
Energy-based comparison between the Fourier–Galerkin method and the
finite element method
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Abstract

The Fourier-Galerkin method (in short FFTH) has gained popularity in numerical homogenisation because
it can treat problems with a huge number of degrees of freedom. Because the method incorporates the fast
Fourier transform (FFT) in the linear solver, it is believed to provide an improvement in computational
and memory requirements compared to the conventional finite element method (FEM). Here, we system-
atically compare these two methods using the energetic norm of local fields, which has the clear physical
interpretation as being the error in the homogenised properties. This enables the comparison of memory and
computational requirements at the same level of approximation accuracy. We show that the methods’ effec-
tiveness relies on the smoothness (regularity) of the solution and thus on the material coefficients. Thanks
to its approximation properties, FEM outperforms FFTH for problems with jumps in material coefficients,
while ambivalent results are observed for the case that the material coefficients vary continuously in space.
FFTH profits from a good conditioning of the linear system, independent of the number of degrees of free-
dom, but generally needs more degrees of freedom to reach the same approximation accuracy. More studies
are needed for other FFT-based schemes, non-linear problems, and dual problems (which require special
treatment in FEM but not in FFTH).

Keywords: energy-based comparison, finite element method, Fourier-Galerkin method, fast Fourier
transform, numerical homogenisation, computational effectiveness

1. Introduction

A physical system (e.g. thermal or mechanical) with a complex microstructure is typically represented
with (ensembles of) periodic microstructural cells (see examples by us [1, 2, 3, 4, 5]). Its mathematical
modelling and concurrent numerical simulation, which usually involves solving one or more (coupled) par-
tial differential equations, may be computationally very demanding. This is especially true for problems
including uncertainties, geometric and/or material nonlinearities, or multiple scales, because the microstruc-
tural problems have to be solved many times. Here, we compare the numerical efficiency of the now very
popular Fourier-Galerkin methods to the classical finite element method (FEM). In particular, we test the
popular believe that the former offer a significant higher efficiency than the latter, for a specific set of
problems. Specifically, FEM uses a discretisation that is piece-wise continuous in space, allowing arbitrary
discretisation morphologies as well as boundary conditions, while the Fourier-Galerkin method is based on a
discretisation using globally supported trigonometric polynomials [6, 7, 8, 9, 10, 11, 12], allowing the use of
the fast Fourier transform (FFT) typically for regular and periodic discretisations. Our contribution focuses
on the clarification of the numerical efficiency of Fourier-Galerkin methods with respect to its approximation
accuracy. We compare the two methods through the accuracy of local fields, which is based on errors of
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local fields measured using the energetic norm that also correspond to the errors in effective properties1.
This gives the comparison a clear physical meaning.

The Fourier-Galerkin method is part of a class of methods that employs FFT in the context of homogeni-
sation [6, 7, 8, 13, 12], as was first introduced by Moulinec and Suquet [13] who present an efficient algorithm
that relies on a fixed-point iterative solution of the Lippmann-Schwinger (L-S) equation, thereby employing
a Green operator. This approach was recognised as a collocation method [14] and later, thanks to a vari-
ational reformulation of the L-S equation [15, 12], as a Galerkin approximation with numerical integration
(denoted FFTH-GaNi) [12, 16]. Note that this concerns merely a variational justification of Ref. [13] and
that both provide exactly the same discrete solution. Moreover, the variational reformulation has allowed
a further development using standard mathematical tools such as convergence studies [12, 17], the usage
of more efficient linear solvers [18] and a straightforward treatment of non-linear small [19] and finite [20]
strain mechanics; rendering it a competitive alternative to FEM.

Here we will compare the FEM to FFTH-GaNi and also to the Fourier-Galerkin method based on exact
integration (denoted FFTH-Ga) because of its improved accuracy compared to the scheme with numerical
integration. The exact evaluation of the corresponding integrals (and also the energetic norms) in closed form
[16, 21] allows us to eliminate the numerical error of the quadrature, and thus to purely focus on discretisation
and algebraic errors2 in the comparison. Even though several papers [22, 23, 24, 25, 26, 27, 28, 29, 30]
compare FFT-based methods to FEM and other discretisation methods, the effectiveness of predicting local
fields at the same level of accuracy was never assessed. In particular, the accuracy of local fields was but
cannot be deduced from the homogenised properties for nonconforming methods [22, 23, 24, 25, 26, 27].
Consequently, a very good prediction of energies (homogenised properties) may be obtained with local fields
that still possess a big error, because those approaches (e.g. [13]) violate the variational structure of the
problem, see [31, 16, 21]. Those limitations were overcome by comparing various FFT-based schemes against
analytical solutions [28, 29, 30], however, without focussing on the computational efficiency as is our focus.

We limit our comparison to FEM and the Fourier-Galerkin method as both numerical methods can
be used in broad class of microscopic studies (e.g. [1, 2, 3, 4, 5]). These methods can additionally be
used in multi-scale analyses, where the effectiveness of both methods in comparison to other approaches
(e.g. [32, 33, 34, 35]) is left undiscussed. Similarly we leave the effectiveness of other improvements and
alternative approaches to FFT-based methods (such as the variational discretisation of the Lippmann-
Schwinger equation with piece-wise constant basis functions [36, 37, 38], the modification of the integral
kernel [39, 28], schemes derived from finite differences [29] and hexahedral finite elements [40], or smoothing
of the material coefficients [41, 42]) undiscussed. Although those methods are promising, they do not allow
for the direct evaluation of guaranteed bounds on homogenised properties, which we have argued to be the
crux of our comparison.

The remainder of this paper is structured as follows. The problem is introduced in Section 2. Our results
are presented in Section 3, followed by our conclusions and a short discussion in Section 4. All mathematical
details, including the numerical treatment, can be found in Appendix A through Appendix E. In terms
of nomenclature, we denote d-dimensional vectors and matrices by boldface letters: a = (ai)i=1,2,...,d ∈ Rd

or A = (Aij)i,j=1,2,...,d ∈ Rd×d. Matrix-matrix and matrix-vector multiplications are denoted as C = AB
and c = Ab, which in Einstein’s summation notation reads Cik = AijBjk and bi = Aijbj respectively. The
Euclidean inner product will be referred to as c = a · b = aibi, and the induced norm as ‖a‖ =

√
a · a.

Vectors and matrices such as x, b, and A arising from discretisation are denoted by the bold serif font in
order to highlight their special structure. The space of Y-periodic continuous functions defined on a periodic
cell Y = (− 1

2 ,
1
2 )d is denoted as C(Y) and the space of square integrable Y-periodic functions as L2(Y). The

analogical space L2(Y; Rd) collects Rd-valued functions v : Y → Rd with components vi from L2(Y). Finally,
H1

0 (Y) = {v ∈ L2(Y)
∣∣∇v ∈ L2(Y; Rd),

∫
Y v(x) dx = 0} denotes the Sobolev space of periodic functions with

zero mean.

