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Abstract

Non-stationary and non-linear signals are ubiquitous in real life. Their decomposition and analysis is
an important research topic of signal processing. Recently a new technique, called Iterative Filtering, has
been developed with the goal of decomposing such signals into simple oscillatory components. Several
papers have been devoted to the investigation of this technique from a mathematical point of view.
All these works start with the assumption that each compactly supported signal is extended periodically
outside the boundaries. In this work, we tackle the problem of studying the influence of different boundary
conditions on the decompositions produced by the Iterative Filtering method. In particular, the choice of
boundary conditions gives rise to different types of structured matrices. Thus, we describe their spectral
properties and then convergence properties of Iterative Filtering algorithm (in which such matrices are
involved). Numerical results provide an interesting overview on important aspects (such as accuracy and
error propagation) of the techniques proposed and show the way of further promising developments.

1 Introduction

Given a real life non-stationary signal s(x), x ∈ R, we may be interested in decomposing it into simple
components in order to identify features and quasi periodicities hidden in it. We can think, for instance,
to a economic index, like the GDP of a nation, or a geophysical signal, like the sea level during a tsunami,
as well as to an engineering measure, like the vibrations of a structure or machinery. Standard techniques,
like Fourier or wavelet transform, cannot help, in general, to decompose meaningfully non-stationary signals.
Whereas, following the idea proposed by Huang et al. in [8], we can iteratively decompose such signals into a
finite sequence of simple components, defined Intrinsic Mode Functions (IMFs), which fulfill two properties:
i) the number of extrema and the number of zero crossings must either equal or differ at most by one;
ii) considering upper and lower envelopes connecting respectively all the local maxima and minima of the
function, their mean has to be zero at any point.

The method originally proposed by Huang et al. in [8], called Empirical Mode Decomposition (EMD),
proved to be unstable to small perturbations. For this reason an alternative algorithm, called Ensemble
Empirical Mode Decomposition (EEMD), was proposed in [14] which is based on the idea of applying EMD
to an ensemble of signals produced perturbing hundreds of times the given one with noise. The decomposition
is then derived as the average decomposition of the ensemble. In [10] the authors proposed an alternative
technique to the EMD, called Iterative Filtering (IF), which has the very same structure of EMD, but it is
stable and convergent both in the continuous setting [4, 9] and in the discrete one [6, 7]. We point out that IF
has been also generalized producing the so called Adaptive Local Iterative Filtering (ALIF) algorithm whose
convergence and stability are under investigation [4, 3]. For further details on why standard techniques may
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fail in decomposing a non-stationary signal and the advantages of using EEMD or IF we refer the interested
reader to [2].

In this work we consider the case of compactly supported and discrete signals. For simplicity we assume
that each signal s = [s(xj)]

n−1
j=0 (with n ∈ N) is supported on [0, 1] and it is sampled at n points xj = j

n−1 ,

with j = 0, . . . , n− 1. Without loosing generality we can further assume that ‖s‖2 = 1.
Any signal decomposition method which deals with a compactly supported signal requires assumptions

on how the signal extends outside the boundaries, the so called Boundary Conditions (BCs). This aspect
has a key role in many applications, for instance in image restoration [12], and usually the goal is to employ
BCs able to guarantee good accuracy of the approximated solution computed by some numerical algorithm
[11]. Regarding IF, in [6] the authors addressed its convergence when it is assumed that the signals extend
periodically outside the boundaries. The questions which are still open are: does IF converge also for other
kinds of BCs? Given a signal extended artificially outside the boundaries in a certain way, how do the errors
introduced outside the boundaries effect the decomposition in the iterations? Given a compactly supported
signal what is the best choice in terms of BCs?

The paper is organized as follows. In Section 2 we review the IF algorithm applied to discrete and
compactly supported signals. Section 3 is devoted to a summary of BCs and their properties. In Section
4 we study the IF convergence when different BCs are chosen for the signal. In Section 5 we present an
extended version of IF method, which is useful for addressing the question of how the errors propagate from
outside the boundaries to the inside. This work ends with some numerical examples showing the impact of
BCs on decomposition quality and error propagation in Section 6, and concluding remarks in Section 7.

2 Discrete Iterative Filtering

In this section we review the IF method focusing on the case of discrete and compactly supported signals s.
We start from the definition of filter

Definition 1. A non-negative vector w = (0, . . . , 0, w−l, . . . , w−1, w0, w1, . . . , wl, 0, . . . , 0) ∈ R
n such that

wj > 0 for j = −l, . . . , l and
l
∑

j=−l

wj = 1 is called a filter of length l, with 0 < l ≤ ⌊n−1
2 ⌋. If a filter is such

that w−j = wj for j = 1, . . . , l, then w is called symmetric. If a filter is such that for 0 ≤ i < j, wi ≥ wj

and for j < i ≤ 0, wi ≥ wj , then w is called decreasing.

