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MULTISTEP AND RUNGE-KUTTA CONVOLUTION QUADRATURE

METHODS FOR COUPLED DYNAMICAL SYSTEMS

H. EGGER AND K. SCHMIDT AND V. SHASHKOV

Department of Mathematics, TU Darmstadt, Germany

Abstract. We consider the efficient numerical solution of coupled dynamical sys-
tems, consisting of a small nonlinear part and a large linear time invariant part, pos-
sibly stemming from spatial discretization of an underlying partial differential equa-
tion. The linear subsystem can be eliminated in frequency domain and for the nu-
merical solution of the resulting integro-differential algebraic equations, we propose a
a combination of Runge-Kutta or multistep time stepping methods with appropriate
convolution quadrature to handle the integral terms. The resulting methods are shown
to be algebraically equivalent to a Runge-Kutta or multistep solution of the coupled
system and thus automatically inherit the corresponding stability and accuracy prop-
erties. After a computationally expensive pre-processing step, the online simulation
can, however, be performed at essentially the same cost as solving only the small
nonlinear subsystem. The proposed method is, therefore, particularly attractive, if
repeated simulation of the coupled dynamical system is required.

1. Introduction

We consider the efficient numerical approximation of coupled linear-nonlinear dynam-
ical systems described by systems of differential-algebraic or partial-differential algebraic
equations. Our approach is particularly attractive for problems in which

• efficient multiple simulation of the system dynamics is required,
• the linear subsystem dominates the dimension of the problem while the small
nonlinear part dictates the dynamic behavior, and

• the coupling between the subsystems takes place via a limited number of ports.

Such problems arise in a variety of applications, e.g., in multibody dynamical systems,
electromechanical devices, or in models of electric power networks. Our research is
motivated by field-circuit coupled problems arising in the simulation of electronic cir-
cuits with electromagnetic elements. In this context, the nonlinear subsystem describes
the electric circuit while the linear part models the electromagnetic fields described by
Maxwell’s equations [3, 16, 30]; details will be given in later sections.
The following two standard approaches for the numerical solution of such coupled

problems are widely used in practice:

• the simultaneous integration of the coupled linear–nonlinear differential-algebraic
system by appropriate time-stepping methods;

• the representation of the frequency domain response of the linear subsystem by
its transfer function, or approximations thereof, and time discretization of the
corresponding reduced nonlinear integro-differential algebraic problem.
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The first approach is well-understood [5, 28, 30] and can be considered to be reliable. If
the linear subsystems are of large dimension, e.g., when stemming from discretization of
partial differential equations, such a holistic approach is, however, computationally very
demanding and not suited for repeated online simulation. Model order reduction is thus
frequently used to compute low-dimensional approximate state space representations for
the linear subsystem in an offline stage which then allow for a fast evaluation of the
coupled systems in online simulations [2, 6, 26]. Multirate time-integration or waveform
relaxation can be utilized to further reduce the computational complexity [4].
The second approach relies on the fast access to the transfer function of the linear

subsystem. Approriate rational approximations for the transfer function are therefore
constructed [12, 25], which can then be incorporated efficiently in the time-domain
simulation of the reduced coupled system by recursive convolution [18, 19].
Let us emphasize that the efficient numerical realization of both approaches men-

tioned above relies on certain low dimensional approximations of the input-output be-
havior of the linear subsystem, either in state space or in frequency domain. Although
much research has been devoted to the development of such approximations [2, 6, 25],
a systematic evaluation and control of the approximation errors seems to be difficult.
In this paper, we therefore propose a different strategy that allows to conduct online

simulations of the problem with the accuracy and stability of a discretization of the
fully coupled system at the cost of computing solutions to the reduced nonlinear system
after elimination of the linear subproblem. Similar as the model reduction approaches
outlined above, the method consists of a compute intensive offline stage, in which a
detailed analysis of the linear subsystem is performed, and an efficient online phase
in which only the reduced nonlinear subproblem has to be integrated. The resulting
method is therefore particularly well suited for repeated online simulation.

2. Problem description and outline of the approach

We consider coupled dynamical systems of the general form

M(y)∂ty + F (y) = C⊤z, (1)

E∂tz + Az = By. (2)

Nonlinear equations with leading order termM(y)∂ty replaced by ∂tQ(y), which are fre-
quently encountered in circuit simulation, could be considered with similar arguments.
For ease of presentation, we utilize trivial initial conditions

y(0) = 0 and z(0) = 0 (3)

and we assume that the system is finite dimensional but possibly large; in particular,
the linear subsystem (2) may arise from space discretization of an underlying partial
differential equation. The matrices M(y) and E in front of the time derivatives are not
required to be regular, and the system (1)–(2) therefore constitutes a set of coupled
differential-algebraic equations. We assume that the (perturbation) index is moderate,
such that a stable time discretization by appropriate single or multistep methods is
possible [7, 13].
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For illustration of our ideas, let us consider the time discretization of (1)–(2) by the
implicit Euler method with constant step size τ , leading to a recurrence of the form

