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Abstract. This paper concerns the analysis of random second order linear differential
equations. Usually, solving these equations consists of computing the first statistics of the
response process, and that task has been an essential goal in the literature. A more ambi-
tious objective is the computation of the solution probability density function. We present
advances on these two aspects in the case of general random non-autonomous second order
linear differential equations with analytic data processes. The Fröbenius method is employed
to obtain the stochastic solution in the form of a mean square convergent power series. We
demonstrate that the convergence requires the boundedness of the random input coefficients.
Further, the mean square error of the Fröbenius method is proved to decrease exponentially
with the number of terms in the series, although not uniformly in time. Regarding the
probability density function of the solution at a given time, which is the focus of the pa-
per, we rely on the law of total probability to express it in closed-form as an expectation.
For the computation of this expectation, a sequence of approximating density functions is
constructed by reducing the dimensionality of the problem using the truncated power series
of the fundamental set. We prove several theoretical results regarding the pointwise con-
vergence of the sequence of density functions and the convergence in total variation. The
pointwise convergence turns out to be exponential under a Lipschitz hypothesis. As the
density functions are expressed in terms of expectations, we propose a crude Monte Carlo
sampling algorithm for their estimation. This algorithm is implemented and applied on sev-
eral numerical examples designed to illustrate the theoretical findings of the paper. After
that, the efficiency of the algorithm is improved by employing the control variates method.
Numerical examples corroborate the variance reduction of the Monte Carlo approach.

Keywords: random non-autonomous second order linear differential equation; mean square
analytic solution; probability density function; Monte Carlo simulation; uncertainty quan-
tification.
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1. Introduction

Random differential equations are ordinary differential equations whose input coefficients
are random quantities, in the form of random variables or stochastic processes (not to be
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confused with Itô’s stochastic differential equations, which are differential equations driven
by Wiener noise). In this setting, there is a complete abstract probability space (Ω,F ,P),
where Ω is the sample space defined as the set of outcomes ω ∈ Ω, F ⊆ 2Ω is the σ-algebra
of events, and P is the probability measure.

The stochastic solution may be considered in two senses. One approach considers the
random calculus that arises from the Lebesgue space (Lp(Ω), ‖ · ‖p), 1 ≤ p ≤ ∞, where
the norms are defined as ‖X‖p = E[|X|p]1/p for p < ∞, and ‖X‖∞ = inf{C > 0 : |X| ≤
C almost surely} (essential supremum), where E denotes the expectation operator defined
as E[X] =

∫
Ω
X dP. The limits in the definitions of continuity, differentiability, and Riemann

integrability are considered in the topology of Lp(Ω). The space (Lp(Ω), ‖ · ‖p), 1 ≤ p ≤ ∞,
is a Banach space. Of particular importance is the case p = 2, which gives rise to the
Hilbert space (L2(Ω), 〈·, ·〉) of random variables with finite variance, whose inner product
is defined as 〈X, Y 〉 = E[XY ], X, Y ∈ L2(Ω). The calculus in L2(Ω) is referred to as the
mean square calculus. A key feature of L2(Ω) is that mean square convergence ensures
convergence of the expectation and the variance. An alternative strategy to tackle random
differential equations is the sample path approach, which considers the trajectories of the
solution process by fixing each outcome ω ∈ Ω. An interesting result that links Lp(Ω) and
sample path calculus states that every Lp(Ω) solution is also a sample path solution. For
theoretical discussions on random differential equations and the types of stochastic solutions,
we refer the reader to [1–4].

Understanding the inherent stochastic nature of the solution is of primary importance.
This is the focus of uncertainty quantification [5]. The most common strategies for uncer-
tainty quantification are Monte Carlo simulation [6], PC (polynomial chaos) expansions [7–9],
and perturbation methods [1, 8, 10]. Some studies of different random differential equation
problems providing a fair overview of the state-of-the-art literature can be found, for in-
stance, in [11–16].

In the case of random second order linear differential equations, important advances have
been achieved for the computation of the first moments of the solution, via mean square
calculus and the so-called Fröbenius method. The Fröbenius method consists in finding
a mean square convergent power series solution, in analogy to the deterministic theory of
ordinary differential equations. The general stochastic system is given by{

Ẍ(t) + A(t)Ẋ(t) +B(t)X(t) = 0, t ∈ R,
X(t0) = Y0, Ẋ(t0) = Y1.

