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Abstract

Regression and feature selection require the minimisation of ‖Xβ − y‖2 with respect
to β, whereX ∈ R

n×p, n < p in feature selection and n ≥ p in regression. The vector
β contains the coefficients of the basis functions in regression, and the weights of the
features in feature selection. This paper considers the stability of β, as measured
by the ratio of its relative error with respect to the relative error in y, and it is
shown that the condition number κ(X) of X is not a good measure of this stability.
In particular, a large value of κ(X) may lead to incorrect conclusions about the
stability of β and it may be thought regularisation must be applied to the normal
equation XTXβ = XT y if κ(X) ≫ 1, but its application may lead to a large error
in β. It is shown in this paper that (a) the presence of noise in y or the condition
κ(X) ≫ 1 do not imply that regularisation must be applied to the normal equation,
and (b) the condition κ(X) ≫ 1 does not imply that a small relative error in y
yields a large relative error in β. These disadvantages of κ(X) lead to the effective
condition number η(X, y), which provides a better measure of the stability of β due
to a perturbation in y, but it is difficult to compute it reliably in some circumstances.
Regularisation requires that a constraint be imposed on the solution of the normal
equation, and it is shown that a constraint on ‖β‖1 can be interpreted in terms of
the column sums of X, and that a constraint on ‖β‖2 can be interpreted in terms
of the singular value decomposition of X. The paper contains several examples that
illustrate the theoretical results.

Key words: Condition estimation; regression; Tikhonov regularisation; feature
selection
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1 Introduction

The determination of the equation of a curve that approximates a set of points
(xi, yi), i = 1, . . . , n, and the determination of the important features that
characterise a system yield the minimisation

min
β

‖Xβ − y‖2 , (1)

where X ∈ R
n×p, β ∈ R

p, y ∈ R
n and rankX = min(n, p). In regression, the

entries of X are functions of the coordinate points xi and the p basis functions
that are used for the representation of the approximating curve, y contains the
data values and β contains the coefficients of the basis functions. Problems in
regression require n ≥ p, but a different situation arises in feature selection
because n < p and there therefore exists an infinite number of solutions β of
(1) because X has a non-trivial null space [1,3,8,9,12]. The situation defined
by n < p also arises in supersaturated designs, in which case X is called the
design matrix [2,10].

The minimisation (1) yields the normal equation

(XTX)β = XTy, (2)

which has, as noted above, an infinite number of solutions if n < p because
XTX is a square matrix of order p and rank n. A unique solution is obtained
by the addition of a constraint, which is imposed either in the 1-norm and
leads to the lasso [8, §3.4.2], [11, §13.3], [12], or in the 2-norm and leads to
ridge regression (also known as Tikhonov regularisation) [8, §3.4.1], [9], [11,
§7.5]. The elastic net is a weighted linear combination of the lasso and ridge
regression, and it therefore requires the minimisation of [13]

‖Xβ − y‖22 + α1 ‖β‖1 + α2 ‖β‖
2
2 , (3)

with respect to β, where α1, α2 ≥ 0, α1 = 0 yields ridge regression and α2 = 0
yields the lasso.

The requirement in feature selection is a sparse solution of (2), that is, a
solution, many of whose components are zero, because it is desired to identify
the dominant features that characterise the system. A true measure of sparsity
of a vector v is ‖v‖00, which is equal to the number of non-zero entries in v,
but ‖v‖0 does not satisfy the triangle inequality because ‖·‖l is not convex for
l < 1, and thus ‖·‖0 is not a norm. The smallest value of l that yields a norm
is l = 1 because ‖·‖l is convex for l ≥ 1. The 1-norm is therefore used for

2



feature selection because it is the best convex approximation of a non-convex
function.

An expression for the solution of (2) for arbitrary values of n and p is obtained
in Section 2, and this leads to Section 3, which considers the computation of
the coefficients of a curve that approximates a set of points. It is shown that
a large value of the condition number κ(X) of X does not imply that (2)
is ill-conditioned because the solution β is a function of X and y, but κ(X)
is a function of X only and it is independent of y. This leads to Section 4,
which considers a refined normwise condition number of (2), called the effec-
tive condition number η(X, y), which is a function of X and y, and therefore
a better measure of the stability of (2). The discrete Picard condition is intro-
duced and it is shown that it plays a crucial role in the characterisation of ill-
conditioned equations [5,6]. If this condition is satisfied, then η(X, y) ≈ κ(X)
and Tikhonov regularisation must be applied to (2) if κ(X) ≫ 1, in which case
an equation whose solution β(λ) is formed, where λ ≥ 0 is the regularisation
parameter whose optimal value λ∗ must be computed.

Tikhonov regularisation is considered in Section 5 and the error between the
solutions β(λ∗) and β(0) is calculated, where β(0) is the solution (2), that is,
β(0) = β. It is shown that this error is small if the discrete Picard condition
is satisfied, but it is large if this condition is not satisfied. It is also shown
that β(λ∗) is numerically stable and it is concluded that the discrete Picard
condition is important for condition estimation and Tikhonov regularisation,
such that if this condition is satisfied, then Tikhonov regularisation yields a
numerically stable solution whose error is small.

It is shown in Section 6 that the effective condition number of the inverse
problem (XTX)β0 = XTy0 and the effective condition number of the forward
problem y0 = Xβ0, that is, the effective condition number of the computation
of y0 given X and β0, satisfy an uncertainty principle because their product
is equal to κ(X). It follows that these computations cannot be simultaneously
well-conditioned or simultaneously ill-conditioned if κ(X) ≫ 1.

