrix

A =


1 3 2 4

1/3 1 2 3

1/2 1/2 1 2
1/4 1/3 1/2 1

 .
If we want to collapse the third and fourth judgements, we use Theorems 2 and 3 for n =
m = 2.

M = L(A) =


0 1.0986 0.6932 1.3863

−1.0986 0 0.6932 1.0986

−0.6932 −0.6932 0 0.6932
−1.3863 −1.0986 −0.6932 0

 =

[
M1 −M2

MT
2 M3

]
.
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By Theorem 3, we get α = 0.4839. By Theorem 2, we get

v = [−1.3774 − 1.1617]T .

Therefore, the collapsed matrix N given by Definition 1 is

N =

[
M1 −v
vT 0

]
=

 0 1.0986 1.3774
−1.0986 0 1.1617
−1.3774 −1.1617 0

 .
Coming back to the comparison matrices, we obtain that the collapse of the 3rd and 4th
judgements produces

E(N) =

 1 3 3.9647
1/3 1 3.1952

0.25223 0.31297 1

 .
Now is the time for the expert to decide if he/she agrees with this new comparison matrix.

4 Clustering of entries in consistent matrices

Let us recall that if A = [aij ] ∈Mn is a consistent matrix, then exists v = [v1 · · · vn]T ∈ Rn

such that aij = viv
−1
j for all 1 ≤ i, j ≤ n. This vector v is the priority vector of the matrix

A, and it is easily checked that v is an eigenvector of A associated to the eigenvalue n. This
eigenvalue n is the Perron eigenvalue of the positive matrix A (see [29] for the complete
details).

Before studying how to collapse several judgments in a consistent matrix, let us see a
general useful fact: Let A ∈Mn be a consistent matrix. If z ∈ Rn is the priority vector of A,
then L(A) = φn(L(z)). In fact: since aij = ziz

−1
j we have log(aij) = log(zi) − log(zj) for all

1 ≤ i, j ≤ n, and therefore, L(A) = φn(L(z)).
Let A ∈M+

n+m be a consistent matrix and let us partition A as follows:

A =

[
A1 A2

A3 A4

]
, A1 ∈Mn, A4 ∈Mm. (14)

It is evident that A1 is consistent (it is the comparison matrix of the 1, . . . , n judgements).
Also, A4 is the comparison matrix of the n+1, . . . , n+m judgements, which is also consistent.

Let z ∈ Rn+m be the priority vector of A. Let us decompose z =

[
z1
z2

]
, where z1 ∈ Rn.

Now, one has L(A) = φn+m(L(z)). Hence

L(A) =

[
L(A1) L(A2)
L(A3) L(A4)

]
= φn+m(L(z)) = L(z)1Tn+m − 1n+mL(z)T

=

[
L(z1)
L(z2)

] [
1
T
n 1

T
m

]
−
[
1n

1m

] [
L(z1)

T L(z2)
T
]

=

 L(z1)1
T
n − 1nL(z1)

T L(z1)1
T
m − 1nL(z2)

T

L(z2)1
T
n − 1mL(z1)

T L(z2)1
T
m − 1mL(z2)

T


=

 φn(L(z1)) L(z1)1
T
m − 1nL(z2)

T

L(z2)1
T
n − 1mL(z1)

T φm(L(z2))

 .

(15)
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Therefore, z1 is the priority vector of A1 and z2 is the priority vector of A4.

Theorem 4. Let A ∈ Mn+m be a consistent matrix decomposed as in (14) whose priority
vector is [z1 z2 · · · zn+m]T and M = L(A) be decomposed as in (5). Let N be produced by the
collapse of the last m judgements of M , and finally, let us denote w1 = [log z1 · · · log zn]T

and s2 = log zn+1 + · · ·+ log zn+m. Then

(i) N =
[
M1 −v
vT 0

]
, where v = −w1 +

s2
m
1n.

(ii) pn+1(N) = N . We obtain that N ∈ Ln+1, or equivalently, E(N) is a consistent matrix.

(iii) The priority vector for E(N) is [z1 · · · zn m
√
zn+1 · · · zn+m]T .

Proof. Let z be the priority vector of A decomposed as in the previous paragraph. We shall
denote w1 = L(z1) and w2 = L(z2). We also denote s1 = wT

1 1n and s2 = wT
2 1m (observe

that si is the sum of the components of wi for i = 1, 2).
We shall apply Theorem 3 and Theorem 2 to obtain vector v. From decompositions (5)

and (15) we obtain

M1 = w11
T
n − 1nwT

1 and −M2 = w11
T
m − 1nwT

2 .