M(yn)
yn − yn−1

τ
+ F (yn) = C⊤zn, (4)

E
zn − zn−1

τ
+ Azn = Byn. (5)

Note that a coupled linear-nonlinear algebraic system has to be solved in every time
step which is prohibitive for a fast online simulation if the dimension of the system
is large. As we will show in the following, at least the repeated solution of the linear
subproblem can be completely avoided during online simulation.
The linearity of equation (2) and an application of the Laplace transform allows to

express the response of the linear subsystem in frequency domain as

C⊤ẑ(s) = C⊤(sE + A)−1Bŷ(s) =: K̂(s)y(s). (6)

Here and below, we denote by ŷ(s), ẑ(s) the Laplace transforms of functions y(t), z(t).

The function K̂(s) is called the transfer function of the linear subsystem (5). Back
transformation to time domain and insertion of the result into (1) then leads to the
integro-differential algebraic equation

M(y(t))∂ty(t) + F (y(t)) =

∫ t

0

K(t− r)y(r)dr. (7)

Let us recall that the kernel function K(t), i.e., the impulse-response of the linear

subsystem (2), is determined implicitly by its Laplace transform K̂(s) defined above.
The discretization of related Volterra-integro-differential equations has been invest-

igated intensively in the literature; see e.g. [17, 20, 24] and the references given there.
An application of the implicit Euler method to the differential part of (7) and an ap-
propriate quadrature rule for the integral part leads to the recursion formula

M(yn)
yn − yn−1

τ
+ F (yn) = τ

n∑

k=0

ωn−kyk. (8)

We will show that, for appropriate choice of the quadrature weights (ωn)n≥0, the nu-
merical solution (yn)n≥0 of method (8) coincides with the y component of the solution
(yn, zn)n≥0 obtained with method (4)–(5). In this sense, the equivalence of the coupled
system (1)–(2) with the reduced problem (7) thus remains valid after discretization by
appropriate strategies. As a consequence, also the stability and convergence properties
of method (4)–(5) carry over verbatim to method (8), if the weights (ωn)n≥0 are chosen
appropriately. The computation of these weights requires a detailed computational
analysis of the linear subproblem which can, however, be performed in an offline stage.
The online simulation can then be achieved efficiently via the reduced scheme (8).
The above considerations are not limited to the implicit Euler method, but they can

be extended to single and multistep methods of higher order accuracy. As shown in the
work of Lubich and Ostermann [21, 22, 23], the appropriate definition of the quadrature
weights can be derived in the framework of convolution quadrature methods.

The remainder of the paper is organized as follows: In Section 3, we present the
extension of our approach to Runge-Kutta and multistep methods and formally derive
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the corresponding quadrature weights. In Section 4, we discuss the practical compu-
tation of the quadrature weights and briefly comment on the efficient implementation
of the convolution sums. In Section 5, we discuss in some detail the derivation of
linear–nonlinear coupled models arising in the context of the simulation of electric cir-
cuit including electromagnetic elements. Two particular model problems and numerical
results are presented in Section 6 in order to illustrate our theoretical results.

3. A review on convolution quadrature

We first discuss the discretization of the coupled system (1)–(2) by Runge-Kutta and
multistep methods and then derive in detail the appropriate definition of the quadrature
weights (ωn)n≥0 required for the treatment of the integral terms in (7). Our presentation
is strongly based on the seminal papers [21, 22, 23] on convolution quadrature.

3.1. Multistep methods. As a first approach, we consider the discretization by mul-
tistep methods. For ease of notation, we restrict the presentation to the BDF methods
of Gear, which are known to be particularly well suited for the solution of differential
algebraic equations [7, 13]. The discretization of (1)–(2) by the m-step BDF formula
with constant time step τ , for instance, leads to the recursion

M(yn)
1

τ

m∑

k=0

αkyn−m+k + F (yn) = C⊤zn (9)

E
1

τ

m∑

k=0

αkzn−m+k + Azn = Byn. (10)

Multiplication of equation (10) by exponentials ξn and summation over n further yields

E
δ(ξ)

τ
z(ξ) + Az(ξ) = By(ξ), (11)

where y(ξ) =
∑∞

n=0 ynξ
n and z(ξ) =

∑∞

n=0 znξ
n denote the generating functions of the

sequences (yn)n≥0 and (zn)n≥0, and the characteristic polynomial

δ(ξ) =
m∑

k=0

αkξ
m−k (12)

is determined by the coefficients of the multistep method under consideration. A simple
rearrangement of the terms in formula (11) and using the definition of the transfer
function in (50) leads to

C⊤z(ξ) = C⊤

(
δ(ξ)

τ
E + A

)−1

By(ξ) = K̂(
δ(ξ)