The 2-norm is used in Sections 3, 4 and 5, and this allows expressions for
condition numbers and errors in terms of the singular values ofX to be derived.
Although this norm is frequently used, the 1-norm is preferred for feature
selection because, as noted above, this norm is the best convex approximation
of a non-convex function. Section 7 considers condition estimation and error
analysis in the 1-norm, but the absence of a natural matrix decomposition in
this norm makes it harder to derive expressions for condition numbers and
errors in this norm. The paper is summarised in Section 8.
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2 The solutions

This section considers the solution of (2) for arbitrary values of n and p, where
rankX = min(n, p). The SVD of X is USV T , where U and V are orthogonal
matrices,

S =
[

S1 0n,p−n

]

, S1 ∈ R
n×n, n < p,

S = S1, S1 ∈ R
n×n, n = p,

S =







S1

0n−p,p





 , S1 ∈ R
p×p, n > p,

the subscripts on the zero matrices indicate their order and S1 is a square
diagonal matrix whose entries are the singular values si of X , arranged in
non-increasing order. Equation (2) has an infinite number of solutions if n < p,

β = V







S−1
1

0p−n,n





UT y + V







0n

r





 , (4)

where the terms on the right hand side are orthogonal, r ∈ R
p−n is an arbitrary

vector and the second term on the right hand side lies in the null space of X .
It follows from (4) that the minimum norm solution for n < p is

β = XT
(

XXT
)−1

y = V







S−1
1

0p−n,n





UTy,

and only this solution, and not the infinite set of solutions (4), is considered
in feature selection [11–13]. With this restriction, the solution of (2) is

β =











































V







S−1
1

0p−n,n





UTy, n < p, unique minimum norm solution,

V S−1
1 UT y, n = p, unique solution,

V
[

S−1
1 0p,n−p

]

UTy, n > p, unique solution,

and these solutions can be combined into one equation,

β = X†y = V S†UT y, (5)
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where the superscript † denotes pseudo-inverse. This expression for β is the
solution of (2) for arbitrary values of n and p if rankX = min(n, p) and only
the minimum norm solution is considered for n < p.

3 Regression

This section considers the computation of the equation of a curve that passes
through a set of points and it is shown that for a given matrix X , the addition
of noise to y may cause a minor change in β or it may cause a major change in
β. This result shows the problems that may arise when the condition number
of X is used to draw conclusions about the stability of β due to a perturbation
in y.

It follows from (5) that the condition number κ2(X) of X is

κ2(X) = max
δy,y∈Rn

∆β

∆y
=

s1
st
, t = min(n, p), (6)

where

∆β =
‖δβ‖2
‖β‖2

, ∆y =
‖δy‖2
‖y‖2

.

It is often stated that a large value of κ2(X) implies that (2) is ill-conditioned
because a small relative error ∆y in y leads to a large relative error ∆β in
β, but Example 3.1 shows that this is incorrect. It is also often claimed that
the presence of noise in y requires that regularisation must be applied to this
equation, but this is also incorrect. Furthermore, it is shown in Section 5 that
the application of regularisation to (2) when it is not required leads to a large
error in β.

Example 3.1 Regression was performed on two sets of 100 data points (xi, yi),
i = 1, . . . , 100, where the points xi lie in the interval I = [1, . . . , 20]. A linear
combination of 33 radial basis functions was used,

yi =
33
∑

k=1

ak exp

(

−
(xi − dk)

2

2σ2
d

)

, i = 1, . . . , 100,

where σd = 1.35 and the centres dk of the basis functions are not uniformly
distributed in I. The coefficient matrix X is therefore of order 100 × 33, y
stores the function values yi, and β stores the coefficients ak of the radial
basis functions.
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Fig. 1. A set of 100 points and their approximating curve for y = y1.
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Fig. 2. The coefficients ak for (a) y = y1, •, and (b) y = y1 + δy1, •.

The first set of 100 points, which are contained in the vector y = y1, and their
regression curve are shown in Figure 1. Equation (2) was solved twice, once
for the exact data y = y1 and once for the perturbed data y = y1+ δy1, where
the components of δy1 are drawn from a zero mean Gaussian distribution,
such that ‖y1‖2 / ‖δy1‖2 = 2.93× 105. The coefficients ak for these vectors are
shown in Figure 2 and it is seen that the noise has a significant effect because
the error in the coefficients is large. In particular, the maximum values of |ak|
for y = y1 and y = y1 + δy1 are about 250 and 6,200, respectively.

The experiment was repeated for the second set of data points, which are
contained in the vector y = y2. These points and their regression curve
are shown in Figure 3. Gaussian random noise of zero mean was added to
each component of y, thereby forming the vector y = y2 + δy2, such that
‖y2‖2 / ‖δy2‖2 = 1.21× 103. The coefficients ak for these vectors are shown in
Figure 4 and it is seen that the noise δy2 has little effect on the coefficients.

The condition number κ2(X) of X is 5.12 × 108, which would suggest that
(2) is ill-conditioned and it may therefore be thought that bad results are
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Fig. 3. A set of 100 points and their approximating curve for y = y2.
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Fig. 4. The coefficients ak for y = y2 and y = y2 + δy2.

expected for y = y1 + δy1 and y = y2 + δy2. The computational experiments
show, however, that bad results are obtained for y = y1+ δy1 and good results
are obtained for y = y2+ δy2. This difference cannot be explained by the large
value of κ2(X) because the same matrix X is used for both sets of data. �

The next section considers the effective condition number of (2). This is a
more accurate condition estimate because it is a function of X and y, unlike
the condition number, which is a function of X only. It is shown that this
accurate condition estimate allows the results in Example 3.1 to be explained.