In this work we consider only symmetric filters. When we have a symmetric filter associated with some
step m, we employ the following notation

wm = (0, . . . , 0, wm
lm
, . . . , wm

1 , wm
0 , wm

1 , . . . , wm
lm
, 0, . . . , 0), (1)

with wm
0 + 2

lm
∑

j=1

wm
j = 1.

If we assume that some filter shape h : [−1, 1] → R (symmetric with respect to y-axis) has been selected
a priori, like one of the Fokker-Planck filters described in [4], then the elements wm

j can be computed, for
j = 0, 1, . . . , lm, by the linear scaling formula

wm
j = h

(

j

lm

)

1

lm
, (2)

where lm is the length that characterizes the filter. Assuming sm1 = s, where the two indices will become
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clear in the next paragraph, the main step of the IF method, for i = 0, . . . , n− 1, is

smk+1(xi) = smk (xi)−
∫ xi+

lm
n−1

xi−
lm
n−1

smk (y)h

(

(xi − y)(n− 1)

lm

)

n− 1

lm
dy

≈ smk (xi)−
xi+

lm
n−1

∑

xj=xi−
lm
n−1

smk (xj)h

(

(xi − xj)(n− 1)

lm

)

1

lm

= smk (xi)−
i+lm
∑

j=i−lm

smk (xj)h

(

i− j

lm

)

1

lm

= smk (xi)−
i+lm
∑

j=i−lm

smk (xj)w
m
|i−j|

Algorithm 1 provides the pseudocode of the Discrete Iterative Filtering (DIF) Algorithm. We observe
that the first while loop is called Outer Loop, whereas the second one Inner Loop. In the notation smk , m
denotes the step relative to the Outer Loop, while k denotes the step relative to the Inner Loop. The idea

Algorithm 1 Discrete Iterative Filtering IMFs = DIF(s, h)

m = 1
sm1 = s

while the number of extrema of sm1 ≥ 2 do

k = 1
compute the filter length lm for the signal smk
compute wm (having h and lm)
while the stopping criterion is not satisfied do

(smk )BC(xi) = smk (xi), i = 0, . . . , n− 1
apply BCs for computing (smk )BC(xi), i = −lm, . . . ,−1 and i = n, . . . , n− 1 + lm

smk+1(xi) = smk (xi)−
i+lm
∑

j=i−lm

(smk )BC(xj)w
m
|i−j|, i = 0, . . . , n− 1

k = k + 1
end while

fm = smk
sm+1
1 = sm1 − fm
m = m+ 1

end while

fm = sm1
IMFs = {f1, . . . , fm}

is to suitably choose the filter length lm in order to capture the desired frequencies in the IMF fm, and this
is done by subtracting iteratively from the signal its moving average computed as convolution of the signal
itself with the selected filter. In matrix form we have

smk+1 = (I −Wm)smk , (3)

where Wm is a structured matrix constructed from the filter wm and the BCs imposed. In particular Wm

can be written as the sum of two matrices

WBC
m = Tm +KBC

m , (4)

where the first one is a Toeplitz matrix, while the second one is a correction matrix which depends on BCs
(for details, see Section 3).
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From (3), it follows immediately that

smk+1 = (I −Wm)ksm1 , (5)

so ideally the first IMF is given by
f1 = lim

k→∞
(I −W1)

ks. (6)

However, in the implemented algorithm we do not let k to go to infinity, instead we use a stopping criterion.
We can define, for instance, the following quantity

∆m
k :=

‖smk+1 − smk ‖2
‖smk ‖2

, (7)

so we can either stop the process when the value ∆m
k reaches a certain threshold or we can introduce a limit

on the maximal number of iterations for all the Inner Loops. It is also possible to adopt different stopping
criteria for different Inner Loops.

3 Boundary conditions and structured matrices

Boundary conditions deal with the problem of extending the signal outside the field of view in which the
detection is made. So let s be the signal inside the boundaries and let p be the parameter relative to the
space outside the boundaries, we have that, for j = 1, . . . , p, Zero BCs are defined as

s(x−j) = 0, s(xn−1+j) = 0, (8)

Periodic BCs are defined as
s(x−j) = s(xn−j), s(xn−1+j) = s(xj−1), (9)

Reflective BCs are defined as
s(x−j) = s(xj−1), s(xn−1+j) = sn−j, (10)

Anti-Reflective BCs are defined as

s(x−j) = 2s(x0)− s(xj), s(xn−1+j) = 2s(xn−1)− s(xn−1−j). (11)