τ
)y(ξ), (13)

and a formal expansion of the function k(ξ) = K̂( δ(ξ)
τ
) into a power series further yields

K̂

(
δ(ξ)

τ

)
=

∞∑

n=0

ωnξ
n. (14)

Note that the coefficients (ωn)n≥0 in this expansion can be found easily, e.g., by com-
paring derivatives of the two expressions at ξ = 0. An efficient alternative computation
of the coefficients will be discussed in more detail in the next section.
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Inserting the above expression and the power series representations for z(ξ) and y(ξ)
into (13), and then applying the Cauchy product formula to the result leads to

∞∑

n=0

C⊤znξ
n = (

∞∑

n=0

ωnξ
n) · (

∞∑

k=0

ykξ
k) =

∞∑

n=0

(

n∑

k=0

ωn−kyk)ξ
n. (15)

A simple comparison of the coefficients in the two power series on the left and right
hand side of this identity allows to deduce that

C⊤zn =
n∑

k=0

ωn−kyk. (16)

Using this expression to replace the right hand side in equation (9) yields the following.

Lemma 3.1. Let (yn, zn)n≥0 denote a solution of (9)–(10) with y(0) = 0, z(0) = 0,
and let the quadrature weights (ωn)n≥0 be determined by (14) with (12) and (6). Then

M(yn)
1

τ

m∑

k=0

αkyn−m+k + F (yn) =

n∑

k=0

ωn−kyk. (17)

This shows that the y component of the solution for the coupled system (1)–(2) obtained
by the BDF method (9)–(10) thus coincides with the solution for the integro-differential
equation (7) computed by the multistep convolution quadrature method (17).

Remark 3.2. The coefficients of the 1-step BDF formula are given by α1 = 1, α0 = −1,
and the characteristic polynomial thus reads δ(ξ) = 1 − ξ. The method (17) then
coincides with method (8) outlined in the introduction. If the quadrature weights are
chosen as in (14), then the solution (yn)n≥0 corresponds to that of method (4)–(5).

3.2. Runge-Kutta methods. We next discuss the time discretization by the Radau-
IIA methods, which are also well-suited for the discretization of differential algebraic
equations [13]. The time discretization of the coupled system (1)–(2) by an implicit
Runge-Kutta method with s stages leads to numerical schemes of the form

yn+1 = yn + τ
s∑

j=0

βjY
′
nj, zn+1 = zn + τ

s∑

j=0

βjZ
′
nj, (18)

with stage values Yni, Zni, i = 1, . . . , s defined by

Yni = yn + τ
s∑

j=0

αijY
′
nj, Zni = zn + τ

s∑

j=0

αijZ
′
nj, (19)

and slopes Y ′
nj, Z

′
nj, j = 1, . . . , s determined by

M(Ynj)Y
′
nj + F (Ynj) = C⊤Znj, (20)

EZ ′
nj + AZnj = BYnj. (21)

We write Zn = [Zn1, . . . , Zns]
⊤ in the sequel and use similar short hand notation for

the stage values and slopes. Similar as in the previous section, we multiply the three
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equations for the z component by ξn and sum over all n, which leads to

ξ−1z(ξ) = z(ξ) + τ(β⊤ ⊗ I)Z ′(ξ), (22)

Z(ξ) = 1⊗ z(ξ) + τ(A⊗ I)Z ′(ξ). (23)

(I ⊗ E)Z ′(ξ) + (I ⊗ A)Z(ξ) = (I ⊗ B)Y (ξ). (24)

Recall that Y (ξ) =
∑∞

n=0 Ynξ
n is the generating function for the series {Yn}n≥0 and

Z(ξ), Z ′(ξ) are defined similarly. Furthermore, Aij = αij and βj are the coefficients of
the Runge-Kutta method, and 1 is the constant one vector. Elimination of z(ξ) and
Z ′(ξ) via (22)–(23) and substitution into (24) allows to express the function Z(ξ) as
solution of the ξ dependent equation

(
∆(ξ)

τ
⊗E + I ⊗A

)
Z(ξ) = (I ⊗B)Y (ξ) (25)

with symbol ∆(ξ) characterizing the Runge-Kutta method and defined by

∆(ξ) =

(
ξ

1− ξ
1β⊤ +A

)−1

. (26)

A simple rearrangement of the terms in equation (25) then leads to

(I ⊗ C⊤)Z(ξ) = (I ⊗ C⊤)

(
∆(ξ)

τ
⊗E + I ⊗A

)−1

(I ⊗B)Y (ξ)

=: K̂

(
∆(ξ)

τ

)
Y (ξ). (27)

The evaluation of the transfer function K̂(∆(ξ)
τ

) for the matrix valued arguments will
be discussed in more detail at the end of the next section. Similarly as before, we can

formally expand K̂(∆(ξ)
τ

) into a power series

K̂

(
∆(ξ)