1Note that this is only valid for a conforming approximation, i.e. when compatible fields are used and the integrals in the
Galerkin formulation are evaluated exactly, see Appendix D for details.

2By algebraic errors we consider the error between the solution of the linear system and its approximation using e.g.
conjugate gradients.
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2. Problem description

2.1. Model problem

A model problem in homogenisation [43] consists of a scalar linear elliptic variational problem defined on
a unit domain Y = (− 1

2 ,
1
2 )d in d-dimensional setting, for which we consider both d = 2 and d = 3. Before

proceeding, we introduce a compact notation of a bilinear form a : L2(Y; Rd)× L2(Y; Rd)→ R defined as

a
(
v,w

)
:=

∫
Y
A(x)v(x) ·w(x) dx =

∫
Y
Aij(x)vj(x)wi(x) dx,

where A : Y → Rd×d is a symmetric and uniformly elliptic second order tensor of material coefficients.
We now consider the homogenisation problem to find effective material properties AH ∈ Rd×d. It is

based on the minimisation of a microscopic energetic functional for constant vectors E ∈ Rd as

AHE ·E = min
v∈H1

0 (Y)
a
(
E +∇v,E +∇v

)
(1)

where ∇v is the periodically fluctuating microscopic field of E. In the sequel we consider exclusively
E = (δ1,i)

d
i=1 ∈ Rd (i.e. in 3D E = [1, 0, 0]); therefore, the 11-component of the homogenised properties

AHE ·E = AH,11 =: AH

will be of particular interest.
Both discretisation methods, FEM and FFTH (described in more detail in Appendix B and Appendix

C), are conforming methods approximating the space H1
0 (Y) with some finite-dimensional subspace XN ⊂

H1
0 (Y), where N is a discretisation parameter. In the case of FFTH, XN is spanned by the basis {ψi}ni=1 that

consists of trigonometric polynomials, while in the case of FEM the basis consists of continuous piece-wise
polynomials. The discretised problem is then defined using the Ritz-Galerkin method

AH,N = min
vN∈XN

a
(
E +∇vN ,E +∇vN

)
= a

(
E +∇uN ,E +∇uN

)
. (2)

The minimiser uN =
∑n
i=1 uiψi is described with the optimality condition (also known as the weak formu-

lation)

a
(
∇uN ,∇vN

)
= −a

(
E,∇vN

)
∀ vN ∈ XN .

The coefficients u = (ui)
n
i=1 with respect to the basis {ψi}ni=1 are obtained from the linear system

Au = b, Aij = a
(
∇ψj ,∇ψi

)
, bi = −a

(
E,∇ψi

)
for i, j = 1, 2, . . . , n. (3)

Because of computational effectiveness, FFTH does not solve the problem for the state uN : Y → R but
for its gradient eN = ∇uN : Y → Rd. Since the gradient fields do not span the whole space of vector-valued
functions, the compatibility condition has to be additionally enforced. It is provided here with the discrete
projection operator G (evaluated using FFT) along with some suitable linear solver. For the latter we employ
the conjugate gradient (CG) method, but for the purpose of ensuring compatibility other methods such as
Richardson iteration or Chebyshev’s method would be suitable too.

For FFTH, we will consider two discretisation schemes. The first scheme, denoted as FFTH-Ga (see
Appendix C.1 for details), is based on exact integration of (2) and leads to the following linear system

GAe = b with b = −GAE.
The second scheme, denoted as FFTH-GaNi (see Appendix C.2 for details), is fully equivalent to the original
Moulinec-Suquet scheme [13] (in fact, the solution vectors coincide [15]). It is based on numerical integration

of Eq. (2) and leads to a similar linear system, however, with a different matrix Ã. Both A and Ã are block
diagonal matrices. Because only this ‘diagonal’ is stored, no special sparse matrix storage is needed. The
difference between the two is that A is expressed on a double discretisation grid while Ã necessitates only a
single grid. Consequently, the higher accuracy of FFTH-Ga comes at the costs of higher computational and
memory requirements compared to FFTH-GaNi.
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2.2. Discretisation error

For the problem considered here, the discretisation error between the exact ∇u = e and the approximate
solution ∇uN = eN , respectively obtained from Eqs. (1) and (2), is measured in terms of the energetic norm,
defined as

‖e‖A =
√
a
(
e, e
)
.

It has a clear physical meaning in the case of conforming methods: the square of discretisation error is equal
to the error in the homogenised properties

‖e− eN‖2A = AH,N −AH, (4)

see Appendix D for a derivation. In a similar way, it is possible to compute an algebraic error as an error
between the exact solution of a linear system and approximate solution of the linear system, i.e. algebraic
energetic error during the iterations of the conjugate gradients.

This approach is motivated by the guaranteed bounds approach presented e.g. in [44, 45, 46] and later
elaborated for FFTH in [16, 21]. We note that FFTH-GaNi does not provide the bound directly but can be
evaluated in the post-processing stage. For the numerical evaluation of Eq. (4), the homogenised properties
AH have been estimated according to Appendix E; we emphasise that this estimation has no impact on the
comparison because the value AH or its approximation is only a constant which influences only the absolute
value of the error. Note that the values are chosen sufficiently accurate to catch the trends in the figures.
We also note that the inequality AH ≤ AH,N between homogenised properties and its approximation is
valid for all conforming methods based on the Galerkin approximation with exact integration; a numerical
integration can cause violation of the inequality due to the so-called variational crime [16, 21, 46].

Generally, the convergence of the approximate solutions

‖e− eN‖A → 0 for min
α
Nα →∞

can be arbitrarily slow when we increase the discretisation grid [47]. When the solution has a higher
regularity, meaning that a solution ∇u = e is in e.g. e ∈ Hs(Y) for some positive s, the Fourier-Galerkin
solutions converge with a rate s√

AH,N −AH = ‖e− eN‖A ≤ CN−s‖e‖Hs(Y),

for details see e.g. [12, 17, 41].
For FEM, the convergence rate, furthermore, depends on the order, p, of the polynomial approximation√

AH,N ,p −AH = ‖∇u−∇uN ,p‖A ≤ C̃N−r‖e‖Hs(Y) for r = min{s, p},

which requires to use higher order polynomials to obtain higher convergence rate [47]. Note that the
constants C and C̃ are independent of the discretisation parameter N .

2.3. Linear solvers

The linear system that arises from FEM discretisation (Eq. (3)) can be solved using a direct or an
iterative solver. The direct solver is based either on LU decomposition or on Cholesky decomposition, which
is a variant suitable for symmetric matrices. In the latter, one decomposes the matrix A to

A = LLT

whereby L is a sparse lower triangular matrix. Using this decomposition the solution of Eq. (3) can be
trivially found in two steps. The actual decomposition is performed by the fill-reducing variant of the
Cholesky decomposition3. It reduces the memory requirements of the factors, which are, like A, stored in
the CSR (compressed sparse row) format.

