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Abstract

We provide a numerical method to determine the critical lengths of linear differential op-
erators with constant real coefficients. The need for such a procedure arises when the orders
increase. The interest of this article is clearly on the practical side since knowing the critical
lengths permits an optimal use of the associated kernels. The efficiency of the procedure is
due to its being based on crucial features of Extended Chebyshev spaces on closed bounded
intervals.
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1 Introduction

The critical length is a crucial notion attached to kernels of linear differential operators with constant
real coefficients, which was first introduced in [7]. Such kernels are known to advantageously replace
polynomial spaces in many situations. This is due to the fact that, unlike polynomial spaces, they
inherently depend on parameters which can be used to modify the solution to classical problems
(e.g., interpolation, design, approximation). Nevertheless, to take benefit of these parameters it
may be necessary to restrict the length of the interval [a, b] we are working on. For instance, for a
given differential operator L, if we are interested in Hermite interpolation, EL := kerL must be an
Extended Chebyshev space on [a, b]. This is ensured if and only if the length b−a is less than a fixed
number ℓL ∈]0,+∞]. This number ℓL is referred to as the critical length of L (or of EL). If we want
to use EL for design [24], we have to require EL to contain the constants and the length b − a to
be less than the critical length of the space DEL obtained by differentiation, which is less than or
equal to the critical length of EL and is called the critical length for design of EL.

It is well known that ℓL = +∞ if and only if the characteristic polynomial of L has only real roots.
Therefore, determining the critical lengths concerns only differential operators whose characteristic
polynomials have at least one non-real root. The classical approach consists in finding the smallest
positive zero of a number of Wronskians attached to L [7, 32]. Unfortunately, this Wronskian
approach is generally difficult to carry out in practice, all the more so as the dimension increases.
As an example, consider the simplest case of cycloidal spaces (i.e., spaces spanned by polynomials
of some degree and the two functions cos and sin) commonly used in geometric design, see, e.g.,
[37, 41, 34, 22, 16, 10, 13, 15]. Their critical lengths were successively investitaged in a series of
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articles [7, 8, 9]. They were definitely identified in relation to zeros of Bessel functions in [9]. It
is worthwhile mentioning a surprising feature attached to this class of spaces: the critical length
increases only every two steps of dimension elevation. This property is connected with the fact that,
whatever the dimension, only one Wronskian is really involved in the computation of the critical
length.

Cycloidal spaces are among the spaces which have also been extensively used during the last
decade to build generalised splines (which are themselves examples of Chebyshevian or piecewise
Chebyshevian splines) for Isogeometric Analysis purposes [11, 17, 18, 19, 5]. They belong to the larger
class of spaces which are closed under reflection, corresponding to either odd or even characteristic
polynomials. Such spaces were fully investigated in dimension four in [6], with both the exact
computation of all the critical lengths, and the analysis of the shape effects they produce in dimension
five, within therefore the critical lengths for design. This study was motivated by the fact that
dimension four is the lowest dimension in which hyperbolic and trigonometric functions can be
combined within the same space.

Obviously, the critical length should be known prior to any use of a space requiring to work
with Extended Chebyshev spaces. To the best of our knowledge, no other computation of critical
lengths exist apart from the examples we mentioned, except for trivial cases ( e.g., lower dimensions,
or spaces resulting from changes of variables). Beyond dimension four an exact computation is not
really expectable anyway. This encouraged us to develop an effective numerical procedure instead.
An advantage of the proposed algorithm is that it simultaneously provides not only the Bernstein-
type bases which can then be used for numerical computations, but also associated generalised
derivatives which can serve to develop approximation properties [39].

Our numerical procedure is described and illustrated in Section 4. It is entirely based on the
question: how to connect a number of Extended Chebyshev spaces on consecutive intervals, all of
the same dimension, so as to produce a global Extended Chebyshev space of the same dimension?
A numerical answer to this question is briefly presented in Section 3, as an application of a more
general numerical test including connection matrices which was developed in [1]. Beforehand, Section
2 provides readers with the necessary background on which the test relies. We more specifically
underline the importance of dimension diminishing through generalised derivatives, and its action
on Bernstein and Bernstein-like bases, which plays a prominent role in the present work. Section
5 concludes with a few crucial comments drawing readers’ attention on why it is both necessary
and advantageous to know the critical length. Advantageous: only the knowledge of its critical
length (for design) enables us to take the maximum benefit of a given space, in particular in view
of constructing splines with pieces taken from different spaces. Necessary: in terms of design, for
instance, visual shape preservation is certainly not sufficient, the only safe approach being to work
within critical length for design. Not only do these observations show the interest of our numerical
approach, but they are all the more crucial as they are somehow in contradiction with rather widely
spread practices. Last but not least, we would like to mention that our numerical procedure can also
provide useful help to raise conjectures / solve theoretical questions. To cite only one point, it clearly
indicates that the every two step increase, or the involvement of only one Wronskian, observed for
cycloidal spaces, concerns only a limited subclass of spaces.

2 Background

In this section we gather the basic concepts and properties concerning Extended Chebyshev spaces
strongly involved in the present paper. For further acquaintance with the subject, see [14, 39, 36,
20, 25] for instance.
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2.1 Extended Chebyshev spaces

Let I be a non-trivial real interval and let En ⊂ Cn(I) be an (n + 1)-dimensional space. Then, En

is said to be an Extended Chebyshev space on I (for short, EC-space on I), if any non-zero F ∈ En

vanishes at most n times in I, counting multiplicities up to (n+ 1), or equivalently, if any Hermite
interpolation problem in (n + 1) data in I is unisolvent in En. It is said to be a W-space on I, if
the Wronskian of any basis of En never vanishes in I, or equivalently, if any Taylor interpolation
problem in (n + 1) data in I is unisolvent in En. An (n + 1)-dimensional EC-space on I is thus a
W-space on I but the converse property is not true, except for n = 0.

As is well known, the class of all W-spaces on I is closed under integration and multiplication
by a sufficiently differentiable function which does not vanish on I, and the same holds true for the
class of all EC-spaces on I.

While it is inherent in their definition that EC-spaces are crucial for interpolation, in Theorem
2.3 below we remind the reader why they are crucial for design too. Beforehand let us recall below
the definition of bases of the Bernstein-type.

Definition 2.1. Given a, b ∈ I, a < b, we say that a sequence (V0, . . . , Vn) of functions in Cn(I) is
a Bernstein-like basis relative to (a, b) if, for i = 0, . . . , n, the function Vi vanishes exactly i times at
a and exactly (n− i) times at b. A positive Bernstein-like basis relative to (a, b) is a Bernstein-like
basis (V0, . . . , Vn) relative to (a, b) such that Vi is positive on ]a, b[ for i = 0, . . . , n.

Definition 2.2. Given a, b ∈ I, a < b, a Bernstein basis relative to (a, b) is a positive Bernstein-like
basis (B0, . . . , Bn) relative to (a, b) which is normalised, i.e.,

∑n

i=0 Bi = 1I, where 1I stands for the
constant function 1I(x) = 1 for all x ∈ I.

Most of the time, for the sake of simplicity, it is convenient to include the positivity in the
terminology “Bernstein-like basis”, but in the present paper it is essential to state it separately.
Indeed, proving the positivity of the various bases is a major concern in the numerical test described
in the next section. From now on, D denotes the ordinary differentiation on any interval.