Now, observe that 1Tn1n = n and wT
1 1n is an scalar (which commutes with any matrix). So,

M11n =
(
w11

T
n − 1nwT

1

)
1n = w11

T
n1n − 1nwT

1 1n = nw1 − s11n

and, analogously,

−M21m =
(
w11

T
m − 1nwT

2

)
1m = w11

T
m1m − 1nwT

2 1m = mw1 − s21n.

Firstly, we obtain the value of α in Theorem 3. It is easy to see that the sum of the entries
of M2 is

S = 1
T
nM21m = 1

T
n (−mw1 + s21n) = −ms1 + ns2.

Therefore,

α = (ms1 − ns2)
m− 1

m(n+m)
.

Now, we find an expression for vector v appearing in Theorem 2:

v =
n+ 1

n+m
M21m +

m− 1

n+m
M11n + α1n

=
n+ 1

n+m
(−mw1 + s21n) +

m− 1

n+m
(nw1 − s11n) + (ms1 − ns2)

m− 1

m(n+m)
1n

= −w1 +
1

n+m

[
s2(n+ 1)− s1(m− 1) + (ms1 − ns2)

m− 1

m

]
1n

= −w1 +
s2
m
1n.

Item (i) is proven. To prove item (ii), we seek for a simplified expression of the vector y
appearing in Theorem 2. Before doing this, we simplify UnM21m:

−UnM21m = Un (mw1 − s21n)

= m1n1
T
nw1 − s21n1Tn1n = m1ns1 − s21nn = (ms1 − ns2)1n.

11



Now,

−y =
1

n+m
[M11n − (In + Un)M21m]− α1n

=
1

n+m
[nw1 − s11n +mw1 − s21n + (ms1 − ns2)1n]− α1n

= w1 +

(
ms1 − ns2
n+m

− s1 + s2
n+m

− α
)
1n

= w1 +

(
ms1 − ns2
n+m

− s1 + s2
n+m

− (ms1 − ns2)
m− 1

m(n+m)

)
1n

= w1 +
ms1 − ns2 −m(s1 + s2)

m(n+m)
1n

= w1 −
s2
m
1n.

Observe that since A is consistent, we have M = L(A) ∈ Ln+m. Therefore, pn+m(M) = M .
From (5) and (7) we have M1 = X. From Theorem 2 we have X = X ′. From the above
computations we obtain v = y. Hence, the expressions for N and pn+1(N) given in (6) and
(7) prove item (ii).

To prove item (iii), we recall that the priority vector of a consistent matrix is just a scalar
multiple of any of its columns, and therefore, the priority vector for E(N) can be regarded
as a multiple of its last column, which is[

E(−v)
1

]
=

[
E
(
w1 − s2

m1n

)
1

]
.

Observe that the ith component of w1 − s2
m1m is given by

log zi −
log zn+1 + · · ·+ log zn+m

m
= log

(
zi

m
√
zn+1 · · · zn+m

)
.

Thus, if we denoteK = m
√
zn+1 · · · zn+m, then the last column of E(N) is [z1/K · · · zn/K 1]T .

The proof of the third item is finished.

Note that the clustered matrix, N , and its priority vector are obtained by using the
formulas in (i) and (iii), respectively. Both formulas are really straightforward since they
involve exclusively simple (linear) vector operations to build the last column (row) of N , and
replacing the last m components of the priority vector by the m-th root of all of them.

According to this theorem there are no limitations regarding the size, n+m, of the matrix,
nor with respect to the number, m, of items to be collapsed. Moreover, if the initial PCM has
acceptable consistency, then this theorem guarantees consistency for the clustered structure;
while if the initial PCM do not exhibit acceptable consistency, then it would be absurd to use
this theorem to derive a clustered structure and claim consistency. Specifically, if A ∈Mn+m

is a consistent matrix, then item (ii) of Theorem 4 implies that, by collapsing the last m
judgements according to Definition 1, thus obtaining a skew-symmetric matrix N ∈ Mn+1,
matrix E(N) is consistent. In other words, consistency is preserved by collapsing judgements.
Furthermore, since all the involved operations are continuous, if matrix A is close to being
consistent (e.g., its consistency is acceptable according to Saaty’s criterion), then one can
apply Theorem 4 (approximately) to obtain the collapsed matrix and its priority vector.