3For instance available at: https://github.com/scikit-sparse.
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The advantage of these direct solvers is that the computationally consuming decomposition is independent
of the right-hand side. In the case of linear problems, like in this paper, it therefore has to be done only
once. The drawback of the direct solvers lies in significantly higher memory requirements for the factors
than for the original system. This can be partly overcome by the so-called pivoting

A = PLLTPT

in which the sparsity of the decomposition is increased by using a permutation matrix P; this approach is
incorporated in this paper. It is remarked that a direct solver is unsuitable for FFTH because the system is
never assembled.

The memory drawbacks of direct solvers are overcome by iterative solvers, which are suitable for both
FFTH and FEM. Here we use the conjugate gradient (CG) method because of its effectiveness to minimise
the energetic error. Other methods such as Chebyshev’s method could also be suitable especially for parallel
computing, see [18] for a comparison of linear solvers for FFTH. Based on the linear system in Eq. (3), the
idea behind the CG method is that the solution u is approximated as a linear combination

u ≈ u(k) =

k∑
i=1

α(i)p(i)

with A-orthogonal basis vectors p(i). The crux of the method is that the factors α(k) and the bases p(k) are
iteratively constructed using only the last residual and the last basis vector p(k−1) along with the (costly)
matrix-vector multiplication. Therefore, only the original system and additionally three vectors have to be
stored, leading to memory savings compared to a direct solver.

Fortunately, the approximate solution u(k) typically reaches a sufficient accuracy for k � n, whereby the
number of iterations, k, depends on the condition number κ of A on a subspace EN . Particularly, the number
of CG iterations, with respect to some accuracy, is bounded with the following (non-optimal) estimate

‖ u− u(k)︸ ︷︷ ︸
error in k-th

iteration

‖2A ≤ 4

(√
κ− 1√
κ+ 1

)2k

‖ u− u(0)︸ ︷︷ ︸
initial error

‖2A,

with the discrete energetic norm ‖x‖A =
√
Ax · x. We emphasise that the condition number is known a priori

for FFTH, while it is not easily evaluated for FEM.
As will be demonstrated below, for FFTH κ is usually low (i.e. the system is well conditioned) and

independent on the number of degrees-of-freedom. For FEM, however, κ is often quite high and increases
with the number of degrees-of-freedom. This frequently leads to a high number of CG iterations, and
therefore to numerical inaccuracies due to round-off errors. The poor conditioning of the linear system can
be overcome by a suitable preconditioner M, which is an easily invertible matrix approximating the original
matrix A. Instead of the original system, we solve

M−1Au = M−1b.

For the preconditioner, we incorporate incomplete Cholesky decomposition

M = L̃L̃
T ≈ A,

particularly we consider the zero-fill variant that builds on the same sparsity pattern of the original system
A as for the incomplete Cholesky factor L̃.

3. Results

The performance of both methods depends on the regularity of the solution, and thus on the regularity
of material coefficients. Therefore, two academic examples that are naturally defined on a regular grid are
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considered in Sections 3.2-3.5: (i) one with a jump in coefficients and (ii) one with continuous coefficients.
Later, in Section 3.6 we consider two additional examples: (iii) A circular inclusion is used to investigate
a smooth inclusion boundary, which is favourable for the flexibility of conforming discretisations for FEM.
(iv) An image-based geometry is finally used as it is generally believed to be favourable for FFTH because
of its natural definition on regular grids. All examples are constructed in a way that allows the evaluation
of guaranteed bounds on homogenised properties, serving as an energetic criterion.

From the implementation perspective, we rely on open-source tools for both methods: the FEniCS
project4 [48] for FEM and FFTHomPy5 for FFTH. Moreover the simple code that calculates the homogeni-
sation problem using FEM, FFTH-Ga, and FFTH-GaNi is attached as supplementary material. It enables
the reproducibility of the results presented in the manuscript.

3.1. Material parameters

Coordinate x1

−0.4 −0.2
0.0

0.2
0.4

Coord
inate

x 2

−0.4
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0.0
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0.2

0.4

0.6

0.8

1.0

(a) Square inclusion �
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0.2

0.4

0.6

0.8

(b) Pyramid inclusion 4

Figure 1: Two-dimensional square- and pyramid-like inclusions defined by Eq. (5).

Here, we define

A(x) = M (d) + ρIf•(x)

where I ∈ Rd×d is the identity matrix, the parameter ρ ∈ {10, 100} corresponds to a material contrast, and
M (d) ∈ Rd×d introduces some anisotropy. Its coefficients in 2D and 3D are set to

M (2) =

[
7
4

√
3

4√
3

4
5
4

]
and M (3) =

 31
16

5
√

3
16

3
8

5
√

3
16

21
16

√
3

8
3
8

√
3

8
11
4


which have eigenvalues {1, 2} and {1, 2, 3}, respectively. Finally, functions f• : Y → Rd defined as

f�(x) =

{
1 for x such that xi < 0.3 for i = 1, . . . , d

0 otherwise
, (5a)

f4(x) =

d∏
i=1

(1− 2xi), (5b)

4Available from: fenicsproject.org
5Available from: github.com/vondrejc/FFTHomPy
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describe the shape of the inclusions; these square- and the pyramid-like geometries are depicted in 2D in
Figure 1. These functions are chosen because they allow exact numerical integration using both FEM and
FFTH, see Appendix B and Appendix C; the influence of numerical integration is thus fully eliminated.

−0.5 0.0 0.5
Coordinate x1

−0.4

−0.2

0.0

0.2

0.4

C
o

or
di

na
te
x

2

Figure 2: A regular triangular finite element mesh, with N = [N,N ] = [10, 10] elements in the two-dimensional setting. (It
concerns a generic mesh, the material contrast is not shown.)

For both methods, the discretisation is considered the same in all the spatial directions, e.g. in 3D
N = (N,N,N). In the case of FFTH, exact quadrature is possible regardless the value of the discretisation
parameter N , which corresponds to the number of grid points. However, for FFTH-GaNi, favourable
behaviour is obtained for odd discretisations that comply with the geometry, see [16, 21]; therefore, we use
N = 5, 15, 45, 135, 405.

In the case of FEM, a regular triangular mesh is considered, see Figure 2 for a 2D example. Here,
the discretisation parameter N corresponds to the number of elements — inversely proportional to their
characteristic size. For exact quadrature, the mesh has to comply with the discontinuities in material
coefficients or their derivatives; therefore multiples of 10 are used, e.g. N = 10, 20, 30. In the sequel we
perform a detailed analysis is 2D, while, due to the computational demands, an analysis comprising fewer
samples is performed in 3D.