Theorem 2.3. For a given (n + 1)-dimensional W-space En ⊂ Cn(I), supposed to contain the
constants, the following properties are equivalent:

(i) for each a, b ∈ I, a < b, En possesses a Bernstein basis relative to (a, b);

(ii) for each a, b ∈ I, a < b, DEn possesses a Bernstein-like basis relative to (a, b);

(iii) the (n-dimensional) space DEn is an EC-space on I;

(iv) blossoms exist in the space En.

Furthermore, when (iii) is satisfied, all the classical design algorithms can be developed in En, and
for each a, b ∈ I, a < b, the Bernstein basis relative to (a, b) is the optimal normalised totally positive
basis in En restricted to [a, b].

We mention blossoms only because they are the underlying tool for many of the results involved
in the present work. We will not say more on them. Readers interested can refer to [36] and to
many articles by the third author. Assuming that (ii) holds true, let (B0, . . . , Bn) be the Bernstein
basis in En, relative to (a, b) ∈ I2, a < b. Its total positivity on [a, b] means that, for any a 6 x0 <
x1 < · · · < xn 6 b, all minors of the matrix

(
Bi(xj)

)
06i,j6n

are non-negative. This is known to

guarantee shape preserving properties in En, see [12]. The mentioned optimality refers to the fact
that we cannot find a better basis regarding this question, see [23, 7]. These comments justify the
following definition:
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Definition 2.4. For any n > 1, an (n + 1)-dimensional W-space En on I is said to be good for
design when first, it contains the constants, and second, the space DEn is an EC-space on I.

Observe that a W-space En which is good for design is automatically an EC-space on I.

Remark 2.5. The closure of the class of all EC-spaces on I under multiplication by positive functions
and integration can be visualised as follows:

step 2: Ek+1 = (k + 2)-dimensional EC-space on I
multiply by any ↑ positive w ∈ Ck+1(I)

step 1: Fk+1 = (k + 2)-dimensional EC-space good for design on I,
inte- ↑ grate

step 0: Ek = (k + 1)-dimensional EC-space on I

(1)

Select a sequence (w0, . . . , wn) of weight functions on I, in the sense that, for i = 0, . . . , n wi is
Cn−i and positive on I. For k = 0, . . . , n, we can then repeatedly apply the dimension increasing
scheme (1) starting from the space E0 spanned by wn, where the passage from Fk to Ek corresponds
to multiplication by wn−k, k = 0, . . . , n. The whole process takes place within the class of all
EC-spaces on I. If we denote by EC(w0, . . . , wn) the final EC-space En, the same notation yields

Ek = EC(wn−k, . . . , wn), Fk = EC(1I, wn−k+1, . . . , wn), k = 0, . . . , n,

in which we have added the space F0 of all constant functions on I, and the space Fn+1 obtained by
integration of En. Note that each space Fk, k = 1, . . . , n + 1, is good for design on I. Classically,
the system (w0, . . . , wn) is associated with linear differential operators L0, . . . , Ln – also named
generalised derivatives – recursively defined as follows:

L0F :=
F

w0
, LiF :=

1

wi

DLi−1F, 1 6 i 6 n. (2)

With these notations, En = EC(w0, . . . , wn) can be described as the set of all F ∈ Cn(I) such that
LnF ∈ F0.

The previous process relates a classical way to obtain EC-spaces on a given interval, the gen-
eralised derivatives enabling the development of important approximation properties modelled on
polynomial spaces [39]. In particular, not only does this provide one final EC-space but even a
nested sequence of EC-spaces

E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En, with Ei := EC(w0, . . . , wi) for i = 0, . . . , n.

This is the reason why En = EC(w0, . . . , wn) is called the Extended Complete Chebyshev space
associated with (w0, . . . , wn). The presence of such a nested sequence in En is crucial, for instance,
to define associated Chebyshevian divided differences and Newton-type expansions for the solution
to any Hermite interpolation problem in En. Conversely, if we start with a given nested sequence
E0 ⊂ · · ·Ei ⊂ · · · ⊂ En, where, for i = 0, . . . , n, Ei is an (i+1)-dimensional W-space on I, then it is
well known that it is a nested sequence of EC-spaces on I. More precisely, selecting any sequence
(U0, . . . , Un) such that Ui ∈ Ei \ Ei−1 for i = 0, . . . , n, with E−1 := {0}, we have [14, 25]

Ei = EC(w0, . . . , wi), wi := εi
W (U0, ..., Ui−2) W (U0, ..., Ui)

W (U0, ..., Ui−1)2
, 0 6 i 6 n. (3)

In (3), W (U0, ..., Ui) denotes the Wronskian of the sequence (U0, . . . , Ui) with the convention that
W (∅) = 1I, and εi = ± is chosen so as to ensure the positivity of wi.

4



2.2 EC-spaces and dimension diminishing

Is it possible to reverse the process (1) so as to find a system (w0, . . . , wn) of weight functions on
I such that En = EC(w0, . . . , wn)? The first step should thus consist in a dimension diminishing
procedure as follows:

step 0: En ⊂ Cn(I), (n+ 1)-dimensional
division by a ↓ positive w0 ∈ En

step 1: Fn = L0En (n+ 1)-dimensional containing 1I
differen- ↓ tiation

step 2: En−1 = DL0En ⊂ Cn−1(I) n-dimensional

(4)

We should therefore first be able to find a positive function in a given EC-space En. Unfortunately,
this is not always possible, as proved by the famous counterexample of the space E1 spanned on
I = [0, π[ by the two functions cos, sin, which is an EC-space on I but which does not contain any
non-vanishing function. No equality of the form E1 = EC(w0, w1) is thus expectable. Nonetheless,
such an equality is possible by restriction to any [0, b], with 0 < b < π, as reminded below.

Theorem 2.6. Let [a, b], a < b, be a closed bounded interval, and let En ⊂ Cn([a, b]) be (n + 1)-
dimensional. Then, the following properties are equivalent:

(i) En is an EC-space (resp., an EC-space good for design) on [a, b];

(ii) there exists a system (w0, . . . , wn) (resp., (w1, . . . , wn)) of weight functions on [a, b] such that
En = EC(w0, . . . , wn) (resp., En = EC(1I, w1, . . . , wn)).

Given an (n + 1)-dimensional EC-space En on [a, b], and any positive function w0 ∈ En, we are
certain that the n-dimensional space DL0En obtained according to (4) is a W-space on [a, b], but
there is no guarantee that it is an EC-space on [a, b]. This is clear from the classical example where
E2 is the three-dimensional EC-space on [0, 3π/2] spanned by the functions 1I, cos, sin, for which
the space DE2, spanned by cos, sin is an EC-space on [0, π/2[ but not on [0, π/2]. As a matter of
fact, one step of dimension diminishing within the class of all EC-spaces on [a, b] can only be done
according to the rule specified below [28].

Theorem 2.7. Let En be an (n + 1)-dimensional EC-space on [a, b], and let (V0, . . . , Vn) denote a
positive Bernstein-like basis relative to (a, b) in En. Given a function w0 =

∑n

i=0 αiVi ∈ En, the
following properties are equivalent:

(i) α0, . . . , αn are all positive;

(ii) w0 is positive on [a, b], and if L0 stands for the division by w0, the (n+ 1)-dimensional space
L0E is an EC-space good for design on [a, b], i.e., the n-dimensional space DL0E is an EC-space
on [a, b].

It is worthwhile mentioning the following straightforward but crucial consequence of Theorem
2.7, to be compared with Theorem 2.3, see [28].