12



5 Case study

Despite worldwide efforts to improve water supply systems in recent years, intermittent water
supply systems (IWSSs) still remain a harsh reality for water supply in many countries. An
estimated one third of Africa and Latin America, and more than half of the Asian population
have this type of supply [30].

By definition, IWSSs are those water services in which the supply is made for a limited
amount of time. The usual frequency with which a new supply occurs is one day; however, in
extreme cases, it may be more. In many small towns with an IWSS, service is for a number of
hours for the entire network simultaneously; in larger cities, supply occurs in turns of several
hours, the rotation being by service sectors.

Many reasons may be used to justify the existence of IWSSs. Many authors suggest
three types of problems that can cause or perpetuate intermittent supply: poor technical
management, economic scarcity, and absolute water scarcity [31, 32]. Increasing water scarcity
due to climate change, and the demand intensification derived from the growing population
may make the use of intermittent supply a too frequent practice [33].

Economic scarcity in developing countries –but with thriving water companies– increases
the difficulties in achieving improvements in IWSSs, while, at the same time, only very basic
operational information is available (pressure at some points, level of reservoirs and tanks, or
measurement of just a few flow rates). Intermittent water supply operation and management
in developing countries is mainly based on the experience of water company personnel, mainly
derived from manual (in contrast to automatic) operation, and using simple offer-demand
analyses [23]. In addition, the collection of quantitative information is deficient. So, by using
a sector-operation-difficulty-related qualitative criterion [24] this limitation can be overcome.
In addition, this criterion adds the experience of water company technicians into the decision-
making process to improve the water system.

One way to minimize the difficulties resulting from IWSs is to enhance an adequate system
of technical management. In this case study, the use of qualitative data, regarding the network
sectors in which the system is divided, is analyzed as an interesting alternative for improving
planning, operation, and maintenance in IWSSs.

The studied IWSS (see Figure 1) is one of the subsystems of the WDS of the city of Oruro
(Bolivia). This subsystem is located in the southern part of the city, consists of 15 sectors
fed by a single tank, and supplies water to 37,700 inhabitants. Each sector has a specific
supply schedule and specific operation tasks, such as valve maneuvering, which are manually
performed.

As said, one of the qualitative criteria of interest in an IWSS, and the subject of this study,
is the difficulty of operation of each of the sectors. This variable depends on several factors
such as the availability of sectorization valves, the certainty of their existence, whether existing
valves are operating, whether they are visible or buried, the difficulty in working for operators,
consumer complaints, and others. Being a complex qualitative criterion, technicians and
water company experts who understand the operation of the network and its sectors were
consulted. This also ensures active management in the process of improvement. The AHP
multi-criteria analysis technique is used to rank the alternatives (obviously, the alternatives
are the 15 sectors in which the network is currently sectorized), with respect to the single
criterion ‘difficulty of operation’.

AHP is a well established methodology for multi-criteria analysis that has been successfully
applied in many fields such as environmental planning [34, 35], transport solutions [36, 37, 38,

13



Figure 1: Studied IWSS, south area of Oruro, Bolivia.

39], social and educational sciences [40, 41], agriculture [42], to quote just a few fields with a
few references. The success of this method is a result of its simplicity and robustness [43].

We proceeded with the pairwise comparison process, asking the experts to analyze the
ease of operation of a sector with respect to another. Despite the large number of elements
for comparison, the panel was able to develop a coherent and reliable comparison matrix (see
Table 1).

