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OPTIMAL CONTROL OF COEFFICIENTS IN PARABOLIC FREE BOUNDARY

PROBLEMS MODELING LASER ABLATION

UGUR G. ABDULLA AND JONATHAN GOLDFARB

Abstract. Inverse Stefan problem arising in modeling of laser ablation of biomedical tissues is analyzed,

where information on the coefficients, heat flux on the fixed boundary, and density of heat sources are

missing and must be found along with the temperature and free boundary. Optimal control framework is

employed, where the missing data and the free boundary are components of the control vector, and optimality

criteria are based on the final moment measurement of the temperature and position of the free boundary.

Discretization by finite differences is pursued, and convergence of the discrete optimal control problems to

the original problem is proven.

1. Introduction and Motivation

Consider the general one-phase Stefan problem [17, 27]: find the temperature function u(x, t) and the

free boundary x = s(t) from the following conditions:

Lu ≡ (aux)x + bux + cu− ut = f − ∂p

∂x
, in Ω = {(x, t) : 0 < x < s(t), 0 < t ≤ T } (1)

u(x, 0) = φ(x), 0 ≤ x ≤ s(0) =: s0 (2)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T (3)

a
(

s(t), t
)

ux
(

s(t), t
)

+ γ
(

s(t), t
)

s′(t) = χ
(

s(t), t
)

, 0 ≤ t ≤ T (4)

u
(

s(t), t
)

= µ(t), 0 ≤ t ≤ T, (5)

where a, b, c, f , p, φ, g, γ, χ, µ are known functions a(x, t) ≥ a0 > 0, s0 > 0. In the context of heat

conduction, γ represents latent heat absorbed or released by the melting or freezing at the boundary, χ
a heat source or sink on the boundary, f and p characterize the density of the sources, φ is the initial

temperature, g is the heat flux on the fixed boundary x = 0, and µ is the phase transition temperature.

The coefficients a, b, and c represent the diffusive, convective, and reactive properties, respectively, in the
domain Ω.

Assume now that some of the data is not available, or involves some measurement error. For example,
assume that the coefficients b and c, heat flux g(t) on the fixed boundary x = 0 and the “regular part”

of the density of heat sources, f(x, t) are unknown and must be found along with the temperature

u(x, t) and the free boundary x = s(t). In this case, additional information is required; assume that
this information is provided in the form of a measurement of temperature and the position of the free

boundary at the final time t = T ,

u(x, T ) = w(x), 0 ≤ t ≤ s(T ) =: s̄ (6)

Key words and phrases. Inverse Stefan problem, optimal control, PDE constrained optimization, second order parabolic PDE,

Sobolev spaces, energy estimate, embedding theorems, traces of Sobolev functions, method of finite differences, convergence in

functional, convergence in control.
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Under these conditions, we are required to solve an Inverse Stefan Problem (ISP): find functions

u(x, t) and s(t), the boundary heat flux g(t), and the density of sources f(x, t) satisfying conditions (1)–
(6).

Motivation for this type of inverse problem arose, in particular, from the modeling of bioengineering

problems on the laser ablation of biological tissues through a Stefan problem (1)–(6), where s(t) is the
ablation depth at the moment t. The unknown parameters of the model such as b, c, g, and f are very

difficult to measure through experiments. Lab experiments pursued on laser ablation of biological tissues
allow the measure of final temperature distribution and final ablation depth; consequently, ISP must be

solved for the identification of some, or all, of the unknown parameters a, b, c, g, f , etc.

Still another important motivation arises from the optimal control of the laser ablation process. A
typical control problem arises when unknown control parameters, such as the intensity of the laser

source f , heat flux g on the known boundary, and the coefficients b, c, must be chosen with the purpose

of achieving a desired ablation depth and temperature distribution at the end of the time interval.
Research into inverse Stefan problems proceeded in two directions: inverse Stefan problems with given

phase boundaries in [6, 9–15, 18, 19, 33], or inverse problems with unknown phase boundaries in [5, 16, 18,
20–24, 26, 28, 30–32, 36–38].

In [1], [2], a new variational formulation of ISP was introduced and existence of a solution as well as

convergence of the method of finite differences was proven. Fréchet differentiability in Besov spaces in the
new variational formulation was proven in [3], [4]. The goal of this project is to extend the results of [2]

on the existence of a solution and convergence of the method of finite differences to the identification of

f , b, and c.
The structure of the remainder of the paper is as follows: in Section 1.1 we define all the functional

spaces. Section 2 formulates the optimal control problem; the discrete optimal control problem is formu-
lated in Section 3. The main results are formulated in Section 4. In Section 5 preliminary results are

proven. The proofs of the main results are elaborated in Section 6. Finally, conclusions are presented in

Section 7.

1.1. Notation. Let U be open subset of the real line ℜ.
• The Sobolev-Besov space Bk

2 (U), for k = 1, 2, . . . is the Banach space of L2(U) functions whose
weak derivatives up to order k exist and are in L2(U). The norm in Bk

2 (U) is

‖u‖2Bk
2 (U) :=

k
∑

i=0

∥

∥

∥

∥

dku

dxk

∥

∥

∥

∥

2

L2(U)

• For ℓ 6∈ Z+, B
ℓ
2(U) is the Banach space of measurable functions with finite norm

‖u‖Bℓ
2(U) := ‖u‖

B
(ℓ)
2 (U)

+ [u]Bℓ
2(U) where [u]

2
Bℓ

2(U) :=

∫

U

∫

U

∣

∣

∣

∂[ℓ]u(x)
∂x[ℓ] − ∂[ℓ]u(y)

∂x[ℓ]

∣

∣

∣

2

|x− y|1+2(ℓ−[ℓ])
dx dy

• Let ℓ1, ℓ2 > 0 and D = U × (0, T ). The Besov space B
ℓ1,ℓ2
2 (D) is defined as the closure of the

set of smooth functions under the norm

‖u‖
B

ℓ1,ℓ2
2 (D)

:=

(

∫ T

0

‖u(x, t)‖2
B

ℓ1
2 (U)

dt

)1/2

+

(
∫

U

‖u(x, t)‖2
B

ℓ2
2 (0,T )

dx

)1/2

.

When ℓ1 = ℓ2 ≡ ℓ, the corresponding Besov space is denoted by Bℓ
2(D). B̊ℓ1,ℓ2

2 (D) denotes the
closure of the set of smooth functions with compact support with respect to x in U under the

B
ℓ1,ℓ2
2 -norm.
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• V2(Ω) is the subspace of B
1,0
2 (Ω) for which the norm

‖u‖2V2(Ω) = ess sup
0≤t≤T

‖u(·, t)‖2
L2

(

0,s(t)
) +

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2(Ω)

• V
1,0
2 (Ω) is the completion of B1,1

2 (Ω) in the V2(Ω) norm. V 1,0
2 (Ω) is a Banach space with norm

‖u‖2V 1,0
2 (Ω) = max

0≤t≤T
‖u(·, t)‖2

L2

(

0,s(t)
) +

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2(Ω)

In the next section we describe the new variational formulation of this inverse problem.