Corollary 2.8. For a given (n + 1)-dimensional space En ⊂ Cn([a, b]), n > 1, known to be an
EC-space on [a, b], the following properties are equivalent:

(1) En possesses a Bernstein basis relative to (a, b);

(2) En is good for design on [a, b].
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Remark 2.9. The effect of generalised differentiation on the bases is well known and we recall it
here. Assume that (i) of Theorem 2.7 is satisfied,

• From En to L0En: Division by w0 yields

1I =

n∑

i=0

Bi, with Bi :=
αiVi

w0
for i = 0, . . . , n. (5)

Clearly, (B0, . . . , Bn) is the Bernstein basis relative to (a, b) in the space L0En which is an EC-space
good for design on [a, b]. Observe that the space L0En is completely determined by the equivalence
class of the sequence (α0, . . . , αn) under proportionality. Accordingly, we can build infinitely many
different such spaces L0En.

• From L0En to DL0En: In close relation with the Bernstein basis (B0, . . . , Bn), it is convenient to
introduce the functions

B⋆
i :=

n∑

k=i

Bk = 1I−
i−1∑

k=0

Bk, i = 0, . . . , n. (6)

For each i = 1, . . . , n, the function B⋆
i is characterised by the fact that

B⋆
i vanishes exactly i times at a, and 1I−B⋆

i vanishes exactly (n− i+ 1) times at b.

For this reason, these functions are named transition functions in the space L0En, see [2]. Let us set

V i := DB⋆
i+1 =

n∑

k=i+1

DBk = −
i∑

k=0

DBk, i = 0, . . . , n− 1. (7)

Clearly, (V 0, . . . , V n−1) is a Bernstein-like basis relative to (a, b) in the space DL0En [24]. Moreover,
expansions in that basis can easily be derived from expansions in the Bernstein basis in L0En, see
[24]. From (7) we can also see that each V i is positive close to a. Accordingly, because the space
DL0En is known to be an EC-space on [a, b] (Theorem 2.7), we can conclude that (V 0, . . . , V n−1) is
a positive Bernstein-like basis relative to (a, b) which can be used to iterate the process to construct
w1 via Theorem 2.7, and so forth up to one sequence (w0, . . . , wn) of weight functions such that
En = EC(w0, . . . , wn).

Remark 2.10. Starting again with the (n + 1)-dimensional EC-space En on [a, b], consider one
sequence of spaces obtained by iteration of Theorem 2.7:

E
{0}
n := En, E

{p}
n := DLp−1En = EC(wp, . . . , wn) for p = 1, . . . , n,

corresponding to one given equality En = EC(w0, . . . , wn). For each p = 0, . . . , n, the space LpEn =
EC(1I, wp+1, . . . , wn) is an (n − p + 1)-dimensional EC-space good for design on [a, b] in which we

denote by (B
{p}
0 , . . . , B

{p}
n−p) the Bernstein basis relative to (a, b). One step of dimension diminishing

transforms each Bernstein basis into the next one via (7) and (5). These relations can be read in
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the reverse way, which yields, for each p = n, n− 1, . . . , 1,

B
{p−1}
0 (x) = 1−

∫ x

a
wp(t)B

{p}
0 (t) dt

∫ b

a
wp(t)B

{p}
0 (t) dt

,

B
{p−1}
i (x) =

∫ x

a
wp(t)B

{p}
i−1(t) dt∫ b

a
wp(t)B

{p}
i−1(t) dt

−

∫ x

a
wp(t)B

{p}
i (t) dt

∫ b

a
wp(t)B

{p}
i (t) dt

, 1 6 i 6 n− p,

B
{p−1}
n−p+1(x) =

∫ x

a
wp(t)B

{p}
n−p(t) dt∫ b

a
wp(t)B

{p}
n−p(t) dt

,

(8)

starting from B
{n}
0 = 1I. These relations, first obtained in [27] through blossoms, are the analogue

of the classical integral recurrence relations for polynomial Bernstein bases. From our comments
in Remark 2.9, we know that there are infinitely many essentially different possibilities to go from

B
{n}
0 = 1I up to the Bernstein basis in L0En according to (8). It should be observed that, apart

from trivial exceptions, none of them can be considered a practical way to calculate the Bernstein
basis in L0En, since to the contrary, they are derived from the latter basis.

2.3 Global versus local

We start again with an (n+ 1)-dimensional EC-space En on [a, b]. In En, we consider two positive
Bernstein-like bases: the first one relative to (a, b), say (V0, . . . , Vn); the second relative to (a∗, b∗),
say (V ∗

0 , . . . , V
∗
n ), where a 6 a∗ < b∗ 6 b. For short, we refer to them as global positive Bernstein-like

basis / local positive Bernstein-like basis.
Let us expand the global basis in the local one as follows

Vi =

n∑

r=0

γi,rV
∗
r , i = 0, . . . , n. (9)

All coefficients of these expansions are known to be positive (see [1] and other references therein),
except possibly in accordance with the zero conditions of (V0, . . . , Vn) at the endpoints, that is,
γi,r = 0 for 0 6 r 6 i− 1 if a∗ = a, and γi,r = 0 for i+ 1 6 r 6 n if b∗ = b. We refer to this fact as
the positivity property of local expansions of the global basis.

Let E∗
n denote the restriction of En to the interval [a∗, b∗]. Take any system (w0, . . . , wn) of weight

functions on [a, b] such that En = EC(w0, . . . , wn). By restriction to [a∗, b∗], it generates a system
(w∗

0 , . . . , w
∗
n) of weight functions on [a∗, b∗] such that E

∗
n = EC(w∗

0 , . . . , w
∗
n). This means that the

successive steps of the corresponding dimension diminishing (4) can be applied simultaneously in En

and in E
∗
n, with the two associated sequences of positive Bernstein-like bases (V

{p}
0 , . . . , V

{p}
n−p), and

(V
∗{p}
0 , . . . , V

∗{p}
n−p ), respectively deduced from the initial bases (V

{0}
0 , . . . , V

{0}
n ) := (V0, . . . , Vn), and

(V
∗{0}
0 , . . . , V

∗{0}
n ) := (V ∗

0 , . . . , V
∗
n ). At each step we can expand the global basis (V

{p}
0 , . . . , V

{p}
n−p)

in the local basis (V
∗{p}
0 , . . . , V

∗{p}
n−p ) as

V
{p}
i =

n−p∑

r=0

γ
{p}
i,r V ∗{p}

r , i = 0, . . . , n− p. (10)
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In this process, for each p 6 n − 1, the coefficients at level (p + 1) can be computed from those of
level p. In the special case where the weight functions are taken as

wp := V
{p}
0 + · · ·+ V

{p}
n−p, p = 0, . . . , n,

then we have [1]:

γ
{p+1}
i,r =

∑n−p

j=i+1 γ
{p}
j,r+1∑n−p

j=0 γ
{p}
j,r+1

−

∑n−p

j=i+1 γ
{p}
j,r∑n−p

j=0 γ
{p}
j,r

, 0 6 i, r 6 n− p− 1. (11)

3 Building a global EC space from local EC spaces

Given an (n+1)-dimensional space En ⊂ Cn(I), how to determine whether or not En is an EC-space
on I? From (ii) of Theorem 2.3, we know that this consists in checking whether all determinants

det
(
U(x), . . . ,U(i−1)(x),U(y), . . . ,U(j−1)(y)

)
, i, j > 0, i+ j = n+ 1,

never vanish for x, y ∈ I, x < y, where U := (U0, . . . , Un)
T and (U0, . . . , Un) is any basis in En.