4 The effective condition number

Example 3.1 shows that κ2(X) is not a good measure of the stability of β
because there exist vectors y for which (2) is stable, and vectors y for which
this equation is unstable. As noted above, this problem arises because κ2(X)
is a function of X only, and β is a function of X and y. It is therefore necessary
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to develop a measure of stability that is a function of X and y. This refined
measure is called the effective condition number and denoted ηp(X, y), p =
1, 2,∞. 1

Theorem 4.1 Let the relative errors ∆β and ∆y be

∆β =
‖δβ‖p
‖β‖p

, ∆y =
‖δy‖p
‖y‖p

, p = 1, 2,∞.

The effective condition number ηp(X, y) of (2) is equal to the maximum value
of the ratio of ∆β to ∆y with respect to all perturbations δy ∈ R

n,

ηp(X, y) = max
δy∈Rn

∆β

∆y
=

∥

∥

∥X†
∥

∥

∥

p
‖y‖p

‖X†y‖p
. (7)

If p = 2, the effective condition number η2(X, y) is given by

η2(X, y) =
1

st

‖c‖2
‖S†c‖2

, c = UT y, (8)

where t is defined in (6).

Proof It follows from (5) that

‖δβ‖p ≤
∥

∥

∥X†
∥

∥

∥

p
‖δy‖p =

∥

∥

∥X†
∥

∥

∥

p
‖y‖p∆y,

and the division of both sides of this inequality by ‖β‖p =
∥

∥

∥X†y
∥

∥

∥

p
yields

∆β =
‖δβ‖p
‖β‖p

≤







∥

∥

∥X†
∥

∥

∥

p
‖y‖p

‖β‖p





∆y =







∥

∥

∥X†
∥

∥

∥

p
‖y‖p

‖X†y‖p





∆y,

from which (7) and (8) follow. �

The effective condition number is defined for p = 1, 2,∞ in (7) and its form for
p = 2 is given in (8). Subsequent analysis in this section, and Section 5, which
considers Tikhonov regularisation, is restricted to p = 2 because extensive use

1 The symbol p is used to denote the number of columns of X and the norm, 1, 2
or ∞, of vectors and matrices. The meaning of p is, however, clear from the context.
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is made of the SVD of X . The absence of equivalent matrix decompositions
for the 1- and ∞-norms makes analysis in these norms more difficult.

It is easily established that the minimum value of ηp(X, y) is one, and that for
p = 2, it is attained for c = ket where k is an arbitrary constant and ei is the
ith unit basis vector. Upper bounds on η2(X, y) are considered in Theorem
4.2 and it is shown that the situations n ≤ p and n > p must be considered
separately.

Theorem 4.2 Equation (8) can be written as

η2(X, y) =
1

st







∑n
i=1 c

2
i

∑t
i=1

(

ci
si

)2







1

2

=
(

s1
st

)







∑n
i=1 c

2
i

∑t
i=1

(

s1
si

)2
c2i







1

2

, (9)

and thus upper bounds on η2(X, y) are

η2(X, y) ≤















κ2(X) if n ≤ p,

κ2(X)
(

1 +

∑n

i=p+1
c2
i

∑p

i=1
c2
i

)
1

2

if n > p.

(10)

Proof If n ≤ p, then t = n and thus (9) yields

(

s1
st

)







∑n
i=1 c

2
i

∑t
i=1

(

s1
si

)2
c2i







1

2

=
(

s1
sn

)







∑n
i=1 c

2
i

∑n
i=1

(

s1
si

)2
c2i







1

2

≤
s1
sn

,

and the result follows.

Consider now the situation n > p, for which XT (Xβ − y) = 0 does not imply
Xβ = y because XTv = 0 for at least one vector v 6= 0. If β0 is the solution
of (2), then the residual r of Xβ0 = y for n > p is

r = Xβ0 − y,

and it is easily verified that

‖Xβ0‖
2
2 =

∥

∥

∥XX†y
∥

∥

∥

2

2
and ‖r‖22 + ‖Xβ0‖

2
2 = ‖y‖22 .

If the angle θ satisfies
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‖r‖2 = ‖y‖2 sin θ and ‖Xβ0‖2 = ‖y‖2 cos θ,

then

cos θ =
‖Xβ0‖2
‖y‖2

=

∥

∥

∥XX†y
∥

∥

∥

2

‖y‖2
=

(

∑p
i=1 c

2
i

∑n
i=1 c

2
i

) 1

2

,

and thus

η2(X, y) ≤
κ2(X)

cos θ
if n > p,

from which (10) follows. �

It follows from Theorem 4.2 that if n > p, the minimum value of the upper
bound of η2(X, y) occurs when cos θ = 1, that is, when ci = 0, i = p+1, . . . , n.
The maximum value of this upper bound, η2(X, y) → ∞, occurs when ci =
0, i = 1, . . . , p.