2. Variational Formulation of ISP

Fix any R > 0, 0 < ǫ≪ 1 and nonnegative numbers βi, i = 0, 1, 2. Consider

J (v) = β0

∫ s(T )

0

|u(x, T )− w(x)|2 dx+ β1

∫ T

0

∣

∣u
(

s(t), t
)

− µ(t)
∣

∣

2
dt+ β2|s(T )− s̄|2 (7)

over the control set VR:

VR =
{

v = (s, g, f, b, c) ∈ H : 0 < δ ≤ s(t), s(0) = s0, s
′(0) = 0, ‖v‖H ≤ R

}

,

H = B2
2(0, T )×B1

2(0, T )× L2(D)×B1+ǫ
2 (D)×B1+ǫ

2 (D),

‖v‖H := max
(

‖s‖B2
2(0,T ) ; ‖g‖B1

2(0,T ) ; ‖f‖L2(D) ; ‖b‖B1+ǫ
2 (D) ; ‖c‖B1+ǫ

2 (D)

)

(8)

where D is defined by

D := {(x, t) : 0 ≤ x ≤ ℓ, 0 ≤ t ≤ T } ,
where ℓ = ℓ(R) > 0 is chosen such that for any control v ∈ VR, its component s satisfies s(t) ≤ ℓ.

Existence of appropriate ℓ follows from Morrey’s inequality [7, 25]. Let the function f ∈ L2(D) be
extended to L2(ℜ2) by zero. For given v ∈ VR the state vector u = u(x, t; v) solves (1)–(4). Call the

previous minimization problem by Problem I .

Definition 2.1. u ∈ B
1,1
2 (Ω) is called a weak solution of the problem (1)–(4) if u(x, 0) = φ(x) ∈ B1

2(0, s0)
and

0 =

∫ T

0

∫ s(t)

0

[

auxΦx − buxΦ− cuΦ+ utΦ+ fΦ+ pΦx

]

dx dt

+

∫ T

0

[

γ
(

s(t), t
)

s′(t)− χ
(

s(t), t
)]

Φ(s(t), t) dt+

∫ T

0

g(t)Φ(0, t) dt (9)

for any Φ ∈ B
1,1
2 (Ω).

Definition 2.2. u ∈ V2(Ω) is called a weak solution of the problem (1)–(4) if u(x, 0) = φ(x) ∈ B1
2(0, s0)

and

0 =

∫ T

0

∫ s(t)

0

[

auxΦx − buxΦ− cuΦ+ utΦ + fΦ+ pΦx

]

dx dt−
∫ s(0)

0

φ(x)Φ(x, 0) dx

+

∫ T

0

g(t)Φ(0, t) dt+

∫ T

0

[

γ
(

s(t), t
)

s′(t)− u
(

s(t), t
)

s′(t)− χ
(

s(t), t
)]

Φ(s(t), t) dt (10)

for any Φ ∈ B
1,1
2 (Ω) with Φ(x, T ) = 0.
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3. Discrete Optimal Control Problem

Let

ωτ = {tj = jτ, j = 0, 1, . . . , n}
be a grid on [0, T ] and τ = T

n . We will use the standard notation for differences of a sequence {di},

dk,t̄ =
dk − dk−1

τ
, dkt = dk+1,t̄, dk,t̄t =

dk+1,t̄ − dk,t̄

τ
(11)

Let us now introduce the spatial grid. Given a discrete boundary [s]n ∈ ℜn+1, let (p0, p1, . . . , pn) be a

permutation of (0, 1, . . . , n) according to the order sp0 ≤ sp1 ≤ · · · ≤ spn . In particular, according to
this permutation for arbitrary k there exists a unique jk such that sk = spjk

. Furthermore, unless it is

necessary in the context, we are going to write simply j instead of subscript jk . Let

ωp0 = {xi : xi = ih, i = 0, 1, . . . ,m
(n)
0 }

be a grid on [0, sp0 ] and h =
sp0
m

(n)
0

. Furthermore we assume that

h = O(
√
τ ), as τ → 0. (12)

We continue construction of the spatial grid by induction. Having constructed ωpk−1
on [0, spk−1

] we
construct

ωpk
= {xi : i = 0, 1, . . . ,m

(n)
k }

on [0, spk
], where m

(n)
k ≥ mn

k−1, and inequality is strict if and only if spk
> spk−1

; for i ≤ m
(n)
k−1 points

xi are the same as in grid ωpk−1
. Finally, if spn < ℓ, then we introduce a grid on [spn , ℓ]

ω = {xi : xi = spn + (i−m(n)
n )h, i = m(n)

n , . . . , N}

of stepsize order h, i.e. h = O(h) as h→ 0. Furthermore we simplify the notation and write m
(n)
k ≡ mk.

Let

hi = xi+1 − xi, i = 0, 1, . . . , N − 1;

and denote the space grid on [0, ℓ] by ωh and set ∆ = maxi=0,...,N−1 hi Assume that mk → +∞, as

n→ ∞. Introduce the Steklov averages

hk =
1

τ

∫ tk

tk−1

h(t) dt, wi =
1

hi

∫ xi+1

xi

w(x) dx, dik =
1

hiτ

∫ xi+1

xi

∫ tk

tk−1

d(x, t) dt dx,

where i = 0, 1, . . . , N − 1; k = 1, . . . , n; and d stands for any of the functions a, p, or f ; and h stands

for any of the functions ν, µ, g, etc. Define

V n
R =

{

[v]n = ([s]n, [g]n, [f ]nN , [b]n, [c]n) ∈ H̄ : 0 < δ ≤ sk; ‖[v]n‖H̄ ≤ R
}

(13)

where

H̄ := ℜn+1 ×ℜn+1 ×ℜnN ×ℜn+1 ×ℜn+1

‖[v]n‖H̄ := max
(

‖[s]n‖b22 ; ‖[g]n‖b12 ; ‖[f ]nN‖ℓ2 ; ‖[b]n‖b2 ; ‖[c]n‖b2
)

,
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and

‖[g]n‖2b12 =

n−1
∑

k=0

τg2k +

n
∑

k=1

τg2k,t̄, ‖[s]n‖2b22 = ‖[s]n‖2b12 +
n−1
∑

k=1

τs2k,t̄t,

‖[f ]nN‖2ℓ2 =

n
∑

k=1

N−1
∑

i=0

τhif
2
ik, ‖[d]n‖2b2 =

n
∑

k=0

|dk|2 ,

where sk ≡ s0 for k ≤ 1 and d stands for either of b, c. Let {ψk, k = 0, 1, . . .} be an orthonormal

set in B1+ǫ
2 (D), and for simplicity of notation, denote the inner product on the Hilbert space B1+ǫ