Moreover, in case the space En is known to be a W-space on I, we only have to consider positive
integers i, j. Except for small values of n, it is not easy to check this by hand and it is not easy
either in the general case to do it numerically.

From now on we consider a closed bounded interval [a, b], a < b. From Theorem 2.6, we know
that En is an EC-space on [a, b] if and only if,

– we can find a positive function w0 ∈ En;

– we can find a positive function w1 ∈ DL0En;

– . . . . . .

– we can find a positive function wn ∈ DLn−1En,

where the notations are according to (2). Now, replacing each “we can find” by “can we find?”, we
have at our disposal an easy theoretical test: if at some stage the answer to the “can we find?” ques-
tion is negative, then the initial space En is not an EC-space on [a, b]; if all answers are affirmative,
then En is indeed an EC-space on [a, b] and we can even say that (w0, . . . , wn) is a system of weight
functions associated with En. Observe that, in case En is known to be a W-space on [a, b], we only
need affirmative answers until the last but one question.

Clearly, in general this is not a realistic test, since exhibiting such positive functions is more or
less like pulling a rabbit out of a hat. Nonetheless, it becomes realistic in the situation addressed
subsequently, where the positivity of functions is checked through the positivity of the coefficients
of some expansions in appropriate bases.

Throughout the rest of the present subsection, the interval [a, b], a < b, is given along with a
sequence T = (t1, . . . , tq) of q > 1 knots interior to [a, b], with

t0 := a < t1 < · · · < tq < tq+1 := b,

and a given positive integer n. From now on, we change the notations, the index of a space no longer
being related to its dimension, but to its interval. For k = 0, . . . , q, Ek is an (n + 1)-dimensional
EC-space on [tk, tk+1], in which we select a positive Bernstein-like basis (Vk,0, . . . , Vk,n) relative to
(tk, tk+1), which we refer to as the kth local positive Bernstein-like basis. Consider the space E

defined by the two conditions:
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— E ⊂ Cn([a, b]);

— for each k = 0, . . . , q, the restriction of E to [tk, tk+1] is Ek.

Clearly, the space E is an (n+1)-dimensional W-space on [a, b], but in general it is not an EC-space
on [a, b]. A numerical answer to the question “Is E an EC-space on [a, b]” can be obtained thanks
to the test built in [1] in the larger framework of adjacent EC-spaces tied by connection matrices.
Here, it answers the question “Starting from E, can we iteratively diminish the dimension as in
(4)?” Subsequently, we briefly recall the main ideas / steps, modelled on the iterative dimension
diminishing step described in Theorem 2.7.

• Numerical test – Step 0:

In this step 0, we first answer the question: does the W-space E possess a Bernstein-like basis
relative to (a, b)? With the notations already used above, we have to test if

det
(
U(a), . . . ,U(i−1)(a),U(b), . . . ,U(j−1)(b)

)
6= 0 for i, j > 1, i+ j = n+ 1. (12)

If the answer to (12) is negative, we can state that E is not an EC-space on [a, b]. Supposing that

it is affirmative, let (V
{0}
0 , . . . , V

{0}
n ) be a Bernstein-like basis of E relative to (a, b), determined by

fixing the first non-zero derivatives at a or b to be in accordance with its possible positivity.
For each k = 0, . . . , q, consider the kth local expansion of the previous basis, in the sense of the

expansion of its restriction to [tk, tk+1] in the local positive Bernstein-like basis (V
{0}
k,0 , . . . , V

{0}
k,n ) :=

(Vk,0, . . . , Vk,n):

V
{0}
i

∣∣[tk,tk+1]
=

n∑

r=0

γ
{0}
i,k,rV

{0}
k,r , i = 0, . . . , n, k = 0, . . . , q. (13)

Answer the question: do all these local expansions satisfy the positivity property reminded in Sub-
section 2.3?

If the answer is affirmative, proceed to Step 1. If not, we know that E is not an EC-space on
[a, b], and the test stops.

• Numerical test – Step 1:

Due to the positivity property of all local expansions (13), (V
{0}
0 , . . . , V

{0}
n ) is a positive Bernstein-

like basis relative to (a, b). Take

w0 := V
{0}
0 + · · ·+ V {0}

n , w0,k := w0
∣∣[tk,tk+1]

, k = 0, . . . , q. (14)

Then, w0 is positive on [a, b] and each w0,k has positive coordinates in the local positive Bernstein-like
basis of Ek. Accordingly, we can simultaneously diminish the dimension

— globally, via w0, within the class of all W-spaces on [a, b], replacing E by DL0E;

— for each k = 0, . . . , q, locally, via w0,k within the class of all EC-spaces on [tk, tk+1], replacing Ek

by DLk
0Ek, where Lk

0 is the division by w0,k.

Meanwhile, each local positive Bernstein-like basis (V
{0}
k,0 , . . . , V

{0}
k,n ) is transformed into a positive

Bernstein-like basis (V
{1}
k,0 , . . . , V

{1}
k,n−1) of DLk

0Ek, relative to (tk, tk+1), and the global positive

Bernstein-like basis (V
{0}
0 , . . . , V

{0}
n ) into a global Bernstein-like basis (V

{1}
0 , . . . , V

{1}
n−1) of DL0E,

relative to (a, b). These transformations follow the procedure described in Remark 2.9.
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The next step consists in checking if the coefficients of all local expansions of the new global
basis satisfy the positivity property, in which case we can continue diminishing the dimension both
globally and locally through

w1 := V
{1}
0 + · · ·+ V

{1}
n−1, w1,k := w1

∣∣[tk,tk+1]
, k = 0, . . . , q.

All in all, starting from the positive γ
{0}
i,k,r, i = 0, . . . , n, k = 0, . . . , q, Step 1 can be translated into

a simple iterative computation of real numbers at level (p+ 1), γ
{p+1}
i,k,r , from positive γ

{p}
i,k,r at level

p, according to the formulæ:

γ
{p+1}
i,k,r =

∑n−p

j=i+1 γ
{p}
j,k,r+1∑n−p

j=0 γ
{p}
j,k,r+1

−

∑n−p

j=i+1 γ
{p}
j,k,r∑n−p

j=0 γ
{p}
j,k,r

, 0 6 i, r 6 n− p− 1, (15)

similar to (11). The passage from level p to level p+ 1 is successful when all quantities γ
{p+1}
i,k,r are

positive (at least in accordance with the positivity property of local expansions). The W-space E is
an EC-space on [a, b] if and only if the test is successful up to level n − 1. In other words, if, for

some integers p, k, i, p 6 n− 1, some 0 6 k 6 q, 0 6 i 6 n− p, we obtain a negative γ
{p}
i,k,r, the step

stops, and the W-space E is not an EC-space.

We have presented above the theoretical test on which the numerical test is based. In its numerical
version, “non-zero” or “positive”, etc, is checked up to fixed tolerances, see [1].

