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Abstract

We consider the computation of the matrix logarithm by using numerical quadrature. The efficiency of
numerical quadrature depends on the integrand and the choice of quadrature formula. The Gauss—Legendre
quadrature has been conventionally employed; however, the convergence could be slow for ill-conditioned
matrices. This effect may stem from the rapid change of the integrand values. To avoid such situations,
we focus on the double exponential formula, which has been developed to address integrands with endpoint
singularity. In order to utilize the double exponential formula, we must determine a suitable finite integration
interval, which provides the required accuracy and efficiency. In this paper, we present a method for selecting
a suitable finite interval based on an error analysis as well as two algorithms, and one of these algorithms is
an adaptive quadrature algorithm.

1 Introduction
A logarithm of A € R™" is defined as any matrix X such that
exp(X) = A4,

where exp(X) =T+ X + %Xz + %X3 + -+ [10} p. 269]. If all eigenvalues of A lie in the set C \ (—co, 0], there
is a unique logarithm of A whose eigenvalues all lie in the strip {z € C : —n < Im(z) < n} [10, Thm. 1.31].
This logarithm is called the principal logarithm of A, and denoted by log(A). Throughout this paper, we assume
that all eigenvalues of A lie in the set C \ (—oo, 0], and we consider the principal logarithm of A.

The matrix logarithm is utilized in many fields of research, such as quantum mechanics [16], quantum
chemistry [9]], biomolecular dynamics [11]], buckling simulation [14], and machine learning [8} [12} |6, [7]. The
computational methods include the inverse scaling and squaring (ISS) algorithm [[1]], an algorithm based on the
arithmetic-geometric mean (AGM) iteration [3]], and numerical quadrature. In this paper, we focus on numerical
quadrature, which employs the following integral representation (see e.g. [10, Thm. 11.1]):

log(A) = (A—I)/OI[I(A—I)+I]_1 dr. )
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First, numerical quadrature can make use of the sparseness of A if A is sparse. It is useful when computing
the multiplication of the matrix logarithm and a vector log(A)b (b € R™), which appears in applications such
as 816, 77} without computing and storing dense matrices. Conversely, the ISS algorithm and the algorithm
based on the AGM iteration include the computation of the matrix square root, which means that the calculation
involves dense matrices even if A is sparse. The second reason is that numerical quadrature is potentially more
favorable for parallel computers because of independent computation of the integrand on each abscissa.

Because the integrand in (I)) includes matrix inversion, the computational cost of numerical quadrature
depends on the number of evaluations of the integrand. Although numerical quadrature is suitable for par-
allelization, the quadrature formula should be selected carefully to reduce the computational cost and save
computational resources.

The method conventionally used to compute (I)) is the Gauss—Legendre (GL) quadrature. If the spectral
radius of A — [ is smaller than 1, the GL quadrature, which can be regarded as a rational approximation of
log(A), coincides with the Padé approximants of log(A) at I [5, Thm. 4.3]. Therefore, it is natural to use the
GL quadrature to reduce the number of abscissas when A is close to /. However, the convergence of the GL
quadrature becomes slow when A is not close to /. For example, the convergence in our experiments became
slow when A was ill-conditioned which may be explained by rapid changes in the integrand value when it is
closer to the endpoint of the interval.

In this paper, we consider the double exponential (DE) formula [[15]], which can be used to compute integrals
with singularities at one (or both) of the endpoints. For this reason, the DE formula may be useful in scenarios
in which the GL quadrature does not perform well. However, when using the DE formula, a finite interval needs
to be selected because the integrand in () is transformed into a corresponding function on the infinite interval.
This selection is important, i.e., if the finite interval is too narrow, the accuracy of the computational result
becomes low, but if it is too wide, the convergence of the DE formula becomes slow.

By performing an error analysis, we provide a method of selecting the appropriate finite interval, as well as
two algorithms for the computation of log(A) based on the m-point DE formula.

The remainder of this paper is organized as follows: in Section 2, we present an error analysis and propose
two algorithms; in Section 3, we show the results of numerical experiments; in Section 4, we conclude the study.

