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Abstract

The Sinc approximation has shown high efficiency for numerical methods in many fields. Confor-

mal maps play an important role in the success, i.e., appropriate conformal map must be employed

to elicit high performance of the Sinc approximation. Appropriate conformal maps have been

proposed for typical cases; however, such maps may not be optimal. Thus, the performance of

the Sinc approximation may be improved by using another conformal map rather than an existing

map. In this paper, we propose a new conformal map for the case where functions are defined over

the semi-infinite interval and decay exponentially. Then, we demonstrate in both theoretical and

numerical ways that the convergence rate is improved by replacing the existing conformal map

with the proposed map.
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1. Introduction

The Sinc approximation is a highly efficient approximation formula for analytic functions (de-

scribed precisely later), expressed as

F(x) ≈
N

∑

k=−M

F(kh)S (k, h)(x), x ∈ (−∞,∞), (1.1)
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where S (k, h)(x) is the so-called Sinc function, defined as

S (k, h)(x) =
sin[π(x/h − k)]

π(x/h − k)
,

and M, N, h are selected according to the given positive integer n. This approximation gives root-

exponential convergence, if |F(x)| decays exponentially as x → ±∞. Here, we should also note

that the target interval to be considered is the infinite interval (−∞,∞). Accordingly, F should

be defined over the infinite interval. In the case where the function to be approximated decays

exponentially but is defined over the semi-infinite interval (0,∞), e.g., f (t) =
√

t e−t, Stenger [1]

proposed the use of a conformal map

t = ψ(x) = arcsinh(ex), (1.2)

whereby the transformed function f (ψ(x)) is defined over (−∞,∞) and decays exponentially as

x→ ±∞. Therefore, we can apply the Sinc approximation to f (ψ(x)) as

f (ψ(x)) ≈
N

∑

k=−M

f (ψ(kh))S (k, h)(x),

or equivalently,

f (t) ≈
N

∑

k=−M

f (ψ(kh))S (k, h)(ψ−1(t)). (1.3)

In other cases, he also considered appropriate conformal maps. As a result, numerical methods

based on the Sinc approximation demonstrate root-exponential convergence in many fields [2, 3,

4, 5], and such methods surpass conventional methods that converge polynomially.

The main objective of this paper is to improve the conformal map (1.2). A conformal map

that maps (−∞,∞) onto (0,∞) is not unique. In addition, the convergence rate may be improved

if we use another conformal map that performs the same role. In fact, in the area of numerical

integration, convergence rate improvement has been reported [6, 7] by replacing the conformal

map t = ψ(x) with

t = φ(x) = log(1 + ex).

Considering the above as motivation, this study proposes to combine the Sinc approximation with

t = φ(x) rather than t = ψ(x) as

f (t) ≈
N

∑

k=−M

f (φ(kh))S (k, h)(φ−1(t)). (1.4)

Based on theoretical and numerical investigations, we demonstrate that the convergence rate of the

approximation (1.4) is better than that of the approximation (1.3).

The remainder of this paper is organized as follows. In Section 2, we describe the error bound

for the the approximation (1.3) (existing result) and the error bound for the approximation (1.4)

(new result by this paper). Furthermore, the difference between the two approximations is also

discussed in this section. Numerical examples that support the theoretical results are given in

Section 3. Proofs of the new result presented in Section 2 are given in Section 4, and conclusions

and suggestions for future work are given in Section 5.
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2. Error bounds for the existing and new approximations

2.1. Simply connected complex domain to be considered

For the approximation (1.1) to be accurate, F should be analytic in a strip domain Dd = {ζ ∈
C : | Im ζ | < d} for d > 0. Therefore, in the case of the approximation (1.3), f (ψ(·)) should be

analytic in Dd. This means that f should be analytic in

ψ(Dd) =
{

z ∈ C : | arg(sinh z)| < d
}

,

which is a translated domain from Dd by the conformal map ψ. Similarly, in the case of the

approximation (1.4), f should be analytic in

φ(Dd) =
{

z ∈ C : | arg(ez −1)| < d
}

,

which is a translated domain from Dd by the conformal map φ. Those two domains with d = 1 are

shown in Figures 1 and 2. Note that both domains include the semi-infinite interval (0,∞).