3.2. Sizes of linear systems

Here, the discretisation error is expressed as a function of the size of linear systems. For FEM, the
system size is determined by the dimension of a discretisation space. A more complicated situation arises
for FFTH, for which the dimension of the approximation space is always smaller than the size of linear
system. It is caused by the necessity to enforce the compatibility condition, see Appendix C for details.

The numerical results, compared in Figure 3, provide similar results for the 2D and the 3D problems, cf.
Figures 3(a,b) to 3(c,d). As already reported in [21], FFTH-Ga is always better than FFTH-GaNi, which
is caused by the inconsistency error of numerical integration. As observed for all cases in FEM, the second
order polynomials have better approximation properties than the first order polynomials. FFTH has better
approximation properties when the solution is more regular, such as in the case of the pyramid inclusion.
For the square inclusion, in Figure 3(a,c), FEM requires a significantly smaller linear system than FFTH
to attain the same discretisation error, for both first and second order finite elements. For the pyramid
inclusion, in Figure 3(b,d), FFTH outperforms FEM of order one but not of FEM of order two.

We note finally that the same observations are made for smaller phase contrast, for which we considered
ρ = 10. For conciseness these results are not shown.

3.3. Memory requirements of linear systems

Here, the discretisation error is compared with the memory requirements for linear systems. We note
that the CG solver imposes some additionally memory requirements, which have been neglected here. This
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Figure 3: Dependence of the approximate discretisation error in the energetic norm on the sizes of linear systems (see Eq. (4)).
The left figures are obtained using the square inclusion, the right figures using the pyramid inclusion. The upper figures are in
d = 2 while the bottom ones are in d = 3.

contribution is minor and similar for both methods and it only involves storing three more vectors.
For FEM, the memory requirements are determined by an unknown- and a right-hand side vector plus

the storage of the system matrix assuming compressed sparse row (CSR) storage

nnzu + nnzb + 2 nnzA + rankA︸ ︷︷ ︸
storing A in CSR format

(FEM)

(wherein the symmetry of A has been used, but the difference in the storage for floats, used for the compo-
nents, and for integers, used for the indices, has been neglected).

For FFTH, no special sparse storage for the block diagonal A is needed, but additionally the Fourier
coefficients of the projection matrix Ĝ have to be stored, which results in

nnz e + nnzb + nnz Ĝ + nnzA = 2dNd + d2Nd + d2(2N − 1)d, (FFTH-Ga)

nnz e + nnzb + nnz Ĝ + nnz Ã = 2dNd + d2Nd + d2Nd = (2d+ 2d2)Nd. (FFTH-GaNi)

Although not pursued here, in principle, the projection Ĝ could be evaluated just-in-time, avoiding its
storage.
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In the Figure 4, we can see that the results in memory requirements are comparable to those of the
size in linear system (in Figure 3). FEM has lower memory requirements for square inclusion, in both 2D
and 3D, even when the storage of the Cholesky factors in the direct solver is considered. As reported in
[21], FFTH-Ga performs better than FFTH-GaNi for configurations with jumps in the material coefficients.
What was not yet observed is that the opposite result is obtained for more regular data (for the pyramid
inclusion). For this case, FFTH performs better than first order FEM and comparable to second order
FEM. This becomes even more pronounced when considering the additional memory requirements that are
necessary for preconditioning the linear systems of FEM, see Section 3.4.
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Figure 4: Dependence of the approximate discretisation error in the energetic norm (see Eq. (4)) on the memory requirements
of the linear systems (see Section 3.3). The organisation of the figures is the same as in Figure 3, whereby the additional dotted
green lines account for the extra memory requirements for the direct solver (i.e. for the storage of the Cholesky factors).

3.4. Condition numbers of linear systems

The convergence of the CG solver depends on the condition number, particularly on the distribution
of eigenvalues of the linear system. Therefore, the condition numbers are depicted in Figures 5 and 6
for different phase contrasts ρ, numbers of DOFs, and different dimensions (2D and 3D). For FFTH, the
condition number remains the same regardless the number of basis functions, thanks to their orthogonality,
and depends only on the material contrast. Particularly, it can be estimated for the square- and the
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Figure 5: Condition number of the linear systems in d = 2. The rows now correspond to different phase contrasts ρ, while
the columns still correspond to the different considered shapes. The dotted green lines shows the condition numbers for the
systems preconditioned with the no-fill variant of the incomplete Cholesky decomposition. The results for d = 3 are shown in
Fig. 6.

pyramid-like inclusion using the smallest and the largest eigenvalues

1 = cA ≤ λmin ≤
Ax · x
x · x ≤ λmax ≤ CA = ρ+ d for all x ∈ EN ,

which depends only on the ellipticity and continuity constants cA and CA of the material coefficients defined
in Appendix A (see e.g. [12, 18] for details).

The condition number for FEM, studied e.g. in [49], depends on the mesh size. The increasing number of
basis functions results in a deterioration of the condition number, which calls for the employment of special
techniques such as preconditioning. The resulting condition numbers of the different configurations, based
on the no-fill variant of the incomplete Cholesky decomposition, are shown using green lines in Figures 5
and 6. In spite of a significant improvement of the condition numbers, their dependence on the number of
DOFs remains the same. This can only be avoided by more advanced preconditioners.

3.5. Computational effectiveness of the conjugate gradient solver

The effectiveness of the conjugate gradient method is depicted in Figure 7 for both FFTH and FEM.
This time we consider only one discretisation per dimension d and phase contrast ρ. The size of the linear
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Figure 6: Condition number of the linear systems in d = 3. The organisation of the panels is the same as in Figure 5 (for
d = 2).

systems are chosen to provide approximately the same discretisation error. Since FFTH is not competitive
for jumps in material coefficients, only the pyramid inclusion is considered. It shows an algebraic energetic
error in iteration k, which also equals to an algebraic error in the upper bound, i.e.

‖e(k) − e‖2A = A(e(k) − e) · (e(k) − e) = AH,N ,(k) −AH,N ,

where AH,N ,(k) represents the homogenised properties after the k-th iteration of the CG solver and AH,N

represents the homogenised properties at convergence; see Appendix D.3 for derivation. Generally, the
numerical results confirm better convergence in solving the linear system that arises from FFTH because of
a better condition number. For FEM, the preconditioner significantly reduces the number of CG iterations
at reasonable memory requirements (see Figure 4). For d = 3 and the highest considered material contrast,
FEM with preconditioner and FFTH-Ga achieve the similar behaviour. However, FFTH-Ga still outperforms
FEM for problems with a higher number of DOFs due to better conditioning of the linear system (results
not shown).

