arXiv:1710.08466v1 [math.AP] 23 Oct 2017

OPTIMAL CONTROL OF COEFFICIENTS IN PARABOLIC FREE BOUNDARY
PROBLEMS MODELING LASER ABLATION

UGUR G. ABDULLA AND JONATHAN GOLDFARB

Abstract. Inverse Stefan problem arising in modeling of laser ablation of biomedical tissues is analyzed,
where information on the coefficients, heat flux on the fixed boundary, and density of heat sources are
missing and must be found along with the temperature and free boundary. Optimal control framework is
employed, where the missing data and the free boundary are components of the control vector, and optimality
criteria are based on the final moment measurement of the temperature and position of the free boundary.
Discretization by finite differences is pursued, and convergence of the discrete optimal control problems to
the original problem is proven.

1. Introduction and Motivation

Consider the general one-phase Stefan problem [1727]: find the temperature function u(z, ) and the
free boundary x = s(t) from the following conditions:

Lu = (auy), +buy +cu —up = f — %, inQ={(z,t):0<x<s(t), 0<t<T} o))
u(z,0) =¢(z), 0<a<s(0)=:sp 2)

a(0,t)u.(0,t) =g(t), 0<t<T (3)

a(s(t), t)ug (s(t),t) +v(s(t),t)s'(t) = x(s(t),t), 0<t<T (4)

u(s(t),t) = pt), 0<t<T, ®)

where a, b, ¢, f, p, ¢, g, ¥, X, 1 are known functions a(z,t) > ag > 0, s9 > 0. In the context of heat
conduction, y represents latent heat absorbed or released by the melting or freezing at the boundary, x
a heat source or sink on the boundary, f and p characterize the density of the sources, ¢ is the initial
temperature, g is the heat flux on the fixed boundary = 0, and p is the phase transition temperature.
The coefficients a, b, and c represent the diffusive, convective, and reactive properties, respectively, in the
domain €.

Assume now that some of the data is not available, or involves some measurement error. For example,
assume that the coefficients b and ¢, heat flux g(¢) on the fixed boundary = 0 and the “regular part”
of the density of heat sources, f(z,t) are unknown and must be found along with the temperature
u(x,t) and the free boundary z = s(¢). In this case, additional information is required; assume that
this information is provided in the form of a measurement of temperature and the position of the free
boundary at the final time ¢t = T,

u(z, T)=w(x), 0<t<s(T)=:3 (6)

Key words and phrases. Inverse Stefan problem, optimal control, PDE constrained optimization, second order parabolic PDE,
Sobolev spaces, energy estimate, embedding theorems, traces of Sobolev functions, method of finite differences, convergence in
functional, convergence in control.
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Under these conditions, we are required to solve an Inverse Stefan Problem (ISP): find functions
u(z,t) and s(t), the boundary heat flux g(¢), and the density of sources f(z,t) satisfying conditions ()-

Motivation for this type of inverse problem arose, in particular, from the modeling of bioengineering
problems on the laser ablation of biological tissues through a Stefan problem (I)-(6), where s(¢) is the
ablation depth at the moment ¢. The unknown parameters of the model such as b, ¢, ¢, and f are very
difficult to measure through experiments. Lab experiments pursued on laser ablation of biological tissues
allow the measure of final temperature distribution and final ablation depth; consequently, ISP must be
solved for the identification of some, or all, of the unknown parameters q, b, ¢, g, f, etc.

Still another important motivation arises from the optimal control of the laser ablation process. A
typical control problem arises when unknown control parameters, such as the intensity of the laser
source f, heat flux g on the known boundary, and the coefficients b, ¢, must be chosen with the purpose
of achieving a desired ablation depth and temperature distribution at the end of the time interval.

Research into inverse Stefan problems proceeded in two directions: inverse Stefan problems with given
phase boundaries in [6,[9H15[18/[19,/33], or inverse problems with unknown phase boundaries in [5/[16}[18]
20H241[261,[28/[30H32|[36H38].

In [1), |2], @ new variational formulation of ISP was introduced and existence of a solution as well as
convergence of the method of finite differences was proven. Fréchet differentiability in Besov spaces in the
new variational formulation was proven in [3], [4]. The goal of this project is to extend the results of [2]
on the existence of a solution and convergence of the method of finite differences to the identification of
f,b,and c.

The structure of the remainder of the paper is as follows: in Section [L1 we define all the functional
spaces. Section [2] formulates the optimal control problem; the discrete optimal control problem is formu-
lated in Section [3] The main results are formulated in Section [l In Section [3] preliminary results are
proven. The proofs of the main results are elaborated in Section [6l Finally, conclusions are presented in
Section [Z

1.1. Notation. Let U be open subset of the real line R.

e The Sobolev-Besov space B(U), for k = 1,2,... is the Banach space of Lo(U) functions whose
weak derivatives up to order k exist and are in Ly(U). The norm in B5(U) is

k
2
el 0y =D

=0

dFu 2
dak

L2 (U)

e For { ¢ Z, B£(U) is the Banach space of measurable functions with finite norm

‘éﬂe u(x) 8[£]u(y) 2

Ozl ozl

”’U’HB’Z(U = ”u”B“) ) +[ ]B’Z(U) where [ ]B[ / / |1+2 —) dz dy
-y

e Let /1,{o >0and D = U x (0,T). The Besov space Bél’gz (D) is defined as the closure of the

set of smooth functions under the norm

T 1/2 1/2
2 2
el s 2y = </O e, s 0, dt) + </U e, Dl 7 da:> .