Notation: Unless otherwise stated, || - || denotes a consistent matrix norm, e.g., the p-norm or the Frobenius
norm, and || - ||; and || - ||z denote the 2-norm and the Frobenius norm, respectively. The inverse functions of
sinh and tanh are referred to as asinh and atanh, respectively.

2 Algorithms for the computation of log(A) based on the DE formula

In this section we propose a method of selecting a finite interval for the DE formula by estimating the interval
truncation error and present two algorithms. Before considering the truncation error, let us apply the following
transformations to (I)). By substituting u = 2¢ — 1 in (I]), we obtain

1
log(A) = (A1) / [(1+u)(A=1)+2I]"" du. )
-1
Then, by applying the DE transformation u# = tanh(sinh(x)), it follows that
tog(4) = (4~ 1) [ For(r)ax G)

where

Fpg(x) := cosh(x)sech?(sinh(x)) [(1 + tanh(sinh(x)))(A = I) + 2I]"".

! In the three applications, the computation of log(det A) is performed based on some connections between log(A)b and log(det A).
For more details, see, e.g., [13].



The matrix (1 + tanh(sinh(x)))(A — I) + 21 in the integrand Fpg is nonsingular for any x € R. In Subsection
2.1, we derive an upper bound on the error between the integral in (3]) and the same integral defined in the finite
interval [/, r],

log(4) - (A - 1) fl " Fos(x) dx

: “)

In Subsection 2.2, we propose a method of selecting the interval [/, 7] so that the relative truncation error is
small than or approximately equal to a given tolerance €. Our algorithms are described in Subsection 2.3.

2.1 [Estimation of the error from the interval truncation

The error that stems from the interval truncation (4) can be rewritten as

r 1 00
log(A) - (A - 1)/ FDE(X) dx|| = H(A - 1) [‘/ FDE()C) dx + / FDE()C) dx] . (5)
l —co -
Using the triangle inequality in the right-hand side (RHS) of (3), it holds that
l S
”(A - I) [/ FDE(X) dx + / FDE(X) dx] (6)
—0co0 r

< +

l
(A-1) / Fop(x) dx

) / " Fos(x) dx

By estimating the RHS of (6), we obtain an upper bound on ().

Initially, we focus on the first term which is on the RHS of (6). To avoid cumbersome notation, instead of
Fpg, which including hyperbolic functions, we consider the integrand of (I)). By applying the transformation
t = [tanh(sinh(x)) + 1]/2, we have

1
H(A - I)[ FDE()C) dx

= ”(A ~ 1) /0“ F(r)de

; (N

where,

Ft):=[(A-D)+ 117", a:= tanh(sin;(l» +1

The following lemma shows an upper bound on the RHS of (7)), if @ is small enough to warrant the use of the
Neumann series expansion of F(z).

Lemma 2.1. Suppose that A # I. Then, for a € (0,1/(2]|A - I||)], we have

”(A—I)‘/aF(t)dt < 37a||A—I||. ®)
0

Proof. For all ¢ € [0, a] where a € (0,1/(2]|A - ])], it holds that
1
l?(l = Al < 3 (< D.

By applying the Neumann series expansion to F(r) we get the following:

FO)=[t(A-D+1]"" = i *(I — A)F.
k=0



Therefore, the integral of F can be rewritten as follows:

(A—I)‘/O F(t)dt:(A—I)/O LZ:;)tk(I—A)k
=(A—I)i
k=0

o k
—a(A=D)+a(A—-T) [a—(I—A)k].
; k+1

dr

ak+1 f
I-A
k+1( )

By using triangle inequality and consistency of the norm we get the following:

1 k
— lla(A- D] ]

(=] k
1(1
Sa||A—I||+a||A—I||Z[§(§) }
k=1

3a
= 2tlA-1).