The computational time for the CG solver is estimated by the product of the number of iterations and
the cost for the matrix-vector multiplication, which is directed by the number of operations. The matrix-
vector multiplication for the FEM system is directed by the number of nonzero values in matrix A. The
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Figure 7: The algebraic error during iterations of the conjugate gradients. For FFTH, the discretisation grid is of size
N = [405, 405] in d = 2 and of size N = [45, 45, 45] in d = 3. For FEM it is of size N = [160, 160] in d = 2 and of size
N = [20, 20, 20] in d = 3. The rows again correspond the different phase contrasts ρ, while this time the columns correspond
to the number of dimensions; all figures are for the pyramid inclusion.

computational cost of the matrix-vector multiplication for the FFTH system is directed by the FFT and its
inverse, which requires 5

2 |N | log2(|N |) = 5
2N

d log2(Nd) operations (assuming real data on grid of size N).
The total number of operations for multiplication with GA also requires the element-wise multiplication
with matrices A and Ĝ, which leads to

d2(2N − 1)d︸ ︷︷ ︸
operations for A

+ d2Nd︸ ︷︷ ︸
operations for Ĝ

+ 5d(2N − 1)d log2((2N − 1)d)︸ ︷︷ ︸
operations for F and F−1

, (FFTH-Ga)

d2Nd︸ ︷︷ ︸
operations for Ã

+ d2Nd︸ ︷︷ ︸
operations for Ĝ

+ 5dNd log2(Nd)︸ ︷︷ ︸
operations for F and F−1

. (FFTH-GaNi)

The cost of the single matrix-vector multiplication is plotted in Figure 8, again with respect to the
discretisation error, for the two shapes, in d = 2 and d = 3. FFTH always has higher computational require-
ments for the matrix-vector multiplication than FEM, even when the operations for the preconditioner are
considered. The difference is more pronounced for the square inclusion and for the higher order polynomials
in FEM. To conclude, the lower computational requirements for the matrix-vector multiplication in FEM
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Figure 8: Computational requirements determined by the number of operations for the matrix-vector multiplication. The
organisation of the panels is the same as in Figure 4.

are balanced by a higher number of iterations needed for the CG solver.

3.6. Non-regular geometries

Although the previous examples are well controlled, they are not very realistic as many practical config-
urations are not formulated on regular grids. In that case the difference between FEM and FFTH is more
distinct, as any configuration can be accurately discretised using FEM by exploiting its capability of using
conforming meshes. In contrast, the discretisation is always through a regular grid for FFTH.

We therefore consider two more realistic examples. We commence with a circular inclusion, which has
a smooth boundary. The material parameters are chosen in the same way as for the square inclusion in
Section 3.1. Its numerical treatment is a quite straightforward for FFTH-Ga because it easily allows exact
(and also effective numerical) integration, for details see [16, Section 6] and [21, Section 4.2].

A more complicated situation arises for FEM, which cannot directly approximate the circle’s boundary
with linear triangles. To construct the mesh, the boundary is approximated by polygonal domain. For our
comparison, we also require that the numerical approximation still produces the guaranteed bound on the
homogenised properties and thus on the discretisation error based on the energetic norm (see Section 2.2).
This is achieved by using an outer approximation of the boundary, proposed in [45] and depicted in Fig. 9(a)
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for a very coarse mesh; all the elements that are at least partially inside the circle are considered to have
material properties of the inclusion.

The discretisation error in Fig. 9(b) is significantly smaller for FEM than for FFTH for the same size
of the linear system, which provides an analogical result as for the square inclusion. To conclude, FEM
provides better approximation for problems with jumps regardless the smoothness of the inclusion.
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(a) Mesh for circle inclusion
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Figure 9: (a) Outer triangulation for the circle inclusion, (b) dependence of the approximate discretisation error in the energetic
norm on the size of linear systems (see Eq. (4)).

Finally, we investigate a less academic example which employs an image-based configuration. This is
an interesting case, because it is often argued that FFTH is ideally suited for such a setting, as the input
is already discretised using a regular grid. The fly ash-based aerated concrete, investigated in e.g. [50],
has been considered here with a resolution 75 × 75 × 75, see Figure 10, and isotropic material properties
0.49 Wm−1K−1 for fly ash and 0.026 Wm−1K−1 for voids. The results are presented in Table 1 whereby the
discretisation coincides with the image’s resolution each time.

The results confirm the already presented results. FFTH-Ga has a higher discretisation error than FEM.
Moreover, FFTH has a three-times larger linear system than FEM of order 1 because in FFTH one solves
for the gradient field having three components in 3D. FEM of order 2 has the lowest discretisation error at
the price of having a 23 = 8 times larger linear system compared to FEM of order 1. FFTH-GaNi predicts

Figure 10: Topology of image-based material with resolution 75 × 75 × 75
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the homogenised properties quite accurately. However the discretisation error is the highest.

FFTH-Ga FFTH-GaNi FFTH-GaNi bound FEM o = 1 FEM o = 2
Eq. (C.2) Eq. (C.6) Eq. (C.9) Eq. (B.1) Eq. (B.1)

AH ≤ 0.13751 ≈ 0.13328 ≤ 0.14147 ≤ 0.13748 ≤ 0.13420
#DOFs 1.266 · 106 1.266 · 106 1.266 · 106 4.219 · 105 3.375 · 106

Table 1: Homogenised properties of the fly ash-based aerated concrete specimen. The inequality signs signify that all the values
are upper bound on the homogenised properties except for FFTH-GaNi, which provides an approximation of the homogenised
properties.

4. Conclusion and discussion

In this paper, the finite element method (FEM) is compared to two versions of the Fourier-Galerkin
method (FFTH): the Fourier-Galerkin method with numerical integration (FFTH-GaNi) [14, 12] that cor-
responds to the original Moulinec-Suquet algorithm, and an equivalent scheme based on exact integration
(FFTH-Ga). The latter scheme is more accurate than FFTH-GaNi but with higher memory and computa-
tional requirements [21]. It also allows the evaluation of the energetic norm, which is used here as a criterion
for comparison. Particularly, the square norm of the local error directly also corresponds to the error in the
homogenised properties, allowing us to, for the first time, make the comparison directly for local fields based
on an objective criterion with a clear physical meaning. The most important findings are summarised here:

• FEM has better approximation properties than FFTH for rough data (with jumps in material coeffi-
cients). This results in smaller linear systems, lower memory requirements, and lower computational
requirements than using FFTH to reach the same level of accuracy. This conclusion holds regard-
less of the smoothness of geometry (whereby the extreme square and circular geometries have been
considered).

• FFTH provides a good condition number of the linear systems, independent of the discretisation
parameters. The linear system that arises in FEM is less well conditioned, whereby the conditioning
deteriorates for increasing system sizes. For FFTH, this results in fewer iterations of the conjugate
gradient (CG) solver used to solve the linear system.