When ¢; = {5 = /, the corresponding Besov space is denoted by B5(D). éél’gz (D) denotes the

closure of the set of smooth functions with compact support with respect to x in U under the
l1,02

B,""?-norm.
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e V() is the subspace of By () for which the norm

ou||?

2 2
= : t a..
l[ullv, () %SSStSSu:P”“( ’ )HLQ(o,s(t)) + ' ox

L2(Q)
e V,7°(Q) is the completion of By (£2) in the V5() norm. V;*°(Q) is a Banach space with norm

@2
ox

2 2
[ullyoq) = max [ju(, b

0<t<T Lo (075(1?)) +

L2($2)

In the next section we describe the new variational formulation of this inverse problem.

2. Variational Formulation of ISP

Fix any R > 0,0 < € < 1 and nonnegative numbers ;,% = 0, 1, 2. Consider

s(T) ) T 5 "
T =0 [l T) = w@f o+ 5 [ fulste)t) - p)f de+ pals(D) -7 )
0 0
over the control set Vx:
VR = {’U = (Svgvabac) €EH: 0< d S S(t)v S(O) = S0, S/(O) = Oa ||v||H S R}5
H = B2(0,T) x B3(0,T) x Lo(D) x B3 ¢(D) x B3t¢(D),

vl := max (HSHBg(o,T) ) HQHB;(O,T) ; ||f||L2(D) ; ||bHB;+€(D) ) HC||321+€(D)) (8)
where D is defined by
D:={(z,t):0<z < 0<t<T},
where ¢ = ¢(R) > 0 is chosen such that for any control v € Vg, its component s satisfies s(t) < /.
Existence of appropriate ¢ follows from Morrey’s inequality [7,125]. Let the function f € Lo(D) be
extended to La(R?) by zero. For given v € Vi the state vector u = u(z,t;v) solves {[)-(@). Call the
previous minimization problem by Problem Z.

Definition 2.1. u € By (1) is called a weak solution of the problem ([)-(@) if u(x,0) = ¢(z) € B(0, s0)
and
T ps(t)
0= / / [auxfl)x —bu,® — cu® + u® + fO +p<1>z} dx dt
o Jo
T

+/0 [v(s(2),t)s'(t) — x(s(t),1)] @(s(t),t)dt—i—/ g(t)®(0,t) dt 9)

0
for any ® € By (Q).

Definition 2.2. u € V5(Q) is called a weak solution of the problem (I)-@) if u(x,0) = ¢(x) € B3(0, so)
and

T S(t) S(O)
0= / / [au @y — bu,® — cu® + @ + P + p®, | dodt — / ()P (z,0) do
o Jo 0
T

T
+/ g(t)cl>(0,t)dt+/ [ (s(t),t)s"(t) — u(s(t),t)s'(t) — x(s(t), )] D(s(t),t)dt (10)
0 0

for any ® € By' (Q) with ®(z,T) = 0.
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3. Discrete Optimal Control Problem
Let
wr ={t; =47, j=0,1,...,n}
be a grid on [0,7] and 7 = Z. We will use the standard notation for differences of a sequence {d,},

dr, — dr—1 R
dk.f = fa dkt = korl.f? dk.ft = f

(1)

Let us now introduce the spatial grid. Given a discrete boundary [s], € R, let (po, p1,...,pn) be a
permutation of (0,1,...,n) according to the order s,, < sp, < --- < s, . In particular, according to
this permutation for arbitrary k there exists a unique ji such that s, = s;, . Furthermore, unless it is
necessary in the context, we are going to write simply j instead of subscript jj. Let

Wpo = {xi 1 x; = ih, z':(),l,...,m(()n)}
be a grid on [0, sp,] and h = 72’[(;2). Furthermore we assume that
h=0(/1), asT—0. (12)
We continue construction of the spatial grid by induction. Having constructed wy,, , on [0,sp, ,] we
construct
wp, = {x; : z’zO,l,...,m,(c")}

(n) (n)

on [0, s, ], where m,”” > mj}!_,, and inequality is strict if and only if s, > s, _,; for i <m, ", points
x; are the same as in grid wp, ,. Finally, if s, < ¢, then we introduce a grid on [s,,, , /]

W= {xi:xi=sp, +G—m"h, i=m™, . . . N}
of stepsize order h, i.e. h = O(h) as h — 0. Furthermore we simplify the notation and write mggn) = my.