(A- I)/Oa F(t)dt

Sa||A—I||+a||A—I||Z[
k=1

O

The calculation to estimate the second term on the RHS of (6)) is similar to that of the first term. By applying
the transformation ¢ = [tanh(sinh(x)) + 1]/2, we get the following:

= H(A—I)/blF(t)dt

’(A ) /00 Fpe(x)dx

where b = [tanh(sinh(r)) + 1]/2.
The following lemma shows an upper bound on (9), if b is close enough to 1 to warrant the use of the
Neumann series expansion of F(z).

Lemma 2.2. For b € [2||A7"||/(2]|A7"]| + 1), 1), we have

) ©)

H(A -1 /bl F(t)dr

Proof. The outline of this proof is similar to that of Lemman Forallt € [b, 1] where b € [2||A‘1 I/l A~ +
1), 1), it holds that

1-b .
< (—log<b> + 7) 14 - 2liA~ (10)

t_lA_l

1
< (<)
: 3D

By applying the Neumann series expansion to F'(¢), we get

[((A=1)+ 1]

1 S (r=-1\F _

() A
k=0

Therefore, the integral of F' can be rewritten as follows:

! ~ 1 =1\,
(A—I)/h F(z)dz_(A—l)/b A ;O(T) A

> -1\
A a-l| -« [ Lfr=1
=(A-DA log(b)1+;A /b t( t ) dt].

F(1)

dr




By using the triangle inequality and consistency of the norm, it follows

1
H(A—I)/b F(t)dt

<lla-1ifa”'| {| ~log(h)| + )
k=

Pie-1ff
Il [ d]} an
=1

In (TI)), it holds that | — log(b)| = —log(b) because b € [2||A‘1||/(2||A‘1|| +1),1), and |(r — 1)/t| = (1 - 1)/t
because ¢ € [b, 1]. For the second term in the bracket on the RHS of (IT)), we have:

gk [T [L=1\f S gk [ (1=
Z”Al“/b;(T) dekZ”Al”/g(T) df]
| -

k=1
I
b — k+1 ]
—b i [1 ( ) ]
b — 2
1-b
=—, 12
b (12)
By substituting (I2) in (L1]), we obtain the inequality (I0). o

In the final part of this Subsection, we estimate the upper bound on (4)).

Proposition 2.1. Suppose that A # I. For a given interval [[,r], let @ = [tanh(sinh(/)) + 1]/2 and b =
[tanh(sinh(r)) + 1]/2. Then, if a < 1/(2||A = I||) and b > 2||A~"||/(2||A~|| + 1), it holds that

log(A4) — (A~ 1) /l " Fos(x) dx

3 1-b
< ZallA-1] + (—1og<b>+ St as
Proof. By combining (5)) and (6)), and as well as substituting () and (I0) in (6), we get (13). o

2.2 Setting the integration interval

To develop algorithms for computing log(A) based on the DE formula, we need to determine the appropriate
finite integration interval, [/, ] in advance. The finite interval should be ideally set so that the relative error is
guaranteed to be smaller than or equal to a given tolerance, € > 0, i.e.,

Hlog(A) —(A=1) [ Fou(x) dx”

<e€
| log(A)]|

To accomplish this, a lower bound on || log(A)|| must be estimated. The following lemma shows a lower bound
in terms of the spectral radius of A.

Lemma 2.3. Let p(-) be the spectral radius, i.e., the largest absolute value of eigenvalues. Then, the following
two inequalities hold:

[l 1og(A)|| > |log(p(A))l, (14)
[[log(A)]| > |log(p(A™"). (15)
Proof. By using the consistency of the norm and the fact any eigenvalue of log(A) is equal to log(A), for some A

being an eigenvalue of A, we have the lower bound in as || log(A)|| = p(log(A)) = |log(p(A))|. The lower
bound in (T3] can be obtained in a similar way. o



In the following proposition, we show how to set a finite interval such that the relative truncation error in
2-norm is smaller than or equal to a given tolerance, € > 0.