- 2 i

- i

0

i

2 i

 0  1  2  3

Figure 1: Simply connected complex domain ψ(D1).
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Figure 2: Simply connected complex domain φ(D1).

2.2. Theoretical results

The error of the existing approximation (1.3) was estimated as follows.

Theorem 2.1 (Okayama [8, Theorem 2.4]). Assume that f is analytic inψ(Dd) with 0 < d ≤ π/2
and there exist positive constants K, α, and β such that

| f (z)| ≤ K

∣

∣

∣

∣

∣

z

1 + z

∣

∣

∣

∣

∣

α

| e−z |β (2.1)

holds for all z ∈ ψ(Dd). Let µ = min{α, β}, let M and N be defined as















M = n, N = ⌈αn/β⌉ (if µ = α),

N = n, M = ⌈βn/α⌉ (if µ = β),
(2.2)
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and let h be defined as

h =

√

πd

µn
. (2.3)

Then,

sup
t∈(0,∞)

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψ(kh))S (k, h)(ψ−1(t))

∣

∣

∣

∣

∣

∣

∣

≤ C
√

n e−
√
πdµn (2.4)

holds, where C is a constant given by

C =
2K

√

πdµ



















2
√

πdµ(1 − e−2
√
πdµ){cos(d/2)}α+β

2(α+β)/2
+ 1



















.

In the same manner, this study estimates the error of the new approximation (1.4) as follows.

The proof is given in Section 4.

Theorem 2.2. Assume that f is analytic in φ(Dd) with 0 < d < π and there exist positive constants

K, α, and β such that (2.1) holds for all z ∈ φ(Dd). Let µ = min{α, β}, let M and N be defined

as (2.2), and let h be defined as (2.3). Then,

sup
t∈(0,∞)

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (φ(kh))S (k, h)(φ−1(t))

∣

∣

∣

∣

∣

∣

∣

≤ C
√

n e−
√
πdµn (2.5)

holds, where C is a constant given by

C =
2K

√

πdµ



















2
√

πdµ(1 − e−2
√
πdµ){cos(d/2)}α+β

(

e

e−1

)µ/2

+ 1



















.

2.3. Discussion

In view of (2.4) and (2.5), their convergence rates appear to be the same, i.e., O(
√

n e−
√
πdµn).

However, there is a difference in the condition of d, i.e., 0 < d ≤ π/2 in Theorem 2.1 and 0 < d < π

in Theorem 2.2. This means that d of the new approximation may be greater than d of the existing

approximation. In this case, the new approximation (1.4) converges faster than (1.3).

This difference in the range of d originates from the conformal maps ψ and φ. By observing

the derivatives of the functions

ψ′(ζ) =
1

√
1 + e−2ζ

, φ′(ζ) =
1

1 + e−ζ
,

we see that ψ(ζ) is not analytic at ζ = ± i(π/2), and φ(ζ) is not analytic at ζ = ± iπ. Accordingly,

f (ψ(ζ)) is analytic at most Dπ/2, and f (φ(ζ)) is analytic at most Dπ. Therefore, the range of d is

0 < d ≤ π/2 in Theorem 2.1 and is 0 < d < π in Theorem 2.2. Note that we cannot permit d = π

in Theorem 2.2 because the denominator of C includes cos(d/2).
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3. Numerical examples

Numerical results are presented in this section. All computation programs were written in C

with double-precision floating-point arithmetic. The programs and computation results are avail-

able online at https://github.com/okayamat/sinc-expdecay-semiinf.

We consider the following examples.