Let
hi:,TH_l—,Ti, iZO,l,...,N—l;

and denote the space grid on [0,¢] by wy, and set A = max;—g,... ny—1h; Assume that mj; — 400, as
n — 00. Introduce the Steklov averages

1 tr 1 Tit1 1 Tit1 tr
hy = — ht)dt, w; = — d, dy = d(z, ) dt dz,

th—1

where i = 0,1,...,N —1; k = 1,...,n; and d stands for any of the functions a, p, or f; and h stands
for any of the functions v, p, g, etc. Define

Vit = { [l = (slns [9hos [l By [ela) € H 2 0 <6 < s [[elull g < R} (13
where
H =R x Rl R0 prtd gt

o]l = max (H[S]nl\bg glnlloy s 1L nnvlle, 5 1By, 5 H[C]ngz) ,
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and
n—1 n n—1
lglallzy = S g2+ 3 ma2 e Mshalls = NlslallZy + 3 720
k=0 k=1 k=1
n N-1 n
2 2 2
1 nnllz, =2 D mhifdes Mldlally, = D ldil”,
k=1 i=0 k=0

where s = so for k < 1 and d stands for either of b, ¢. Let {¢x, k =0,1,...} be an orthonormal
set in By T¢(D), and for simplicity of notation, denote the inner product on the Hilbert space B3 "¢(D)
by (-,-) Blte Introduce two mappings Q,, and P,, between continuous and discrete control sets: Define

O, (v) forv € Vg by s, = s(ty) for k=2,...,n, g = g(t) for k=10,1,...,n, and

1 tr Tit1
fik = / / flz,t)dedt, k=0,...,n, i=0,...,N,
iT Jtp1 Ja;

h

and dj, = (d, Q/Jk>321+e for kK = 0,1,... where d stands for either of b or c¢. Define P, ([v],) = v =
(s™,g", f™,b", ¢") € H for [v],, € V}} by

T 1 —
s"(t) = sp—1 + (t —tp—1 — 5) Sp—14+ i(t —th1) Sy ther <t <tg, k=T n. (14)

g"(t) = gr—1 + gri(t —tr—1), thmr <t <ty k=1,n,
(@, t) = fir, ©i <@ <migq, the1 <t <ty, i=0,N—1, k=1,n

dn('rv t) = Z dkwk (Ia t)
k=0

where d is either of b or ¢. Given v = (s, ¢, f,b,¢) € Vg, we define the Steklov averages of traces by

Xy = —/IC x(s(t), t)dt, (yss)F = %/k v(s(t),t)s'(t)dt, k=1,2,...,n (15)

T Jty_q tp—1

Given [v],, € V we define Steklov averages x*. and (7ys» (s")’)* through ([5) with s replaced by s™. The
Steklov averages ;i and c;;, are defined through

1 tr Tiq1 1 tr Tit1
bik = / / b (x,t)dedt, cip = / / "(z,t) dx dt (16)
hiT th_1 Jx; hZT th—1 Jx;

Next we define a discrete state vector through discretization of the integral identity (3)

Definition 3.1. Given discrete control vector [v],, € V}}, the vector function
[u([v)n)]n = (w(0),u(1),...,u(n)), u(k) = (ug,...,uy) € RN k=0,...,n

is called a discrete state vector if

(a): First mg + 1 components of the vector u(0) satisfy u;(0) = ¢; := ¢(x;), i =0,1,...,mo;
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(b): For arbitrary k = 1,...,n first m; + 1 components of the vector u(k) solve the following system
of m; + 1 linear algebraic equations:
h? h?
|:CLOk + hb()k — hQCok + ?:| UQ(]{J) — [aok + thk:| ’U,l(k) = ?UO(IC — 1) - hzfok - hg,? — hp()k,
2 hihia
—a;—1khiui—1 (k) + [aiq,khi + aiphi—1 + bighihi—1 — cighihi—1 + - ]Uz(k)
2 h?hifl .

- [aikhiq + bikhihi71:| uit1(k) = —h;hi—1 fik + hihi—1pik,z + - ui(k—1), i=1,...,m; — 1

1ty 1 () + Gyt (8) = =, 1 [ (s (7)) = X . (17)

(c): For arbitrary k = 0,1,...,n, the remaining components of u(k) are calculated as u;(k) =
@(z;; k) for m; < i < N where a(x;k) € B}(0,¢) is a piecewise linear interpolation of
{u;(k): ¢ =0,...,m;}, that is to say

Wz k) = ui(k) +uip(k) (@ — ), 2 <z <xi41,i=0,...,m; — 1,

iteratively continued for 0 < z < oo as

Wz k) = w(2"sp — 3 k), 2" sy <2 < 2%sp,m=1,2,... (18)

Note that no more than n* = 1 + log, {%reﬂections are required to cover [0,¢]. It should be

mentioned that for any k = 1,2, ..., n system is equivalent to the following summation identity

mjfl

> hi [aikum(k)nm = bikuiz (k)0 — canwi(k)ni + fikni + PikNie + gz (k)mi
i=0

o (5 = x|, + gm0 =0, (9

for arbitrary numbers n;, ¢ =0,1,...,m;.
Consider a discrete optimal control problem of minimization of the cost functional

) = 0 3 hulast) )+ S (w8 =)+ Bl (20
=0 k=1

on the set V}} subject to the state vector defined in Definition [3.1] Furthermore, formulated discrete opti-
mal control problem will be called Problem Z,,. Throughout, we use piecewise constant and piecewise lin-
ear interpolations of the discrete state vector: given discrete state vector [u([v])]n = (©(0),u(1),...,u(n)),
let

ul(x,t) = a(xs k), iftyq <t<ty, 0<z<{ k=0,n,
W (x,t) = (as bk — 1) + Gg(z; k) (¢ — 1), it <t<tg, 0<ax<{ k=1n,
0" (x,t) = a(xyn), ift>T, 0<z <L
" (z,t) = wi(k), iftp_1 <t<tp, v; <z <mit1, k=1,n,i=0,N—1.