Proposition 2.2. Suppose that A # I. Let 6 be a lower bound on || log(A)||2, the tolerance € > 0 satisfy

311A = ]l ||A" |2
<

o1 + 1A R)

and s be a real positive solution of the equation

1 1-s €

— -1 — A= ILIIA™ ) = <. 1

; ( og(s) + — ) 4= 1lalla™ I = 5 (16)
If

| := asinh(atanh(2a — 1)), r := asinh(atanh(2b — 1)),
where
fe 1 20147 }
a = min , , b:=max{s, ———}, (17
{3||A—1||2 2||A—1||z} { 2[[A )l + 1

then, it holds that
||log(A) —(A=1) [ Fou(x) dx||2
|| log(A)ll2

Proof. From the definition of a and b, it is true that @ < 1/(2||A = I||;) and b > 2||A~!||,/(2||A7 ], + 1). In
addition, from

(18)

b 2147 be 2147 1A~ Il
—a> — - > ] - 1
A+ 1 3[[A=1l - 2[[A7 o+ 1 1+ [|A7
_ 20AT (@ + 1A ) — A 2 + DIA™ 2
@A~ + D + 1A~ "]2)
_ 1A~ )
@IA= 2 + D+ 1A~ ]2)

]

it follows that a < b, and [ < r. Therefore, we can choose a finite interval [/, r] that satisfies the assumptions of
Proposition[2.1} By dividing the inequality by || log(A)l|» > 6, it follows:

[lozr = ca=n [ Foeorae|, 5,
<
[ log(A)ll2 T 20

1 1-b -
1A= 1l + 2 (—1og<b> + 7) 14 = TRl A™ . (19)

From the definition of a and b, it holds that a < 8¢/(3||A — I||) and b > s. Therefore,

3a e 1 1-b €

—A-Ih <=, - [-log® A=A ] < <. 20

el =1l 5 g (~toe)+ 2 1A= A" < § 20)
We obtain by substituting in (19). mi



2.3 Algorithms

In this subsection we establish two algorithms based on the results in subsections 2.1 and 2.2. One of the
algorithms is designed to compute log(A) using the m-point DE formula on a finite interval with an interval
truncation error smaller than or approximately equal to a given tolerance, € > 0. The other algorithm is an
adaptive quadrature algorithm designed to compute log(A) by automatically adding abscissas until the error is
smaller than or approximately equal to a given tolerance ¢ > 0.

If the tolerance e given in Proposition [2.2] is sufficiently small, a linear approximation to the nonlinear
equation (T6)) can be used to determine an appropriate interval. We describe our calculation in detail below.

Suppose that € is sufficiently small and the solution s of (I6) is approximately equal to 1. Then, because
3(1 — 5)/2 is the first-order Taylor approximation to —log(s) + (1 — s5)/2s at s = 1, the solution s can be

approximated by using the solution § of the following equation:
13(1-5) 1 €
———||A=1|]2]|A = - 21
s A=A = 5 e

The solution of is given by

Oe

=1- —.
A = 1]l2lA7 ]2

=13

Under the assumptions of Proposition by choosing b as

P P
=max{§, —————
2/|A 2 +1

instead of (T7), and setting # = asinh(atanh(25— 1)), the interval truncation will be smaller than or approximately
equal to €. The summary of the first algorithm, which computes log(A) using the m-point DE formula whose
interval truncation error is smaller than or approximately equal to € is as shown in Algorithm|[I]

Algorithm 1 Computation of log(A) based on the DE formula.
Input: A € R™", m € N, € > 0 a tolerance for the interval truncation error
Output: X ~ log(A)
1: Set Fpg(x) = cosh(x)sech?(sinh(x)) [(1 + tanh(sinh(x)))(A = I) + 21]7!
2: Compute ||A = I|lz, [[A™" |2, p(A)
3: 0 = |log(p(A))|
o 3IA=TblA
0 1+[AM:
5: if € > €nax then
6: € < €max/2
7
8

. end if
min{ Oe 1 }
ca= ,
A= 21A - 12
fe 2[|A7 12 }
3[|A — I]l2[| A7 l2" 2| A2 + 1
10: [ = asinh(atanh(2a — 1))
11: r = asinh(atanh(2b — 1))
122 h=F-0)/m-1)

9: b=max{1—

m=2
13: T = ﬁ(FDE(Z) + Fp(r))+ h Z Fpe(l +ih)
2 i=1
4 X =(A- DT




When e is sufficiently small, an accurate computation of ||/ — Al|, |[A~!]l» and p(A) at Step 2 of Algorithm
[[] may not be required because the errors that stem from of these values have little effect on the accuracy of
log(A). We give more detail in the following paragraph.