2 (D)
by 〈·, ·〉B1+ǫ

2
. Introduce two mappings Qn and Pn between continuous and discrete control sets: Define

Qn(v) for v ∈ VR by sk = s(tk) for k = 2, . . . , n, gk = g(tk) for k = 0, 1, . . . , n, and

fik =
1

hiτ

∫ tk

tk−1

∫ xi+1

xi

f(x, t) dx dt, k = 0, . . . , n, i = 0, . . . , N,

and dk = 〈d, ψk〉B1+ǫ
2

for k = 0, 1, . . . where d stands for either of b or c. Define Pn([v]n) = vn =

(sn, gn, fn, bn, cn) ∈ H for [v]n ∈ V n
R by

sn(t) = sk−1 +
(

t− tk−1 −
τ

2

)

sk−1,t̄ +
1

2
(t− tk−1)

2sk−1,t̄t, tk−1 ≤ t ≤ tk, k = 1, n. (14)

gn(t) = gk−1 + gk,t̄(t− tk−1), tk−1 ≤ t ≤ tk, k = 1, n,

fn(x, t) = fik, xi ≤ x < xi+1, tk−1 ≤ t < tk, i = 0, N − 1, k = 1, n

dn(x, t) =

n
∑

k=0

dkψk(x, t)

where d is either of b or c. Given v = (s, g, f, b, c) ∈ VR, we define the Steklov averages of traces by

χk
s =

1

τ

∫ tk

tk−1

χ(s(t), t) dt, (γss
′)k =

1

τ

∫ tk

tk−1

γ(s(t), t)s′(t) dt, k = 1, 2, . . . , n (15)

Given [v]n ∈ V n
R we define Steklov averages χk

sn and (γsn(s
n)′)k through (15) with s replaced by sn. The

Steklov averages bik and cik are defined through

bik =
1

hiτ

∫ tk

tk−1

∫ xi+1

xi

bn(x, t) dx dt, cik =
1

hiτ

∫ tk

tk−1

∫ xi+1

xi

cn(x, t) dx dt (16)

Next we define a discrete state vector through discretization of the integral identity (9)

Definition 3.1. Given discrete control vector [v]n ∈ V n
R , the vector function

[u([v]n)]n = (u(0), u(1), . . . , u(n)), u(k) = (u0, . . . , uN ) ∈ ℜN+1, k = 0, . . . , n

is called a discrete state vector if

(a): First m0 + 1 components of the vector u(0) satisfy ui(0) = φi := φ(xi), i = 0, 1, . . . ,m0;
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(b): For arbitrary k = 1, . . . , n first mj+1 components of the vector u(k) solve the following system

of mj + 1 linear algebraic equations:

[

a0k + hb0k − h2c0k +
h2

τ

]

u0(k)−
[

a0k + hb0k

]

u1(k) =
h2

τ
u0(k − 1)− h2f0k − hgnk − hp0k,

−ai−1,khiui−1(k) +
[

ai−1,khi + aikhi−1 + bikhihi−1 − cikh
2
ihi−1 +

h2ihi−1

τ

]

ui(k)

−
[

aikhi−1 + bikhihi−1

]

ui+1(k) = −h2ihi−1fik + hihi−1pik,x̄ +
h2ihi−1

τ
ui(k − 1), i = 1, . . . ,mj − 1

−amj−1,kumj−1(k) + amj−1,kumj (k) = −hmj−1

[

(γsn(s
n)′)k − χk

sn

]

. (17)

(c): For arbitrary k = 0, 1, . . . , n, the remaining components of u(k) are calculated as ui(k) =
û(xi; k) for mj ≤ i ≤ N where û(x; k) ∈ B1

2(0, ℓ) is a piecewise linear interpolation of

{ui(k) : i = 0, . . . ,mj}, that is to say

û(x; k) = ui(k) + uix(k)(x − xi), xi ≤ x ≤ xi+1, i = 0, . . . ,mj − 1,

iteratively continued for 0 ≤ x <∞ as

û(x; k) = û(2nsk − x; k), 2n−1sk ≤ x ≤ 2nsk, n = 1, 2, . . . (18)

Note that no more than n∗ = 1 + log2

[

ℓ
δ

]

reflections are required to cover [0, ℓ]. It should be

mentioned that for any k = 1, 2, . . . , n system (17) is equivalent to the following summation identity

mj−1
∑

i=0

hi

[

aikuix(k)ηix − bikuix(k)ηi − cikui(k)ηi + fikηi + pikηix + uit(k)ηi

]

+
[

(γsn(s
n)′)k − χk

sn

]

ηmj + gnk η0 = 0, (19)

for arbitrary numbers ηi, i = 0, 1, . . . ,mj .

Consider a discrete optimal control problem of minimization of the cost functional

In([v]n) = β0

mn−1
∑

i=0

hi

(

ui(n)− wi

)2

+ β1τ

n
∑

k=1

(

umk
(k)− µk

)2

+ β2 |sn − s̄|2 (20)

on the set V n
R subject to the state vector defined in Definition 3.1. Furthermore, formulated discrete opti-

mal control problem will be called Problem In. Throughout, we use piecewise constant and piecewise lin-
ear interpolations of the discrete state vector: given discrete state vector [u([v]n)]n = (u(0), u(1), . . . , u(n)),
let

uτ (x, t) = û(x; k), if tk−1 < t ≤ tk, 0 ≤ x ≤ ℓ, k = 0, n,

ûτ (x, t) = û(x; k − 1) + ût(x; k)(t − tk−1), if tk−1 < t ≤ tk, 0 ≤ x ≤ ℓ, k = 1, n,

ûτ (x, t) = û(x;n), if t ≥ T, 0 ≤ x ≤ ℓ.

ũτ (x, t) = ui(k), if tk−1 < t ≤ tk, xi ≤ x < xi+1, k = 1, n, i = 0, N − 1.