Example 1 ([8, Example 3]). Consider the function

f1(t) = tπ/4 e−t,

which satisfies the assumptions in Theorem 2.1 with α = π/4, β = 1 − α/π, d = π/2, and

K = (1 + (π/2)2)α/2, and also those in Theorem 2.2 with α = π/4, β = 1 − α/(2π), d = 3, and

K = [{(1 − γ)2
+ π

2} eγ/π]α/2, where γ = − log(cos(d/2)).

Example 2. Consider the function

f2(t) =
√

et −1 e−3t/2,

which satisfies the assumptions in Theorem 2.1 with α = 1/2, β = 1, d = π/2, and K = 4α, and

also those in Theorem 2.2 with α = 1/2, β = 1, d = 3, and K = {γ(1 + log(1 + γ))/ log(1 + γ)}α,

where γ = 1 + 1/ cos(d/2).

Example 3. Consider the function

f3(t) =
√

1 + (1 − 2 e−t)2
t

1 + t
e−t,

which satisfies the assumptions in Theorem 2.1 with α = β = 1, d = arctan(3), and K =
√

2, and

also those in Theorem 2.2 with α = β = 1, d = π/2, and K = 2.

Numerical results for the three functions are shown in Figures 3–5, where “Observed error”

denotes the maximum value of the absolute error investigated at the following 201 points: t = 2−50,

2−49.5, . . . , 2−0.5, 20, 20.5, . . . , 250. As can be seen in each graph, the new approximation (1.4)

converges faster than (1.3). Furthermore, the error bound by Theorems 2.1 and 2.2 (dotted line)

clearly bounds the observed error (solid line).

4. Proofs

In this section, we prove Theorem 2.2.
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Figure 3: Approximation errors of f1 and their bounds.
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Figure 4: Approximation errors of f2 and their bounds.
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Figure 5: Approximation errors of f3 and their bounds.

4.1. Proof sketch

First, by applying t = φ(x) and putting F(x) = f (φ(x)), we obtain
∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (φ(kh))S (k, h)(φ−1(t))

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

.

The idea for giving the error bound is to divide the error into the following two terms:
∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

−M−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=N+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

.

The first and second terms are referred to as the discretization and truncation errors, respectively.

We estimate the discretization error as follows. The proof is provided in Section 4.2.

Lemma 4.1. Let the assumptions of Theorem 2.2 be fulfilled. Then, putting F(x) = f (φ(x)), we

have

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 4K

πdµ(1 − e−2πd/h){cos(d/2)}α+β
(

e

e−1

)µ/2

e−πd/h .

We estimate the truncation error as follows. The proof is provided in Section 4.3.

Lemma 4.2. Let the assumptions of Theorem 2.2 be fulfilled. Then, putting F(x) = f (φ(x)), we

have

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

−M−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=N+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 2K

µh
e−µnh .
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Combining Lemmas 4.1 and 4.2 with h in (2.3), we establish Theorem 2.2, which completes

the proof.

4.2. Estimate of the discretization error

The following function space is required to estimate the discretization error.

Definition 4.1. Let Dd(ǫ) be a rectangular domain defined for 0 < ǫ < 1 by

Dd(ǫ) = {ζ ∈ C : |Re ζ | < 1/ǫ, | Im ζ | < d(1 − ǫ)}.

Then, H1(Dd) denotes the family of all functions F that are analytic in Dd such that the norm

N1(F, d) is finite, where

N1(F, d) = lim
ǫ→0

∮

∂Dd(ǫ)

|F(ζ)||dζ |. (4.1)

The discretization error for a function F belonging to H1(Dd) has been estimated as follows.

Theorem 4.3 (Stenger [1, Theorem 3.1.3]). Let F ∈ H1(Dd). Then,

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ N1(F, d)

πd(1 − e−2πd/h)
e−πd/h .

According to Theorem 4.3, Lemma 4.1 is derived if the next lemma is shown.