Standard notations for difference quotients of the discrete state vector are employed:

ui+1(k> — ’U,l(k) Uz = ’U,l(k) — UZ(IC — 1) etc.
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Let ¢™ be a piecewise constant approximation to ¢:

" (v) = @i, vi <x <wigr, 1=0,...,N—1

4. Main Results

Assume that the following conditions are satisfied

T

a(z,t) > ag > 0,a € BLY(D) with M := lall g0 (py > and / €ss sup
°° —1 0<z</

Oa
— | dt
ot ' < +00

w € Ly(0,0), x,v € By (D), ¢ € BY(0,50), p€ Ly(0,T), pe By (Ds).

where Ds = (0,9) x (0,7). Note that the distributional derivative % is understood in the sense of

measures. Extend arbitrary y € L2(0,7T) to L2(R) by zero. The main results of this work are the
following:

Theorem 4.1 (Existence of an Optimal Control). Problem I has a solution. That is,

vEVR

V. = {UEVR:j(v)—J* =: inf j(v)} #0
Theorem 4.2. Z,, approximate the continuous problem I with respect to functional in the sense that

n—oo

lim I =J., wherel, =infl,, and J, =inf J
vy VR

Moreover, the sequence I,, approximates T with respect to control in the sense that if [u], . € Vi is chosen
such that

I < L([vlne) < I +€,, wheree,|0
then the sequence v™ = (s™, g", ™, 0", ") = Pp([V]n,e) converges to an element v, = (Sx, gu, fr, bs, Cx) €
Vi weakly in B3(0,T) x B3(0,T) x La(D) x ByT(D) x By™¢(D). In particular, (s", g™, b", c™) converge
strongly in B3(0,T) x La(0,T) x La(D) x La(D). Moreover, s™ converges to s, uniformly on [0,T). For
any 6 > 0, define

O =0n{z<s(t)—6,0<t<T}
Then the piecewise linear interpolations 0" of the corresponding discrete state vectors [[v],, ] ,, converge to the
solution u(x, t;v,) € By () of the Neumann problem [{)~{@) weakly in By (V).

5. Preliminary Results
Lemma 5.1. For arbitrary sufficiently small € > 0, there exists n. such that
Q,(v) e Vg, forallv e Vi_., n > n. (21)
Pn([v]n) € Vrte, forall[v], € Vi, n > ne (22)

Proof. The first two components of either Q,(v) for v € Vg_¢ or Py, ([v],) for [v],, € V7 are estimated
as in [2| Lem. 2.2]; all that remains is the estimation of the components corresponding to f, b, and ¢ in
both. Since the components corresponding to b and c are in the same control set, we will give full details
of for the ¢ component only, as those corresponding to b are identical.
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Fix v € Vg and let ([s]n, [g]n, [f]nn, [B]n, [c]n) = Qu(v). By Cauchy-Bunyakovski-Schwarz (CBS)

inequality,

-1

n Tiq1 T 4
ol <5 [ et avtr = [ [ 10 = 11, < (7o

k=1 i=0

By Bessel’s inequality,

Anlly, = Z|0k| <Z|Ck| < llellBsre(py < (R = ¢)? (24)
(D) =

By (23), (24), and the proof of [2] Lem. 2.1, it follows that
2
1), < R?

for 7 sufficiently small, which implies (2I). Consider [v],, € V7 and let (s, g, f, b,c) = Py ([v]n). Calculate

T 4 n N—-1
11,0y = / / PO dedt =37 32 hilful® = 111l 0.0 < B2 (25)
k=1 =0
By definition,
chHQB;+E(D) = <c"7c Bl+e = Zchcj 1/’]@71/); Bl+e = ||[ ] Hi(D) < R2 (26)
k=0 j=0

By (25), (26), and the proof of [2} Lem. 2.1, it follows that

1P (el < (R +€)
for 7 sufficiently small, which implies (22). Lemma is proved. 0
As in [, it follows from Theorem [5.1 that
Corollary 5.2. Let ¢ither [v],, € VZ or [v],, = Qn(v) forv € Vg. Then for large n,
lsk —sk—1| < C'1, k=1,2,...,n (27)
where C' is independent of n.

Note that for the step size h; we have one of the three possibilities: h; = h, or h; = h, or h; <
|sk — sk—1]| for some k. Hence, from ([2) and (27), it follows that

A=0(KT), asT—0. (28)
Using Lemma [5.1] we derive

Corollary 5.3. For a given discrete control vectors [b],, € ba, the coefficients {b;i.} defined by (I0) satisfy the
estimate

ma el < C [Blal, 29)

Jor C independent of n and [b],,. In particular, {b;.} are uniformly bounded whenever ||[b],|,, are bounded.
Similarly, the coefficients {c;;;} are uniformly bounded.
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Proof. By embedding of By™¢(D) in Lo (D) [7,29,34]35],

ty Tit1
/ / " (x,t) dadt
tp—1 Jx,

= ||CnHLm(D) < C”CWHB;“(D) < C”[C]ngQ(D) 0

< max sup |c™(z, )]

1
max |¢;| = max ‘
ik ik 4y <t<ty, v;<e<zii

ik h;T

Lemma 5.4. For given [v],, € V}3, the discrete state vector [u([v],)]  exists and is unique for all sufficiently
small 7 > 0.