Standard notations for difference quotients of the discrete state vector are employed:

uix(k) =
ui+1(k)− ui(k)

hi
, uit =

ui(k)− ui(k − 1)

τ
, etc.
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Let φn be a piecewise constant approximation to φ:

φn(x) = φi, xi < x ≤ xi+1, i = 0, . . . , N − 1

4. Main Results

Assume that the following conditions are satisfied

a(x, t) ≥ a0 > 0, a ∈ B1,0
∞ (D) with M := ‖a‖B1,0

∞ (D) , and

∫ T

−1

ess sup
0≤x≤ℓ

∣

∣

∣

∣

∂a

∂t

∣

∣

∣

∣

dt < +∞

w ∈ L2(0, ℓ), χ, γ ∈ B
1,1
2 (D), φ ∈ B1

2(0, s0), µ ∈ L2(0, T ), p ∈ B̊
0,1
2 (Dδ).

where Dδ = (0, δ) × (0, T ). Note that the distributional derivative ∂p
∂x is understood in the sense of

measures. Extend arbitrary µ ∈ L2(0, T ) to L2(ℜ) by zero. The main results of this work are the
following:

Theorem 4.1 (Existence of an Optimal Control). Problem I has a solution. That is,

V∗ :=

{

v ∈ VR : J (v) = J∗ =: inf
v∈VR

J (v)

}

6= ∅

Theorem 4.2. In approximate the continuous problem I with respect to functional in the sense that

lim
n→∞

I∗n = J∗, where I∗n = inf
V n
R

In, and J∗ = inf
VR

J

Moreover, the sequence In approximates I with respect to control in the sense that if [u]n,ǫ ∈ V n
R is chosen

such that

I∗n ≤ In([v]n,ǫ) ≤ I∗n + ǫn, where ǫn ↓ 0

then the sequence vn = (sn, gn, fn, bn, cn) = Pn([v]n,ǫ) converges to an element v∗ = (s∗, g∗, f∗, b∗, c∗) ∈
V∗ weakly in B

2
2(0, T )×B1

2(0, T )×L2(D)×B1+ǫ
2 (D)×B1+ǫ

2 (D). In particular, (sn, gn, bn, cn) converge
strongly in B1

2(0, T ) × L2(0, T ) × L2(D) × L2(D). Moreover, sn converges to s∗ uniformly on [0, T ]. For
any δ > 0, define

Ω′ = Ω ∩ {x < s(t)− δ, 0 < t < T }
Then the piecewise linear interpolations ûτ of the corresponding discrete state vectors

[

[v]n,ǫ
]

n
converge to the

solution u(x, t; v∗) ∈ B
1,1
2 (Ω∗) of the Neumann problem (1)–(4) weakly in B1,1

2 (Ω′).

5. Preliminary Results

Lemma 5.1. For arbitrary sufficiently small ǫ > 0, there exists nǫ such that

Qn(v) ∈ V n
R , for all v ∈ VR−ǫ, n > nǫ (21)

Pn

(

[v]n
)

∈ VR+ǫ, for all [v]n ∈ V n
R , n > nǫ (22)

Proof. The first two components of either Qn(v) for v ∈ VR−ǫ or Pn

(

[v]n
)

for [v]n ∈ V n
R are estimated

as in [2, Lem. 2.2]; all that remains is the estimation of the components corresponding to f , b, and c in
both. Since the components corresponding to b and c are in the same control set, we will give full details

of for the c component only, as those corresponding to b are identical.
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Fix v ∈ VR−ǫ and let
(

[s]n, [g]n, [f ]nN , [b]n, [c]n
)

= Qn(v). By Cauchy-Bunyakovski-Schwarz (CBS)

inequality,

‖[f ]nN‖2ℓ2 ≤
n
∑

k=1

N−1
∑

i=0

∫ xi+1

xi

∫ tk

tk−1

|f(x, t)|2 dt dx =

∫ T

0

∫ ℓ

0

|f(x, t)|2 dx dt = ‖f‖2L2(D) ≤ (R − ǫ)2

(23)
By Bessel’s inequality,

‖[c]n‖2b2 =

n
∑

k=0

|ck|2 ≤
∞
∑

k=0

|ck|2 ≤ ‖c‖2B1+ǫ
2 (D) ≤ (R − ǫ)2 (24)

By (23), (24), and the proof of [2, Lem. 2.1], it follows that

‖Qn(v)‖2V n
R
≤ R2

for τ sufficiently small, which implies (21). Consider [v]n ∈ V n
R and let

(

s, g, f, b, c
)

= Pn([v]n). Calculate

‖f‖2L2(D) =

∫ T

0

∫ ℓ

0

|f(x, t)|2 dx dt =
n
∑

k=1

τ

N−1
∑

i=0

hi |fik|2 = ‖[f ]n‖2ℓ2(0,ℓ) ≤ R2 (25)

By definition,

‖cn‖2B1+ǫ
2 (D) = 〈cn, cn〉B1+ǫ

2
=

n
∑

k=0

n
∑

j=0

ckcj 〈ψk, ψj〉B1+ǫ
2

= ‖[c]n‖2b2(D) ≤ R2 (26)

By (25), (26), and the proof of [2, Lem. 2.1], it follows that

‖Pn([v]n)‖2H ≤ (R + ǫ)2

for τ sufficiently small, which implies (22). Lemma is proved. �

As in [1], it follows from Theorem 5.1 that

Corollary 5.2. Let either [v]n ∈ V n
R or [v]n = Qn(v) for v ∈ VR. Then for large n,

|sk − sk−1| ≤ C′τ, k = 1, 2, . . . , n (27)

where C′ is independent of n.

Note that for the step size hi we have one of the three possibilities: hi = h, or hi = h, or hi ≤
|sk − sk−1| for some k. Hence, from (12) and (27), it follows that

∆ = O(
√
τ ), as τ → 0. (28)

Using Lemma 5.1, we derive

Corollary 5.3. For a given discrete control vectors [b]n ∈ b2, the coefficients {bik} defined by (16) satisfy the
estimate

max
ik

|bik| ≤ C ‖[b]n‖b2 (29)

for C independent of n and [b]n. In particular, {bik} are uniformly bounded whenever ‖[b]n‖b2 are bounded.
Similarly, the coefficients {cik} are uniformly bounded.
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Proof. By embedding of B1+ǫ
2 (D) in L∞(D) [7, 29, 34, 35],

max
ik

|cik| = max
ik

1

hiτ

∣

∣

∣

∣

∣

∫ tk

tk−1

∫ xi+1

xi

cn(x, t) dx dt

∣

∣

∣

∣

∣

≤ max
ik

sup
tk−1≤t≤tk, xi≤x≤xi+1

|cn(x, t)|

= ‖cn‖L∞(D) ≤ C ‖cn‖B1+ǫ
2 (D) ≤ C ‖[c]n‖b2(D) �

Lemma 5.4. For given [v]n ∈ V n
R , the discrete state vector

[

u
(

[v]n
)]

n
exists and is unique for all sufficiently

small τ > 0.

Lemma 5.4 is established in nearly the same way as [2, Lem. 2.1].