Lemma 4.4. Let the assumptions of Theorem 2.2 be fulfilled. Then, putting F(x) = f (φ(x)), we

have F ∈ H1(Dd) and

N1(F, d) ≤ 4K

µ cosα+β(d/2)

(

e

e−1

)µ/2

. (4.2)

The following two lemmas are essential to show Lemma 4.4.

Lemma 4.5 (Okayama et al. [9, Lemma 4.21]). For all x ∈ R and y ∈ (−π,π), we have

∣

∣

∣

∣

∣

1

1 + ex+i y

∣

∣

∣

∣

∣

≤ 1

(1 + ex) cos(y/2)
,

∣

∣

∣

∣

∣

1

1 + e−(x+i y)

∣

∣

∣

∣

∣

≤ 1

(1 + e−x) cos(y/2)
.

Lemma 4.6. For all ζ ∈ Dπ, it holds that

∣

∣

∣

∣

∣

∣

log(1 + eζ)

1 + log(1 + eζ)
· e−l
+ eζ

eζ

∣

∣

∣

∣

∣

∣

≤ 1, (4.3)

where l = log(e /(e−1)).
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We prefer to give the proof of Lemma 4.6 at the end of this section (Section 4.4) because it

requires preparation and a long discussion. If we accept this lemma here, Lemma 4.4 is shown as

follows.

Proof. Since f is analytic in φ(Dd), F is analytic in Dd. Therefore, the remaining task is to

show (4.2). From the definition (4.1), N1(F, d) is expressed as

N1(F, d) =

∫ ∞

−∞
|F(x + i d)| dx +

∫ ∞

−∞
|F(x − i d)| dx

+ lim
x→−∞

∫ d

−d

|F(x + i y)| dy + lim
x→∞

∫ d

−d

|F(x + i y)| dy. (4.4)

First, we estimate |F(x + i y)|. Using (2.1), (4.3), and Lemma 4.5, we obtain

|F(x + i y)| ≤ K

∣

∣

∣

∣

∣

∣

log(1 + ex+i y)

1 + log(1 + ex+i y)

∣

∣

∣

∣

∣

∣

α ∣

∣

∣

∣

∣

1

1 + ex+i y

∣

∣

∣

∣

∣

β

≤ K

|1 + e−(x+l+i y) |α|1 + ex+i y |β

≤ K

(1 + e−(x+l))α(1 + ex)β cosα+β(y/2)
,

where l = log(e /(e−1)). According to this estimate, the third and fourth terms of (4.4) are

bounded as

lim
x→−∞

∫ d

−d

|F(x + i y)| dy + lim
x→∞

∫ d

−d

|F(x + i y)| dy

≤ lim
x→−∞

K

(1 + e−(x+l))α(1 + ex)β

∫ d

−d

dy

cosα+β(y/2)
+ lim

x→∞

K

(1 + e−(x+l))α(1 + ex)β

∫ d

−d

dy

cosα+β(y/2)

= 0.

By the same estimate, the first and second terms of (4.4) are bounded as

∫ ∞

−∞
|F(x + i d)| dx +

∫ ∞

−∞
|F(x − i d)| dx

≤ K

cosα+β(d/2)

∫ ∞

−∞

dx

(1 + e−(x+l))α(1 + ex)β
+

K

cosα+β(−d/2)

∫ ∞

−∞

dx

(1 + e−(x+l))α(1 + ex)β

≤ 2K

cosα+β(d/2)

∫ ∞

−∞

dx

(1 + e−(x+l))µ(1 + ex)µ
,
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where µ = min{α, β}. By changing the variable x as x = t − (l/2), we obtain

2K

cosα+β(d/2)

∫ ∞

−∞

dx

(1 + e−(x+l))µ(1 + ex)µ
=

2K

cosα+β(d/2)

∫ ∞

−∞

dt

(1 + e−t− l
2 )µ(1 + et− l

2 )µ

=
4K

cosα+β(d/2)

∫ ∞

0

dt

(1 + e−t− l
2 )µ(1 + et− l

2 )µ

=
4K

cosα+β(d/2)

∫ ∞

0

e−µt

(1 + e−t− l
2 )µ(e−t + e−

l
2 )µ

dt

≤ 4K

cosα+β(d/2)

∫ ∞

0

e−µt

(1 + 0)µ(0 + e−
l
2 )µ

dt

=
4K

cosα+β(d/2)
· (el)µ/2

µ
,

which is the desired result.