Lemma is established in nearly the same way as [2| Lem. 2.1].

6. Proof of Main Results
6.1. Energy Estimates and their Consequences.

Theorem 6.1. For T sufficiently small, and for any discrete control [v],, € Vi, the corresponding discrete state
vector satisfies the estimate

N—-1 n N—-1
n (2 nn2 nn2
ogllf?n 2 hiug (k) + ;7’ Z hiug, (k) < C( ¢ ”LQ(O,SO) +1lg HL2(07T) +IIf HLZ(D)
) n—1 Mjppq 1
n n n 2 c
+ (™ (), ™) Ol 0,y + IXE OO L0,y + D L (shen —s6) D hiu?(k)), (30)
k=1 i=m;

Theorem [6.1lis an extension of |2} Thm. 3.1]. As in [[|Thm. 3.4, from Theorem [6.] we have

Theorem 6.2. Let [v],, € V7 forn = 1,2, ... be a sequence of discrete controls with { Py, ([v]n) } converging
weakly in B3(0,T) x B3(0,T) x Ly(D) x ByT¢(D) x B3 (D) to an element v = (s, g, f,b,c) (and hence
with (s, g", b"™, c) converging strongly in B3(0,T) X L2(0,T) x La(D) x La(D)). Then {u™} converges as
T — 0 weakly in B;’O(D) to a weak solution u € VQI’O(Q) of M-{@). Moreover, u satisfies the energy estimate

2 2 n| 2 2 2 2 2
lullf 00y < C 191 00,00) + 592 1770y + 1Pl 30y + 1153000y + Il g 0y + gl 0
31)

Equivalence of the piecewise constant interpolation b to b™(z,t) in Ly(D) follows from application
of CBS inequality. From Theorem [6.2]in particular we have

Corollary 6.3. For any v = (s, g, f,b,c) € Vg, there exists a weak solution u € V,"°(Q) of the Neumann
problem ()-(d) satisfying the energy estimate (31).

Given any discrete control vector [v],, and the corresponding discrete state vector [u([v]n)}n, define
the constant continuation [ﬂ([v]n)]n by @;(k) = u;(k) for 0 <4 < my and (k) = wp, (k) for m; <
fork=0,...,n.
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Theorem 6.4 (Second Energy Estimate). For 7 sufficiently small, and for any discrete control [v],, € V2, the
modified discrete state vector [U([v],,)] satisfies

mj;—1 n mj—1 n mj—1
1I<Il]?<)(n hiuf (k)+TZ Z +722 Z hit 1zt <C[|¢W|L2(o so)+H¢HB1(O 50)
i=0 k=1 i=0 k=1 i=0
1™ %0y + g™ 117 + [Ipl% + ("(t)f("/(t)Q + lIx(s™ (@) )17
| |L2(D) g |B;/4(O,T) |p|Bg‘1(D5) s ) ) S ) B;M(O,T) X\(s ()7 |B;/4(O,T)
(32)
Proof. In (19), take n = 270;z(k) to derive
mj—l
Z 27h; [azkuw k)t i (k) — biktie (k)7 (k) — caui(K)tz(k) + fintiz(k) + piktige(k)
. nan k By " e
() (k)| 4+ 2| (3o (5")') " = X5 [ () + 27 g0 (k) = 0 (39

Arguing as in [2| Thm. 3.3] (in particular, Eq. 3.46), it follows that

mjg—1 g m;—1 g mi—1 o 1
D hiai @)+ D bl (k) 7Y Y hil(k) <C Y higl,
i=0 k=1 i=0 k=1 i=0 i=0
q m;—1 m;—1 q m;—1 q mj—1
—i—CZ Z Thiu?, (k) + C max hia? (k) —i—CZ Z Thipik i (k
k=1 i=0 1sk<e i35 k=1 i=0 k=1 i=0

=203 [ (6)) " = i 0) = 20D gRie(b) (34
k=1 k=1

for any 1 < ¢ < n. The second and third terms on the right-hand side of (34) can be estimated using the
first energy estimate; For the term containing p;x, we apply summation by parts; by virtue of the compact
support of p with respect to x in (0, J), there exists i5 with i5 < m;, — 1 for all k such that p;; = 0 for
i > 15, and hence

q mj— is q—1 is
Z Z Tthzkulzt ) = Z hipiqazm Z thz 1¢zw Z Z Tthl k+1, tum (k) (35)
k=1 =0 =0 k=1 1i=0

Therefore, from (34), (35), Corollary[5.3] and Cauchy inequality with e, it follows that

mje—1 q m;—1 q mj— mj,—1
ORI SO I HUREDY S h ik R
j k=1 i=0 20 = i—0
q mj— mj—1 q mj—
+Z Th 2 (k) + max hit? +Z Z Th; fk—l—thqu
k=1 i=0 1<sk<r i3 k=1 i=0

<.