Assume that € in Algorithm [I]is sufficiently small, and that a and b in Step 9 are chosen as

Oe Oe

a=-———, b=1- ,
3|A =12 3[A = 1IRlIA~ ]2

where 6 is a lower bound on || log(A)|l,. Let A; and A, be the relative errors of 8/||A — I||, and 1/]|A7Y»
respectively. Then, the computational result of a is equal to

€ 0
———(1+A)=——€(1 +A)),
AR A= 3ot A
and that of b is equal to
€ 0 1 6
———(1+A1)—(1+A2)= 1- 6(1+A1 +A2+A1A2).
31A-1]]2 1A= 3|A = Il A7

Therefore, the upper bound on the truncation error e computed by considering the relative errors Ay, A, is
almost equal to the upper bound on the truncation error when the tolerance is set as e(1 + A + Ay + AjAy).
For example, when A, Ay = 1072, €(1 + A; + Ay + AjAy) =~ 1.02¢, which means that the upper bound on
the truncation error changes by approximately 2%. If € is sufficiently small, the effect of these errors will be
negligible.

At Step 3, a lower bound on || log(A)|2 is computed based on (I4). By setting 6 = max{|log(p(A))|,
| log(p(A~1))|}, a tighter lower bound can be obtained. In particular, when A is positive definite, | log(o(A™!))|
can be obtained without additional computation because p(A~") = ||A~!||, is already computed in Step 2.

The computational cost of Algorithm 1 for dense A is (2m + 2)n® + O(n?). When A is sparse, evaluating
log(A)b using Algorithm 1 has computational cost mcabscissa + Cmul + Cparams Where Capscissa is the computational
cost of computing Fpg(x)b, ¢y is the computational cost of a matrix-vector multiplication, and Cparam 18 the
computational cost of computing parameters p(A), ||A — ||, and ||[A~!|. If the parameters are computed
approximately and Fpg(x)b is computed accurately, then cpaam Will be smaller than capgcissa- Therefore, the
computational cost will largely depend on m.

Once an appropriate finite interval is obtained, the accuracy of the DE formula can be improved with the
following procedure. Let m be the number of abscissas, 2 = (r — [)/(m — 1) be the mesh size, and T(%) be the
trapezoidal rule for the mesh size h:

m-2

T(h) := g (For(l) + For(r)) + h )" For(l +ih).

i=1

Then, T(h/2) can be computed using T(h):

ny 1 h"S . h

In addition, we can apply the following estimation of the trapezoidal error for a sufficiently small value of &

using [2| Eq. (4.3)]:
r h
[ oo

Our adaptive quadrature algorithm which is based on (22)) is presented as Algorithm[2]
The computational cost of Algorithm [2|for dense A is (2my 1 +2)n® + O(n?) = [2K71 (mg — 1) + 410> + O(n?),
and the computational cost of log(A)b with sparse A is [2%(mg — 1) + 1]capscissa + Cmul + Cparam-

1 h
zﬂﬁ@—T&N. (22)



Algorithm 2 Computation of log(A) by adaptive quadrature based on the DE formula.