If n = p, then

η2(X, y) =
1

sn

‖c‖2
‖S−1c‖2

=
1

sn

∥

∥

∥UT y
∥

∥

∥

2

‖S−1UT y‖2
,

and thus

max
y∈Rn

η2(X, y) = max
y∈Rn

1

sn

∥

∥

∥UT y
∥

∥

∥

2

‖S−1UT y‖2
=

s1
sn

= κ2(X),

which is attained when UT y is proportional to e1, that is, y is aligned along
the first column of U . This equation shows the difference between η2(X, y)
and κ2(X) because η2(X, y) is equal to the maximum value of µ = ∆β/∆y with
respect to all vectors δy ∈ R

n but κ2(X, y) is equal to the maximum value of
µ with respect to all vectors δy, y ∈ R

n. It is clear that the relative errors ∆β
and ∆y for the calculation of µ are defined in the 2-norm.

It follows from (9) that η2(X, y) ≈ κ2(X) if n ≤ p or ci = 0, i = p + 1, . . . , n,
and the discrete Picard condition is satisfied [5,6].

Definition 4.1 (The discrete Picard condition) The discrete Picard con-
dition requires that the ratio |ci|/si decrease to zero as i → t,

10



|ci|

si
→ 0 as i → t, (11)

which implies that the constants |ci| tend to zero faster than the singular
values tend to zero. �

If the discrete Picard condition is satisfied, then

t
∑

i=1

c2i
s2i

≈
c21
s21

and
t
∑

i=1

c2i ≈ c21,

and it follows from (9) that η2(X, y) ≈ s1/st = κ2(X). More generally, it fol-
lows from y = Uc that (2) is ill-conditioned if the dominant components of
y lie along the columns ui of U that are associated with small values of i.
The solution β is therefore dominated by the contribution of the large singu-
lar values of X , and the small singular values are not significant. Similarly,
it follows from (8) that (2) is well-conditioned if η2(X, y) ≈ 1, that is, the
dominant components of y lie along the columns ui of U that are associated
with large values of i. It therefore follows that β is dominated by the small
singular values of X , and the contribution of the large singular values is small.

Example 4.1 Consider the vectors y1 and y2 in Example 3.1. It was shown
that (2) is ill-conditioned for y = y1 and it is well-conditioned for y = y2.
These results are confirmed by the effective condition numbers of (X, y1) and
(X, y2) because

η2(X, y1) = 4.62× 108 and η2(X, y2) = 7.94.

�

It follows from Theorem 4.1 and Example 4.1 that the effective condition
number η2(X, y) provides a good measure of the stability of (2). More careful
analysis shows, however, that if the discrete Picard condition (11) is satisfied,
then η2(X, y) cannot be computed accurately because it is sensitive to noise

δy. In particular, consider the term ‖β‖2 =
∥

∥

∥S†c
∥

∥

∥

2
in the denominator of (8).

If noise is present, then the square of the magnitude of the perturbed solution
of (2) is

‖β + δβ‖22 =
∥

∥

∥X†(y + δy)
∥

∥

∥

2

2
=
∥

∥

∥S†(c+ δc)
∥

∥

∥

2

2
=

t
∑

i=1

(

ci + δci
si

)2

, (12)

which is equal to the sum of the squares of the terms, in the presence of noise,
that define the discrete Picard condition. If the magnitude of the perturbations

11



i

(c)

(b)

(a)

Fig. 5. The ratios (a) |ci|/si, (b) |δci|/si and (c) |ci+δci|/si if the discrete Picard condition
is satisfied.

δci is approximately constant, |δci| ≈ ǫ, i = 1, . . . , t, such that

|δci| ≪ |ci| , i = 1, . . . , r − 1,

|δci| ≈ |cr| , i = r,

|δci| ≫ |ci| , i = r + 1, . . . , t,

(13)

and the discrete Picard condition is satisfied, then

|ci + δci|

si
≈



























|ci|
si

≫ |δci|
si

, i = 1, . . . , r − 1,

|cr+δcr |
sr

, i = r,

|δci|
si

≫ |ci|
si
, i = r + 1, . . . , t,

(14)

and the ratios |ci|/si, |δci|/si and |ci+δci|/si are shown in Figure 5. It follows from
(12) and (14) that if the discrete Picard condition is satisfied, then ‖β + δβ‖2
is dominated by noise because of the contribution to the sum of the terms
defined by i = r + 1, . . . , t. The ratio |ci|/si cannot, therefore, be computed
reliably in the presence of noise, and thus the satisfaction, or otherwise, of the
discrete Picard condition cannot be determined. The practical implications of
this result are considered at the end of this section.

The discrete Picard condition is defined in (11) and its satisfaction guarantees
that (2) is ill-conditioned. The importance of this condition is most easily seen
by considering other profiles of this ratio. For example, if (13) is satisfied and
the ratio |ci|/si is approximately constant,

12



|ci| ≈ si, i = 1, . . . , t, (15)

then η2(X, y) cannot be computed reliably because

|ci + δci|

si
≈

|δci|

si
, i = r + 1, . . . , t.

If, however, the constants |ci| increase sufficiently rapidly with i, then

|ci+1| ≫ |ci| and
|ci+1|

si+1
≫

|ci|

si
, i = 1, . . . , t− 1, (16)

and the magnitude of the perturbations |δci| is approximately constant, |δci| ≈
ǫ, i = 1, . . . , t, such that

|δci| ≥ |ci| , i = 1, . . . , r,

|δci| ≪ |ci| , i = r + 1, . . . , t,
(17)

then η2(X, y) can be computed reliably because the effect of the perturbations
δci is small.