5

qg—1
+Zhlp11 + ZZTthz k+1,% +TZ |: ’YS" - Xs :| +7-ngu0t } (36)

k=1 1i=0
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for some C independent of 7. By CBS inequality and Fubini’s theorem we have

m—1m;— t
2 2 c
T Z Z thz 41t = 2 Z/ ~/t |p(.’L‘,t+T) —p(:v,t)| dtde < HptHLg(D) (37)
k=1 =0 k—1

By CBS inequality and Sobolev embedding theorem |[7,[29]
mj—1 mj—1 v e 2 Lot o ) )
Z hip?, = Z hT2 </ /tk 1 (z,t) dtdx) S;/tkl/o p(x,t)da:dt§0|\p|\ég,1(D
(38)
Having (38) and B_Zb, from (36) it follows that

qu qg m;—1 qg mj—1 Mjo—

Z hitid,(q) + a0 Y Y hiud(k) + gz > hitg(k) { Z hid3,
- k=1 =0 - k:lq 1:371

+3 0 Thitig (k) + max Y bt (k) + > > Thifi+ IplEe )
k=1 i=0 1sksq 125 k=1 i=0 :

4730 [ 6 = ) + 7Y ot (39)
k=1 k=1

Since this inequality holds for all 1 < g < n, it follows that

My, — n mjfl

n mj—1 Mjo —
% a2 T
@ e S i+ 3 3wt 53wt <of S w
i=0 k=1 i=0 k=1 =0
n mj—1 m;—1
~9 ~9 2 2
#3030+ S W+ I+ ol

Zn: { - xfn] U, i(k) +7 Zn: g;?ﬁm(k)} (40)
k=1 k=1

The boundary terms containing u; present another challenge. The proof of the corresponding energy
estimate in [1| gives the idea to use inverse embedding of Sobolev spaces.

It v, x € By' (D) and [v],, = ([8]n, [g]n; [f]nns [Dln, [c]n) € V2, then for n large enough, P, ([v],) €
Vr+1 by Theorem[5.]} and hence the traces of x and - (s™)’ on the curves z = s™(t) are in B;/4(O, T) |7
29| and

[[7(s™ (1), ) (s™) ||Bl/4 or < Cllisiny [ (s™( )HB”“ or < Clixllpri o (4])
Let W(z,t) € B (D) be a solution of the heat equation satisfying
U(x,0) = ¢(x), for x € [0,50], a(0,8)¥,(0,t) = g"(t), for ae. t € [0,T],
a(s™, t)Ua(s™(t), 1) = x(s"(t),t) —y(s"(£),t)(s")'(t), forae. t € [0,T]
and

19052y < Cl 19" 220y + 18l 330,000 + X", 2) =3 (870, ) ™Y Dl a0y | (42)
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Existence of such U follows from e.g. [25, Ch. 3, Thm. 6.1]. Then replacing u, s and g with v — U, s™,
and ¢g" in (£0) with f(:v) replaced by f(z) — LY (x) € Ly(D), we derive

My, — n m;—1 n m;—1 mjo—
L z M) + a0 > S i)+ 53 3 mikn) < ¢f z ok,
k=1 =0 k:l i=0
n m]71 m;—1
~ 2 2 2 c
FI0Y rhia )+ mas Y hd(h >+||f||L2<D>+||LwnL2<D>+||p||§g,1w5)} ®
k=1 =0 i=0

By the first energy estimate (30), along with (2}, and (), from (£3) it follows that for 7 sufficiently small,

u satisfies

Mgy, — n m;—1 n m;—1
2 ~2
7 lr<nka“<xn E hi uzm + T ag E E hiuizf( E E h; uzt < C{ ||¢||Bl(0 $0)
=0 k=1 =0 k 1 =0

2 2
+ 16" 200,50y + 11T a0y + 19"l g1r4 0.2y + 191 B2 (0,50) + 122 ()
n—1 Mgy —1

+ ||X(S"(t),t) - ”y(s"(t), t)(s")'(t)||B21/4(O)T) + Z 1. (Sg+1 — Sk) Z hluf(k)} (44)
k=1

1=m;

where C' independent of 7 has been used to absorb the constants on the left-hand side, and 7 is sufficiently

small as in the hypotheses of Theorem [6.]} which implies (32). O
As in [2]Thm. 3.4, from Theorem [6.4] we have

Theorem 6.5. Let [v],, € V7 forn = 1,2,... be a sequence of discrete controls with { P, ([v],)} converg-
ing weakly to an element v = (s, g, f,b,c) in H (with (s",g",b", c") converging strongly in Bi(0,T) x
L2(0,T) x La(D) x La(D) to (s,g,b,c)) and, for any 6 > 0, define

A =0n{z<st)—06,0<t<T}.
Then {07 (,t;v,)} converges as T — 0 weakly in By (V) to a weak solution u € By (Q) of [@)-@.
Moreover, u satisfies the energy estimate

2 2 n| 2 2 2 2 2
el ey < €| 16ll300,00) 5P 1" (2,000 + 1215y + 1031 )+ Il oy + 9l s o, |
(45)
Theorem [6.5] implies the following

Corollary 6.6. For any v € Vg, there exists a weak solution u € By () of the Neumann problem (1)-@
satisfying the energy estimate (45). By Sobolev extension theorem, u may be extended to a B21’1(D) Sunction
with norm preservation, so it satisfies the energy estimate

2 2 2 2 2 2 2
Il () < €[ 19l130.00) + 1 12y + I20B22 o) + I3 () + I3 () + N9l32r5 0. |
6.2. Existence and Convergence Results.