Remark 3.1. If the test is successful up to level (n−1), we know that it can be continued successfully
until dimension one. In other words, not only can we say that E is an EC-space on [a, b], but we
can even add that

— with wn−1 := V
{n−1}
0 + V

{n−1}
1 and wn := V

{n}
0 , we have built one system of weight functions

(among infinitely many) associated with E — i.e., E = EC(w0, . . . , wn) — which depends only

on our choice of the initial Bernstein-like basis (V
{0}
0 , . . . , V

{0}
n );

— at each level, the global Bernstein-like basis (V
{p}
0 , . . . , V

{p}
n−p) implicitly obtained in the test is a

positive Bernstein-like basis relative to (a, b) in the EC-space on [a, b],DLp−1E = EC(wp, . . . , wn);

— at each level, dividing the equality wp = V
{p}
0 + . . .+V

{p}
n−p by wp provides us with the Bernstein

basis (B
{p}
0 , . . . , B

{p}
n−p) relative to (a, b) in the space LpE = EC(1I, wp+1, . . . , wn);

— read in the reverse sense, the relations between the bases at level p and at level p+ 1 on which
the test is based, produce one among infinitely many recurrence formulæ of the form (8) [27].

Example 3.2. Here we take q = 1. Given n > 1, let E0 be the space spanned on [t0, t1] by the
functions 1, x, . . . , xn−2, cosx, sinx (to which we refer here as the trigonometric space), and let E1

be the space spanned on [t1, t2] by the functions 1, x, . . . , xn−2, coshx, sinhx (to which we refer here
as the hyperbolic space). Setting T := t1 − t0 and H := t2 − t1, we want to know how to choose
the pair (T,H) so that the W-space E on [t0, t2] obtained by the Cn connection of E0 and E1 is an
EC-space on [t0, t2]. To apply the test, we first have to make sure that the space E0 is an EC-space
on [t0, t1]. It is known that this is obtained by requiring T < ℓn, where (see [7, 8, 9] and Subsection
4.3.1 below)

ℓ1 = π, ℓ2 = ℓ3 = 2π, ℓ4 = ℓ5 ≈ 8.9868, ℓ6 = ℓ7 ≈ 11.5269, ℓ8 = ℓ9 ≈ 13.9758, . . . (16)
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Figure 1: Left: In the plane (T,H), for various values of n, the region producing a global EC-space
on [0, T +H ] from a trigonometric space on [0, T ] and an hyperbolic space on [T, T +H ]. Right:

A C8 HTH-curve on [0, 2H + T ] for H = 2 and T = 0.1; 3.14; 6.6545 (limit curve), see Example 3.2.

On the left picture of Figure 1, the region of the plane (T,H) producing an EC-space on [t0, t2] is
located below the boundary curve, depending on the dimension. For n = 1 and 0 < T < π, this
region, limited by the green curve, coincides with the theoretical result obtained in [30], that is,

E is an EC-space on [t0, t2] ⇔ cotT + cothH > 0.

We can see that the boundary curve presents more and more cusps as the dimension increases. The
presence of such cusps can be explained by the various determinants (12) appearing in the first part
of the test, each of them being expressed as a function of the two variables T,H . The different
segments of the boundary curve correspond to the different determinants (12) which effectively
vanish at Step 0 in the test. The test could be applied with more sections as well. As an instance, in
the right picture, we take three sections, the first and last one are hyperbolic with length H , while
the central one is trigonometric with length T . For n = 8, we design in the nine-dimensional space
E, within the region of the plane (T,H) ensuring that DE is an EC-space on [t0, t3] = [0, 2H + T ].
with now t1 and t2 as the two interior knots. The curves are obtained with H = 2 and, from top to
bottom, T = 0.1; 3.14; and finally T = 6.6545, which corresponds to the limit curve.

4 Numerical Procedure for Critical Length:

In this section we show how to use the numerical test briefly described in the previous one for
computing the critical length of a given linear differential operator L of order (n+1) with constant
coefficients, say

L := Dn+1 +

n∑

i=0

aiD
i, with a0, . . . , an ∈ IR, (17)

where n is a positive integer. Before explaining our approach, it is useful to review some classical
facts concerning such operators.
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4.1 Preliminaries

We are concerned with EL = ker(L). For a given n, the class of all such kernels coincides with the
class of all (n+ 1)-dimensional W-spaces on IR which are closed under translation, or as well, with
the class of all (n+1)-dimensional W-spaces on IR which are closed under differentiation. As is well
known, the description of EL follows from its characteristic polynomial

pL(x) := xn+1 +

n∑

i=0

aix
i. (18)

In particular, EL is closed under reflection ( i.e., for each F ∈ EL, the function x 7→ F (−x) belongs
to EL) if and only if the polynomial pL is either even or odd.

Definition 4.1. The critical length of the L (or, as well, of EL) is defined by

ℓL := sup{h > 0 | EL is an EC-space on [0, h]}.

Due to EL being closed under translation, it is also the supremum of all h > 0 such that EL is
an EC-space on any [α, α + h]. Two basic facts are to keep in mind (see, for instance, Proposition
1.15 in [35]).

Proposition 4.2. The critical length ℓL lies in ]0,+∞]. More precisely

• if pL has only real roots, then ℓL = +∞;

• otherwise, π
ML

6 ℓL < +∞, where ML stands for the maximum imaginary part of all roots of
pL, and EL is not an EC-space on [0, ℓL].

Finally, the classical way to compute the critical length ℓL consists in determining the first
positive zeros of a number of Wronskians, as reminded below, [7, 32].

Theorem 4.3. Let S be the unique element of EL satisfying S(0) = S′(0) = · · · = S(n−1)(0) = 0,
S(n)(0) = 1. Then, the critical length ℓL can be obtained as

ℓL = min
06k6n−1

inf{h > 0 | W (S, S′, . . . , S(k))(h) 6= 0},

= min
06k6 n−1

2

inf{|h| > 0 | W (S, S′, . . . , S(k))(h) 6= 0}.
(19)

When all roots of pL are real, since ℓL = +∞, we can thus say that each of the Wronskians
W (S, S′, . . . , S(k)), k = 0, . . . , n, keeps the same strict sign on ]0,+∞[. When EL is invariant under
reflection, formulæ (19) can be simplified as follows:

Corollary 4.4. Suppose that pL is either odd or even. Then we have

ℓL = min
06k6 n−1

2

inf{h > 0 | W (S, S′, . . . , S(k))(h) 6= 0}. (20)

Consider the operator L̂ := D ◦ L. Given that EL = DE
L̂
, according to Definition 2.4, we can

say that
ℓL := sup{h > 0 | E

L̂
is an EC-space good for design on [0, h]}.

This justifies the following terminology.

Definition 4.5. The critical length ℓL is called the critical length for design of the operator L̂ :=
D ◦ L.

The space E
L̂
being obtained from EL by integration, it should be observed that its critical length

for design is always less than or equal to its critical length.
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4.2 An alternative approach

In this subsection, we assume that pL has at least one non-real root, and as previously, we denote
by ML the maximum imaginary part of all non-real roots of pL. We will compute the critical length
ℓL ∈]0,+∞[ via the test recalled in the previous section. The computation comprises two successive
parts:

4.2.1 Step 1: Rough estimate of ℓL

We select a positive number ℓ0 < π
ML

, close to π
ML

. From Proposition 4.2, we know that EL is an
EC-space on [0, ℓ0]. Accordingly, we can state that

there exists an integer µ > 1 such that µℓ0 < ℓL 6 (µ+ 1)ℓ0.