According to the BCs imposed, we have a different kind of structured matrix as WBC , whose elements
are defined from values of the filter w of length l. As said, here we take into account symmetric filters,
since this choice allows to have useful theoretical properties. In particular, symmetry is not necessary to get
the algebra of Circulant matrices, associated with Periodic BCs, while it is necessary to get the algebra of
Reflective matrices and the algebra of Anti-Reflective matrices. The symmetry property also allows in all
these three cases to have a fast transform that can be employed for computing matrix-vectors products in
an efficient way. In particular, we have Discrete Fourier Transform (DFT) for Circulant matrices, Discrete
Cosine Transform of type III (DCT-III) for Reflective matrices and Anti-Reflective Transform (ART) –
strongly linked to Discrete Sine Transform of type I (DST-I) – for Anti-Reflective matrices.
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Unfortunately, this does not hold for Toeplitz matrices, associated with Zero BCs, i.e. WZ = T , where

T =



















































w0 w1 w2 . . . wl

w1 w0 w1 w2
. . . wl

w2 w1 w0 w1 w2
. . . wl

... w2 w1 w0 w1 w2
. . .

. . .

wl

. . . w2 w1
. . .

. . .
. . .

. . . wl

wl

. . . w2
. . .

. . . w1 w2
. . . wl

wl

. . .
. . . w1 w0 w1 w2

...
. . .

. . . w2 w1 w0 w1 w2

wl

. . . w2 w1 w0 w1

wl . . . w2 w1 w0



















































n×n

. (12)

In case of Periodic BCs, we have Circulant matrices that have this form

WP =



















































w0 w1 . . . wl wl . . . w1

w1 w0 w1
. . . wl

. . .
...

... w1 w0 w1
. . . wl wl

wl

. . . w1 w0 w1
. . .

. . .

wl

. . . w1 w0
. . .

. . . wl

wl

. . .
. . .

. . . w1
. . . wl

. . .
. . . w1 w0 w1

. . . wl

wl wl

. . . w1 w0 w1

...
...

. . . wl

. . . w1 w0 w1

w1 . . . wl wl . . . w1 w0



















































n×n

. (13)

Denoted by i the imaginary unit, WP can be diagonalized by QP , defined as

[QP ]i,j =
√
nF−1 =

1√
n
e

2(i−1)(j−1)πi
n , i, j = 1, . . . , n, (14)

where F is the n-dimensional DFT. Eigenvalues of WP can be computed by this formula, for i = 1, . . . , n,

λP
i = w0 + 2

l
∑

j=1

wj cos

(

2j(i− 1)π

n

)

. (15)
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In the Reflective case, we have WR = T +HR, where HR is a Hankel matrix

HR =













































w1 w2 w3 . . . wl

w2 w3
...

...

w3
...

...
...

...

wl

wl

...
...

...
... w3

...
... w3 w2

wl . . . w3 w2 w1













































n×n

. (16)

WR can be diagonalized by QR, that is the n-dimensional DCT-III, having entries

[QR]i,j =

√

2− δi1

n
cos

(

(i − 1)(2j − 1)π

2n

)

, i, j = 1, . . . , n, (17)

where δij denotes the Kronecker delta. Eigenvalues of WR can be obtained by the following formula

λR
i =

[QR(WRe1)]i
[Qe1]i

, (18)

where e1 = (1, 0, . . . , 0)T ∈ R
n. Therefore, using the variable t = (i−1)π

2n , and exploiting

cos(2jt− t) = cos(2jt) cos(t) + sin(2jt) sin(t)

and
cos(2jt+ t) = cos(2jt) cos(t)− sin(2jt) sin(t),

we get that in the Reflective case eigenvalues can be computed by this formula, for i = 1, . . . , n,

λR
i =

n
∑

j=1

[WR]1,j

cos

(

(2j − 1)
(i− 1)π

2n

)

cos

(

(i − 1)π

2n

)

= w0 +
l

∑

j=1

wj

cos((2j − 1)t) + cos((2j + 1)t)

cos (t)

= w0 + 2

l
∑

j=1

wj cos(2jt)

= w0 + 2

l
∑

j=1

wj cos

(

j(i − 1)π

n

)

(19)
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In the Anti-Reflective case, the structure of the matrix is more involved, namely

WAR =





































z1 + w0 0 . . . . . . . . . 0 0

z2 + w1

...
...

...
zl + wl−1 0

wl ŴAR wl

0 zl + wl−1

...
...

... z2 + w1

0 0 . . . . . . . . . 0 z1 + w0





































n×n

, (20)

where zj = 2
l
∑

k=j

wk and ŴAR = PWARPT , with

P =















0 1 0
0 1 0
...

. . .
...

0 1 0
0 1 0















(n−2)×n

. (21)

Moreover, ŴAR = T̂ − ĤAR, where T̂ is a Toeplitz matrix

T̂ =





































w0 w1 . . . wl

w1 w0 w1
. . . wl

... w1 w0 w1
. . .