4.3. Estimate of the truncation error

The following lemma is useful to the proof of Lemma 4.2.

Lemma 4.7. For all x ∈ R, we have
∣

∣

∣

∣

∣

∣

log(1 + ex)

1 + log(1 + ex)
· 1 + ex

ex

∣

∣

∣

∣

∣

∣

≤ 1. (4.5)

Proof. Putting t = log(1 + ex) and noting t > 0, we reformulate (4.5) as
∣

∣

∣

∣

∣

∣

log(1 + ex)

1 + log(1 + ex)
· 1 + ex

ex

∣

∣

∣

∣

∣

∣

=
t

1 + t
· et

et −1
≤ 1 ⇔ et −t − 1 ≥ 0.

Since (et −t − 1)′ = et −1 ≥ 0, we have et −t − 1 ≥ e0 −0 − 1 = 0, which is equivalent to (4.5).

Using the above lemma, we prove Lemma 4.2 as follows.

Proof. Using (2.1), (4.5) and |S (k, h)(x)| ≤ 1, we have

∣

∣

∣

∣

∣

∣

∣

−M−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=N+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤
−M−1
∑

k=−∞
| f (φ(kh))| +

∞
∑

k=N+1

| f (φ(kh))|

≤ K

−M−1
∑

k=−∞

∣

∣

∣

∣

∣

∣

log(1 + ekh)

1 + log(1 + ekh)

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β + K

∞
∑

k=N+1

∣

∣

∣

∣

∣

∣

log(1 + ekh)

1 + log(1 + ekh)

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β

≤ K

−M−1
∑

k=−∞

∣

∣

∣

∣

∣

∣

ekh

1 + ekh

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β + K

∞
∑

k=N+1

∣

∣

∣

∣

∣

∣

ekh

1 + ekh

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β .
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Furthermore, the second term is estimated as

K

∞
∑

k=N+1

∣

∣

∣

∣

∣

∣

ekh

1 + ekh

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β =
∞
∑

k=N+1

K e−βkh

(1 + e−kh)α+β
≤

∞
∑

k=N+1

K e−βkh

(1 + 0)α+β
≤ K

h

∫ ∞

Nh

e−βx dx =
K

βh
e−βNh .

In the same manner, the first term is estimated as

K

−M−1
∑

k=−∞

∣

∣

∣

∣

∣

∣

ekh

1 + ekh

∣

∣

∣

∣

∣

∣

α
1

|1 + ekh |β
≤ K

αh
e−αMh .

Using the relation (2.2) and µ = min{α, β}, we have

K

αh
e−αMh

+
K

βh
e−βNh ≤ K

αh
e−µnh

+
K

βh
e−µnh ≤ K

µh
e−µnh

+
K

µh
e−µnh,

which shows the desired inequality.

4.4. Proof of Lemma 4.6

Our project is completed by showing Lemma 4.6. For this purpose, we prepare the following

lemma.

Lemma 4.8. For all t ≤ 0, it holds that

1 + et(et+1 −1 + t + t2 − e(1 + t + t2)) ≥ 0.

Proof. Put p(t) and q(t) as

p(t) = 1 + et(et+1 −1 + t + t2 − e(1 + t + t2)),

q(t) = 2 et+1 − e(1 + t)(2 + t) + t(3 + t).