6. Proof of Main Results

6.1. Energy Estimates and their Consequences.

Theorem 6.1. For τ sufficiently small, and for any discrete control [v]n ∈ V n
R , the corresponding discrete state

vector satisfies the estimate

max
0≤k≤n

N−1
∑

i=0

hiu
2
i (k) +

n
∑

k=1

τ

N−1
∑

i=0

hiu
2
ix(k) ≤ C

(

‖φn‖2L2(0,s0)
+ ‖gn‖2L2(0,T ) + ‖fn‖2L2(D)

+ ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T ) + ‖χ(sn(t), t)‖2L2(0,T ) +

n−1
∑

k=1

1+(sk+1 − sk)

mjk+1
−1

∑

i=mj

hiu
2
i (k)

)

, (30)

Theorem 6.1 is an extension of [2, Thm. 3.1]. As in [1]Thm. 3.4, from Theorem 6.1 we have

Theorem 6.2. Let [v]n ∈ V n
R for n = 1, 2, . . . be a sequence of discrete controls with

{

Pn

(

[v]n
)}

converging

weakly in B2
2(0, T )×B1

2(0, T )×L2(D)×B1+ǫ
2 (D)×B1+ǫ

2 (D) to an element v = (s, g, f, b, c) (and hence
with (sn, gn, bn, cn) converging strongly in B1

2(0, T )×L2(0, T )×L2(D)×L2(D)). Then {uτ} converges as
τ → 0 weakly in B1,0

2 (D) to a weak solution u ∈ V
1,0
2 (Ω) of (1)–(4). Moreover, u satisfies the energy estimate

‖u‖2V 1,0
2 (D) ≤ C

[

‖φ‖2L2(0,s0)
+ sup

n
‖fn‖2L2(D) + ‖p‖2L2(D) + ‖γ‖2B1,0

2 (D) + ‖χ‖2B1,0
2 (D) + ‖g‖2L2(0,T )

]

(31)

Equivalence of the piecewise constant interpolation bik to bn(x, t) in L2(D) follows from application
of CBS inequality. From Theorem 6.2 in particular we have

Corollary 6.3. For any v = (s, g, f, b, c) ∈ VR, there exists a weak solution u ∈ V
1,0
2 (Ω) of the Neumann

problem (1)–(4) satisfying the energy estimate (31).

Given any discrete control vector [v]n and the corresponding discrete state vector
[

u([v]n)
]

n
, define

the constant continuation
[

ũ([v]n)
]

n
by ũi(k) = ui(k) for 0 ≤ i ≤ mj and ũi(k) = umj(k) for mj < i

for k = 0, . . . , n.
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Theorem 6.4 (Second Energy Estimate). For τ sufficiently small, and for any discrete control [v]n ∈ V n
R , the

modified discrete state vector
[

ũ([v]n)
]

satisfies

max
1≤k≤n

mj−1
∑

i=0

hiu
2
ix(k) + τ

n
∑

k=1

mj−1
∑

i=0

hiũit̄(k)
2 + τ2

n
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) ≤ C

[

‖φn‖2L2(0,s0)
+ ‖φ‖2B1

2(0,s0)

+ ‖fn‖2L2(D) + ‖gn‖2
B

1/4
2 (0,T )

+ ‖p‖2B̊0,1
2 (Dδ)

+
∥

∥

∥
γ(sn(t), t)

(

sn
)′
(t)
∥

∥

∥

2

B
1/4
2 (0,T )

+ ‖χ(sn(t), t)‖2
B

1/4
2 (0,T )

]

(32)

Proof. In (19), take η = 2τũit̄(k) to derive

mj−1
∑

i=0

2τhi

[

aikuix(k)ũixt̄(k)− bikuix(k)ũit̄(k)− cikui(k)ũit̄(k) + fikũit̄(k) + pikũixt̄(k)

+uit̄(k)ũit̄(k)
]

+ 2τ
[

(

γsn(s
n)′
)k − χk

sn

]

ũmj t̄(k) + 2τgnk ũ0t̄(k) = 0 (33)

Arguing as in [2, Thm. 3.3] (in particular, Eq. 3.46), it follows that

mjq−1
∑

i=0

hiũ
2
ix(q) + τ2

q
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) + τ

q
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

mj0−1
∑

i=0

hiφ
2
ix

+C

q
∑

k=1

mj−1
∑

i=0

τhiũ
2
ix(k) + C max

1≤k≤q

mj−1
∑

i=0

hiũ
2
i (k) + C

q
∑

k=1

mj−1
∑

i=0

τhif
2
ik −

q
∑

k=1

mj−1
∑

i=0

τhipikũixt̄(k)

−2τ

q
∑

k=1

[

(

γsn(s
n)′
)k − χk

sn

]

ũmj t̄(k)− 2τ

q
∑

k=1

gnk ũ0t̄(k) (34)

for any 1 ≤ q ≤ n. The second and third terms on the right-hand side of (34) can be estimated using the
first energy estimate; For the term containing pik, we apply summation by parts; by virtue of the compact

support of p with respect to x in (0, δ), there exists iδ with iδ < mjk − 1 for all k such that pik ≡ 0 for

i > iδ, and hence

q
∑

k=1

mj−1
∑

i=0

τhipikũixt̄(k) =

iδ
∑

i=0

hipiqũix(q)−
iδ
∑

i=0

hipi,1φix −
q−1
∑

k=1

iδ
∑

i=0

τhipi,k+1,t̄ũix(k) (35)

Therefore, from (34), (35), Corollary 5.3, and Cauchy inequality with ǫ, it follows that

a0

2

mjq−1
∑

i=0

hiũ
2
ix(p) + τ2a0

q
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) +

τ

2

q
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

{mj0−1
∑

i=0

hiφ
2
ix

+

q
∑

k=1

mj−1
∑

i=0

τhiũ
2
ix(k) + max

1≤k≤p

mj−1
∑

i=0

hiũ
2
i (k) +

q
∑

k=1

mj−1
∑

i=0

τhif
2
ik +

iδ
∑

i=0

hip
2
iq

+

iδ
∑

i=0

hip
2
i1 +

q−1
∑

k=1

iδ
∑

i=0

τhip
2
i,k+1,t̄ + τ

q
∑

k=1

[

(

γsn(s
n)′
)k − χk

sn

]

ũmj t̄(k) + τ

q
∑

k=1

gnk ũ0t̄(k)

}

(36)
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for some C independent of τ . By CBS inequality and Fubini’s theorem we have

τ

m−1
∑

k=1

mj−1
∑

i=0

hip
2
i,k+1,t ≤

1

τ2

m−1
∑

k=1

∫ sk

0

∫ tk

tk−1

|p(x, t+ τ) − p(x, t)|2 dt dx ≤ ‖pt‖2L2(D) (37)

By CBS inequality and Sobolev embedding theorem [7, 29]

mj−1
∑

i=0

hip
2
ik =

mj−1
∑

i=0

1

hiτ2

(

∫ xi+1

xi

∫ tk

tk−1

p(x, t) dt dx

)2

≤ 1

τ

∫ tk

tk−1

∫ δ

0

p2(x, t) dx dt ≤ C ‖p‖2B̊0,1
2 (Dδ)