• The comparison for continuous material coefficients (pyramid inclusion) results in ambivalent conclu-
sions. The better conditioning of the FFTH linear system is compensated by lower computational
costs per CG iteration in FEM (as this is only directed by the number of operations for the matrix-
vector multiplication). FFTH has comparable memory requirements as second order FEM and thus
even lower when some preconditioner is used in FEM (which can be avoided in FFTH because of the
favourable conditioning of the linear system).

• As reported in [21], FFTH-Ga, using exact integration, is better than FFTH-GaNi, using numerical
integration, for materials with jumps. What was not yet observed is that the opposite result is obtained
for more regular data (the pyramid inclusion).

Our comparison also has a series of limitations, which are briefly discussed here.

• An interesting comparison could also arise for dual problems — formulated for flux or stress. This
would be beneficial for FFTH as it treats the primal and dual problems equally. On the contrary,
mixed formulations are required by FEM which have higher memory and computational requirements
and call for special solvers.

• We have omitted more advanced numerical techniques such as adaptivity, multigrid, or domain de-
composition methods, which are well developed for FEM but not for FFTH.
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• Two versions of Fourier-Galerkin method (FFTH-Ga and FFTH-GaNi) have been considered. The
comparison for other FFT-based approaches (e.g. [37, 28, 40]) would also be valuable, especially their
approximation properties, conditioning of the system, etc.

• Further studies have to investigate more complex, non-linear problems.
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Appendix A. Continuous formulation

We introduce here continuous formulation of the homogenisation problem, briefly introduced already
in Section 2. It is followed by the finite element discretisation in Appendix B and the equivalent for the
Fourier-Galerkin method in Appendix C.

Here, and in the sequel, the measurable matrix field A : Y → Rd×d is reserved for the material coefficients
which are required to be essentially bounded, symmetric, and uniformly elliptic. This means that for almost
all x ∈ Y, there are constants 0 < cA ≤ CA < +∞ such that

A(x) = AT (x), cA‖v‖2 ≤ A(x)v · v ≤ CA‖v‖2 for all v ∈ Rd. (A.1)

Employing the material coefficients, we systematically employ the bilinear form a : L2(Y; Rd)×L2(Y; Rd)→
R defined as

a
(
v,w

)
:=

∫
Y
A(x)v(x) ·w(x) dx.

Then, the homogenisation problem is equivalently formulated in two ways: find the homogenised matrix
AH ∈ Rd×d satisfying the following minimisation problem for any macroscopic vector E ∈ Rd

AHE ·E = min
v∈H1

0 (Y)
a
(
E +∇v,E +∇v

)
= a

(
E +∇u,E +∇u

)
, (A.2a)

= min
v∈E

a
(
E + v,E + v

)
= a

(
E + e,E + e

)
, (A.2b)

where we minimise over the scalar-valued Sobolev functions or directly over their gradients. For the latter
case the minimisation space is

E = ∇H1
0 (Y) = {v ∈ L2(Y; Rd) : curlv = 0, 〈v〉 = 0}.

Note that we systematically use the variables e = ∇u for the minimiser and v or v for the scalar valued or
vector valued test functions.

The first formulation (A.2a) is suitable for the finite element method, while the second one (A.2b) is
suitable for the Fourier-Galerkin method. In the latter case, a curl-free and a zero-mean conditions are
easily enforced using an orthogonal projection G : L2(Y; Rd)→ E , defined as

G[v] =
∑
k∈Zd

k ⊗ k

k · k v̂(k)ϕk, with ϕk(x) = exp(2πik · x) (A.3)

for details see [12, Lemma 2].
To ease the comparison between the two discretisation methods, we will compare only one component

of the homogenised matrix. Therefore we fix the macroscopic vector to be E = (δ1i)
d
i=1 ∈ Rd and consider

the scalar effective energy

AHE ·E = AH,11 = AH.
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Appendix B. Finite element method

The finite element method is a numerical discretisation method of PDEs based on an approximation
with piece-wise polynomials defined on finite elements. The finite element mesh on Y, denoted as MN (Y),
will be composed of simplexes (triangles or tetrahedra) regularly placed in the computational domain Y as
in Figure 2; the number of elements will be denoted with N = [N, . . . , N ] ∈ Nd, which corresponds to a
uniform discretisation in each spatial dimension.

The finite element space consists of continuous functions that are polynomials of order p on each finite
element. This is explicitly defined as

XN ,p =
{
v ∈ L2(Y)

⋂
C(Y) : v|T ∈ Pp(T ) for every T ∈MN (Y)

}
,

where the space of polynomials of order p is

Pp =
{
f : Rd → R

∣∣ f(x) =
∑

α∈Nd0 ,
∑
i αi≤p

aαx
α1
1 xα2

2 . . . xαdd , aα ∈ R
}
.

Since only the gradient of the state variable occurs in the variational formulation as in the Neumann
problem, we have to fix one degree of freedom in order to obtain unique solution. Here we fix the functional
values at the corner of the cell

XN ,p,0 = {v ∈ XN ,p : v(0) = 0}.

Irrespective of the point and the value fixed, the gradient fields are always zero mean. This provides a
conforming approximation to the homogenisation problem.

The FEM formulation of the homogenisation problem (A.2a) states: find approximate homogenised
coefficient AH,N ,p ∈ R satisfying

AH,N ,p = min
vh,p∈XN,p,0

a
(
E +∇vN ,p,E +∇vN ,p

)
= a

(
E +∇uN ,p,E +∇uN ,p

)
. (B.1)

In order to solve this problem, we use the basis functions ψi : Y → R for i = 1, . . . , n of the finite
element space XN ,p,0; the number of basis functions corresponds to the dimension of the FEM space n =

dimXN ,p,0 =
(
Np
)d − 1. The minimiser uN ,p ∈ XN ,p,0, expressed with respect to this basis

uN ,p =

n∑
i=1

uiψi,

is then characterised by the optimality condition (weak formulation)

a
(
E +∇uN ,p,∇v

)
= 0 ∀v ∈ XN ,p,0

or by the linear system for u ∈ Rn

Au = b, Aij = a
(
∇ψj ,∇ψi

)
, bi = −a

(
E,∇ψi

)
. (B.2)

Appendix C. Fourier-Galerkin method

The Fourier-Galerkin method builds on the discretisation with trigonometric polynomials that are well
defined on regular grids of size N ∈ Nd, for details see e.g. [8, 21]. Before we proceed, we will briefly
introduce the following notation for vectors and a matrices

aN =
(
akα
)k∈ZdN
α=1,...,d

∈ Rd×N , AN =
(
Akmαβ

)k,m∈ZdN
α,β=1,...,d

∈ [Rd×N ]2,
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where the vectors k belongs to the index space

ZdN =

{
k ∈ Zd : |kα| <

Nα
2

}
.

The corresponding matrix-vector and matrix-matrix multiplication are understood as

(ANaN )kα = Aknαβa
n
β , (ANBN )kmαγ = AknαβB

nm
βγ .