It is clear that the forms (11), (15) and (16) of the ratio |ci|/si are not satisfied
exactly in practical examples, but the analysis in this section and Section 5,
which considers Tikhonov regularisation, shows their importance for condi-
tion estimation and error analysis. In particular, they characterise the matrix-
vector pairs (X, y) for which (2) is ill-conditioned and therefore requires regu-
larisation, and the matrix-vector pairs (X, y) for which (2) is well-conditioned
and regularisation must not be imposed.

Example 4.2 Consider the vectors y1 and y2 in Example 3.1. Figure 6 shows
the ratios log10 |ci|/si and log10 |ci+δci|/si for the exact data y = y1 and the
perturbed data y = y1 + δy1, and Figure 7 shows the same quantities for the
exact data y = y2 and the perturbed data y = y2 + δy2. Figure 6 shows that
the data y = y1 satisfies the discrete Picard condition, but this condition is
not satisfied for i > 18 if noise δy1 is present. The figure suggests that r ≈ 18,
where r is defined in (13) and (14), and thus the sum (12) is dominated by
noise, that is, the terms defined by i = 19, . . . , 33. By contrast, Figure 7 shows
that the noise δy2 has very little effect on the ratio |ci|/si for the data y = y2
and that the dominant term in the sum (12) is

(

c33 + δc33
s33

)2

≈
(

c33
s33

)2

.
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Fig. 6. The ratio log10 |ci|/si for the exact data y = y1 and the ratio log10 |ci+δci|/si
for the perturbed data y = y1 + δy1.

5 10 15 20 25 30
i

0

1

2

3

4

5

6

7

Fig. 7. The ratio log10 |ci|/si for the exact data y = y2 and the ratio log10 |ci+δci|/si
for the perturbed data y = y2 + δy2.

�

The analysis above shows that if (11) or (15) are satisfied, then the effective
condition number η2(X, y) cannot be computed reliably. This is a problematic
result because regularisation is required if either of these equations is satisfied,
but the effective condition number cannot be used to determine this require-
ment. In this situation, prior information must be given in order to establish if
(2) is ill-conditioned, and this determines the form of regularisation to be ap-
plied. For example, the removal of blur from an image yields an ill-conditioned
equation and it is known that the theoretically exact solution (the deblurred
image) satisfies the discrete Picard condition, in which case Tikhonov regu-
larisation or truncated singular value decomposition can be used to obtain a
computationally stable solution that has a small error [7, §5.6].

A different situation arises if (16) and (17) are satisfied because η2(X, y) is
approximately independent of the singular values of X and it can be computed
reliably,
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η2(X, y) =
1

st

‖c‖2
‖S†c‖2

≈
|ct|

st
(

|ct|
st

) = 1.

5 Tikhonov regularisation

It was shown in Section 4 that (2) is ill-conditioned if the discrete Picard
condition (11) is satisfied, and it is shown in this section that, in this case,
Tikhonov regularisation yields an approximate solution β(λ∗) of (2), where
λ∗ ≥ 0 is the optimal value of the regularisation parameter. It is shown in
Section 5.1 that the error between this solution and the theoretically exact
solution of (2), called the regularisation error, is small. An expression for the
effective condition number of β(λ∗) is developed in Section 5.2 and it is shown
that it is much smaller than the effective condition number η2(X, y) of (2).
The satisfaction of these two conditions implies that β(λ∗) is a regularised
solution of (2).

5.1 The regularisation error

The specification α1 = 0 and λ = α2 in (3) yields Tikhonov regularisation,
which requires the solution of

(XTX + λI)β(λ) = XTy, λ ≥ 0, (18)

and thus

β(λ) = V (STS + λI)−1ST c, (19)

where c is defined in (8). It is assumed n ≥ p, that is, t = p, and thus this
equation is written as

β(λ) = V
(

(STS + λI)−1STS
)

S†c = V FS†c,

where

SS† = S(STS)−1ST =







Ip 0p,n−p

0n−p,p 0n−p,n−p





 ,

and F is a square diagonal matrix of order p,
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F = (STS + λI)−1STS = diag {fi}
p

i=1 = diag

{

s2i
s2i + λ

}p

i=1

.

The functions fi are called filter factors because λ determines the singular
values that are removed from, and the singular values that are retained in,
the solution β(λ). For example, if λ ≈ s2r and the singular values are well-
separated, then

fi ≈ 1, i = 1, . . . , r − 1,

fi ≈
1
2
, i = r,

fi ≈ 0, i = r + 1, . . . , p,

and thus only the first r singular values are retained in β(λ). Furthermore,
the condition λ = 0 yields F = Ip, which corresponds to the solution (5).

It is assumed y is known exactly and thus only the regularisation error, that is,
the error caused by the term λI in the coefficient matrix in (18), is considered.
This error is denoted ∆(λ) and it is considered in Theorem 5.1.

Theorem 5.1 If p = min(n, p), the regularisation error ∆(λ) is given by

∆(λ) =
‖β(λ)− β(0)‖2

‖β(0)‖2
= λ







∑p
i=1

(

ci
si

)2
1

(s2
i
+λ)2

∑p
i=1

(

ci
si

)2







1

2

. (20)

Proof It follows from (19) that

β(λ)− β(0) = V
(

(STS + λI)−1 − (STS)−1
)

ST c, (21)

where STS is a square non-singular matrix of order p, and

(STS + λI)−1 − (STS)−1=
(

(

I + λ(STS)−1
)−1

− I
)

(STS)−1

=diag











1

1 + λ
s2
i



− 1







diag

{

1

s2i

}

=diag

{

−λ

s2i + λ

}

diag

{

1

s2i

}

,

for i = 1, . . . , p. It therefore follows from (21) that
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V T (β(λ)− β(0))= diag

{

−λ

si(s2i + λ)

}





















c1

c2
...

cp





















=−λ
[

c1
s1(s21+λ)

c2
s2(s22+λ)

· · · cp
sp(s2p+λ)

]T

.