(1.1)

Here, A(t) and B(t) are stochastic processes and Y0 and Y1 are random variables on (Ω,F ,P).
The stochastic process X(t) is the solution. We will assume that A(t) and B(t) are analytic
stochastic processes on (t0 − r, t0 + r), for r > 0 fixed, in the mean square sense [1, p. 99]:
A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0Bn(t − t0)n are two random power series in

L2(Ω), where A0, A1, . . ., B0, B1, . . . are second order random variables. The expansions
coincide with the Taylor series of A(t) and B(t).

Airy, Hermite and Legendre differential equations are particular instances of (1.1), which
represent important stochastic models of Mathematical Physics. The rigorous analysis and
construction of mean square solutions to these particular equations, using random power
series, can be found in [17–19]. We have proposed a generalization of these contributions to
the general system (1.1) in [20,21].

In the recent paper [22], we investigated the resolution of random second order linear
differential equations with PC-based methods. In [23], the authors proposed a homotopy
technique to solve some particular random differential equations pertaining to the class
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given in (1.1). Other solution techniques include variational iteration [24] and Adomian
decomposition [25]. Finally, a technique, analogous to the Fröbenius method but relying on
the concept of differential transform, is proposed in [26,27].

A more ambitious objective is the computation of the probability density function of X(t),

denoted hereafter as fX(t)(x) = d(P◦X(t)−1)(x)
dx

. The probability density function is defined as
a non-negative Borel measurable function characterized by P[X(t) ∈ C] =

∫
C fX(t)(x) dx.

Random variables having a probability density function are called absolutely continuous,
meaning that their probability law is absolutely continuous with respect to the Lebesgue
measure. The density function allows for calculating general statistics (expectation, variance,
skewness, kurtosis, median, quantiles, mode, etc.) and confidence intervals via integration.

In [28], the authors constructed approximations of the probability density functions of
the solution to (1.1) when A(t) and B(t) do not vary stochastically in time, that is, when
A(t) = A and B(t) = B are actually absolutely continuous random variables (autonomous
case). A recent paper, [29], presents the approximation of the probability density function of
X(t) when A(t) = p(t;D) and B(t) = q(t;D), that is to say, when both A(t) and B(t) depend
on a unique absolutely continuous random variable D. This approach does not extend to
the general problem (1.1) and certain theoretical points from that contribution are unclear.

In this work, we provide an analysis of (1.1) via the Fröbenius method. The solution is
expressed in the form of a mean square convergent power series, under L∞(Ω) convergence
of A(t) =

∑∞
n=0 An(t − t0)n and B(t) =

∑∞
n=0Bn(t − t0)n and mean square integrability

of the initial data Y0 and Y1. The boundedness of the coefficients A0, A1, . . ., B0, B1, . . . is
necessary, as shown in examples of the paper. Truncation of unbounded supports of ran-
dom coefficients can be carried out to assure the required boundedness. The bias error of
the Fröbenius method is proved to decrease exponentially with the number of terms in the
series. Therefore rapid approximations of the statistical moments of X(t) can be derived.
However, the exponential convergence is not uniform in time, and it may deteriorate as we
move away from the initial instant t0. Section 2 considers these issues. An additional issue
is the computation of the probability density function of X(t). This is the main contri-
bution of the paper in terms of novelty and length. Theoretically, the probability density
function is given by a closed-form expression in terms of an expectation derived from the
law of total probability and by exploiting the linearity of the problem. However, to eval-
uate it in practice, a dimensionality reduction of the problem is required. By truncating
the power series, we construct a sequence of probability density functions that, under cer-
tain assumptions regarding Nemytskii operators, converges to the target density function
pointwise. In this setting, the pointwise convergence of the densities implies convergence
in L1(R) (total variation distance), and in fact, in Lp(R), for 1 ≤ p < ∞. The pointwise
convergence rate is proved to be exponential under a certain Lipschitz condition, albeit being
again not uniform in time. This theoretical analysis on the approximation of the probabil-
ity density function is presented in Section 3. As each approximating density function is
expressed in terms of an expectation, they can be estimated via a Monte Carlo sampling
strategy. The brute-force Monte Carlo method is implemented in the form of an algorithm,
whose computational aspects are detailed in Section 4. The proposed algorithm is tested on
several numerical examples in Section 5, to verify the theoretical findings of the paper and
to illustrate computational aspects. In Section 6, we apply a variance reduction approach,
the control variates method, to improve the efficiency of the crude Monte Carlo algorithm
from the previous sections; the method is analyzed from the computational viewpoint and
several test examples corroborate the gains. Finally, Section 7 draws the main conclusions
and points out potential lines of research for the future.
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2. Stochastic solution