. . .

wl

. . . w1 w0
. . .

. . . wl

wl

. . .
. . .

. . . w1
. . . wl

. . .
. . . w1 w0 w1

...

wl

. . . w1 w0 w1

wl . . . w1 w0





































(n−2)×(n−2)

, (22)

while ĤAR is a Hankel matrix

ĤAR =

































w2 w3 . . . wl

w3
...

...
...

...

wl

wl

...
...

...
... w3

wl . . . w3 w2

































(n−2)×(n−2)

. (23)

ŴAR can be diagonalized by Q̂AR, that is the (n− 2)-dimensional DST-I, having entries

[Q̂AR]i,j =

√

2

n− 1
sin

(

ijπ

n− 1

)

, i, j = 1, . . . , n− 2. (24)
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Eigenvalues of ŴAR can be obtained by the following formula

λ̂AR
i =

[Q̂AR(ŴARê1)]i

[Q̂ARê1]i
(25)

where ê1 = (1, 0, . . . , 0)T ∈ R
n−2. Therefore, using the variable t = iπ

n−1 , and exploiting

sin(2t) = 2 sin(t) cos(t)

and
cos(2t) = 1− 2 sin2(t)

and

sin((j + 2)t)− sin jt) = sin(jt) cos(2t) + sin(2t) cos(jt)− sin(jt)

= sin(jt)(1 − 2 sin2(t)) + 2 sin(t) cos(t) cos(jt)− sin(jt)

= −2 sin(jt) sin2(t) + 2 sin(t) cos(t) cos(jt)

and
2 sin(jt) sin(t) = cos(jt− t)− cos(jt+ t)

and
2 cos(t) cos(jt) = cos(jt− t)− cos(jt+ t)

we get that eigenvalues of ŴAR can be computed by this formula, for i = 1, . . . , n− 2,

λ̂AR
i =

n−2
∑

j=1

[ŴAR]1,j

sin

(

jiπ

n− 1

)

sin

(

iπ

n− 1

)

= w0 + w1
sin(2t)

sin (t)
+

l−1
∑

j=1

wj+1
sin((j + 2)t)

sin (t)
− wj+1

sin(jt)

sin (t)

= w0 + 2w1 cos(t) +

l−1
∑

j=1

wj+1 (2 cos(t) cos(jt)− 2 sin(jt) sin(t))

= w0 + 2w1 cos(t) + 2

l−1
∑

j=1

wj+1 cos((j + 1)t)

= w0 + 2w1 cos(t) + 2
l

∑

j=2

wj cos(jt)

= w0 + 2

l
∑

j=1

wj cos

(

jiπ

n− 1

)

(26)

By Lemma 3.1 in [13], we know that the eigenvalues of WAR are given by 1 with multiplicity two and by

the eigenvalues {λ̂AR
i }i=1,...,n−2 of ŴAR.

Looking at the structure of the matrices presented, it can be easily verified that the eigenvector uP
1

associated with λP
1 = 1 is (1, . . . , 1)T , the eigenvector uR

1 associated with λR
1 = 1 is (1, . . . , 1)T , and the

eigenvectors associated with λAR
1 = λAR

2 = 1 are uAR
1 = (0, 1, 2, . . . , n − 2, n− 1)T and uAR

2 = (n− 1, n−
2, . . . , 2, 1, 0)T .

We notice that QP , QR and Q̂AR are all unitary matrices. However, the last one is linked to ŴAR, so
we also need to know how to diagonalize the original matrix WAR. In other words, basing on DST-I, we
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need to introduce ART. Unfortunately this transform is not unitary, since the matrices in Anti-Reflective
algebra are in general not normal. Recalling theoretical results reported in [1, 12], we have that WAR can
be diagonalized by QAR, that is the n-dimensional ART, defined as follows

QAR =



































(n− 1)η−1 0 . . . . . . . . . 0 0
(n− 2)η−1 η−1

(n− 3)η−1 2η−1

...
...

... Q̂AR
...

...
...

2η−1 (n− 3)η−1

η−1 (n− 2)η−1

0 0 . . . . . . . . . 0 (n− 1)η−1



































n×n

, (27)

where η =
√

∑n−1
j=0 j2 is introduced just to normalize the first and the last column, which come from

eigenvectors uAR
1 and uAR

2 .
Summarizing, in this Section we have introduced BCs, analyzing the properties of matrices associated

with their choice, in particular providing descriptions of matrix structures, formulas for computation of
eigenvalues and diagonalization results (associated with discrete transforms). All this will be very useful in
Section 4, in which convergence properties of DIF will be investigated.

4 Spectral properties and convergence results

At this stage, we consider some BCs (Periodic or Reflective or Anti-Reflective). By exploiting results
presented in Section 3, we are able to prove spectral properties of WBC and convergence results for DIF
algorithm.