It follows from (19) and this equation that

‖β(0)‖22 =
p
∑

i=1

(

ci
si

)2

and ‖β(λ)− β(0)‖22 = λ2
p
∑

i=1

(

ci
si

)2 1

(s2i + λ)2
,

and the result (20) follows. �

Several methods for computing the optimal value λ∗ of λ are discussed in [6,
§7] and [7, §6.4], and it is assumed that λ∗ satisfies

λ∗ ≪ s2i , i = 1, . . . , r − 1,

λ∗ ≈ s2i , i = r,

λ∗ ≫ s2i , i = r + 1, . . . , p.

(22)

The error ∆(λ∗) is analysed by considering the forms of the ratio |ci|/si, as
shown in (11), (15) and (16).

Case 1 The discrete Picard condition (11) is satisfied, in which case

max
i=1,...,p

{

|ci|

si

}

≈
|c1|

s1
,

and thus from (20) and (22),

∆(λ∗) ≈
λ∗

s21 + λ∗
≈

λ∗

s21
≪ 1. (23)

Case 2 The constants ci satisfy (15), in which case it follows from (22) that
the numerator in (20) is given by
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p
∑

i=1

(

ci
si

)2
(

λ∗

s2i + λ∗

)2

≈
p
∑

i=1

(

λ∗

s2i + λ∗

)2

=
r−1
∑

i=1

(

λ∗

s2i + λ∗

)2

+

(

λ∗

s2r + λ∗

)2

+

p
∑

i=r+1

(

λ∗

s2i + λ∗

)2

≈
r−1
∑

i=1

(

λ∗

s2i

)2

+
1

4
+ (p− r)

≈ p− r,

and since ‖β0‖
2
2 ≈ p, it follows from (20) that

∆(λ∗) ≈

(

p− r

p

) 1

2

< 1. (24)

Case 3 Equation (16) is satisfied and thus

∆(λ∗) ≈
λ∗
(

cp
sp

)

1
(s2p+λ∗)

(

cp
sp

) =
λ∗

s2p + λ∗
≈ 1, (25)

because Tikhonov regularisation filters out all the components of β(λ∗). In
particular, the dominant components of y lie along the columns ui of U that
are associated with large values of i, and the small singular values of X are
therefore significant in β(λ∗). Tikhonov regularisation filters out, however,
these small singular values and thus β(λ∗) ≈ 0.

It follows from (23), (24) and (25) that the error ∆(λ∗) is strongly dependent
on the form of the ratio |ci|/si. In particular:

• Case 1: The ratio |ci|/si decreases and thus the discrete Picard condition (11)
is satisfied. The error ∆(λ∗) is approximately inversely proportional to the
reciprocal of the square of the largest singular value.

• Case 2: The ratio |ci|/si is approximately equal to one and the error ∆(λ∗)
is approximately constant and therefore independent of the singular values.

• Case 3: The ratio |ci|/si increases and the error ∆(λ∗) is approximately equal
to one, which is its maximum value because β(λ∗) ≈ 0.

These results, and the results in Section 4, show that if the discrete Picard
condition is satisfied, then (2) is ill-conditioned and Tikhonov regularisation
yields an approximate solution β(λ∗) and its regularisation error ∆(λ∗) is
small. The condition that β(λ∗) is a regularised solution of (2) also requires
that it is numerically stable, and this issue is addressed in the next section by
considering the effective condition number of (18) when λ = λ∗.
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5.2 The effective condition number of the regularised solution

The effective condition number of (18) is easily established from Theorem 4.1
and (19). As in Section 5.1, it is assumed that p = min(n, p), in which case
STS is a square non-singular diagonal matrix of order p. If ∆β(λ∗) is the
relative error in β(λ∗), then the effective condition number of β(λ∗) is

η2(X, y, λ∗) = max
δy∈Rn

∆β(λ∗)

∆y
=

∥

∥

∥(STS + λ∗I)−1ST
∥

∥

∥

2
‖c‖2

‖(STS + λ∗I)−1ST c‖2
. (26)

The terms in the numerator and denominator in this expression are considered
separately and it is shown that if the discrete Picard condition is satisfied, then
η2(X, y, λ∗) ≪ η2(X, y).

The square of the term in the denominator of (26) is

∥

∥

∥(STS + λ∗I)−1ST c
∥

∥

∥

2

2
=

p
∑

i=1

(

sici
s2i + λ∗

)2

=
p
∑

i=1

(

s2i
s2i + λ∗

)2 (
ci
si

)2

, (27)

and since the singular values are arranged in non-increasing order, si > sj for
i < j, it follows that

s2i
s2i + λ∗

>
s2j

s2j + λ∗
if i < j.