The initial value problem (1.1) was previously studied in the mean square sense. We
start by recalling the mean square existence and uniqueness theorem proved in our recent
contributions [20, 21]. The proof uses fundamental results from deterministic power series
extended to the random scenario, together with the basics of difference equations.

Theorem 2.1. [21, Th. 2] Let A(t) =
∑∞

n=0 An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n

be two random series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0 finite and
fixed. Assume that the initial conditions Y0 and Y1 belong to L2(Ω). Then the stochastic
process X(t) =

∑∞
n=0Xn(t − t0)n, t ∈ (t0 − r, t0 + r), where X0 = Y0, X1 = Y1 and for

n ≥ 0, Xn+2 = −1
(n+2)(n+1)

∑n
m=0[(m + 1)An−mXm+1 + Bn−mXm], is an analytic solution to

the random initial value problem (1.1) in the mean square sense. Moreover, it is unique.
Furthermore, by [20, Subsection 3.4], if Y0 and Y1 are bounded random variables, then X(t)
is an analytic L∞(Ω) solution to (1.1).

From this fundamental theorem we can extend the theory to a more general convergence
measure, by considering Lp(Ω) convergence, 1 ≤ p ≤ ∞: if A(t) and B(t) are two random
power series with convergence in L∞(Ω), for t ∈ (t0− r, t0 + r), and the initial conditions Y0

and Y1 belong to Lp(Ω), then the stochastic process X(t) =
∑∞

n=0Xn(t − t0)n is the Lp(Ω)
solution to (1.1) on (t0 − r, t0 + r).

Regarding the rapidity of convergence of the power series X(t) =
∑∞

n=0Xn(t − t0)n in-
troduced in Theorem 2.1, some theoretical estimates were obtained in [20, Subsection 3.6],
although no rate of convergence was derived. Fixed r > 0 finite, given ρ := |t− t0| < r and
given an arbitrary s such that ρ < s < r, the following estimate holds:

‖XN(t)−X(t)‖2 ≤ K (r, s, {‖Ai‖∞}∞i=1, {‖Bi‖∞}∞i=1, ‖Y0‖2, ‖Y1‖2) · (ρ/s)N+1

1− ρ/s
.

In general, the estimate holds for p-norms. The constant K can be constructed as follows
(see [20]):

Step 1. Given u = (r + s)/2 ∈ (s, r), choose a constant Cu > 0 such that ‖Ai‖∞ ≤ Cu/u
i

and ‖Bi‖∞ ≤ Cu/u
i, i ≥ 0. Such a constant Cu exists because

∑∞
i=0 ‖Ai‖∞ui < ∞

and
∑∞

i=0 ‖Bi‖∞ui <∞.

Step 2. Pick an integer n ≥ 0 such that ns
(n+2)u

+ Cus
n+2

+ Cus2

(n+2)(n+1)
< 1.

Step 3. Take K = max0≤m≤nHms
m, where {Hm}∞m=0 satisfies the recursive equation: H0 =

‖Y0‖2, H1 = ‖Y1‖2 and for m ≥ 0, Hm+2 =
(

m
(m+2)u

+ Cu

m+2

)
Hm+1 + Cu

(m+2)(m+1)
Hm.