This integer is equivalently determined by the two properties below

EL is an EC-space on [0, µℓ0] and EL is not an EC-space on [0, (µ+ 1)ℓ0]. (21)

Observing that, for each non-negative k, the restriction Ek of EL to [tk, tk+1] := [kℓ0, (k + 1)ℓ0] is
an EC-space on [tk, tk+1], we can apply the test on [t0, tk+1], with the sequence T = (t1, . . . , tk) of
interior knots, to determine whether EL is an EC-space on [0, (k+1)ℓ0], successively for k = 1, 2, . . ..
The integer µ satisfying (21) is the first integer k for which we obtain a negative answer.

4.2.2 Step 2: Search for ℓL in ]µℓ0, (µ+ 1)ℓ0]

The second step consists in localising ℓL within the interval ]µℓ0, (µ+1)ℓ0] by dichotomy. On account
of (21), we first want to test if EL is an EC-space on [0, µℓ0 +

ℓ0
2 ]. Then,

– if the answer is affirmative, test if EL is an EC-space on [0, µℓ0 +
ℓ0
2 + ℓ0

4 ];

– if the answer is negative, test if EL is an EC-space on [0, µℓ0 +
ℓ0
2 − ℓ0

4 ];

Continue the same way, that is, at each step increment or decrement the interval length by ℓ0
2n , until

ℓ0
2n is less than a given tolerance.

At each dichotomy step, we apply the test of Section 3. However, in order to avoid numerical
problems, we do not apply it using the same first µ intervals of length ℓ0 and adding an interval
which might be of smaller and smaller length, but using only two consecutive intervals both of same
variable length. To be more precise, in the first step we take

[t0, t2] :=
[
0, ℓ0

(
µ+

1

2

)]
, t1 =

t2
2

=
ℓ0
2

(
µ+

1

2

)
, E0 := EL

∣∣[t0,t1], E1 := EL
∣∣[t1,t2].

Since µ > 1, for i = 0, 1, Ei is an EC-space on [ti, ti+1], which enables us to the apply the test. If
the answer is affirmative (resp., negative) we do the same, after incrementing (resp., decrementing)
t2 by ℓ0

4 , and so forth. At each step of the dichotomic process, each Ei, i = 0, 1, is guaranteed to be
an EC-space on [ti, ti+1].

4.3 Examples

We illustrate the previous procedure with several instances of differential operators, indicated by
their characteristic polynomials. We have chosen to illustrate the behaviour of the critical lengths
up to dimension nine, since this has proven to be sufficient to formulate theoretical conjectures and,
at the same time, it comprises all cases of practical interest for applications ( e.g., design). The
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computational method of the critical length has no limitations on the dimension of the space, but
being a numerical method and working at the limits of the critical lengths it is subject to the machine
precision and to the fixed tolerances. The following results are obtained in Matlab with tolerances
fixed to 1.0e-30 for the test of Section 3, and 1.0e-10 for the dichotomy procedure.

4.3.1 Basic example: pn(x) = xn−1(x2 + b2), b > 0

This is the simplest class of kernels En of differential operators for which the critical lengths are
not infinite, spanned on IR by the (n + 1) functions 1, x, . . . , xn−2, cos(bx), sin(bx) (cycloidal or
trigonometric spaces depending on the literature). The corresponding critical lengths ℓn(b) are
shown in Figure 2, top left (under the name ℓL), as functions of the variable b, for increasing values
of n. Clearly, we have

ℓn(b) =
ℓn(1)

b
, b > 0.

This explains why each curve resulting from our numerical procedure is a branch of hyperbola.
Moreover, the first values of ℓn := ℓn(1) are those already given in (16). The critical length ℓn was
studied in several papers by Carnicer, Mainar, Peña [7, 8, 9], their main results being stated below:

Theorem 4.6. The successive critical lengths ℓn of the spaces En spanned by 1, x, . . . , xn−2, cosx, sinx,
n > 1, satisfy

ℓ2k = ℓ2k+1 = 2jk− 1
2
,1 < ℓ2k+2, k > 1, (22)

where, for each positive α, jα,1 stands for the first positive zero of the Bessel function of the first
kind:

Jα(x) =

∞∑

m=0

(−1)m

m! Γ(m+ α+ 1)

(x
2

)2m+α

.

On the other hand, since pn is either odd or even, we know that the critical lengths can be computed
by (20). It is worthwhile mentioning that, whatever the dimension,

ℓn is the first positive zero of the Wronskian W (Sn, . . . , S
(p)
n ), where p :=

⌊
n− 1

2

⌋
,

where the non-zero function Sn ∈ En vanishes n times at 0, and where ⌊.⌋ stands for the floor
function. As shown in [8], none of the other Wronkians involved in (20) vanishes on ]0,+∞[.

Our procedure, first ran in this class of spaces, is in perfect accordance with Theorem 4.6. In
particular, the two-by-two behaviour can easily be observed in Figure 2.

4.3.2 Other examples of the form pn(x) = xn−3p3(x) = xn−3(x4 + a2x
2 + a0), n > 3

Let us recall that the four-dimensional spaces E3 associated with characteristic polynomials p3(x) =
x4 + a2x

2 + a0, with at least two non-real roots, were thoroughly investigated in [6]. It is natural to
apply the procedure in the class of spaces obtained from them by repeated integration, by comparison
with its simplest subclass of cycloidal spaces. In spite of this class being relatively limited and simple,
we will already observe different interesting behaviours depending on the polyniomal p3 and on the
integer n. This will clearly point out the difficulty of determining the critical length for any given
differential operator, and the impossibility to easily foresee what it will be.

• p3(x) = (x2 − a2)(x2 + b2), a, b > 0:

The space En is spanned by the (n+1) functions 1, x, . . . , xn−4, cosh(ax), sinh(ax), cos(bx), sin(bx).
The critical length of En depends on the two parameters a, b, and we denote it by ℓn(a, b). Now, we
clearly have

ℓn(αa, αb) =
1

α
ℓn(a, b), α, a, b > 0. (23)
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Figure 2: The critical length of the space EL as a function of the positive parameter b, where EL

is spanned by 1, x, . . . , xn−2, cos(bx), sin(bx) (top left); 1, x, . . . , xn−4, coshx, sinhx, cos(bx), sin(bx)
(top right); 1, x, . . . , xn−4, cosx, sinx, cos(bx), sin(bx), with b > 1 (bottom left); 1, x, . . . , xn−4,
coshx cos(bx), coshx sin(bx), sinh x cos(bx), sinhx sin(bx) (bottom right).

This makes it sufficient to apply our numerical procedure for the computation of ℓL := ℓn(1, b). The
corresponding graph in function of the single variable b is shown for increasing values of n > 3 in
Figure 2, top right. For n = 3, the procedure confirms the results obtained in [6], namely the fact
that the critical length ℓ3(a, b) is the only solution of the equation

(b2 − a2) sinh(ax) sin(bx) = 2ab
(
1− cosh(ax) cos(bx)

)
, x ∈

]
π

b
,
2π

b

[
. (24)

With the same notation as for the the cycloidal example, it is the first positive zero of the Wronskian
W (S3, S

′
3), while the function S3 has no positive zero. From Figure 2, we conjecture that this class

of spaces follows the same two-by-two behaviour as the cycloidal spaces (apart from the connection
with Bessel functions) involving only one of the Wronskians in formula (20). Nevertheless, our
purpose here is not to solve this conjecture.
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• p3(x) = (x2 + a2)(x2 + b2), a, b > 0:

We first assume that a 6= b. Here, the space En is spanned by the (n+1) functions 1, x, . . . , xn−4,
cos(ax), sin(ax), cos(bx), sin(bx). Assuming that a < b, and taking account of (23), we apply the
numerical procedure to compute ℓL := ℓn(1, b), for b > 1. For each n > 3, the presence of one cusp in
the graph indicates that the two parts of the graph are related to two different Wronskians. Second
interesting observation: the right parts of the graphs follow the same two-by-two behaviour as the
cycloidal spaces, while the first parts change whenever n increases. The results obtained in [6] for
n = 3 are confirmed, namely:

– for a < b 6 3a, ℓ3(a, b) is the first zero of S3, and it is the only solution of the equation

b(sin(ax) = a sin(bx), x ∈

[
π

b

⌊
b

a

⌋
,
π

b

⌈
b

a

⌉]
,

where ⌈.⌉ denotes the ceiling function;

– for b > 3a, ℓ3(a, b) is the first zero of W (S3, S
′
3), and it is the only solution of the equation

(b− a) sin

(
(b+ a)x

2

)
+ (b + a) sin

(
(b− a)x

2

)
= 0, x ∈

]
2π

b
,

2π

b− a

[
.