The space Rd×N is endowed with the following inner product and norm

aN · bN =
akαb

k
α

|N |Π
, ‖aN‖2 = aN · aN ,

where |N |Π =
∏d
α=1Nα is the normalisation factor satisfying that the norm on Rd×N corresponds to the

L2-norm of trigonometric polynomials. The analogical notation is used for complex-valued quantities.
The approximation space consists of trigonometric polynomials

T d
N =

{
vN =

∑
k∈ZdN

vkNϕ
k
N

∣∣ vkN ∈ Rd
}
,

where the number of discretisation points in each direction N , is taken odd valued only; the Nyquist
frequencies that appear when N is even have to be omitted to obtain a conforming approximation, see [16]
for details. The basis functions ϕkN : Y → R, the so-called fundamental trigonometric polynomials, are
expressed as a linear combination

ϕkN (x) =
1

|N |Π
∑
m∈ZdN

ω−kmN ϕm(x) for x ∈ Y,

of Fourier polynomials ϕm(x) = exp (2πi
∑
αmαxα), which are well known from the Fourier series. The

complex-valued numbers ωmkN = exp
(
2πi
∑
α
mαkα
Nα

)
for m,k ∈ ZdN are coefficients of the discrete Fourier

transform (DFT) or its inverse, particularly defined as

FN =
1

|N |Π
(
δαβω

−mk
N

)m,k∈ZdN
α,β=1,...,d

∈ [Cd×N ]2, F−1
N =

(
δαβω

mk
N

)m,k∈ZdN
α,β=1,...,d

∈ [Cd×N ]2. (C.1)

Thanks to the Dirac delta property of the fundamental trigonometric polynomials on a regular grid of
points (xkN = kαYα

Nα
)α=1,...,d for k ∈ ZdN , the coefficients of the trigonometric polynomials are equal to the

functional values on the grid points, i.e.

vN =
∑
k∈ZdN

vkNϕ
k
N , vkN = vN (xkN ).

The space of trigonometric polynomials cannot be directly used as an approximation space because the
curl-free and zero-mean conditions have to be enforced; it can be easily provided by the continuous projection
(A.3) to obtain the conforming space

EN = T d
N

⋂
E = G[T d

N ].

Appendix C.1. Fourier-Galerkin method with exact integration (FFTH-Ga)

The Fourier-Galerkin method with exact integration (FFTH-Ga) for the homogenisation problem (A.2b)
states: find the approximate homogenised coefficient AH,N ∈ R satisfying

AH,N = inf
vN∈EN

a
(
E + vN ,E + vN

)
= a

(
E + eN ,E + eN

)
. (C.2)

18



The direct integration of the Fourier-Galerkin formulation, contrary to FEM, leads to a full-linear system,
which can be overcome with a numerical integration on a double grid [16, 21, 51], whereby the original full-
linear system of size d|N | is reformulated to the block diagonal one of size d|2N − 1|. The minimiser with
respect to the basis functions

eN =
∑
k∈ZdN

ekNϕ
k
N

can be again found from the optimality condition (weak formulation) or its discrete version

a
(
E + eN ,vN

)
= 0 ∀vN ∈ EN ,

(
A(E + eN ), vN

)
Rd×2N−1 = 0 ∀vN ∈ EN , (C.3)

where the discrete space corresponds to curl-free and zero-mean polynomials evaluated on a double grid

EN =

{
e =

(
eN (xk2N−1)

)k∈Zd2N−1
∣∣ eN ∈ EN

}
⊂ Rd×2N−1. (C.4)

The vectors and the matrix coefficients are explicitly defined as

Aklαβ = δkl

∫
Y
Aαβ(x)ϕk2N−1(x) dx, ekN = eN (xk2N−1), vkN = vN (xk2N−1), Ek = E

for k, l ∈ Zd2N−1; the closed-form evaluation of the block-diagonal matrix A ∈ [Rd×2N−1]2 is described in
[16, 21].

The linear system cannot be directly derived from the discrete weak formulation (C.3) because the
test vectors v ∈ EN do not span the whole space Rd×2N−1 as test vectors corresponds to trigonometric
polynomials with a curl-free and a zero-mean condition. However, this condition can be enforced with the
discrete orthogonal projection G : Rd×2N−1 → EN , derived from the continuous one (A.3), i.e

G = F−1
2N−1ĜF2N−1, Ĝ ∈ Rd×2N−1 with components Ĝ

kl
=

{
k⊗k
k·k δkl, for k, l ∈ ZdN
0 for k, l ∈ Zd2N−1 \ ZdN

,

and F−1
2N−1,F2N−1 are the (inverse) DFT matrices from (C.1). Then the linear system states: find e ∈

EN ⊂ Rd×2N−1 satisfying

GAeN = −GAE, (C.5)

which can be efficiently solved by conjugate gradients (for comparison of linear solvers see [52, 18]). This
system of size

dim T d
2N−1 = d ·

∏
α

(2Nα − 1) = d(2N − 1)d,

was also reformulated in [21, section 4.4] to a reduced size dim T d
N = dNd with a very similar structure.

We also note that the number of independent degrees of freedom are governed by the dimension of gradient-
valued trigonometric polynomials, expressed as

dim EN = Nd − 1.

Appendix C.2. Fourier-Galerkin method with numerical integration (FFTH-GaNi)

In previous section, FFTH-Ga based on exact integration has been presented. Although, it is possible
for a big class of material coefficients, it leads to higher computational and memory requirements as it is
evaluated on a double grid. A simpler approach incorporates the numerical integration of the bilinear forms

a
(
E + eN ,E + eN

)
≈
∑
k∈ZdN

A(xkN )[E + eN (xkN )] · [E + eN (xkN )] = Ã(E + eN ) · (E + eN ).
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This numerical scheme is fully equivalent to the original Moulinec and Suquet algorithm [13] as the solution
vectors are the same [15, 12].

The Fourier-Galerkin method with numerical integration (FFTH-GaNi) for the homogenisation problem

(A.2b) states: find the approximate homogenised coefficient ÃH,N ∈ R satisfying

ÃH,N = inf
eN∈EN

Ã(E + eN ) · (E + eN ) = Ã(E + ẽN ) · (E + ẽN ), (C.6)

where the discrete vectors vN , ẽN are, contrary to (C.4), defined on an original grid

EN =

{
eN =

(
eN (xkN )

)k∈ZdN
∣∣ eN ∈ EN

}
⊂ Rd×N . (C.7)

The linear system corresponding to the optimality condition of (C.6) has the same structure as in the case
of FFTH-Ga. It states: find ẽN ∈ EN ⊂ Rd×N satisfying

GÃẽN = −GÃE. (C.8)

Compared to FFTH-Ga system (C.5), the material matrix Ã is changed and the discrete orthogonal projec-
tion G : Rd×N → EN , derived from the continuous one (A.3), reads

G = F−1
N ĜFN , Ĝ ∈ Rd×N with components Ĝ

kl
=

k ⊗ k

k · k δkl for k, l ∈ ZdN

The and F−1
N ,FN are the (inverse) DFT matrices from (C.1).