From the constructed K and given a target error ε > 0, a truncation order N satisfying
N > log(ε−1K(1− ρ/s)−1)/ log(s/ρ)− 1 = O(log(ε−1)) guarantees a root mean square error
‖XN(t) − X(t)‖2 less than ε. The number s is arbitrary in (ρ, r). Unfortunately, we are
not aware of any method to choose the optimal s ∈ (ρ, r) minimizing N = log(ε−1K(1 −
ρ/s)−1)/ log(s/ρ).

We stress several new consequences from these estimates. First, the rate of convergence
of {XN(t)}∞N=0 towards X(t) as N → ∞ is exponential, for t ∈ (t0 − r, t0 + r), because it
is proportional to (ρ/s)N . Second, the convergence rate may deteriorate severely for large
ρ = |t − t0| and large norms of the random input coefficients. Indeed, K is growing with
s > ρ and the norms.

The fact that the convergence rate deteriorates for large |t− t0| is clear. Assume that we
have

∑∞
n=N ‖Xn‖2|t− t0|n < ε, for some target error ε > 0. As |t− t0|n increases when |t− t0|

grows, a larger N is needed to achieve a root mean square error less than ε. This fact may
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especially occur for |t − t0| ≥ 1, as in this case |t − t0|n does not tend to 0 when n → ∞,
therefore a faster decay of the coefficients ‖Xn‖2 is needed to assure convergence.

The numerical experiments presented in [20] also permitted analyzing the behavior of
convergence. As theoretically expected by our exposition, the most important phenomenon
observed was that the convergence rate deteriorates severely when the distance |t − t0| in-
creases, therefore making the Fröbenius method computationally intractable. This issue also
occurs with PC-type methods, which require large orders for long-time integration [30] (in
this case, multi-element methods may be an alternative [31, 32]). Nonetheless, for not too
large |t− t0| (this “not too large” is problem-dependent), the Fröbenius method works very
well.

Having analyzed the convergence rate of the Fröbenius method, let us focus now on the
assumptions of Theorem 2.1. In [21], the following open problem was raised: “If there exists
a point t1 ∈ (t0 − r, t0 + r) such that A(t1) /∈ L∞(Ω) or B(t1) /∈ L∞(Ω), then there exist two
initial conditions Y0, Y1 ∈ L2(Ω) such that (1.1) has no mean square solution on (t0−r, t0+r)”.
This problem implies that the hypotheses used in Theorem 2.1 are sharp, in the sense that
counterexamples exist if any of them is relaxed. The following two examples of (1.1) with
an unbounded input coefficient have no mean square solution X(t). The arguments to prove
that these examples have no solution follow the reasoning of [3, Example, pp. 541–542].

Example 2.2 (Non-existence of mean square solution X(t)). Consider the initial value
problem (1.1) with A(t) = 0, B(t) = Z and the initial conditions X(t0 = 0) = Y0 and
Ẋ(t0 = 0) = 0. Let Z < 0 be an unbounded random variable (for example, Z = −U ,
where U follows an Exponential, Gamma, Poisson, etc. distribution). Suppose that for any
initial condition Y0 ∈ L2(Ω) there is a mean square solution X(t). By [3, Th. 3(a)], every
mean square solution to a random differential equation problem is a sample path solution.
More specifically, there exists an equivalent stochastic process, product measurable, whose
sample paths solve the deterministic counterpart of the problem almost surely. Therefore
X(t) is a sample path solution (we choose the appropriate representative of the equivalence
class), with X(t) = Y0 cosh(

√
−Z t) for all t ∈ R, almost surely. Fix t 6= 0. Consider

the random variable T = cosh(
√
−Z t). Notice that ‖T‖∞ = ∞. Consider the operator

∆ : L2(Ω) → L2(Ω), ∆(Y ) = Y T . This operator is linear and continuous, as a consequence
of the closed graph theorem. Hence, there is a constant C > 0 such that ‖Y T‖2 ≤ C‖Y ‖2, for
all Y ∈ L2(Ω). In fact, this inequality holds for any random variable Y (since, if Y /∈ L2(Ω),
then ‖Y ‖2 = ∞). Let Y = Tm. We have ‖Tm+1‖2 ≤ C‖Tm‖2, which yields ‖Tm‖2 ≤ Cm.
That is, ‖T‖2m ≤ C. Hence, ‖T‖∞ = limm→∞ ‖T‖2m ≤ C, but this is a contradiction. Thus,
we conclude that there must exist an initial condition Y0 ∈ L2(Ω) such that the stochastic
problem has no mean square solution.