14



S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
1

S
0
2

M
0
2

S
0
1

S
0
1

E
ig

e
n

-
-0

5
-0

6
-0

7
-0

8
-1

0
-1

1
-0

9
-1

3
-1

4
-1

5
-1

6
-1

2
-1

8
v
e
c
to

r
S

0
1
-0

5
1

5
3

1
3

1
1

1
1

1
1

3
7

1
1

0
.0

9
1
5

S
0
1
-0

6
1/

5
1

1/
3

1/
3

1/
3

1/
3

1/
5

1/
3

1/
3

1/
3

1/
3

5
5

1/
3

1
/
3

0
.0

3
5
0

S
0
1
-0

7
1/

3
3

1
1/

3
1/

3
1/

3
1/

3
1/

3
1/

3
1/

3
1/

3
1/

3
7

1/
3

1
/
3

0
.0

3
1
7

S
0
1
-0

8
1

3
3

1
1

1
1

1
1

1
1

3
7

1
1

0
.0

7
8
6

S
0
1
-1

0
1/

3
3

3
1

1
1

1
1

1
1

1
1

7
1

1
0
.0

6
9
8

S
0
1
-1

1
1

3
3

1
1

1
1

1
1

1
1

1
7

1
1

0
.0

7
3
6

S
0
1
-0

9
1

5
3

1
1

1
1

1
1

1
1

3
7

3
1

0
.0

8
9
5

S
0
1
-1

3
1

3
3

1
1

1
1

1
1

1
3

3
7

3
1

0
.0

9
2
2

S
0
1
-1

4
1

3
3

1
1

1
1

1
1

1
3

3
7

3
1

0
.0

9
2
2

S
0
1
-1

5
1

3
3

1
1

1
1

1
1

1
3

3
7

3
1

0
.0

9
2
2

S
0
1
-1

6
1

3
3

1
1

1
1

1/
3

1/
3

1/
3

1
1

5
1

1
/
3

0
.0

5
7
2

S
0
2

1/
3

1/
5

3
1/

3
1

1
1/

3
1/

3
1/

3
1/

3
1

1
5

1
1
/
3

0
.0

4
0
5

M
0
2

1/
7

1/
5

1/
7

1/
7

1/
7

1/
7

1/
7

1/
7

1/
7

1/
7

1/
5

1/
5

1
1/

5
1
/
7

0
.0

1
0
0

S
0
1
-1

2
1

3
3

1
1

1
1/

3
1/

3
1/

3
1/

3
1

1
5

1
1
/
3

0
.0

5
3
5

S
0
1
-1

8
1

3
3

1
1

1
1

1
1

1
3

3
7

3
1

0
.0

9
2
2

T
ab

le
1:

C
om

p
ar

is
on

m
at

ri
x

fo
r

th
e

q
u

al
it

at
iv

e
cr

it
er

io
n

:
ea

se
of

op
er

at
io

n
fo

r
se

ct
or

s.
T

h
e

co
n

si
st

en
cy

ra
ti

o
fo

r
th

is
m

a
tr

ix
is

5
.8

%
.

S
in

ce
in

v
ie

w
of

S
aa

ty
’s

cr
it

er
io

n
th

is
co

n
si

st
en

cy
ra

ti
o

is
le

ss
th

an
10

%
,

th
e

co
n

si
st

en
cy

of
th

is
m

at
ri

x
is

a
cc

ep
ta

b
le

.

15



As explained before, the possibility of reducing the volume of this information may be
deemed interesting, for example if posterior comparisons regarding alternatives were necessary.
In addition, some patterns presented by the matrix clearly suggest the possibility of reducing
the matrix size by grouping sectors, a situation that was not initially obvious.

The identification of these groups will enable us to develop strategies for improvement in
the technical management based on differentiated areas.

Various proposals were presented to the technicians who manage the system. We highlight
here two of them.

In the first proposal, guided solely by the number and distribution of values equal to 1
in the matrix, a consistent simplification was attempted with eight sectors grouped under a
single item.

Specifically, sectors S01-18, S01-08, S01-10, S01-11, S01-09, S01-13, S01-14 and S01-15
were grouped, since after the permutation given by (S01-05, S01-06, S01-07, S01-16, S02,
M02, S01-12, S01-18, S01-08, S01-10, S01-11, S01-09, S01-13, S01-14, S01-15), the entries of
the 8×8 ’southeast’ submatrix were all equal to one. The use of Theorem 4 for this situation
provided the following 8× 8 comparison matrix:

1 5 3 1 3 7 1 1.082
0.2 1 0.333 0.333 5 5 0.333 0.414

0.333 3 1 0.333 0.333 7 0.333 0.375
1 3 3 1 1 5 1 0.676

0.333 0.2 3 1 1 5 1 0.479
0.143 0.2 0.143 0.2 0.2 1 0.2 0.118

1 3 3 1 1 5 1 0.633
0.924 2.414 2.666 1.479 2.09 8.463 1.58 1


.

The priority vector given by Theorem 4 is:[
0.227 0.087 0.079 0.142 0.100 0.025 0.132 0.209

]T
.