Then, the derivative of p is expressed as p′(t) = et q(t). Since the signs of p′(t) and q(t) are the

same, we investigate q(t). Differentiating q(t) as

q′(t) = 2 et+1
+(1 − e)(2t + 3),

q′′(t) = 2(et+1
+1 − e),

we have q′′(log((e−1)/ e)) = 0. From q′(−1) = q′(0) = 3 − e > 0 and q′(log((e−1)/ e)) < 0,

there exist unique points a and b such that q′(a) = q′(b) = 0 with −1 < a < log((e−1)/ e) and

log((e−1)/ e) < b < 0. From the monotonicity property on the intervals −1 < t < a and b < t < 0,

we have q(a) > q(−1) = 0 and q(b) < q(0) = 0, which derives q(a) > 0 > q(b). Therefore, there

exists a unique point c such that q(c) = 0 with a < c < b. Using this c, we have q(t) < 0 for t < −1,

q(−1) = 0, q(t) > 0 for −1 < t < c, q(c) = 0, q(t) < 0 for c < t < 0, and q(0) = 0. By summing

up the above arguments, we can determine the sign of p′(t) = et q(t), from which we can conclude

that p(t) has its minimum at t = −1 and t = 0, i.e., p(t) ≥ p(−1) = p(0) = 0.
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We are in a position to prove Lemma 4.6.

Proof. By the maximum modulus principle, the left-hand side of (4.3) has its maximum on the

boundary of Dπ, i.e., ζ = x ± iπ. From the symmetry with respect to the real axis, it is sufficient

to consider ζ = x + iπ. Therefore, we show

f (x) :=

∣

∣

∣

∣

∣

∣

log(1 + ex+i π)

1 + log(1 + ex+i π)
· e−l
+ ex+i π

ex+i π

∣

∣

∣

∣

∣

∣

≤ 1. (4.6)

In the case where x = 0, we have

f (0) = lim
x→0

f (x) =

∣

∣

∣

∣

∣

1

e

∣

∣

∣

∣

∣

< 1.

The remaining cases are (i) x > 0 and (ii) x < 0, which we consider independently. Note that

log(1 + ex+i π) = log(1 − ex) = log |1 − ex | + i arg(1 − ex) =















log(ex −1) + iπ (x > 0),

log(1 − ex) (x < 0).

(i) x > 0. In this case, f (x) is expressed as

f (x) =

∣

∣

∣

∣

∣

∣

log(ex −1) + iπ

1 + log(ex −1) + iπ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−l − ex

− ex

∣

∣

∣

∣

∣

∣

.

By putting t = log(ex −1), f (x) ≤ 1 for x > 0 is equivalent to

g(t) :=

∣

∣

∣

∣

∣

t + iπ

1 + t + iπ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−l − et −1

− et −1

∣

∣

∣

∣

∣

∣

≤ 1

for t ∈ R. This is proved by showing

{g(t)}2 = t2
+ π

2

(1 + t)2 + π2

(

1 − e−1

e(et +1)

)2

≤ 1 (4.7)

for t ∈ R. In the following, we show (4.7) for two cases: (i-a) t > −1/2 and (i-b) t ≤ −1/2.

(i-a) t > −1/2. We begin with an obvious inequality:

0 ≤ (e1/2
+1)2

= e+2 e1/2
+1,

which is equivalent to e−1 ≤ 2 e+2 e1/2, and further equivalent to

1

1 + e−1/2
≤ 2 e

e−1
.

From this and t > −1/2, we have

0 ≤ 1

et +1
≤ 1

1 + e−1/2
≤ 2 e

e−1
,
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from which we have

−2 ≤ − e−1

e(et +1)
≤ 0 ⇔

(

1 − e−1

e(et +1)

)2

≤ 1.

Therefore, it holds for t > −1/2 that

{g(t)}2 ≤ t2
+ π

2

(0 + t)2 + π2

(

1 − e−1

e(et +1)

)2

=

(

1 − e−1

e(et +1)

)2

≤ 1.