When a = b, the space En is spanned by the (n + 1) functions 1, x, . . . , xn−4, cos(bx), sin(bx),
x cos(bx), x sin(bx), and the graphs of the critical lengths ℓn(b) = ℓn(1)/b (not shown here) change
whenever the dimension increases, with ℓn(1) in accordance with the left parts of the case a = 1 < b
of which it is the limit situation.

• p3(x) = x4 + 2(b2 − a2)x2 + (a2 + b2)2, a, b > 0:

Here, the space En is spanned on IR by the (n + 1) functions 1, x, . . . , xn−4, cosh(ax) cos(bx),
sinh(ax) cos(bx), cosh(ax) sin(bx), sinh(ax) sin(bx). In [6], the critical length ℓ3(a, b) was proved to
be the only solution of the equation

b tanh(ax) = a tan(bx), x ∈

]
π

b
,
3π

2b

[
. (25)

It is the first positive zero of S3, while the Wronskian W (S3, S
′
3) has no positive zero. As n increases,

we can see, in the graph of ℓL := ℓn(1, b), the presence of one cusp (for n = 5, 6, 7), then two cusps
(n = 8), indicating that two (resp. three) of the Wronskians appearing in formula (20) are involved
in the graph.

4.3.3 More examples

These additional examples are intended to show that our numerical procedure is not limited to
classes of spaces obtained by repeated integration.

• More pairs of trigonometric functions:

The critical length of the (2n)-dimensional space E2n−1 spanned by the functions cos(x), sin(x),
cos(2x), sin(2x), . . . , cos(nx), sin(nx) is equal to π. This well-known result (see, e.g., [39]) was suc-
cessfully checked through the numerical procedure for several values of n. But what about other
pairs of trigonometric functions? A very partial answer to this question is given for three pairs
cos(ax), sin(ax), cos(bx), sin(bx), cos(cx), sin(cx), with 0 < a < b < c. Without loss of generality, we
take a = 1, and for several values of b > 1, we show in Figure 3 the graph of the critical length as a
function of the only variable c > b. As a generalisation of what happened with the four-dimensional
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Figure 3: Critical length for the space En spanned by cos ax, sin ax, cos bx, sin bx, cos cx, sin cx, with
a = 1 and, from left to right, b = 3, 3.5, 4.
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Figure 4: Critical length for the space E4 spanned by 1, x, eax, cos bx, sin bx with a = 1 (left) and
b = 1 (right).

space spanned by two different pairs (see Figure 2, bottom left) we can see in these examples that
the curve presents two cusps ( i.e., three active Wronskians) and we can observe how they evolve as
b increases. However, these few pictures are certainly not enough to state any possible conjecture.

• A non-symmetric example:

Of course, the procedure is not limited to spaces closed under reflection. This is the reason why
we conclude the illustrations with the characteristic polynomial p4(x) = x2(x − a)(x2 + b2), where
a is any non-zero real, and where b > 0. In other words, E4 is spanned by 1, x, eax, cos(bx), sin(bx).
In Figure 4, we show the graph of the critical length ℓ4(a, 1) as a function of a 6= 0, and the graph
of ℓ4(1, b) as a function of b > 0. Note that the limit value ℓ4(0, 1) := lima→0 ℓ4(a, 1) is the value
ℓ4 = 8.9868 given in (16).

5 Critical length: why?

In this concluding section, we gather crucial remarks which clearly point out the importance of
knowing the critical lengths, and thus the interest of our numerical method to compute them.

Due to Theorem 2.6, it may seem tempting to consider systems of weight functions as the starting
point of anything concerning EC-spaces on a given closed bounded interval [a, b], all the more so
as the classical approximation results generalising the polynomial framework are based on weight
functions [14, 39]. If one adopts this angle, the Bernstein bases relative to [a, b] are then naturally
provided by the associated integral recurrence relations (8). This approach, thoroughly developed
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in [3, 4]1 was certainly worth attention for theoretical purposes when it was elaborated. It was
also commonly used to develop examples, in particular with ordinary (rather than generalised)
integration, see for instance [10, 15, 40]. It is important though to draw the reader’s attention to its
limitations on the practical side.

First of all, if we start with any arbitrary system (w0, . . . , wn) of weights functions on [a, b],
chances are that the associated space En := EC(w0, w1, . . . , wn) will not present much interest for
design or any other application. As a general rule, replacing polynomial spaces by given EC-spaces is
motivated by either geometric constraints or likely to happen shape effects, or whatever purpose, but
always with the space En of functions which we expect to work in as the starting point. Unless the
dimension is really small, neither on which intervals it is an EC-space (possibly good for design) nor
possible associated systems of weight functions are easy-to-solve questions. This is why constructing
Bernstein bases through (8) may be extremely limiting. With a view to stress this limitation, we
take the simplest class of trigonometric spaces spanned by the function 1, x, . . . , xn−2, cosx, sinx,
with the following notations:

Ln = Dn+1 +Dn−1, ℓn := critical length of Ln, n > 1.

Subsequently, we work with a fixed integer n > 1, and a fixed interval [a, b], with 0 < b − a < ℓn.
For each k > 0, the notations Ek, Pk, stand for the restrictions to [a, b] of kerLk, and of the degree
k polynomial space, respectively. From the condition b− a < ℓn and from Theorems 2.6 and 2.7, we
know that one can find infinitely many nested sequences

E
⋆
0 ⊂ E

⋆
1 ⊂ · · · ⊂ E

⋆
n−1 ⊂ E

⋆
n := En, (26)

where, for i = 0, . . . , n− 1, E⋆
i is an (i+1)-dimensional EC-space (or W-space as well) on [a, b], and

the search for such nested sequences is equivalent to the search for systems (w0, . . . , wn) of weights
functions on [a, b] such that En = EC(w0, . . . , wn). Now, the space En contains two obvious nested
sequences of W-spaces

P0 ⊂ P1 ⊂ · · · ⊂ Pn−2 ⊂ En, E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En. (27)

Each of them is “almost” a sequence (26), and we will subsequently discuss when it is “exactly” of
the form (26).

• The case n = 1. When n = 1, both nested sequences (27) reduce to E1, for which the critical
length is ℓ1 = π. The condition b− a < π is thus the necessary and sufficient condition for the
existence of a one-dimensional W-space E

⋆
0 on [a, b] contained in E1. We know that there are

infinitely many such spaces, corresponding to inclusions of the form

E
⋆
0 = EC(ω0) ⊂ E

⋆
1 = E1 = EC(ω0, ω1).