Lemma 1. Let WBC ∈ R
n×n be the structured matrix constructed from a symmetric decreasing filter w

of length 0 < l ≤ ⌊n−1
2 ⌋, imposing some BCs (Periodic or Reflective or Anti-Reflective). Then σ(WBC) ⊆

[−1, 1].

Proof. By definition WBC is a symmetric matrix, so it has a real spectrum. By considering the following
estimate relative to the spectral radius

ρ(WBC) ≤
∥

∥WBC
∥

∥

∞
= max

i

n
∑

j=1

∣

∣[WBC ]i,j
∣

∣ = w0 + 2
l

∑

k=1

wk = 1,

we can conclude that all eigenvalues lie in the interval [−1, 1].

Theorem 1. Let s ∈ R
n the signal that has to be decomposed. Let v be a symmetric decreasing filter of

length 0 < l′ ≤ ⌊n−1
4 ⌋ and w = v ∗ v be another symmetric decreasing filter of length 0 < l ≤ ⌊n−1

2 ⌋
defined by making the convolution of v with itself. Then for the matrix WBC ∈ R

n×n constructed from w

and some BCs (Periodic or Reflective or Anti-Reflective), it holds that σ(WBC) ⊆ [0, 1]. Moreover, λP
1 = 1

and {λP
i }i=2,...,n ⊆ [0, 1), λR

1 = 1 and {λR
i }i=2,...,n ⊆ [0, 1), λAR

1 = λAR
2 = 1 and {λAR

i }i=3,...,n ⊆ [0, 1).

Proof. As already said, in case of Periodic or Reflective or Anti-Reflective BCs we are in a matrix algebra; this
means that the matrix product gives rise to a matrix which can still be interpreted as a matrix constructed
from a filter and the same BCs. In particular, thanks to the fact that l′ ≤ ⌊n−1

4 ⌋, such filter can be computed
by means of convolution. Thus, if we denote by V BC the structured matrix associated with filter v, we have
that WBC = (V BC)2. By Lemma 1, σ(V BC) ⊆ [−1, 1], therefore σ(WBC) ⊆ [0, 1].
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Moreover, in case of Periodic BCs, if we consider (15) with i = 1, we get λP
1 = 1, while for 1 < i ≤ n

we have a convex combination of cosine values (each of them strictly less than 1), except for the first term
multiplied by w0 which is equal to 1. Clearly this sum cannot equal to 1, so it has a value 0 ≤ x < 1.

In case of Reflective BCs, if we consider (19) with i = 1, we get λR
1 = 1, while for 1 < i ≤ n we have a

convex combination of cosine values (each of them strictly less than 1), except for the first term multiplied
by w0 which is equal to 1. Clearly this sum cannot equal to 1, so it has a value 0 ≤ x < 1.

In case of Anti-Reflective BCs, if we consider (26) for i = 1, . . . , n− 2 we have a convex combination of
cosine values (each of them strictly less than 1), except for the first term multiplied by w0 which is equal
to 1. Clearly this sum cannot equal to 1, so it has a value 0 ≤ x < 1. Therefore n − 2 eigenvalues of WBC

belong to the interval [0, 1), while the remaining two are equal to 1, as we already know.

In the following Lemma we summarize diagonalization results presented in Section 3.

Lemma 2. Let WBC ∈ R
n×n be a matrix constructed from a symmetric filter w and some BCs (Periodic

or Reflective or Anti-Reflective). Then

WBC = QBCDBC(QBC)−1, (28)

i.e. WBC can be diagonalized by QBC, whose columns are eigenvectors of WBC .

Now we are ready to discuss the convergence of DIF algorithm. The method in the limit produces IMFs
that are projections of the given signal s onto the eigenspace of WBC corresponding to the zero eigenvalue
which has algebraic and geometric multiplicity ζ ∈ {0, 1, . . . , n − 1}. Clearly, if WBC has only a trivial
kernel then the method converges to the zero vector. On the other hand, if we enforce a stopping criterion,
the techniques gets approximated IMFs after finitely many steps. Theorem 2 generalizes theoretical results
provided in [6] only for the case of Periodic BCs.

Theorem 2. Let s ∈ R
n be the signal that has to be decomposed. Let v be a symmetric decreasing filter of

length 0 < l′ ≤ ⌊n−1
4 ⌋ and w = v ∗ v be another symmetric decreasing filter of length 0 < l ≤ ⌊n−1

2 ⌋ defined
by making the convolution of v with itself. Let WBC ∈ R

n×n be the matrix constructed from w and some
BCs (Periodic or Reflective or Anti-Reflective), which can be diagonalized by QBC, and ζ be the number (in
the set {0, 1, . . . , n − 1}) of its zero eigenvalues. Let αBC and βBC be two constants depending on BCs at
hand (αP = αR = 1, αAR = 3 and βP = βR = 1, βAR = 2).