τ

)
=

∞∑

n=0

Wnξ
n (28)

with appropriate weight matrices (Wn)n≥0 that can again be obtained easily, e.g., by
comparing derivatives at ξ = 0. Using this expression and the power series representa-
tions of Y (ξ) and Z(ξ) in (27), applying the Cauchy product formula, and comparing
the coefficients of the corresponding sequences then leads to

(I ⊗ C⊤)Zn =

n∑

k=0

Wn−kYk, (29)

which corresponds almost verbatim to the formula (15) for multistep methods. By
decomposition of the vectors Yn, Zn, and the weight matrices Wn into their components
for the individual stages of the Runge-Kutta method, we finally obtain

C⊤Zni =

n∑

k=0

( s∑

j=1

Wn−k,ijYnj

)
, i = 1, . . . , s (30)

which can now be inserted into (20) to obtain the following result.
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Lemma 3.3. Let (yn, zn)n≥0, (Yn, Zn)n≥0, (Y
′
n, Z

′
n)n≥0 be a solution of (18)–(21) with

y(0) = 0, z(0) = 0, and let the weights (Wn)n≥0 be defined by (26)–(28). Then

yn+1 = yn + τ
s∑

j=0

βjY
′
nj, (31)

with stages and slopes defined by

M(Yni)Y
′
ni + F (Yni) =

n∑

k=0

s∑

j=1

Wn−k,ijYkj, (32)

Yni = yn + τ
s∑

j=0

αijY
′
nj, i = 1, . . . , s. (33)

The y component of the Runge-Kutta discretization (18)–(21) of the system (1)–(2)
thus again coincides with the approximation for the integro-differential equation (7)
obtained by the Runge-Kutta convolution quadrature scheme (31)–(33).

Remark 3.4. For the Radau-IIA method with s = 1 stages, one has A = α11 = 1 and
β = β1 = 1. The symbol for the Runge-Kutta method then reads ∆(ξ) = ( ξ

1−ξ
+1)−1 =

1−ξ which coincides with the associated polynomial δ(ξ) for the one-step BDF formula.
In addition, also the weights Wn = ωn coincide. This can of course be expected, since
both methods reduce to the implicit Euler method in that case.

4. Details on the implementation

For convenience of the reader, we now briefly discuss some aspects of the practical
realization. We start by describing the efficient computation of the weights ωn and Wn,
and then briefly address the efficient evaluation of the convolution quadrature sums.

4.1. Computation of the quadrature weights for BDF formulas. To keep the
presentation simple, we assume in the following that the linear subproblem (2) is a
single-input single-output system, i.e., matrices B and C have only one column. For
multiple in- or outputs, the computations can simply be repeated for every single
column. By choosing ξ = ρeiφ in equation (12), we obtain

∞∑

n=0

ωnρ
neinφ = K̂

(
δ(ρeiφ)

τ

)
. (34)

Thus ωnρ
n are just the Fourier coefficients of the function k(φ) = K̂( δ(ρe

iφ)
τ

). This
immediately leads to the following explicit formula for the weights

ωn =
1

2πρn

∫ 2π

0

K̂

(
δ(ρeiφ)

τ

)
e−inφdφ. (35)

Computable approximations ω̃n for the weights ωn are then obtained by replacing the
integral with a numerical quadrature formula. Using the trapezoidal rule, one gets

ω̃n =
1

Lρn

L−1∑

l=0

K̂

(
δ(ρeiφl)

τ

)
e−inφl , φl = 2πl/L. (36)
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Under the assumption that K̂(z) is analytic in a neighbourhood of the complex contour

z = δ(ρeiφ)
τ

, the quadrature error can be estimated by |ωn−ω̃n| ≤ ae−bL for some a, b > 0;
see [15] for details. Let us note that a good approximation for the weights can therefore
already be obtained for moderate L, i.e., only a reasonable number of evaluations of
the transfer function will be required for setting up the method.

Remark 4.1. Following the discussion in [22], an error bound |ωn − ω̃n| = O(ǫ) can
be obtained for the choice log ρ = O(h) and L = O(log ǫ)N under rather general

assumptions on the transfer function K̂(z). Setting L = O(N) and ρ = ǫ
1

2N still leads
to a bound |ωn − ω̃n| = O(

√
ǫ). These choices will also be used in our numerical tests.

4.2. Computation of the weight matrices for Runge-Kutta formulas. We again
assume that B and C only consist of one single column. By similar reasoning as in the
previous section, we then obtain approximations

W̃n =
1

Lρn

L−1∑

l=0

K̂

(
∆(ρeiφl)

τ

)
e−inφl, φl = 2πl/L, (37)

for the weight matrices Wn of the Runge-Kutta convolution quadrature method (28).