(38)

Having (38) and (37), from (36) it follows that

a0

2

mjq−1
∑

i=0

hiũ
2
ix(q) + τ2a0

q
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) +

τ

2

q
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

{mj0−1
∑

i=0

hiφ
2
ix

+

q
∑

k=1

mj−1
∑

i=0

τhiũ
2
ix(k) + max

1≤k≤q

mj−1
∑

i=0

hiũ
2
i (k) +

q
∑

k=1

mj−1
∑

i=0

τhif
2
ik + ‖p‖2B̊0,1

2 (Dδ)

+τ

q
∑

k=1

[

(

γsn(s
n)′
)k − χk

sn

]

ũmj t̄(k) + τ

q
∑

k=1

gnk ũ0t̄(k)

}

(39)

Since this inequality holds for all 1 ≤ q ≤ n, it follows that

a0

2
max

1≤k≤n

mjk
−1

∑

i=0

hiũ
2
ix(k) + τ2a0

n
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) +

τ

2

n
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

{mj0−1
∑

i=0

hiφ
2
ix

+
n
∑

k=1

mj−1
∑

i=0

τhiũ
2
ix(k) + max

1≤k≤n

mj−1
∑

i=0

hiũ
2
i (k) + ‖f‖2L2(D) + ‖p‖2B̊0,1

2 (Dδ)

+τ

n
∑

k=1

[

(

γsn(s
n)′
)k − χk

sn

]

ũmj t̄(k) + τ

n
∑

k=1

gnk ũ0t̄(k)

}

(40)

The boundary terms containing ut̄ present another challenge. The proof of the corresponding energy

estimate in [1] gives the idea to use inverse embedding of Sobolev spaces.

If γ, χ ∈ B
1,1
2 (D) and [v]n = ([s]n, [g]n, [f ]nN , [b]n, [c]n) ∈ V n

R , then for n large enough, Pn([v]n) ∈
VR+1 by Theorem 5.1, and hence the traces of χ and γ ·(sn)′ on the curves x = sn(t) are in B

1/4
2 (0, T ) [7,

29] and
∥

∥γ
(

sn(t), t
)

(sn)′(t)
∥

∥

B
1/4
2 (0,T )

≤ C ‖γ‖B1,1
2 (D) ,

∥

∥χ
(

sn(t), t
)
∥

∥

B
1/4
2 (0,T )

≤ C ‖χ‖B1,1
2 (D) (41)

Let Ψ(x, t) ∈ B
2,1
2 (D) be a solution of the heat equation satisfying

Ψ(x, 0) = φ(x), for x ∈ [0, s0], a(0, t)Ψx(0, t) = gn(t), for a.e. t ∈ [0, T ],

a(sn, t)Ψx(s
n(t), t) = χ

(

sn(t), t
)

− γ
(

sn(t), t
)

(sn)′(t), for a.e. t ∈ [0, T ]

and

‖Ψ‖B2,1
2 (D) ≤ C

[

‖gn‖
B

1/4
2 (0,T )

+ ‖φ‖B1
2(0,s0)

+
∥

∥χ
(

sn(t), t
)

− γ
(

sn(t), t
)

(sn)′(t)
∥

∥

B
1/4
2 (0,T )

]

(42)
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Existence of such Ψ follows from e.g. [25, Ch. 3, Thm. 6.1]. Then replacing u, s and g with u − Ψ, sn,

and gn in (40) with f(x) replaced by f(x)− LΨ(x) ∈ L2(D), we derive

a0

2
max

1≤k≤n

mjk
−1

∑

i=0

hiũ
2
ix(k) + τ2a0

n
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) +

τ

2

n
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

{mj0−1
∑

i=0

hiφ
2
ix

+

n
∑

k=1

mj−1
∑

i=0

τhiũ
2
ix(k) + max

1≤k≤n

mj−1
∑

i=0

hiũ
2
i (k) + ‖f‖2L2(D) + ‖LΨ‖2L2(D) + ‖p‖2B̊0,1

2 (Dδ)

}

(43)

By the first energy estimate (30), along with (42), and (41), from (43) it follows that for τ sufficiently small,

u satisfies

a0

2
max

1≤k≤n

mjk
−1

∑

i=0

hiũ
2
ix(k) + τ2a0

n
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) +

τ

2

n
∑

k=1

mj−1
∑

i=0

hiũ
2
it̄(k) ≤ C

{

‖φ‖B1
2(0,s0)

+ ‖φn‖2L2(0,s0)
+ ‖f‖2L2(D) + ‖gn‖

B
1/4
2 (0,T )

+ ‖φ‖B1
2(0,s0)

+ ‖p‖2B̊0,1
2 (Dδ)

+
∥

∥χ
(

sn(t), t
)

− γ
(

sn(t), t
)

(sn)′(t)
∥

∥

B
1/4
2 (0,T )

+

n−1
∑

k=1

1+(sk+1 − sk)

mjk+1
−1

∑

i=mj

hiu
2
i (k)

}

(44)

where C independent of τ has been used to absorb the constants on the left-hand side, and τ is sufficiently
small as in the hypotheses of Theorem 6.1, which implies (32). �

As in [2]Thm. 3.4, from Theorem 6.4 we have

Theorem 6.5. Let [v]n ∈ V n
R for n = 1, 2, . . . be a sequence of discrete controls with

{

Pn

(

[v]n
)}

converg-

ing weakly to an element v = (s, g, f, b, c) in H (with (sn, gn, bn, cn) converging strongly in B1
2(0, T ) ×

L2(0, T )× L2(D)× L2(D) to (s, g, b, c)) and, for any δ > 0, define

Ω′ = Ω ∩ {x < s(t)− δ, 0 < t < T } .
Then {ûτ (x, t; vn)} converges as τ → 0 weakly in B1,1

2 (Ω′) to a weak solution u ∈ B
1,1
2 (Ω) of (1)–(4).