Then, at step k of the inner loop in the DIF method, the first IMF is given by

f1 = QBC(ZBC)k(QBC)−1s,

where ZBC = I −DBC can be rewritten in this way

ZBC = P

























1− λBC
1

1− λBC
2

. . .

1− λBC
n−ζ

1
. . .

1

























PT

by means of a suitable permutation matrix P , and the first βBC elements that appear on the diagonal are
equal to zero. Letting k go to infinity, the first outer loop step of the DIF method converges to

f1 = QBCZ∞(QBC)−1s,

where Z∞ is a diagonal matrix with entries all zero, except ζ diagonal elements equal to one.
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Moreover, fixed δ > 0, for the minimum k0 ∈ N such that it holds true the inequality

kk0
0

(k0 + 1)
k0+1

<
δ

αBC‖(QBC)−1s‖∞
√

n− βBC − ζ
,

we have that the following stopping criterion is satisfied

∥

∥s1k+1 − s1k
∥

∥

2
< δ, ∀k ≥ k0,

so the DIF algorithm takes finitely many steps to produce the first IMF.

Proof. The first part of the theorem follows from the definition of DIF method in matrix form and from
Lemma 2. In fact, at step k of the inner loop in the DIF method, the first IMF is given by

f1 = (I −WBC)ks = QBC(ZBC)k(QBC)−1s,

Moreover, by Theorem 1 we know that WBC has βBC eigenvalues equal to 1. On the other hand, letting k

go to infinity, we get
f1 = lim

k→∞
QBC(ZBC)k(QBC)−1s = QBCZ∞(QBC)−1s.

The second part of the theorem follows from the next expression

‖s1k+1 − s
1
k‖2 = ‖(I −W

BC)k+1
s− (I −W

BC)ks‖2

= ‖QBC(I −D
BC)k+1(QBC)−1

s−Q
BC(I −D

BC)k(QBC)−1
s‖2

= ‖QBC(ZBC)k((I −D
BC)− I)(QBC)−1

s‖2

= ‖QBC(ZBC)kDBC(QBC)−1
s‖2

≤ α
BC‖(ZBC)kDBC(QBC)−1

s‖2

≤ α
BC

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

P























(1− λBC
1 )kλBC

1

. . .

(1− λBC
n−ζ)

kλBC
n−ζ

0

. . .

0























P
T







‖(QBC)−1
s‖∞

...

‖(QBC)−1
s‖∞







∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ α
BC

√

n− βBC − ζ

(

1−
1

k + 1

)k
1

k + 1
‖(QBC)−1

s‖∞

where P is a suitable permutation matrix and αBC depends on the value of ‖QBC‖2. So it is equal to 1
for Periodic and Reflective BCs, since QP and QR are unitary matrices, while in the Anti-Reflective case
it is equal to 3 because we can rewrite QAR – see (27) – as the sum of three matrices, having non-zero
elements only in the first column, in the last column and in the central part (corresponding to Q̂AR, which
is unitary), then we can apply triangle inequality, exploiting also the fact that the Euclidean norm of each
splitting matrix is equal to 1. For writing the last inequality, we use the fact that the function (1 − λ)kλ
achieves its maximum at λ = 1

k+1 for λ ∈ [0, 1]. Hence the stopping criterion is fulfilled for k0 minimum

natural number such that
k
k0
0

(k0+1)k0+1 < δ

αBC‖(QBC)−1
s‖∞

√
n−βBC−ζ

.

We make here the observation that with the current version of the algorithm we have to reimpose the
BCs at every iteration of the inner loop. In order to reduce the error and its propagation, the idea is to
impose the BCs only in the first step of each inner loop, and then let the solution to evolve freely. This is
the reason for introducing the extended approach.
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5 Extended Iterative Filtering

Now, once defined the matrix
R = ( On×p In×n On×p )

n×(n+2p) , (29)

where O is matrix of all zeros and I is the identity matrix, in Algorithm 1 we present the pseudocode of
Extended Iterative Filtering (EIF) algorithm. Differently from the DIF method, it is not based (as DIF
algorithm) on a structured matrix WBC

m ∈ R
n×n (whose structure depends on BCs), associated with the

original signal s ∈ R, but on a Circulant matrix ẄP
m ∈ R

(n+2p)×(n+2p) (whose structure does not depend on
BCs), associated with a signal sBC ∈ R

(n+2p) extended by means of any BCs. Hence, since in this framework
the BCs do not affect the matrix structure, we have more freedom in their choice. Any method that extends
the original signal in a suitable way outside the boundaries can be employed now. Moreover, we notice
that in Algorithm 2 there is only one step involving the use of BCs, while in Algorithm 1 the BCs are
employed at every step of the Inner Loop. Considering that every time we make use of BCs we are adding
errors to the decomposition method, we think that the proposed approach may improve the standard one.
Furthermore, we remark that employing Periodic BCs allows to reduce the computational burden of IF. In
fact the algorithm can be rewritten using Fast Fourier Transform (FFT) to become what is known as Fast
Iterative Filtering (FIF) [6].