Before we proceed, let us also briefly comment on the computation of K̂(M) for a
matrix valued argument M . Similar as above, we assume that the scalar valued transfer
function K̂(ξ) =

∑∞

n=0Knξ
n can be expanded into a power series, and we define

K̂(M) =
∞∑

n=0

KnM
n. (38)

Now let M = V ΛV −1 denote an eigenvalue decomposition of M with diagonal matrix
Λ = diag(λ1, . . . , λs) containing the eigenvalues. Then

K̂(M) = V K̂(Λ)V −1 with K̂(Λ) = diag(K̂(λ1), . . . , K̂(λs)). (39)

Hence the evaluation of K̂(∆(ξ)
τ

) with matrix valued argument ∆(ξ) ∈ Cs×s and ξ ∈ C

can be reduced to s evaluations of K̂(λk(ξ)), 1 ≤ k ≤ s for a scalar valued argument
and some elementary computations.

4.3. Remarks about the computational complexity. A simple evaluation of the
convolution sums in (17) or (32) for all time steps 1 ≤ n ≤ N requires O(N2) operations.
By an appropriate splitting of the sums and fast Fourier transforms, the complexity can
however be reduced to O(N logN) operations; see [22, 18] for details.
The online simulation of the coupled system (1)–(2) via the reduced problem (7) can

therefore be obtained in O(N logN) complexity, if the size of the nonlinear subsystem
(1) is uniformly bounded. Up to the logarithmic factor, this is essentially the same
computational cost as simulating the nonlinear subsystem (1) alone. Using non-trivial
modifications, the overall complexity could even be reduced to O(N); see [27].

5. Field-circuit coupling

As a typical application where our methods may be useful, we consider the simulation
of electric circuits consisting of simple devices, which are described by simple algebraic
relations, and complicated but linear electromagnetic components, which have to be
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modeled by Maxwell’s equations. In this section, we present the basic model equations,
and show that they perfectly fit into the class of problems considered in this paper.
Two particular examples will be discussed in more detail in the following section.

5.1. Electric network model. We assume that the network consists of an intercon-
nection of resistors (R), capacitors (C), inductors (L), voltage sources (V), and an
inductance like electromagnetic element (M). Apart from the latter, all circuit elements
shall be described by simple device relations [11]. As usual, the interconnection of the
different circuit elements is described by a directed graph whose (reduced) incidence
matrix A = [AC , AR, AL, AV , AM ] is naturally divided into subblocks for the different
components. Using modified nodal analysis [3, 11], the time evolution of the circuit can
then be described by the differential-algebraic equations

AC

d

dt
qC(A

⊤
Cu) + ARgR(A

⊤
Ru) + ALjL + AV jV = −AMjM (40)

d

dt
φ(jL)− A⊤

Lu = 0 (41)

A⊤
V u− vs(t) = 0. (42)

The node potentials u and the currents jL, jV through inductors and voltage sources are
the unknowns of the system while the voltage source vs(t) describes the excitation. The
vectors vX = A⊤

Xu correspond to the voltage across the element X , and the nonlinear
functions qC(vC), gR(vR), and φL(jL) model the device characteristics of the capacitor,
resistor, and inductor. The current jM models the response of the electromagnetic
element to the excitation by the voltage vM = A⊤

Mu; details will be given below.
Setting y = (u, jL, jV ), the system (40)–(42) attains the abstract form (1) with matrix

M(y)=



ACq

′
C(A

⊤
Cu)A

⊤
C 0 0

0 φ′
L(jL) 0

0 0 0




and vectors

f(y)=



ARgR(A

⊤
Ru) + ALjL + AV jV

−ALjL
AV jV − vs(t)


 , C⊤z=



−AMjM

0
0


 .

A complete definition of the vector z will be given in the next section. The posit-
ive definite matrices q′C(vC), φ

′
L(jL), and g′R(vR) describe differential or incremental

capacitance, inductance, and conductance of the corresponding devices.
We assume for now, and show in more detail below, that the constitutive equation

for the electromagnetic element can be described in frequency domain by

ĵM(s) = k̂(s)v̂M(s), (43)

where k̂(s) is the reduced transfer function of the electromagnetic element. By inversion
of the Laplace transform, the time domain response of the electromagnetic component
can then be expressed as

jM(t) =

∫ t

0

k(t− r)vM(r)dr. (44)
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The system (40)–(44) thus formally yields an integro-differential algebraic equation of
the form (7), as investigated in the previous sections. In the following, we discuss in

more detail the derivation of the transfer function k̂(s) for the electromagnetic element.

5.2. Electromagnetic device model. For ease of presentation, we assume that the
electromagnetic element (M) represents a solid conductor Ωc embedded in a non-
conducting region Ωnc = Ω \ Ωc. Stranded conductors will also be discussed in the
numerical tests below. The interface between the two regions is denoted by Γ = Ωc∩Ωnc.
A voltage vM is applied across the interface Σ, whose two sides Σ0, Σ1 model two elec-
tric contacts via which the electromagnetic element is connected to the electric circuit;
see Figure 1 for a sketch of the geometry.