Input: A € R™", my € N, € > 0 a tolerance for the interval truncation error, { > 0 a tolerance for the

trapezoidal truncation error.
Output: X =~ log(A)

1:

2: Computing /, r, 6 using steps 2 to 11 of Algorithm 1
3: ho = (r—1)/(mo—1)

4 To = B For(l) + 5 For(r) + ho S For(l + ih)
5: for k =0,1,2,... until convergence do

6: his1 = hi /2

7. Tt = 3Tk + hia :-Zkl_l Fpg(l + (20 = 1)hg41)
8: Mpy1 = 2my — 1

9: if 1| Txs1 — Txll/0 < ¢ then

10: T =Ty

11: break

12: end if

13: end for
14 X=(A-IT

Set Fpg(x) = cosh(x)sech?(sinh(x)) [(1 + tanh(sinh(x)))(A — I) + 21 ]_1

3 Numerical experiments

The numerical experiments were carried out using Julia 1.0 on a Core-i7 (3.4GHz) CPU with 16GB RAM. We
used the IEEE double precision arithmetic. We computed abscissas and weights in the GL quadrature with
QuadGK. j1 (https://github.com/JuliaMath/QuadGK_jl).

3.1 Experiment 1: Checking the convergence

In this experiment, we checked the convergence of the GL quadrature and the DE formula. Our test matrices

are presented in Table[T} We generated the first three matrices in Table [I|by using the following procedure:

Table 1: Test matrices. The condition number of A is denoted by x2(A) = || A[2||A7!ls.

Matrix Size kp(A) Structure

SPD 1 50 1.0x10" SPD

SPD 2 50 1.0x10* SPD

SPD 3 50 1.0x10" SPD

parter [17] 10 2.4x10° Nonsymmetric
frank [17] 10 2.9x107 Nonsymmetric
vand [17] 10 3.1x10'? Nonsymmetric
bcsstk02 [4] 66 4.3x10° SPD
bcsstk03 [4] 112 6.8x10°  SPD

ck104 [4] 104 5.5x10° Nonsymmetric

1. We generated an orthogonal matrix Q by QR decomposition of a random 50 X 50 matrix.

2. We generated a diagonal matrix whose diagonal elements were from the geometric sequence: {d; };=
where d; = k172 and dsy = «'/2 for k = 10".

3. A=QDQ".

()



4. We repeated Step 2 and Step 3 by setting « as 10* and 107.
The experimental procedure is as follows:

1. We scaled the test matrices as A = (10/p(A))A because some matrices had values that were too large to
use in computation.

2. We computed the reference log(A) with the arbitrary precision arithmetic and rounded the result to double
precision. We implemented the ISS algorithm [10, Alg. 11.10] with the BigFloat type of Julia.

3. We computed log(A) using Algorithm where € = 273 ~ 1.1 x 107'%, If the test matrix was symmetric
positive definite, we set § = max{|log(p(A))|, | log(p(A~"))|} as stated in Subsection 2.3. We computed
p(A) using the eigvals function of Julia, which computes all eigenvalues of A. Similarly, we computed
|I7 = All> and ||A~!||, using the svdvals function, which computes all singular values of A

4. We computed log(A) by applying the GL quadrature to (2)).

Figure[I|shows the convergence histories of the DE formula and the GL quadrature for each matrix. Several
observations can be made:

* The accuracy of the DE formula is almost the same as that of the GL quadrature, and the accuracies of
the DE formula and the GL quadrature depend on the condition number of test matrices.

* For well-conditioned matrices, such as SPD 1 and parter matrix, the GL quadrature converged faster
than the DE formula. Conversely, for the ill-conditioned matrices, such as SPD 3 and vand matrix, the
DE formula converged faster than the GL quadrature.

The above observations suggest that Algorithm [I] selects an appropriate interval and the DE formula is
suitable for ill-conditioned matrices.

3.2 Experiment 2: Checking Algorithm 2

In this experiment, we check the performance of Algorithm 2] by using the same matrices that were used in
Experiment 1 (see Subsection 3.1). We compared Algorithm [2] with Algorithm [3] which is based on the GL
quadrature (see Appendix B).

We conducted the experiment using the following procedure:

1. We computed log(A) by using Algorithm We set mg = 16 and £ = € € {1078,107!"}. In Step 2 of
Algorithm 2] which calls Algorithm 1, we computed the spectral radius and the 2-norm of matrices using
eigvals and svdvals functions, as is done in Experiment 1. We stopped the computation once the
number of integrand evaluations reached 1921.