Algorithm 2 Extended Iterative Filtering IMFs = EIF(s, h)

sBC(xi) = s(xi), i = 0, . . . , n− 1
apply BCs to compute sBC(xi), i = −p, . . . ,−1 and i = n, . . . , n− 1 + p

m = 1
sm1 = sBC

while the number of extrema of sm1 ≥ 2 do

k = 1
compute the filter length lm for the signal smk
compute wm (having h and lm)
while the stopping criterion is not satisfied do

smk+1 = (I − ẄP
m)smk

k = k + 1
end while

fm = smk
sm+1
1 = sm1 − fm
m = m+ 1

end while

fm = sm1
IMFs = {Rf1, . . . , Rfm}

We denote by f1 ∈ R
n the first approximated IMF computed by the EIF algorithm. f̄1 ∈ R

n represents
the first exact IMF, whereas sBC ∈ R

n+2p the signal extended according to some a priori chosen boundary
conditions and s̈ ∈ R

n+2p the unknown real signal extended also outside the boundaries. Then we can split
these last two vectors considering the portion of signal inside and outside the field of view identified by the
boundaries, and get

sBC = sBC
in + sBC

out (30)

and
s̈ = s̈in + s̈out. (31)

Clearly sBC
in = s̈in.

12



We have that

f1 = R(I − ẄP
1 )ksBC

= R(I − ẄP
1 )k(sBC

in + sBC
out + s̈out − s̈out)

= R(I − ẄP
1 )k s̈ +R(I − ẄP

1 )k(sBC
out − s̈out)

where the first term tends to f̄1, while the second term it propagates itself from the boundaries inside the
field of view as k grows.

In general it is not possible to estimate the difference sBC
out − s̈out. However it is reasonable to assume

that the approximation of the real signal outside the boundaries sBC
out produces an error sBC

out − s̈out which
is a constant function. In order to estimate such error function we can assume that its value equals χ =
max

(∣

∣sBC
in

∣

∣

)

= max (|s̈in|). This is clearly in most cases an overestimation.

Now the question is how the error R(I − ẄP
1 )k(sBC

out− s̈out) propagates inside the field of view during the
iterations. We can estimate an upper bound for the error inside the field of view at step k of the iterations
using the following formula

errk = R(I − ẄP
1 )ku = R

(

I −
(

k

1

)

ẄP
1 +

(

k

2

)

(

ẄP
1

)2

+ . . . (−1)k
(

ẄP
1

)k
)

u, (32)

where u ∈ R
n+2p is a vector equal to χ outside the field of view and 0 inside.

A potential upper bound of the error for each point xi inside the field of view can be computed as

ubk(xi) = max
j≤k

(|errj(xi)|) , (33)

where k is the number of iterations. This is just an estimate because in general the actual error introduced
by the extension of the signal outside the boundaries is unknown. If we deal with artificial examples, and
we consider DIF algorithm employing some BCs, we can compute the actual error using the formula

errBC
k (xi) =

∣

∣f1(xi)− f̄1(xi)
∣

∣ , (34)

where k is the number of iterations required to produce the approximated IMF f1, while f̄1 is the first exact
IMF.

6 Numerical results

In order to show how DIF method works when we employ different BCs, we present four simple examples
in which the signal is artificially created through one IMF plus a trend. In particular, we analyze how the
errors introduced outside the boundaries propagate inside the field of view, evaluating the performance of
formula (32) for the a priori estimation of the error when there is no knowledge on the behavior of the signal
outside the boundaries.

6.1 Example 1

We consider a first signal, shown on the left of Figure 1, which can safely extended periodically and anti-
reflectively outside the boundaries. On the right of Figure 1 we can look at decomposition obtained after 3
steps of DIF method with Reflective BCs. If we apply the DIF algorithm using Periodic, Reflective and Anti-
Reflective BCs, we can extract a first IMF and measure the difference, after a fixed number of steps, between
the exact IMF and the computed IMF measured in absolute. In Figure 2 we plot the errors introduced by
each extension, formula (34), and we compare them with the a priori estimate of the error computed using
formula (33). Due to a symmetry in the signal, it is sufficient to plot the errors for the left half of the field of
view. As expected, we produce a minimal error in the decomposition if we extended the signal periodically
or anti-reflectively. Furthermore, the a priori upper bound estimate of the error proves to be correct.
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Figure 1: (Example 1) Left panel: signal. Right panel: decomposition computed by DIF method with
Reflective BCs (black line) compared with exact one (red line).
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Figure 2: (Example 1) Upper bound and errors measured in absolute value for Periodic, Reflective and
Anti-Reflective BCs relative to 3 iterations (on the left) and 9 iterations (on the right) of DIF method.