According to Theorem 2.7 and Remark 2.9 they all are obtained with

ω0 := α0β0 + α1β1 for some positive α0, α1, ω1 :=

(
α1β1

ω0

)′

, (28)

where (β0, β1) denotes the Lagrange basis of E1 relative to (a, b), that is

β0(x) :=
sin(b− x)

sin(b− a)
, β1(x) :=

sin(x− a)

sin(b− a)
, x ∈ [a, b].

1These references address the general framework of integral-positive weight functions, with application to EC-
spaces and associated splines. Integral recurrence relations can also be understood through the blossoming approach,
as shown in [27], including EC-piecewise spaces or Quasi EC-spaces, and associated splines, see also [29, 30].
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• The left nested sequence in (27). Assume that n > 2. The left nested sequence can be com-
pleted into a sequence of the form (26) if and only we can find an n-dimensional W-space on
[a, b], Fn−1 such that Pn−2 ⊂ Fn−1 ⊂ En. This is known to be possible if and only if the
two-dimensional space Dn−1

En is an EC-space on [a, b], see [26]. Since Dn−1
En = E1, this

requirement is equivalent to b − a < ℓ1 = π. Suppose the latter condition to be fulfilled. We
then have infinitely many different choices for the subspace Fn−1, namely

Fn−1 = EC( 1I, 1I, . . . , 1I︸ ︷︷ ︸
(n−2) times

, ω0) ⊂ En = EC( 1I, 1I, . . . , 1I︸ ︷︷ ︸
(n−2) times

, ω0, ω1), (29)

where ω0, ω1 are defined in (28). The corresponding nested sequence (26) is therefore given by
E
⋆
i = EC(w0, . . . , wi), i = 0, . . . , n, with

wi := 1I for i = 0, . . . , n− 2, wn−1 := ω0, wn := ω1. (30)

Since b − a < π = ℓ1, for each n > 2, the space En is an EC-space good for design on [a, b].
Relative to (a, b) we can thus compute the Bernstein basis in En via the integral recurrence
relations formulæ (8) associated with the previous sequence of weight functions.

• The right nested sequence in (27). We now consider the right nested sequence in (27). It can
be completed into a sequence of the form (26) if and only if we can find a one-dimensional EC-
space E⋆

0 ⊂ E1, that is, once again if and only b−a < ℓ1 = π. Supposing that b−a < π, through
(28), the complete nested sequence E

⋆
0 ⊂ E1 ⊂ · · ·En provides us with another sequence

(w0, . . . , wn) of weight functions on [a, b], with w0 := ω0, w1 := ω1. As for w2, . . . , wn they are
provided by the nested sequence DL1E2 ⊂ · · · ⊂ DL1En−1 ⊂ DL1En (where the generalised
derivative L1 is defined by ω0, ω1), that is, after multiplication by ω0ω1, P0 ⊂ P1 ⊂ · · · ⊂ Pn−2.
We can therefore also write En = EC(w0, . . . , wn) with

w0 := ω0, w1 := ω1, w2 = 1/(ω0ω1), wi := 1I for i = 3, . . . , n. (31)

We thus have at our disposal two obvious ways – (30) and (31) – to obtain the Bernstein basis
relative to (a, b) in En via integral recurrence relations (8), and to use it to handle associated curves
for design or any other purposes. Unfortunately, this is only valid under the assumption b− a < π.
Most of the time, trigonometric spaces are implicitly studied through (30) for whatever purposes, for
e.g., [10, 16]. We can then avoid any reference to weight functions, starting the recurrence formulæ
(8) from the Lagrange basis (β0, β1) of E1. The same is generally done for the construction for
splines [15, 40, 11, 17, 18, 19, 5].

As soon as n > 3, working under the assumption b − a < π is actually a very limited use of
trigonometric curves, if only with reference to (16). To emphasise this point, observe that ℓn tends
to infinity with n due to (22). This limitation is illustrated in Figure 5 for increasing values of
n > 4. A control polygon being given, we show a few corresponding curves in En on [0, h] depending
on h. When h increases, they go from the polynomial curve of degree n (visually obtained for
h = 0.1) to the critical curve obtained for h = ℓ−n−1 (ℓn−1 being the critical length for design in the
space En). In all cases we also show the curve obtained with h = 3.14, which is quite far from the
critical curve, and can soon hardly be distinguished from the polynomial curve as n increases. This
naturally raises the following question: for n > 4, given that we simultaneously lose the remarkable
simplicity of polynomials, is it really worthwhile replacing the degree n polynomial space on [a, b]
by the trigonometric space En when requiring that b − a < π? 2 Under the weaker assumption

2Note that the case n = 3 has been considered in many papers: it is well known that, when h increases from 0+ to
2π− the curve evolves from the cubic curve up to the segment joining the extreme control points (critical curve) and
h = π already yields a curve quite close to the polynomial one. Considering this case along with all pictures in Fig.
5, one can observe that the amplitude of the shape effects permitted by cycloidal spaces weakens in an “oscillating”
way as n increases. This corresponds to the fact that the limit curves ignore the (two) central control point(s).
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Figure 5: For n = 4; 5; 6; 7, Design in the space En spanned by 1, x, . . . , xn−2, cosx, sin x on [0, h],
with, further and further from the control polygon, h = 0.1; h = 3.14; and h = ℓ−n−1 (that is,
h = 6.283 for n = 4; h = 8.986 for n = 5, 6; h = 11.526 for n = 7).

b − a < 2π, we similarly obtain the Bernstein basis relative to (a, b) in the trigonometric space En

on [a, b] for any n > 3 through formulæ (8) and ordinary integration, starting from the Bernstein
basis in E3 (for which explicit expressions can be found in [21]). Very soon as n increases, we will be
facing the same limitation. This can easily be guessed from the table giving the successive critical
lengths in [9].

This simple example clearly illustrates that only the knowledge of the critical length (for design)
enables us to take full advantage of the parameter(s) attached to a given space of functions. Not all
kernels of differential operators have really appealing features, say for design. When investigating
a new space, the most efficient way to learn if it produces remarkable shape effects and / or if it
is worthwhile combining it with other spaces to build splines, is to consider its critical curves, that
is, the curves obtained close to the critical length for design, which should therefore be determined
beforehand, see [6, 31, 33]. Unfortunately, we cannot expect this to be done experimentally from
the visual analysis of either the curves or the Bernstein-type basis. Of course, if a parametric curve
visibly contradicts the shape of its control polygon, or if one function of the expected Bernstein basis
clearly takes negative values, we are certainly beyond the critical length for design. However, it is
necessary to stress that we can be beyond it in spite of a visually satisfying behaviour. Moreover,
the existence of a Bernstein basis / of a normalised totally positive basis implies that we are within
the critical length for design only if, beforehand, we know that we are within the critical length (see
Corollary 2.8 and Theorem 4.1 of [7]).

These comments clearly emphasise how important it is to have at our disposal a reliable numerical
method for the computation of critical lengths. We would like to mention that our procedure can also
be useful on the theoretical side. It is well known that most results of the polynomial framework
extend to EC-spaces. Nonetheless, there are a few exceptions. To point out such exceptions, it
can be necessary to observe what happens for kernels of linear differential operators with constant
coefficients sufficiently close to their critical lengths. This will be illustrated in future work concerning
dimension elevation.
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