Moreover, u satisfies the energy estimate

‖u‖2B1,1
2 (Ω) ≤ C

[

‖φ‖2B1
2(0,s0)

+sup
n

‖fn‖2L2(D) + ‖p‖2B0,1
2 (D)+ ‖γ‖2B1,1

2 (D)+ ‖χ‖2B1,1
2 (D) + ‖g‖2

B
1/4
2 (0,T )

]

(45)

Theorem 6.5 implies the following

Corollary 6.6. For any v ∈ VR, there exists a weak solution u ∈ B
1,1
2 (Ω) of the Neumann problem (1)–(4)

satisfying the energy estimate (45). By Sobolev extension theorem, u may be extended to a B1,1
2 (D) function

with norm preservation, so it satisfies the energy estimate

‖u‖2B1,1
2 (D) ≤ C

[

‖φ‖2B1
2(0,s0)

+ ‖f‖2L2(D) + ‖p‖2B̊0,1
2 (Dδ)

+ ‖γ‖2B1,1
2 (D) + ‖χ‖2B1,1

2 (D) + ‖g‖2
B

1/4
2 (0,T )

]

6.2. Existence and Convergence Results.

Proof of Theorem 4.1. Let {vn} ∈ VR be a minimizing sequence for J . Since VR is bounded in the Hilbert

space H , vn = (sn, gn, fn, bn, cn) is weakly precompact in B2
2(0, T )×B1

2(0, T )×L2(D)×B1+ǫ
2 (D)×

B1+ǫ
2 (D). Assume that vn → v = (s, g, f, b, c) ∈ VR weakly in B2

2(0, T ) × B1
2(0, T ) × L2(D) ×

B1+ǫ
2 (D)×B1+ǫ

2 (D), and hence (s, g, b, c) converge strongly in B1
2(0, T )×L2(0, T )×L2(D)×L2(D).
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Let un, u ∈ B
1,1
2 (D) be the corresponding solutions to the Neumann problem (1)–(4) in B

1,1
2 (Ωn) and

B
1,1
2 (Ω), respectively, where

Ωn = {(x, t) : 0 < x < sn(t), 0 < t < T } .

un and u satisfy the estimate (45) with (gn, fn) and (g, f) respectively. Since vn ∈ VR, un is in fact

uniformly bounded in B
1,1
2 (D). Considering the sequence ∆u = ∆un = un − u, from Lemma 6.5

we have the rough estimate ‖∆u‖B1,1
2 (D) ≤ C uniformly with respect to n. Therefore, {∆u} is weakly

precompact in B
1,1
2 (D).

Without loss of generality, assume that un−u converges weakly in B
1,1
2 (D) to an element w ∈ B

1,1
2 (D).

Assume temporarily that the fixed test function Φ ∈ C1(D̄). Subtracting the integral identities satisfied

by un and u, we see that ∆u = un − u satisfies

0 =

∫ T

0

∫ s(t)

0

[

a∆uxΦx − b∆uxΦ− c∆uΦ +∆utΦ
]

dx dt+ I1 + I2 + I3 + I4 + I5, (46)

where

I1 :=

∫ T

0

∫ s(t)

0

[

− (bn − b)un,xΦ− (cn − c)unΦ + (fn − f)Φ
]

dx dt

I2 := −
∫ T

0

∫ s(t)

sn(t)

[

aun,xΦx − bnun,xΦ− cnunΦ + un,tΦ + fnΦ+ pΦx

]

dx dt

I3 :=

∫ T

0

[

γ
(

sn(t), t
)

s′n(t)− χ
(

sn(t), t
)]

(Φ(sn(t), t)− Φ(s(t), t)) dt

I4 :=

∫ T

0

{

[

γ
(

sn(t), t
)

s′n(t)− χ
(

sn(t), t
)]

−
[

γ
(

s(t), t
)

s′(t)− χ
(

s(t), t
)]

}

Φ(s(t), t) dt

I5 :=

∫ T

0

[gn(t)− g(t)] Φ(0, t) dt (47)

for arbitrary fixed Φ ∈ C1(D̄). Each of the terms I1, . . . , I5 vanish as n → ∞. For example, by CBS
inequality

∣

∣

∣

∣

∣

∫ T

0

∫ s(t)

0

(bn − b)un,xΦ dx dt

∣

∣

∣

∣

∣

≤ ‖bn − b‖L2(D) ‖un,x‖L2(D) ‖Φ‖C(D) → 0 as n→ ∞ (48)

Which follows from uniform boundedness of un ∈ B
1,1
2 (D) and strong convergence of bn to b in L2(D).

The other two terms in I1 are estimated in a similar way to show |I1| → 0 as n→ ∞. Each term in I2 is
handled using CBS inequality as well:

∣

∣

∣

∣

∣

∫ T

0

∫ sn(t)

s(t)

aun,xΦx dx dt

∣

∣

∣

∣

∣

≤M ‖Φx‖C(D) ‖sn − s‖1/2C[0,T ] ‖un‖B1,0
2 (D) → 0 as n→ ∞

Which follows from uniform boundedness of un ∈ B
1,0
2 (D) and uniform convergence of sn → s on [0, T ].

Treating each term in I2 similarly, it follows that |I2| → 0 as n→ ∞. Similarly, CBS inequality, continuity
of the L2 norm with respect to shift and uniform convergence of sn → s imply |I3| → 0 and |I4| → 0 as

n→ ∞. Lastly, convergence of gn → g strongly in L2(0, T ) implies |I5| → 0 as n→ ∞.
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Therefore, passing to the limit as n→ ∞ in (46) we see that the limit point w satisfies

0 =

∫ T

0

∫ s(t)

0

[

awxΦx − bwxΦ− cwΦ + wtΦ
]

dx dt, ∀Φ ∈ C1(D̄)

By extension of arbitrary Φ ∈ B
1,1
2 (Ω) to B1,1

2 (D) and the density of C1(D̄) in B1,1
2 (D), it follows that

w solves the Neumann problem (1)–(4) with f = p = g = γ = χ ≡ 0. By the uniqueness of the solution to

the Neumann problem it follows that un → u weakly in B
1,1
2 (D). By the Sobolev trace theorem [7,8,29],

CBS and Morrey inequalities it easily follows that

‖un(x, T )− u(x, T )‖L2(0,sn(T )) → 0, ‖un(sn(t), t)− u(s(t), t)‖L2(0,T ) → 0 as n→ ∞.

Therefore, J (v) = limn→∞ J (vn) = J∗ and v ∈ V∗. Theorem is proved. �

Lemma 6.7. For ǫ > 0 define J∗(±ǫ) = infVR±ǫ J (v). Then limǫ→0 J∗(ǫ) = J∗ = limǫ→0 J∗(−ǫ)
Lemma 6.7 is established as in [1, Lem. 3.9]

Lemma 6.8. For v ∈ VR, limn→∞ In(Qn(v)) = J (v)

Proof. Fix v ∈ VR and let [v]n = ([s]n, [g]n, [f ]nN , [b]n, [c]n) = Qn(v). Let u = u(x, t; v) and
[

u([v]n)
]

n
be the corresponding continuous and discrete state vector, respectively, and denote by vn =

(sn, gn, fn, bn, cn) = Pn([v]n). By Sobolev embedding theorem, sn(t) → s(t) uniformly on [0, T ]. Let
ǫm ↓ 0 be an arbitrary sequence, and define

Ωm = {(x, t) : 0 < x < s(t)− ǫm, 0 < t ≤ T }
and fix m > 0.