6.2 Example 2

In this second example we consider the signal plotted in the left panel of Figure 3, while in the right panel we
can look at decomposition obtained after 3 steps of DIF method with Anti-Reflective BCs. After extending
the signal using Periodic, Reflective and Anti-Reflective BCs, we extract a first IMF using the DIF method.
In Figure 4 we compare the absolute values of the errors introduced by the different BCs, formula (34), and
we compute the upper bound by means of (33). Again, due to a symmetry in the curves, we report only
the first half of the error plot. In this case the reflective extension works best in minimizing the error in the
decomposition. Furthermore, the upper bound on the error allows to correctly estimate the error everywhere
inside the field of view.
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Figure 3: (Example 2) Left panel: signal. Right panel: decomposition computed by DIF method with
Anti-Reflective BCs (black line) compared with exact one (red line).
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Figure 4: (Example 2) Upper bound and errors measured in absolute value for Periodic, Reflective and
Anti-Reflective BCs relative to 3 iterations (on the left) and 9 iterations (on the right) of DIF method.

6.3 Example 3

In this case the signal, shown in the left panel of Figure 5, is best extended outside the boundaries using
Anti-Reflective BCs. This fact is confirmed by the error curves (34) plotted in Figure 6. Due to symmetry
properties of the signal under study, we report only the first half of the error curves. Also in this example
the upper bound allows to give a priori estimate of the behavior relative to the error propagation inside the
field of view.
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Figure 5: (Example 3)Left panel: signal. Right panel: decomposition computed by DIF method with
Periodic BCs (black line) compared with exact one (red line).
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Figure 6: (Example 3)Upper bound and errors measured in absolute value for Periodic, Reflective and
Anti-Reflective BCs relative to 3 iterations (on the left) and 9 iterations (on the right) of DIF method.

6.4 Example 4

In this example we want to study how the errors induced by the extension outside the boundaries depends
on the phase of the signal at the boundary. We consider a simple signal, plotted in the left panel of Figure
7, which is a superposition of a constant trend and a plain sine. The signal support is originally given by
the interval [−333, 0] which is then extended up to 300 step by step of △t = 0.01. Each time we enlarge the
support of a △t we redecompose the newly extended signal using DIF with different kind of BCs. For each
BCs we compute the relative error

errBC
rel =

∥

∥f1 − f̄1
∥

∥

∞
∥

∥f̄1
∥

∥

∞

(35)

and the relative error upper bound

ubrel =
‖ubk‖∞
∥

∥f̄1
∥

∥

∞

(36)
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where f̄1 represents the first exact IMF and ubk is the error upper bound computed using (33) for a fixed
number of iterations k. We plot the relative errors in the right panel of Figure 7. As expected such curves

-300 -200 -100 0 100 200 300
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 7: (Example 4) Left panel: signal. Right panel: upper bound, relative errors for different BCs and
best extension.

have the same periodicity as the given signal. Furthermore the relative error upper bound a priori estimate
proves to be valid also in this example. Finally this study allows to identify which kind of extension is
performing best from a relative error point of view for each value of the phase of the signal at the boundary,
dashed curve the right panel of Figure 7.

7 Conclusions

We considered the decomposition of non-stationary signals, which is a problem of great interest from the
theoretical point of view and has important applications in many different fields. For instance, it occurs
in the identification of hidden periodicities and trends in time series relative to natural phenomena (like
average troposphere temperature) and economic dynamics (like financial indices). Since standard techniques
like Fourier or Wavelet Transform are unable to properly capture non-stationary phenomena, in the last years
several ad hoc methods have been proposed in the literature. Such techniques provide iterative procedures
for decomposing a signal into a finite number of simple components.

In this paper we focused on investigating IF algorithm employing different BCs (Periodic, Reflective and
Anti-Reflective BCs), which give rise to different matrix structures. We analyzed spectral properties of these
matrices and convergence properties of IF method. We also presented an extended version of IF, in which
any BCs can be employed; this allows to estimate the error propagation from the boundary towards the
internal part of the signal. Numerical experiments show that a suitable choice of BCs is able to improve in
a meaningful way the quality of signal decomposition in IMFs computed by IF method.

We think that this paper can open the way for further interesting developments, for instance the study
of adaptive choice of BCs, basing on the signal at hand, and the proposal of new accurate BCs, as done in
[11] for image restoration problem.
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