Σ
Ωnc

Ωc
Γ

Σ
Ωnc

Ωc
Γ

Σ1

Σ0

vM (t)

Figure 1. Schematic view of the domain for the electromagnetic element.

Under the assumption that the magneto-quasistatic approximation is valid, the evol-
ution of the magnetic field can then be described by [1, 16]

∫

Ωc

σ
d

dt
a(t) · a′(t)dx+

∫

Ω

νcurla(t) · curla′dx = −vM(t)

∫

Ωc

σp · a′dx. (45)

Here a(t) denotes the magnetic vector potential which is element of an apprioriate
subspace V of H(curl; Ω) incorporating gauging and boundary conditions, σ is the
electric conductivity, and ν = µ−1 the inverse of magnetic permeability. The above
variational equation is assumed to hold for all test function a′ ∈ V and all t > 0, and
we further assume that a(0) ≡ 0 at time t = 0 in the sequel. The function p in (45) can
be chosen as p = ∇φ, where φ ∈ H1(Ωc \ Σ) denotes a scalar potential with φ|Σ0

= 0
and φ|Σ1

= 1. The total current through the contacts Σ0, Σ1 arising in response to the
excitation by the voltage vM(t) can finally be expressed as

jM (t) =

∫

Ωc

σ
d

dt
a(t) · p dx+ vM(t)

∫

Ωc

σ|p|2dx. (46)

We refer to [16, Sec. 5.2] for details on this particular model and to [9, 16] for alternative
formulations and other geometric configurations.
A semi-discretization of (45)–(46) in space by appropriate H(curl)-conforming finite

elements leads to a differential-algebraic system of the form

Mσ

d

dt
a(t) +Kνa(t) = −B1vM(t) (47)

B⊤
1

d

dt
a(t)− jM(t) = −B2vM(t). (48)
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The current jM resulting in response to the excitation of vM can then be expressed in

frequency domain by ĵM(s) = k̂(s)v̂M(s) with

k̂(s) = B2 − sB⊤
1 (sMσ +Kν)

−1B1. (49)

Let us finally illustrate that the above system falls into the class of problems discussed
in the paper. Recall that y = (u, jL, jV ) and thus vM = A⊤

Mu =
(
A⊤

M 0 0
)
y. Then

by setting z = (a, jM ), the system (47)–(48) can be cast into the abstract form (2) with

E =

(
Mσ 0
B⊤

1 0

)
, A =

(
Kν 0
0 −1

)
, and B =

(
−B1

−B2

)(
A⊤

M 0 0
)
,

and the response of this linear subsystem can be expressed as

C⊤ẑ(s) = K̂(s)ŷ(s) = −



AM

0
0


 k̂(s)

(
A⊤

M 0 0
)
ŷ(s). (50)

Let us note that only the transfer function k̂(s) and the matrices AM , which can be
accessed efficiently, will be required for the further computations.

5.3. Coupled electric circuit–electromagnetic device model. As shown above,
the coupled field-circuit problem (40)–(42) and (47)–(48) perfectly fits into the structure
of problems investigated in the previous sections. Further note that under general as-
sumptions on network topology and the constitutive equations of the individual devices,
the coupled differential-algebraic system can be shown to have index-1; see e.g. [8, 3].
One can thus expect full convergence orders for the BDF and Radau-IIA methods
discussed in the previous sections; we refer to [7, 14] for details.

6. Numerical tests

In the following, we illustrate our theoretical results by some numerical tests. We start
by considering a simple linear time invariant model problem, and then briefly discuss
the application to a linear field–nonlinear circuit model describing a half rectifier [30].

6.1. Model problem. Let us start by considering a simple circuit consisting only of
a voltage source and one electromagnetic element. For comparison with other model
reduction approaches, we will also briefly discuss the replacment of the electromagnetic
element by an equivalent circuit; see Figure 2 for a sketch of the network topology.

6.1.1. Electromagnetic device. As a model for the electromagnetic element, we consider
a two-dimensional setup in which the vector potential is of the form a = (ax, ay, 0)
with components ax, ay independent of the z-coordinate. We choose Ω = (−1, 1)2 as
computational domain with conductor loop Ωc between inner and outer radius rin = 1/3
and rout = 2/3; see Figure 1 for an illustration. The permeability is set to µ ≡ 1 in the
whole domain Ω, and we choose σ = 1 in Ωc and σ = 0 in Ωnc for the conductivity in
the subdomains. The voltage vM is applied across the interface Σ, resulting in a current
flowing in circles through the conducting domain Ωc; cf. Figure 1. As can be deduced
from equation (46), this current will additionally be altered by induction effects.
For the discretization of the electromagnetic field equations (45)–(46), we utilize

second order Nedelec finite elements on a quadrilateral mesh with curved elements.
The system matrices for (47)–(48) were assembled in the C++ library Concepts [10].
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u1
M jM

V

jV

u1
R2

u2

R1

L1 jL

V

jV

Figure 2. Electric network for the model problem with an elec-
tromegnetic element (left) and an equivalent circuit (right).