For this matrix, the Perron vector, corresponding to the Perron eigenvalue λ = 9.28, is:[
0.253 0.126 0.106 0.184 0.124 0.024 0.183 0.223

]T
.

giving the values CI = 0.1831 and CR = 13.08% for consistency index and consistency ratio,
respectively. This last value exceeds the maximum allowed of 10%.

Moreover, the obtained grouping was not satisfactory for technicians, since it grouped
areas with clear different hydraulic behaviors.

The second proposal tried to use ideas provided by the technicians to guide the observation
of patterns in the matrix of comparisons. Thus, sectors S01-09, S01-13, S01-14 and S01-15
were initially selected to be grouped. Theorem 4 above, by using the permutation given
by (S01-05, S01-06, S01-07, S01-08, S01-10, S01-11, S01-16, S02, M02, S01-12, S01-18, S01-
09, S01-13, S01-14, S01-15), gives a new comparison matrix where the last four sectors are
grouped (under the identification 09-15). The matrix, which corresponds to the sector order
(S01-05, S01-06, S01-07, S01-08, S01-10, S01-11, S01-16, S02, M02, S01-12, S01-18, 09-15), is
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given by:

1 5 3 1 3 1 1 3 7 1 1 1
0.2 1 0.333 0.333 0.333 0.333 0.333 5 5 0.333 0.333 0.383

0.333 3 1 0.333 0.333 0.333 0.333 0.333 7 0.333 0.333 0.347
1 3 3 1 1 1 1 3 7 1 1 0.858

0.333 3 3 1 1 1 1 1 7 1 1 0.763
1 3 3 1 1 1 1 1 7 1 1 0.804
1 3 3 1 1 1 1 1 5 1 0.333 0.625

0.333 0.2 3 0.333 1 1 1 1 5 1 0.333 0.442
0.143 0.2 0.143 0.143 0.143 0.143 0.2 0.2 1 0.2 0.143 0.109

1 3 3 1 1 1 1 1 5 1 0.333 0.585
1 3 3 1 1 1 3 3 7 3 1 1.008
1 2.614 2.885 1.165 1.311 1.244 1.601 2.262 9.161 1.711 0.993 1



.

The priority vector given by Theorem 4 is:[
0.126 0.048 0.044 0.108 0.096 0.101 0.079 0.056 0.014 0.074 0.127 0.126

]T
.

For this matrix, the Perron vector, corresponding to the Perron eigenvalue λ = 13.2, is:[
0.127 0.053 0.045 0.104 0.088 0.095 0.085 0.060 0.013 0.084 0.131 0.116

]T
.

giving the values CI = 0.1069 and CR = 7.03%, which is satisfactory from the consistency
point of view. Continuing in the same line, a new clustering was performed, taking the latter
as a starting point. In this case, sectors S01-08, S01-10 and S01-11 were the candidates for a
new grouping.

Again, using Theorem 4 on the permutation of the previous matrix given by (S01-05,
S01-06, S01-07, S01-16, S02, M02, S01-12, S01-18, 09-15, S01-08, S01-10, S01-11), a new
comparison matrix was obtained with the last three sectors grouped (under the name 08-11),
given by:

1 5 3 1 3 7 1 1 1 1.238
0.2 1 0.333 0.333 5 5 0.333 0.333 0.383 0.474

0.333 3 1 0.333 0.333 7 0.333 0.333 0.347 0.429
1 3 3 1 1 5 1 0.333 0.625 0.774

0.333 0.2 3 1 1 5 1 0.333 0.442 0.548
0.143 0.2 0.143 0.2 0.2 1 0.2 0.143 0.109 0.135

1 3 3 1 1 5 1 0.333 0.585 0.724
1 3 3 3 3 7 3 1 1.008 1.284
1 2.614 2.885 1.601 2.262 9.161 1.711 0.993 1 1.239

0.808 2.11 2.33 1.292 1.826 7.397 1.381 0.801 0.807 1


.

In this matrix the corresponding order is (S01-05, S01-06, S01-07, S01-16, S02, M02, S01-12,
S01-18, 09-15, 8-11).

The priority vector given by theorem 4 is:[
0.159 0.061 0.055 0.099 0.070 0.017 0.093 0.160 0.159 0.128

]T
.
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For this matrix, the Perron vector, corresponding to the Perron eigenvalue λ = 11.1, is:[
0.149 0.070 0.061 0.101 0.070 0.015 0.100 0.173 0.144 0.116

]T
.

giving the values CI = 0.125 and CR = 8.40%, which is still satisfactory from the consistency
point of view.