Since the discrete Picard condition is satisfied and λ∗ satisfies (22), it follows
from (27) that

∥

∥

∥(STS + λ∗I)−1ST c
∥

∥

∥

2
≈

|c1|

s1
. (28)

Consider now the numerator in (26), for which, from (22),
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∥

∥

∥(STS + λ∗I)−1ST
∥

∥

∥

2
= max

i=1,...,p

{

si
s2i + λ∗

}

=max

{

max
i=1,...,r−1

{

si
s2i + λ∗

}

,
sr

s2r + λ∗
,

max
i=r+1,...,p

{

si
s2i + λ∗

}}

≈max
{

max
i=1,...,r−1

{

1

si

}

,
1

2sr
, max
i=r+1,...,p

{

si
λ∗

}}

≈max

{

1

sr−1

,
1

2sr
,
sr+1

s2r

}

=
(

1

sr

)

max

{

sr
sr−1

,
1

2
,
sr+1

sr

}

=
γ

sr
,

1

2
≤ γ ≤ 1,

and thus from (28),

η2(X, y, λ∗) ≈ γ

(

‖c‖2
|c1|

)

(

s1
sr

)

≈ γ
s1
sr

≪
s1
sp

≈ η2(X, y),

because the satisfaction of the discrete Picard condition implies that the con-
stants |ci| decrease to zero faster than the singular values decrease to zero, and
thus ‖c‖2 ≈ |c1|. This is the desired result because the value λ∗ ≈ s2r implies
that only the first r singular values are included in the expression for β(λ∗).
The combination of this result and the analysis in Section 5.1 shows that if
the discrete Picard condition is satisfied, then β(λ∗) is a regularised solution
of (2) because it is numerically stable and the regularisation error is small.

6 An uncertainty principle

It is shown in this section that the effective condition number of (2) for y = y0
and β = β0, and the effective condition number of y0 = Xβ0, that is, the
effective condition number of the computation of y0, given X and β0, satisfy
an uncertainty principle because these problems cannot be simultaneously ill-
conditioned or simultaneously well-conditioned if κ(X) ≫ 1 since the product
of the effective condition numbers is equal to κ(X). It is assumed, from (10),
that

n ≤ p or ci = 0, i = p+ 1, . . . , n, (29)
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in which case the maximum value of η2(X, y) is κ2(X), that is, ηp(X, y), p =
1, 2,∞, is finite.

It was shown in Theorem 4.1 that if y = y0, then the effective condition
number of the solution β0 of the inverse problem (2) is

ηinvp (X, y0) = max
δy0∈Rn

∆β0

∆y0
=

∥

∥

∥X†
∥

∥

∥

p
‖y0‖p

‖X†y0‖p
, p = 1, 2,∞. (30)

Consider now the forward problem y0 = Xβ0, for which it is easily established
that the effective condition number is

ηfwd
p (X, β0) = max

δβ0∈Rp

∆y0
∆β0

=
‖X‖p ‖β0‖p
‖Xβ0‖p

, p = 1, 2,∞, (31)

and thus the product of the effective condition numbers is

ηinvp (X, y0)η
fwd
p (X, β0) = ‖X‖p

∥

∥

∥X†
∥

∥

∥

p
= κp(X), p = 1, 2,∞. (32)

It follows from this uncertainty principle that if the inverse problem is well-
conditioned (ill-conditioned), then the forward problem is ill-conditioned (well-
conditioned), assuming (29) is satisfied. This result cannot be obtained from
κp(X) because this measure of the stability of the forward and inverse prob-
lems suggests that these problems can be simultaneously ill-conditioned or
simultaneously well-conditioned.

It was shown in Sections 4 and 5 that the discrete Picard condition is essen-
tial for condition estimation and regularisation in the 2-norm. Equation (32)
is used in Section 7 to calculate the equivalent conditions for the effective
condition number η1(X, y) and regularisation in the 1-norm.

7 Computations in the 1-norm

The regression of two sets of data points was considered in Example 3.1 and
it was shown that a large value of the condition number κ2(X) does not imply
that the solution β of (2) is sensitive to a perturbation in y. The equality of
matrix norms implies that this result is also valid when the condition numbers
κ1(X) and κ∞(X) are used, and Example 7.1 considers this issue for the 1-
norm when n < p, which arises in feature selection. Regularisation in the
1-norm only is obtained by specifying λ = α1 and α2 = 0 in (3), in which case
it is required to minimise
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‖Xβ − y‖22 + λ ‖β‖1 , (33)

with respect to β, where λ is the regularisation parameter.

The discrete Picard condition was introduced in Section 4 and its importance
in condition estimation, using the 2-norm, and Tikhonov regularisation were
considered in detail. It is instructive to consider the equivalent condition when
regularisation in the 1-norm is used, as shown in (33).

The maximum value of the effective condition number of the inverse problem

It follows from (32) that this maximum value is obtained when the effective
condition number of the forward problem attains its minimum value. Equa-
tion (31) shows that this minimum value is achieved for the vector β0 that
maximises ‖Xβ0‖1/‖β0‖1, that is, β0 is proportional to er where r is the index
of the column of X that has maximum 1-norm,

β0 = ker, y0 = kXer, ηfwd
1 (X, β0) = 1, ηinv1 (X, y0) = κ1(X), (34)

and k is a non-zero constant.
The minimum value of the effective condition number of the inverse problem

It follows from (30) that this minimum value is attained when y0 is propor-
tional to er where r is the index of the column of X† that has maximum
1-norm,

y0 = ker, β0 = kX†er, ηfwd
1 (X, β0) = κ1(X), ηinv1 (X, y0) = 1,

and k is a non-zero constant.

These results for ηinvp (X, y), p = 1, 2, are shown in Table 1.

p Approx. min. value of ηinvp (X, y) Approx. max. value of ηinvp (X, y)

1 Dominant components of y Dominant components of y

lie along the columns of lie along the columns of

X† whose 1-norms are large. X whose 1-norms are large.