6.1.2. Convergence plots. To illustrate the theoretical results of paper, we first report
on results for an excitation of the model problem with source current vs(t) = sin(3/2πt)
on a time interval t ∈ [0, 1]. In Figure 3, we display the simulation errors for BDF and
Radau-IIA methods of various orders applied to the coupled system (1)–(2) and to the
corresponding methods with convolution quadrature applied to the integro-differential
equation (7). A fixed spatial discretization with 19979 degrees of freedom was used for
magnetic field computation. Following Remark 4.1, we chose L = 3N and ρ = exp(−τ)
in the formulas (36) and (37) for the computation of the quadrature weights. Hence we
can expect to obtain exact weights up to machine precision.

10−2 10−1
10−17

10−14

10−11

10−8

10−5

10−2

BDF-1
BDF-2

RadauIIA-2
RadauIIA-3

Figure 3. Errors in the y component vs. time step τ for the one- and
two-step BDF and the Radau-IIA methods with two and three stages
applied to the coupled system (crosses) and the reduced problem (circles).
The dashed lines are the theoretical convergence rates.

As predicted by our theoretical results, the convolution quadrature methods applied
to the reduced problems (7) yield the same convergence rates as the discretizations of the
coupled problem (1)–(2) by standard one- and multistep methods. In fact, the difference
between the corresponding numerical solutions of the two equivalent formulations was
in the order of round-off errors in all tests, which can only be seen in the results for the
three-step Radau-IIA method at very small step sizes.
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Let us emphasize that Figure 3 illustrates only the time discretization errors, i.e., the
computations were done for a fixed space discretization. By comparison with compu-
tations on a refined mesh, the spatial discretization error was estimated to be O(10−8).

6.1.3. Transfer function and approximation by an equivalent circuit. For comparison
with other model reduction approaches, we now briefly discuss the approximation of
the electromagnetic element by an equivalent circuit; see Figure 2. Let us start by
recalling that the response of the electromagnetic field element can be described in

frequency domain by jM(s) = k̂(s)v̂M(s) with

k̂(s) = B2 − sB⊤
1 (sMσ +Kν)

−1B1. (51)

Mimicking the algebraic form of this formula, we consider a simple (1,1)-rational ap-
proximation of the transfer function (51) given by

k̂EC(s) = a− s

cs+ d
. (52)

Let us note that k̂EC(s) just amounts to the transfer function of the equivalent circuit
depicted in Figure 2 (right), with parameters R2 = 1/a, R1 = 1/(ca2 − a) and L1 =
1/(a2d). For our test, we determined values R1 = 1623, R2 = 9.08, and L1 = 0.4174 by

fitting k̂EC(s) to k̂(s) via the AAA algorithm [25]. Thousand evaluations of the transfer
function were used to obtain a reliable approximation. In Figure 4, we compare the
exact transfer function with the corresponding rational fit in a Bode diagram.
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Figure 4. Bode diagram for the transfer functions of the electromag-
netic element (red line) and the equivalent circuit (black dashed).

One can deduce that, at least for sufficiently small frequencies, the response of the
simple electromagnetic device can be approximated well in amplitude and in phase by
that of an appropriate equivalent circuit. Let us note, however, that even for a low
frequency input signal v(t) = sin(3/2πt), used in our simulations above, a systematic
error of O(10−4) was observed in the corresponding time-domain simulations. To im-
prove the accuracy, higher order rational approximation have to be used for which the
interpretation as equivalent circuit becomes more difficult.
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6.1.4. Computational performance. We next discuss the computational complexity of
the convolution quadrature method and compare it to more standard approaches.

Offline phase. The computation of the weights via (36) or (37) is the compute intensive
part of our approach, but this can be done in an offline stage. Recall that L = O(N)
was chosen in our computations, i.e., the number of evaluations of the transfer function
is comparable to the number of time steps. Since every evaluation involves the solution
of a linear system for the electromagnetic field part, the complexity is comparable to
that for one solution of the system (1)–(2) with an implicit Runge-Kutta or multistep
method not explicitly making use of the time-invariant nature of the problem. Let us
further note that the complexity of computations in the offline phase could be reduced
substantially by using fast and oblivious convolution quadrature [27], which only requires
about O(logN) evaluations of the transfer function to set up the quadrature weights.
Using the time invariance of the model problem under consideration and assuming a

fixed time step τ , the system matrices for the implicit Runge-Kutta and multistep meth-
ods applied to (1)–(2) will not change during simulation. They can thus be factorized
once prior to the computation.

Online phase. After the system analysis performed in the offline stage has been per-
formed, we now compare the computation times required for the actual simulation of
the coupled problem (1)–(2) and the reduced model (7). As before, we use a fixed spa-
tial discretization with 19970 degrees of freedom for the finite element approximation
of the electromagnetic element. The results of our computations are given in Table 1.