In Theorem 6.5 it was shown that {ûτ} converges to u weakly in B1,1
2 (Ωm) for any fixed m; by the

embeddings of traces, it follows that {ûτ (s(t)− ǫm, t)} and {ûτ (x, T )} converge to the corresponding

traces u(s(t)− ǫm, t) and u(x, T ) weakly in L2(0, T ) and L2(0, s(t)− ǫm), respectively. We shall prove
that the corresponding traces of uτ satisfy the same property.

By Sobolev embedding theorem, it is enough to show that {uτ} and {ûτ} are equivalent in B
1,0
2 (Ωm).

Denote by smk = xı̂ where

ı̂ = max

{

i ≤ N : −ǫm ≤ xi − max
tk−1≤t≤tk

s(t) ≤ − ǫm
2

}

.

Arguing as in [2, Eq. 101–104] it follows that there exists N = N(ǫm) such that n > N implies

smk < min(sk, sk−1), k = 1, . . . , n (49)

and accordingly

∥

∥

∥

∥

∂ûτ

∂x
− ∂uτ

∂x

∥

∥

∥

∥

2

L2(Ωm)

=
τ3

3

n
∑

k=1

ı̂−1
∑

i=0

hiu
2
ixt̄(k) ≤

τ3

3

n
∑

k=1

mj−1
∑

i=0

hiũ
2
ixt̄(k) = O(τ). (50)

Estimate the first term in In(Qn(v))− J (v) as
∣

∣

∣

∣

∣

β0

mn−1
∑

i=0

hi |ui(n)− wi|2 dx− β0

∫ s(T )

0

|u(x, T )− w(x)|2 dx
∣

∣

∣

∣

∣

≤ β0

{

∣

∣

∣

∣

∣

ı̂−1
∑

i=0

[

hi |ui(n)− wi|2 −
∫ xi+1

xi

|u(x, T )− w(x)|2 dx
]

∣

∣

∣

∣

∣

+ In,m + Ĩm

}

(51)
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where

In,m =

∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |ui(n)− wi|2
∣

∣

∣

∣

∣

, Ĩm =

∣

∣

∣

∣

∣

∫ s(T )

smn

|u(x, T )− w(x)|2 dx
∣

∣

∣

∣

∣

(52)

By absolute continuity of the integral, Ĩm → 0 as m→ ∞. Considering In,m,

In,m ≤ 2

∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |ui(n)|2
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |wi|2
∣

∣

∣

∣

∣

By Morrey’s inequality,
∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |ui(n)|2
∣

∣

∣

∣

∣

≤ C |sn(T )− s(T ) + ǫm| ‖û(x;n)‖2B1
2(0,ℓ)

From (30) and (32), it follows that

‖û(x;n)‖2B1
2(0,ℓ)

≤ C1 (53)

For a constant C1 depending on the given data φ, f , etc. but not τ (or m). Now, considering the second
term in In,m, by CBS inequality,
∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |wi|2
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

mn−1
∑

ı̂

1

hi

∣

∣

∣

∣

∫ xi+1

xi

w(x) dx

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ sn(T )

s(T )

|w(x)|2 dx
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ s(T )

s(T )−ǫm

|w(x)|2 dx
∣

∣

∣

∣

∣

By absolute continuity of the integral and convergence sn(T ) → s(T ), it follows that there is some

N1 = N1(m) such that for n > N1,
∣

∣

∣

∣

∣

mn−1
∑

ı̂

hi |wi|2
∣

∣

∣

∣

∣

≤ 2

∫ s(T )

s(T )−ǫm

|w(x)|2 dx+
1

m
(54)

By (53) and (54), it follows that for n > N1

0 ≤ In,m ≤ CC1 (ǫm + |sn(T )− s(T )|) + 2

∫ s(T )

s(T )−ǫm

|w(x)|2 dx+
1

m
(55)

By (51) and (55), it follows that

0 ≤ lim sup
n→∞

∣

∣

∣

∣

∣

β0

mn−1
∑

i=0

hi |ui(n)− wi|2 dx− β0

∫ s(T )

0

|u(x, T )− w(x)|2 dx
∣

∣

∣

∣

∣

≤ CC1ǫm + 2

∫ s(T )

s(T )−ǫm

|w(x)|2 dx+
1

m
+ Ĩm

for all m. Passing to the limit as m→ ∞ it follows that

lim
n→∞

β0

mn−1
∑

i=0

hi |ui(n)− wi|2 = β0

∫ s(T )

0

|u(x, T )− w(x)|2 dx

The convergence of the second and third terms of In to corresponding terms in J is established in a
similar way. Lemma is proved. �

Lemma 6.9. For arbitrary [v]n ∈ V n
R , limn→∞

(

J
(

Pn([v]n)
)

− In
(

[v]n
))

= 0
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Proof. Let [v]n ∈ V n
R and vn = (sn, gn, fn, bn, cn) = Pn([v]n). Then {Pn([v]n)} is weakly precom-

pact in H ; assume that the whole sequence converges to ṽ = (s̃, g̃, f̃ , b̃, c̃). Then ṽ ∈ VR, and more-

over, Rellich-Kondrachov compactness theorem implies that (sn, gn, bn, cn) → (s̃, g̃, b̃, c̃) strongly in

B1
2(0, T )× L2(0, T )× L2(D) × L2(D); in particular, sn → s̃ uniformly on [0, T ]. Write the difference

J
(

Pn([v]n)
)

− In
(

[v]n
)

in the preceding notation, as

In
(

[v]n
)

− J
(

Pn([v]n)
)

= In
(

[v]n
)

− J
(

vn
)

= In
(

[v]n
)

− J (ṽ) + J (ṽ)− J
(

vn
)

By weak continuity of J , we have limn→∞

(

J (ṽ)− J
(

vn
))

= 0. It remains to be shown that

lim
n→∞

(

In
(

[v]n
)

− J (ṽ)
)

= 0

Since ṽ ∈ VR+ǫ for some ǫ > 0, and by strong convergence of Pn([v]n) → ṽ, a nearly identical argument

to the proof of Lemma 6.8 establishes this result. �

By Lemmas 6.7–6.9 and [2, Lem. 2.2], Theorem 4.2 is proved.

7. Conclusions

Motivated by the new variational formulation of the inverse Stefan problem and by applying the

methods developed in [1, 2], identification of coefficients, heat flux, and density of heat sources in the
second order parabolic free boundary problem arising in biomedical problem on the laser ablation of

tissues is analyzed in a Besov spaces framework in this paper.
The main idea of the new variational formulation is an optimal control setting, where the free bound-

ary, coefficients, heat flux, and heat sources are components of the control vector. Discretization of the

variational formulation is pursued using the method of finite differences, and convergence of the discrete
optimal control problems with respect to functional and control is proven.

This creates a rigorous basis for the development of an iterative gradient type numerical method of

low computational cost, and allows for the regularization of the error existing in the information on the
phase transition temperature and other experimental measurements.
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