(i-b) t ≤ −1/2. First, for all t ∈ R, it holds that

(e−1)

(

t +
e

e−1

)2

+
π

2(e−1)2 − e

e−1
≥ 0,

which is equivalent to

t2
+ π

2 ≤ e((1 + t)2
+ π

2) ⇔ t2
+ π

2

e((1 + t)2 + π2)
≤ 1.

Therefore, it holds for t ≤ −1/2 that

{g(t)}2 ≤ t2
+ π

2

(1 + t)2 + π2

(

1 − e−1

e(e−1/2 +1)

)2

=
t2
+ π

2

e((1 + t)2 + π2)
≤ 1.

(ii) x < 0. In this case, f (x) is expressed as

f (x) =

∣

∣

∣

∣

∣

∣

log(1 − ex)

1 + log(1 − ex)

(

1 − e−1

e
e−x

)
∣

∣

∣

∣

∣

∣

.

By putting t = log(1 − ex), f (x) ≤ 1 for x < 0 is equivalent to

h(t) :=

∣

∣

∣

∣

∣

∣

t

1 + t

(

1 − e−1

e(1 − et)

)
∣

∣

∣

∣

∣

∣

≤ 1

for t ≤ 0, which is shown as follows. In the case where t = 0 and t = −1, by L’Hôpital’s rule, we

have

h(0) = lim
t→0

∣

∣

∣

∣

∣

∣

t et+1 −t

et+1 − e+t et+1 −t e

∣

∣

∣

∣

∣

∣

= lim
t→0

∣

∣

∣

∣

∣

∣

et+1
+t et+1 −t

2 et+1 +t et+1 − e

∣

∣

∣

∣

∣

∣

=
e−1

e
< 1,

h(−1) = lim
t→−1

∣

∣

∣

∣

∣

∣

t et+1 −t

et+1 − e+t et+1 −t e

∣

∣

∣

∣

∣

∣

= lim
t→−1

∣

∣

∣

∣

∣

∣

et+1
+t et+1 −t

2 et+1 +t et+1 − e

∣

∣

∣

∣

∣

∣

=
1

e−1
< 1.

The remaining cases are t < −1 and −1 < t < 0. In consideration of the signs of t/(1 + t) and

1 − (e−1)/(e(1 − et)), we can remove the absolute value sign from h(t) as

h(t) =
t

1 + t

(

1 − e−1

e(1 − et)

)

.

According to Lemma 4.8, it holds for all t ≤ 0 that

h′(t) =
1 + et(et+1 −1 + t + t2 − e(1 + t + t2))

e(et −1)2(1 + t)2
≥ 0.

In other words, h(t) increases monotonically for t ≤ 0. Thus, we obtain h(t) ≤ h(−1) < 1 for

t < −1 and h(t) ≤ h(0) < 1 for −1 < t < 0. This completes the proof.
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5. Concluding remarks

The Sinc approximation is an approximation formula on the infinite interval (−∞,∞); thus,

an appropriate conformal map is required to apply the Sinc approximation on other intervals. In

the case of exponentially decaying functions that are defined on the semi-infinite interval (0,∞),

Stenger [1] proposed the use of t = ψ(x) to map (−∞,∞) onto (0,∞) and derived the approximation

formula (1.3). This paper has proposed the use of t = φ(x) rather than t = ψ(x) and derived a

new approximation formula (1.4). Through a theoretical analysis, we have given a computable

error bound for the proposed approximation formula, which is quite useful for construction of

algorithms with automatic result verification in arbitrary-precision arithmetic. By comparing these

two approximation formulas theoretically and numerically, we have demonstrated the superiority

of the proposed formula.

This improvement can be extended to many other numerical methods based on the Sinc ap-

proximation combined with the conformal map t = ψ(x). For example, numerical methods for the

Laplace transform [1], the Laplace transform inversion [10], initial value problems [11], second-

order differential equations [5], and Wiener–Hopf equations [3]. Replacing the conformal map

t = ψ(x) with t = φ(x) in such methods may achieve faster convergence. In future, we plan to

conduct theoretical analyses of such cases.
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