N RK-coupled RK-CQ-red RK-equiv
16 1.265 0.008 0.007
32 2.452 0.015 0.012
64 4.933 0.032 0.024

128 9.732 0.095 0.029
256 19.365 0.318 0.057
512 39.280 1.185 0.115

Table 1. Online computation times (sec) for three-stage Radau-IIA
method applied to the coupled system (RK-coupled), the reduced model
(RK-CQ-red), and the equivalent circuit model (RK-equiv); cf. Figure 1.

Let us note that we used a simple implementation of the convolution quadrature
sums here and, therefore, the complexity of the Runge-Kutta convolution quadrature
method is O(N2), while that for the other two methods is O(N). Following our remarks
in Section 4.3, the online complexity of our algorithm could be reduced to O(N logN).
Therefore, only the computation times for small N allow for a fair comparison here.
The online simulation times for the reduced problem (7) by the proposed Runge-

Kutta convolution quadrature method thus is essentially the same as that for the equi-
valent circuit model. Recall, however, that the systematic error in the latter was about
10−4, while no systematic error is present in the proposed Runge-Kutta convolution
quadrature method, except round-off and spatial discretization errors.
Let us further note that we explicitly utilized the time invariance of the problem

also in the implementation of the Runge-Kutta method for the coupled field problem
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here, i.e., the system matrix was factorized once before simulation, and only forward-
backward substitutions were performed at every time step in the online phase. Neverthe-
less, even for the simple two dimensional electromagnetic field problem, the simulation
times for the coupled field-circuit problem were significantly higher than those for the
reduced models. This difference will even become bigger when larger pde models are
required to approximate the electromagnetic element with sufficient accuracy.
In summary, we can thus say that the Runge-Kutta convolution quadrature method

allows an efficient online simulation of the coupled electromagnetic field-circuit problem,
essentially at the cost of simulating the circuit model only, while delivering accuracy
and stability of the simulation of the fully coupled model.

6.2. Simulation of a half-rectifier. As a second and more practical example, we
choose a test problem discussed in [30] which is concerned with the simulation of a
half-rectifier. A schematic sketch of the corresponding circuit is depicted in Figure 5.

M

V

u1 u2

C

D
u3

R ⊗

⊗

⊗

⊗

⊗

⊗

⊙

⊙

⊙

⊙

⊙

⊙

Figure 5. Sketch of the rectifier circuit (left) and geometry of the trans-
former (right) modeled by the electromagnetic field equations.

The electromagnetic component is represented by a 2D model of the transformer
depicted in Figure 5 under the assumption that the magnetic vector potential is of the
form a = (0, 0, az) with az = az(x, y); the current is injected to the transform through
stranded conductors. We refer to [16, Sec. 3.2] for derivation of the model equations, and
to [29, Sec. 6.2] for material properties and details on transformer model. Discretization
by finite elements then lead to a differential algebraic system of the form

Mσ

d

dt
a(t) +Kνa(t)− B⊤

3 jM (t) = 0 (53)

B3
d

dt
a(t) = vM(t). (54)

Let us note that the transformer represents a system with two input and two output

ports. The transfer function k̂(s) at frequency s thus is a 2× 2 matrix defined by

ĵM(s) = k̂(s)v̂m(s) = (sB3(sMσ +Kν)
−1B3)

−1v̂M(s). (55)

We again use (50) to define the transfer function of the linear subsystem given in (6).
All circuit elements, except the diode, are assumed to have a linear response with

C = 10−12 and R = 10000. The nonlinear voltage-current relation for the diode is given
by jD = 2.5 · 10−6(exp(4vD) + 1), which amounts to that of a Shockley diode.
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For our numerical tests, we apply V (t) = 250 sin(5πt) as an input signal and consider
time interval t ∈ [0, 1] with N = 1000 points for time stepping. The convolution
quadrature weights are computed by formula (36) with L = N and ρ = 2N

√
ǫ, where

ǫ = 10−16; see Remark 4.1. In Figure 5, we display the node potentials u1(t) and u3(t),
which correspond to the input and output voltages of the rectifier circuit.
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−200
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Time

V
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ta
ge

u1
u3

Figure 6. Node potentials u1 and u3 for coupled (dashed) and reduced
(colored) models obtained by implicit Euler method.

The simulation results show the expected behavior, i.e., the diode hinders the current
to flow in the wrong direction, which results in a zero potential u3 during half of the
period. In the second half of the period, the diode lets the current pass freely and the
output voltage u3 amounts to minus the input voltage. This behavior also explains the
name half-rectifier. Let us note that, in accordance with our theorems, the simulation
of the coupled system (1)–(2) and the reduced system (7) yield identical results. The
latter, however, only requires the time integration of the nonlinear subsystem, which
here is of dimension four, while the first approach needs to solve also for the linear
subsystem (2) in every time step.
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