Because of inconsistency error caused by numerical integration, the homogenised value ÃH,N does not
provide a bound on AH. However, the discrete minimiser ẽN still represents a conforming trigonometric
polynomial

ẽN =
∑
k∈ZdN

ẽkNϕ
k
N ,

which can be used to evaluate the bilinear forms a posteriori. This gives rise to yet another homogenised
value AH,N complying with the structure of homogenised properties

AH ≤ AH,N ≤ AH,N := a
(
E + ẽN ,E + ẽN

)
, (C.9)

see [21] for details.

Appendix D. Relation between energetic norm and homogenised properties

In this section, we make a relation between homogenised properties and energetic norm ‖·‖A : L2(Y; Rd)→
R that is defined as ‖v‖2A = a

(
v,v

)
.

Lemma Appendix D.1. Let X be a subspace of L2(Y; Rd) and let eX be a minimiser of homogenisation
problem over X , i.e.

eX = argminv∈X a
(
E + v,E + v

)
. (D.1)

Then for any conforming vector v ∈ X , we have the relation between the square of the energetic norm of the
error and the error in the homogenised properties

‖eX − v‖2A = a
(
E + v,E + v

)
− a
(
E + eX ,E + eX

)
(D.2)
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Proof. Using linearity of bilinear forms, we deduce

‖eX − v‖2A = a
(
eX − v, eX − v

)
= a

(
eX − v ±E, eX − v ±E

)
,

= a
(
E + eX ,E + eX

)
+ a
(
E + v,E + v

)
− 2a

(
E + eX ,E + v

)
.

Now, we reformulate the last term using the optimality condition (weak formulation) of (D.1), namely
a
(
E + eX ,v

)
= 0 ∀v ∈ X , which surely holds for a special choice of the test function as v = eX . Hence

a
(
E + eX ,E + v

)
= a

(
E + eX ,E

)
+ a
(
E + eX ,v

)︸ ︷︷ ︸
=0

,

= a
(
E + eX ,E

)
+ a
(
E + eX , eX

)︸ ︷︷ ︸
=0

= a
(
E + eX ,E + eX

)
.

The combination of two formulas in the proof gives as the required formula (D.2).

Corollary Appendix D.2. The squared energetic norm of discretisation error is equal to the error in the
homogenised properties for the FEM, FFTH-Ga, and FFTH-GaNi discretisations, particularly

‖e− eN‖2A = AH,N −AH, ‖e− ẽN‖2A = AH,N −AH, ‖∇u−∇uN ,p‖2A = AH,N ,p −AH.

Proof. This is a consequence of previous lemma for X = E . Then e = ∇u is the minimiser of homogenisa-
tion problem (A.2) and eN , ẽN ,∇uN ,p ∈ X are conforming fields obtained from FFTH-Ga, FFTH-GaNi,
and FEM; their evaluation according to (B.1), (C.2), and (C.9) provides the corresponding homogenised
properties.

Corollary Appendix D.3. Let e ∈ EN and u ∈ Rn be the solution of the algebraic systems (C.5) and
(B.2) obtained from FFTH-Ga and FEM. And let e(i) ∈ EN and u(i) ∈ Rn be any vectors — possibly
approximate solutions obtained from the iterative solver (CG) after i iterations. Then the squared energetic
norm of the algebraic error is equal to the following error in homogenised properties

‖e− e(i)‖A = AH,N ,(i) −AH,N , ‖u− u(i)‖A = AH,N ,p,(i) −AH,N ,p,

where AH,N ,(i) and AH,N ,p,(i) are the homogenised properties obtained by evaluation of the homogenised
problem with fields determined by e(i) ∈ EN and u(i) ∈ Rn.

Proof. Because of analogy, the proof is discussed only for FFTH-Ga. Let e and e(i) be trigonometric
polynomials determined by vectors e and e(i) with respect to the trigonometric basis. Then, the discrete
energetic norm is equal to the continuous one

‖e− e(i)‖A = a
(
e− e(i), e− e(i)

)
.

Because of that, we can incorporate Lemma Appendix D.1 with X = EN and corresponding homogenised
properties

AH,N ,(i) = a
(
E + e(i),E + e(i)

)
, AH,N = a

(
E + e,E + e

)
.

Appendix E. Approximate homogenised properties

Two possible ways for obtaining approximate, more reliable, homogenised properties are presented in
the following sections.

21



Appendix E.1. Mean of primal-dual values

According to [44, 45], more reliable approximate homogenised properties can be obtained from a mean
values between the primal and the dual formulation

AH ≈
1

2

(
AH,N − (BH,N )−1

)
,

where BH,N is an approximation of the homogenised properties from the dual formulation, which is a lower
bound on the homogenised properties (BH,N )−1 ≤ AH, see [16] for details in the FFT-based setting.

Appendix E.2. Non-linear least-squares estimation for different discretisation grids

Another possibility for obtaining more accurate homogenised properties lies in estimation from the
convergence rate using the solutions on several discretisation grids. From those convergence rate formulas
discussed in Section 2.2, we can derive the formula for the approximate homogenised properties ÃH using

AH,N (N, ÃH, s, C) = C ·N−2s + ÃH,

from which the convergence rate and homogenised properties can be estimated for a set of calculated data
points

{
(N(i), AH,N (i))

}m
i=1

for different discretisation points.
Therefore, we define the non-linear least squares problem

(ÃH, s, C) = argminÃH,s,C

m∑
i=1

[AH,N (i)−AH,N (N(i), ÃH, s, C)]2.

In our setting6, it was enough to use four or five different meshes (discretisation grids).

Appendix E.3. Approximate discretisation error

Because the homogenised properties AH are unknown and can be only approximated, we estimate them
with ÃH, as described in Appendix E. It leads to approximate discretisation error in energetic norm

‖e− eN‖2A ≈ AH,N − ÃH,

‖e−∇uN ,p‖2A ≈ AH,N ,p − ÃH,

which are used for numerical comparison. Particularly, the following values in Table E.2 have been predicted
using the homogenised properties on several grids, presented in Appendix E.2. Those values have been also
controlled by the homogenised values obtained as averages of upper-lower bounds, presented in Appendix
E.1.

dimension problem ρ ÃH

2 � 10 3.0416470728
2 4 10 3.6685617065
3 � 10 2.9072530862
3 4 10 2.9870480854
2 � 100 3.6931324468
2 4 100 14.482810295
3 � 100 3.6418887304
3 4 100 9.1891217513

Table E.2: List of approximated homogenised properties ÃH

6This problem was solved with an open source numerical library SciPy, using scipy.optimize.curve fit
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