Proof of Theorem[4] Let {v,,} € Vg be a minimizing sequence for 7. Since V is bounded in the Hilbert
space H, vy, = (S, 9n, [, bn, Cn) is weakly precompact in B3(0,T) x B3(0,T) x La(D) x By™¢(D) x
ByT¢(D). Assume that v, — v = (8,9, f,b,c) € Vg weakly in B2(0,T) x B3(0,T) x Lo(D) x
ByT¢(D) x B3T¢(D), and hence (s, g, b, ¢) converge strongly in B3(0,T) x L2(0,T) x La(D) x La(D).
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Let uy,,u € B;’l(D) be the corresponding solutions to the Neumann problem ()-{) in B;’I(Qn) and
By'(Q), respectively, where
Qp, ={(z,t) : 0<z<s,(t), 0<t<T}.

up, and u satisfy the estimate (43) with (gn, f) and (g, f) respectively. Since v, € Vg, u, is in fact
uniformly bounded in le’l(D). Considering the sequence Au = Au,, = u, — u, from Lemma [6.9]
we have the rough estimate ||Aul| Bl (py < C uniformly with respect to n. Therefore, {Au} is weakly

precompact in By (D).
Without loss of generality, assume that u,, —u converges weakly in 321’1 (D) to an element w € B21’1 (D).

Assume temporarily that the fixed test function ® € C'(D). Subtracting the integral identities satisfied
by u,, and u, we see that Au = wu,, — u satisfies

T ps(t)
0= / / [aAuzq)z —bAuxfb—cAufb—l—Auth] dedt+ 1 + Io + I3+ Iy + I, (46)
o Jo

where

T ps(t)
I =— / [aun 2Pz — bty 2 ® — crun® + Uy @+ £, @ —i—p(I)m} dx dt
0 sn (t)

I3 :_/0 [ (8n(t), )57, (£) = X (sn (1), )] (P(sn(t),t) — D(s(t), 1)) dt
f :/ { B (sn®).2)53,(8) = x(50(6),8)] = [(s2).2)5'(0) = x(s(2).2)] }@(s(t), ) e

T
I = / (gn(t) — 9(1)] ®(0, 1) dt (47)

for arbitrary fixed ® € C(D). Each of the terms Iy, ..., I5 vanish as n — oo. For example, by CBS
inequality

T rs(t)
/ / (b, — D) Up P da dt
o Jo

Which follows from uniform boundedness of u,, € B; ! (D) and strong convergence of b, to b in La(D).
The other two terms in I; are estimated in a similar way to show |I;| — 0 as n — co. Each term in I is
handled using CBS inequality as well:

T rsn(t)
/ / AUy 5P, dx dt
0 s(t)

Which follows from uniform boundedness of u,, € B;’O(D) and uniform convergence of s,, — s on [0, T'.
Treating each term in I5 similarly, it follows that |I3| — 0 as n — oo. Similarly, CBS inequality, continuity
of the Ly norm with respect to shift and uniform convergence of s, — s imply |I3] — 0 and |I4] — 0 as
n — oo. Lastly, convergence of g, — g strongly in L3(0, T') implies |I5| — 0 as n — oo.

< b = bl ey el ) @l oy = Oas =00 (48)

1/2
<M Hq)w”c‘(D) l[sn — SHC/[(),T] HunHB;’“(D) —0asn— o0
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Therefore, passing to the limit as n — oo in (£6) we see that the limit point w satisfies
t) _
0= / / [awxfbx — bw,® — cwd + wtq)} dedt, Yo e ! (D)

By extension of arbitrary ® € By' (Q) to By (D) and the density of C*(D) in By'' (D), it follows that
w solves the Neumann problem ([)-({@) with f = p = g = = x = 0. By the uniqueness of the solution to
the Neumann problem it follows that u,, — u weakly in B;’l(D). By the Sobolev trace theorem |[7,8}129],
CBS and Morrey inequalities it easily follows that

”un(va) - u(x7T)||L2(O,Sn(T)) — 0, ”un(sn(t)v t) - U(S(t)v t)||L2(O,T) — 0 asn — oo.
Therefore, J (v) = limy, 00 J (vn) = J« and v € V.. Theorem is proved. O
Lemma 6.7. For ¢ > 0 define J,.(+¢) = infy,,, . J(v). Then lim_,¢ Ji(€) = J, = lime_, J(—€)

Lemma [6.7]is established as in I, Lem. 3.9]

Lemma 6.8. Forv € Vg, lim,, o0 [,(Qn(v)) = T (v)

Proof. Fix v € Vg and let [v], = ([s]n, [g]n, [f]an, [Bln, [cln) = On(v). Let u = u(z,t;v) and
[u([v]n)}n be the corresponding continuous and discrete state vector, respectively, and denote by v™ =
(s™,g", [, 0", c") = Pn(v],). By Sobolev embedding theorem, s"(t) — s(t) uniformly on [0,7]. Let
€m | 0 be an arbitrary sequence, and define

Qp ={(z,t) : 0 <z <s(t) —€m,0<t<T}
and fix m > 0.