2 Dominant components of y lie Dominant components of y lie

along the last few columns of along the first few columns of

the left singular matrix U of X. the left singular matrix U of X.

Table 1
The forms of y for which ηinvp (X, y), p = 1, 2, attains, approximately, its minimum
and maximum values.

Example 7.1 The matrix X is of order 90×101, where the entries in the first
column are one, the entries in columns 2 to 81 inclusive are drawn from the
standard normal distribution, and the entries in the last 20 columns are inde-
pendent and drawn from a Bernoulli distribution with probability of success
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Fig. 8. The column sums of X.
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Fig. 9. The column sums of X†.

0.5. The entries in columns 2 to 101 inclusive are normalised, such that the
mean and variance of the entries in each of these columns are zero and one,
respectively. The condition number of X is κ1(X) = 1.24× 108, and Figures 8
and 9 show the sum of the entries in each column of X and X†, respectively. It
is seen that the 1-norm of the first column of X is 87.29, and that the 1-norm
of the other columns is about 10. These norms show much greater variation
for X† because they range from 17.4 (column 16) to 1.42× 106 (column 27).

A vector y = y1 was chosen such that η1(X, y1) = 4.46×106 and the coefficients
of the minimum norm solution β1 = X†y1 are shown in Figure 10. It is seen
that the leading coefficient of β1 is equal to 1039 and that the magnitude of
the other 100 coefficients is less than 50. This result is consistent with (34)
because the column of X whose 1-norm is the maximum is the first column
(r = 1 in (34)), and the leading coefficient of β1 is about three orders of
magnitude larger than the other coefficients.

The function lasso inMatlab was used to regularise the solution by minimis-
ing (33). The mean square error was calculated using 10-fold cross-validation
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Fig. 10. The coefficients of the minimum norm solution β1 = X†y1.

and the value of λ∗, the regularisation parameter λ for which this error was
a minimum, was λ∗ = 1.498. The relative error in the regularised solution
βreg
1 (λ∗) was

‖Xβreg
1 (λ∗)− y1‖2
‖y1‖2

= 2.78× 10−2. (35)

The experiment was repeated with the same matrix X , but a vector y = y2
was used, such that η1(X, y2) = 22.03. As described above for y = y1, 10-fold
cross-validation was used to calculate the optimal value, λ∗ = 1.725×10−2, of
the regularisation parameter λ. The relative error in the solution βreg

2 (λ∗) was

‖Xβreg
2 (λ∗)− y2‖2
‖y2‖2

= 0.86, (36)

which is large, and this regularised solution is therefore unsatisfactory. The
maximum value of the error measures (35) and (36) is one because the coeffi-
cients of the regularised solution tend to zero as λ increases,

‖βreg
1 (λ)‖p , ‖β

reg
2 (λ)‖p → 0 as λ → ∞, p = 1, 2,∞. (37)

Figure 11 shows the variation of the relative error in the regularised solution
with λ for y = y1. The values of λ are not uniformly distributed between its
minimum value (λ = λ∗ = 1.498) and its maximum value (λ = 763). It is seen
that the error is approximately equal to one for large values of λ, and this
upper bound on the maximum value of the error as λ → ∞, which follows
from (35), (36) and (37), shows that the error (35) is 2.78% of its maximum
value and the error (36) is 86% of its maximum value. �

The results in Example 7.1 are similar to the results in Example 3.1 because
they show that regularisation can only be applied to (2) if specific conditions
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Fig. 11. The variation of the relative error in the regularised solution with the
regularisation parameter λ for y = y1. The optimal value λ∗ of λ is marked in the
figure.

between X and y are satisfied. In this circumstance, an approximate solu-
tion of (2) is a regularised solution because it is numerically stable and the
regularisation error is small. If, however, these conditions are not satisfied,
then the regularisation error is large and the computed solution is therefore
unsatisfactory.

The smoothing function ‖β‖22 is the simplest regularisation function, but more
general smoothing functions may need to be considered, for example, ‖Lβ‖22
where L is a discrete derivative operator. The simplest such operator is the
first derivative operator,

L =





























1 −1

1 −1

1 −1
. . .

. . .

1 −1





























∈ R
(p−1)×p,

and if α1 = 0 in (3), then the function to be minimised is

‖Xβ − y‖22 + λ ‖Lβ‖22 ,

where λ is the regularisation parameter. This function is most conveniently
considered by using the generalised singular value decomposition of the matrix
pair (X,L) [4].
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8 Summary

This paper has addressed condition estimation and error analysis of a reg-
ularised solution of (2), where the regularising constraint is imposed in the
1-norm or 2-norm. It was shown that the condition number of X is not a good
measure of the stability of this equation, and that the effective condition num-
ber provides a better measure of this stability. This led to the establishment
of the discrete Picard condition, the satisfaction of which implies that (2) is
ill-conditioned. It was shown that if this condition is satisfied, then Tikhonov
regularisation yields a solution that is numerically stable and has a small error.

Feature selection yields an underdetermined equation and regularisation in the
1-norm is usually applied because it is desired to compute a sparse solution of
(2). It was shown that specific conditions between X and y must be satisfied
in order that this sparse solution is a regularised solution. The development
of expressions for condition estimation and error analysis is harder in the 1-
norm than in the 2-norm because there does not exist a natural 1-norm matrix
decomposition. It was shown that the column sums of X are important for
analysis in the 1-norm, and this norm must be considered in more detail
because of its extensive use in feature selection.
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