2. We computed log(A) by using Algorithm We set mg = 16 and £ € {1078,107'!}. In Step 2 of
Algorithm 3] the lower bound 6 was computed using (I4) and (I3) in the same way as was done for the
DE formula. If the number of integrand evaluations was more than 2032, we stopped the computation.

The number of integrand evaluations and the corresponding relative error when the two algorithms stopped
are shown in Table[2l
Several observations can be made:

2 If A is large, using eigvals and svdvals may be inefficient. Instead, for Julia, a package Arapack.jl
(https://github.com/JuliaLinearAlgebra/Arpack.jl) is available, which can compute a part of eigenvalues and singular values based
on the Lanczos (or the Arnoldi) process with the desired accuracy. We present some numerical results, for which p(A), ||A — I||,, and
|A=1 |, are computed with low accuracy, as shown in Appendix A.

10
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Figure 1: Convergence histories of the DE formula (Algorithm [I) and the GL quadrature. The vertical axes
show the relative error, || log(A) — X||r /|| log(A)||r, and the horizontal axes show the number of abscissas, n1.

Table 2: Comparison between Algorithm [2] (based on the DE formula) and Algorithm [3] (based on the GL
quadrature), in terms of the number of integrand evaluations (in bold) and the relative error when the algorithm
stopped (in parentheses). The notation “— (—)” means that the algorithms did not stop before the number of

0 SPD 2 . SPD 3
10 10° 4
—— GL
—o— DE
1078 1078 4
—»— GL
—o— DE
10—16 . . . 10—16 . . .
0 100 200 0 100 200
frank
100 - 100 1w
—— GL
—Oo— DE
1078 4 10784
10-16 . . . 10-16 .
0 50 100 0
0 bcsstk03 0
10° 4 100 ¢
1078 10784
—u— GL
—o— DE
10-16 . . . 10-16 .
0 100 200 0

integrand evaluations reached the limit.

Algorithm (DE) Algorithm(GL)

l 1078 10-!1 1078 10-11

SPD 1 61 (22x107% 61 (2.7x1071?) 48 (4.6 x 10719) 112 (5.7 x 1071)
SPD 2 121 (6.7 x 10710) 241 (6.4 x10713) | 1008 (1.8 x 10715) 1008 (1.8 x 10719)
SPD 3 241 (3.0x 10719 481 (4.9x 1073 | - -()

parter 61 (2.6 x 107°) 121 2.3x10712) | 112 (3.3x 10716) 112 (3.3 x 10716)
frank 481 (1.0x 107'2) 1921 (2.1 x 10713) | 496 (1.5 x 10°11) = ()

vand -) -(=) - -

besstk®2 | 121 (2.8 x107°) 121 (3.1x107'%) | 496 (1.7 x 107"%) 1008 (1.0 x 10~15)
bcsstk03 | 241 (1.4x107°) 241 (1.5x107'%) | =(») -()

ck104 121 (6.7 x10710) 121 (7.4 x10713) | 496 (2.2 x 1071%) 496 (2.2 x 1071)
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* Algorithm [2] successfully computed the logarithm with the desired accuracy within 2000 integrand
evaluations for all test matrices, except vand matrix, whereas Algorithm [3] could not succeed for three
matrices. For vand matrix, the stopping criterion { may be too strict because the convergence history of
vand matrix (as shown in Figure (1) hardly reach the value of 1078, Our future studies will focus on the
method for selecting a suitable stopping criterion.

¢ Even if the condition number of A is small as is the case for SPD 1 and parter matrix, the number of
integrand evaluations of Algorithm[2]could be smaller than that of Algorithm [3]because Algorithm [2]can
reuse all previous results when improving accuracy.

These observations show that Algorithm [2] can be a practical choice for the computation of the matrix
logarithm by numerical quadrature.

4 Conclusion

In this paper, we focused on the DE formula as a new choice for the numerical quadrature formula of log(A).
In order to utilize the DE formula, we proposed a method for selecting an appropriate finite interval based on
error analysis, and we proposed two algorithms for practical computation.