In Theorem it was shown that {4"} converges to u weakly in le’l(Qm) for any fixed m; by the
embeddings of traces, it follows that {4"(s(t) — €m,t)} and {4" (2, T)} converge to the corresponding
traces u(s(t) — €m,t) and u(z, T) weakly in L2(0,7) and L2(0, s(t) — €,,,), respectively. We shall prove
that the corresponding traces of u” satisfy the same property.

By Sobolev embedding theorem, it is enough to show that {u”} and {@"} are equivalent in By (€2,,,).

Denote by s;" = x; where

€
i_max{iSN: —€m < T — max s(t)g__m}_
tp—1<t<ty 2

Arguing as in |2} Eq. 101-104] it follows that there exists N = N(¢,,) such that n > N implies

syt < min(sg, sg—1), k=1,...,n (49)
and accordingly
our  ouT 2 R 7'3 n ! 9
A B 9 SUTSCE 9) D HUEL AN
(s ;

ke
Estimate the first term in I,,(Q,,(v)) — J (v) as

mn 1 s(T)
Bo 3 hilus(n) — wil? do — By / fu(, T) - w(@)]? do

=0

D [hz— ) =il = [ " e ) — w(o)? dz]

Sﬁo{
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where

My —1

> hilui(n) — wil?

s(T) )
, Im = / lu(z, T) — w(x)|” dz

m
n

In,m =

By absolute continuity of the integral, fm — 0 as m — oo. Considering I, ,,

my,—1

Z hi lui(n)|?

my,—1

In,m S 2 + Z hi |’LU1|2

By Morrey’s inequality,

my—1

> hilui(n)f?

7

From (30) and (32), it follows that

< CIs™(T) = s(T) + em| [ @(; 1)1 0,09

la; )15y 0,0) < C (53)

For a constant C'; depending on the given data ¢, f, etc. but not 7 (or m). Now, considering the second

term in I,, ,,, by CBS inequality,
mnl 4 Tit1 s™(T) ) s(T) )
> —‘/ w(z) dx / lw(z)|” da / lw(z)|? da
= hi s s(T) S(T)—em

By absolute continuity of the integral and convergence s™(T') — s(T'), it follows that there is some
N7 = N1(m) such that for n > Ny,

my—1

7

2
<

+

Mp—1 ) s(T) ) 1
Z hi Jw;|7| < 2/ |w(z)|” de+ — (54)
7 s(T)—€m m
By (53) and (54), it follows that for n > N
S(T) 9 1
0 < Inm < CCy(em +|s"(T) — s(T)]) + 2/ lw(z)|” de + — (55)
s(T)—em m
By (21) and (53), it follows that
mn—1 s(T)
0 < limsup |fBo Z hi lus(n) — wi|? do — 50/ lu(z, T) — w(z)|* dx
n—00 =0 0
s(T) 5 1 -
< C'C'lem—i-Q/ |lw(z)|” de + — + L,
s(T)—€m m

for all m. Passing to the limit as m — oo it follows that

mpy—1 S(T)
: 2 _ _ 2
nll)rgo Bo iE:O hi|ui(n) —w;|” = ﬁo/o lu(z, T) — w(x)|” dz

The convergence of the second and third terms of I,, to corresponding terms in J is established in a
similar way. Lemma is proved. |

Lemma 6.9. For arbitrary [v],, € Vi, limp o0 (T (Pn([v]n)) — In([v]n)) =0
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Proof. Let [v], € Vi and v" = (5", ¢", f™,b0",c") = Pn([v]n). Then {P,([v],)} is weakly precom-
pact in H; assume that the whole sequence converges to o = (3, g, f, l~7, ¢). Then ¥ € Vg, and more-
over, Rellich-Kondrachov compactness theorem implies that (s™, g™, b",¢") — (8, g,i),a) strongly in
B(0,T) x L2(0,T) x La(D) x La(D); in particular, s — § uniformly on [0,7]. Write the difference
I (Pn([v]n)) — In([v]n) in the preceding notation, as

L ([v]n) = T (Pu([v]n)) = In([v]n) — T (") = Ln([v]n) = T (%) + T (8) — T (v")
By weak continuity of 7, we have lim,,_, (j(f)) — j(v")) = 0. It remains to be shown that
lim (I, ([v]) — J(8)) =0

n—oo

Since 0 € Vg4 for some € > 0, and by strong convergence of P,,([v],,) — ¥, a nearly identical argument
to the proof of Lemma establishes this result. 0

By Lemmas and [2| Lem. 2.2], Theorem [£.2] is proved.

7. Conclusions

Motivated by the new variational formulation of the inverse Stefan problem and by applying the
methods developed in |12, identification of coefficients, heat flux, and density of heat sources in the
second order parabolic free boundary problem arising in biomedical problem on the laser ablation of
tissues is analyzed in a Besov spaces framework in this paper.

The main idea of the new variational formulation is an optimal control setting, where the free bound-
ary, coefficients, heat flux, and heat sources are components of the control vector. Discretization of the
variational formulation is pursued using the method of finite differences, and convergence of the discrete
optimal control problems with respect to functional and control is proven.

This creates a rigorous basis for the development of an iterative gradient type numerical method of
low computational cost, and allows for the regularization of the error existing in the information on the
phase transition temperature and other experimental measurements.
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