This proposal was positively considered by the technicians. In addition to the acceptable
values of CR, the technicians appreciated that both clusters, the initial 09-15 and the sub-
sequent 08-11, have an interesting technical interpretation, which is based on the proximity
to the source of clusters 08-11 and 09-15 (which are at successive rings, consecutively further
away from the source).

As a result, areas or groups of sectors with similar operating characteristics are defined
based on the opinion of water company technicians. This poses a new scenario (see Figure 2)
that will enable a better planning in the operation and maintenance tasks of the system, such
as reorganizing the manual work of the operators, who hourly open and close the valves to
supply water, and the prioritization of maintenance tasks. Therefore, it becomes a very useful
tool for the technical management of intermittent water supply systems, and is a fundamental
criterion for a future transition to a continuous water supply [22, 24, 23].

Regarding the procedure for obtaining the clusters of the considered elements, the authors
think that details depend on the problem in hand. We think there are no general guidelines for
this clustering process. In the two examples we have provided, completely different procedures
are followed. In the case of the water supply system, it has been a trial and error procedure in
close contact with the system experts. Several attempts were made, since there was no clear
idea about which sectors to group and which not to group (except for some visual patterns
identified in the original matrix). It was the final decision of the experts, after checking the
various results produced, that was consolidated. As another example, if the technique had to
be used to merge companies in shared markets to avoid the whole process of starting PCs from
scratch once an alliance has been produced, the decision would consider companies inside and
outside of the alliance. Conditions would probably be clear from the beginning, provided that
the alliance process among companies is clear-cut. We believe that, in general, an a priori
cluster structure with the best number of clusters may not exist and, consequently, we do not
venture to state rules to this end. It would be a very interesting line of research for future
study.

6 Conclusions

We have considered large AHP comparison matrices in this article. These matrices have
scarcely been considered in the literature. One reason is related to the so-called ‘channel
capacity’, a measure of our ability to process information that is based on the so-called Miller’s
magic number seven. However, inspired by other works on the basis of this magic number, we
have reasoned that, in some cases, comparison matrices of a larger size may contain reliable
information. Such is the case of the matrix presented in the case study. Another reason derives
from the fact that recent information collected from databases and the internet has started
to be handled through PCs. However, we are aware that the use of such large matrices may
pose further difficulties. Therefore, we have designed a mechanism for reducing the size of a
large comparison matrix by consistently compressing it, and eventually grouping some of the
original elements into clusters. To the best of the authors’ knowledge there are no other similar
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Figure 2: Studied IWSS, after cluster identification.

(a posteriori) compressing mechanisms for PCMs in the literature. In the case of judgment
PCs, of course, such a reduction must be performed so that consistency is preserved and, in
any case the experts must eventually validate any manipulation of their original comparison
matrix. In general, this size reduction may be useful for various straightforward reasons,
as explained in the introduction, derived from the obtained size reduction of the problem.
However, in the case study addressed in this paper, we have additionally observed that the
given mechanism has helped reveal non-explicit characteristics of the problem considered.
Specifically, the identification of areas or groups of sectors with similar characteristics (pipe
material, pipe age, etc.), based on the qualitative criteria provided by this technique has
proven to be a very useful tool for improving the technical management of water systems.
This is especially important for those systems with economic scarcity or mismanagement,
where quantitative information is limited, if existing.

Although our case-study analysis is about IWSS, the tool we have developed may also be
useful to obtain clusters of sectors in water systems with continuous supply, based on suitable
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qualitative characteristics of interest. This may be a future line of research within the water
field.

From a wider perspective, the technique we have presented may also be useful in other
decision-making contexts with shortages or a lack of quantitative information, and with many
number of elements to be pairwise compared, and for which there is no clear a priori clustering.
The benefits come from the possibility of compressing a comparison matrix consistently, and
eventually clustering some of its entries, thus avoiding the need to perform a new PC process
from scratch (as in the mentioned example regarding shared markets).

Finally, as explained above, we think there are no general guidelines for this clustering
process. An a priori cluster structure with the best number of clusters may not exist. As a
result, a study of adequate rules to this end is an appealing research subject for future study.
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