We carried out two numerical experiments. The first experiment showed that the DE formula converged
faster than the GL quadrature for ill-conditioned matrices. The second experiment demonstrated that the
proposed adaptive quadrature algorithm worked well with appropriate stopping criteria.

Our future work will focus on three problems. The first one is the analyses of the convergence rate for the
DE formula and the GL formula, the second one is a method of selecting appropriate stopping criteria, and
the third one is the verification of the practical performance of the presented algorithms, when applied to large
sparse matrices from current research problems.
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A Effect of the parameter errors in Algorithm 1

In this section, in order to check the effects of the parameter errors in Algorithm 1, we present some numerical
examples.
The convergence histories of the DE formula are shown in Figure 2] Each graph shows two histories: one is

10° 10° kahan 10°
—— exact
o  Arpack
1078+ 1078 1078
10716 L, 10716 L / 2 1077
0 50 100

Figure 2: Convergence histories of the DE formula (Algorithm [I)) obtained using the exact estimations of
A= I, IA~"l», p(A) (using eigvals and svdvals) and obtained using eigs of Arpack.jl. The vertical
axes show the relative error || log(A) — X||r/|| 1og(A)||r, and the horizontal axes show the number of abscissas
m.
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obtained by using the eigvals and svdvals functions for computing p(A), | A — I||, and ||A~!|| as in Section
3; the other one is obtained by using Arpack. j1 with tol=0.017 The figure shows that the behaviors of the
histories are almost equal, and the effects of the errors did not appear.

In conclusion, the parameters used at Step 2 of Algorithm [I]can be computed roughly.

B Adaptive quadrature algorithm based on the GL quadrature

In this section we show an adaptive quadrature algorithm based on the GL quadrature for (2)), using a technique
from [2].

Let G(m) := X" | wiFgL(u;) be the results of the m-point GL quadrature, where Fgr.(u;) = [(1 +u)(A—-1)+
2117!. Using [2, Eq. (4.6)], the following error estimate can be applied:

1
”G(2m) - [ 1 FoL(@) dr|| < ||G(m) = G2m)|| . (23)

Based on (23)), we present the algorithm designed to compute log(A) by automatically adding abscissas until
the error is smaller than a given tolerance as Algorithm 3]

Algorithm 3 Computation log(A) based on Gauss—Legendre quadrature

Input: A € R™", The number of initial abscissas mg > 2, £ > 0 for a tolerance of the truncation error.
Output: X ~ log(A)

1: Set Fg(u) :=[(1 + u)(A—1)+ 217"

2: Compute 6, a lower bound on || log(A)||».

3: Compute abscissas u; and weights w; of my-point Gauss—Legendre quadrature (i = 1,. . ., mp)
4: Go = 27 wiFoL(u;)

5: for k =0, 1,2, ... until convergence do

6: M1 = 2my

7: Compute abscissas u#; and weights w; of my,(-point Gauss—Legendre quadrature (i = 1,. .., mg41)
8: Gr1 = 28 wiFaL(u;)

9: if ||Gr1 — Gi||/60 < ¢ then

10: G = Gy

11: break

12: end if
13: end for

14: X =(A-1)G

The computational cost of Algorithmfor dense A is [2(ZK) mp) +2]n3 + O(n?) = [(2F43 = 2)mg + 2]n® +
O(n?), and the computational cost for log(A)b with sparse A is (25*2 — 1)mgCapscissa + Cmul + Cparam- Under the
assumption that the total computational cost largely depends on the coefficient of cypscissa, the computational
cost of the Algorithm 2 will be smaller than that of Algorithm 3 when the convergence ratios of the DE formula
and the GL quadrature are the same.

3 The parameter tol defines the relative tolerance for convergence of Ritz values. In this examples, p(A) is obtained using
eigs(A, nev=1, which=:LM, t0l=0.01),|A—I|| is obtained using eigs ((A-I)’*(A-I), nev=1, which=:LM, tol=0.01),
and ||A~! ||, is obtained using eigs(A’*A, nev=1, which=:SM, t0l=0.01), where A is the preconditioned matrix A.
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