The case in which Z > 0 is unbounded (let us suppose that Z is Gamma distributed)
may be tackled analogously, although with a subtlety. Proceeding again by contradiction,
let us suppose that for any initial condition Y0 ∈ L2(Ω) there exists a mean square solution

X(t). By [3, Th. 3(a)], X(t) = Y0 cos(
√
Z t) for all t ∈ R, almost surely. In contrast with the

previous case, now cos(
√
Z t) is bounded. As X(t) is mean square differentiable, its mean

square derivative must be given by Ẋ(t) = −Y0

√
Z sin(

√
Z t) [33, p. 536]. Fix t 6= 0 and

let T = −
√
Z sin(

√
Z t). Now we do have that ‖T‖∞ =∞, so the previous reasoning based

on the closed graph theorem can be applied to deduce that there exists an initial condition
Y0 ∈ L2(Ω) such that Ẋ /∈ L2(Ω). This is a contradiction.

The general case, in which Z is an unbounded random variable, is easily addressed now
(this includes, for instance, the case of Gaussian random variables). If Z is unbounded, then
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it must be unbounded on the positive or negative axis. Let us suppose it unbounded on the
positive axis (the other case is completely analogous). Take Ω̃ ⊆ Ω such that P[Ω̃] > 0 and

Z(ω) > 0 for each ω ∈ Ω̃. Consider the new probability subspace (Ω̃,FΩ̃ = F ∩ 2Ω̃,PΩ̃ =
P|FΩ̃

). We restate the random differential equation problem on this new probability space,
where Z > 0 is unbounded. The previous case thus applies. Therefore we are done since
every mean square solution on Ω must also be a mean square solution on Ω̃. This analysis
terminates the example.

Example 2.3 (Non-existence of mean square solution X(t)). Let us consider now prob-
lem (1.1) with A(t) = Z, B(t) = 0 and the initial conditions X(t0 = 0) = 0, Ẋ(t0 = 0) = Y1.
Let Z be any unbounded random variable. Suppose that for any initial condition Y1, there
exists a mean square solution X(t). Let Y (t) = Ẋ(t), which satisfies Ẏ (t) + ZY (t) = 0,
Y (t0 = 0) = Y1. By [3, Th. 3(a)], Y (t) = Y1e−Zt for all t ∈ R, almost surely. Fix t 6= 0
and let T = e−Zt. The random variable T is unbounded. Hence, the same reasoning from
Example 2.2 based on the closed graph theorem applies again. We conclude that there must
exist Y1 ∈ L2(Ω) such that Y (t) /∈ L2(Ω), which is a contradiction, and we are done with
this example.

The boundedness of the random input coefficients is crucial to obtain the Lipschitz con-
dition demanded by the general existence and uniqueness theorem for random differential
equations [1, pp. 118–119], [3], [21, Th. 4]. In practice, to satisfy this mandatory bounded-
ness, one may truncate the support to a large but bounded interval.

3. Computation of the probability density function

We now turn to the computation of the probability density function of X(t). Having
clarified the conditions for the existence of the solution, we start by rewriting X(t) in an
alternative form.

Theorem 3.1. Let A(t) =
∑∞

n=0An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n be two random
series in the L∞(Ω) setting, for t ∈ (t0− r, t0 + r), being r > 0 finite and fixed. Assume that
the initial conditions Y0 and Y1 belong to L2(Ω). Then the mean square analytic solution
X(t) can be expressed as X(t) = Y0S0(t) +Y1S1(t), t ∈ (t0− r, t0 + r), where S0(t) and S1(t)
are random power series solutions to (1.1) in L∞(Ω) for the deterministic initial conditions
S0(t0) = 1, Ṡ0(t0) = 0, and S1(t0) = 0, Ṡ1(t0) = 1, respectively.

Notice that we write X(t) as a linear combination of the fundamental set {S0(t), S1(t)}.
This expression exploits the linearity of the problem. The processes S0(t) and S1(t) are
random power series in L∞(Ω),

S0(t) =
∞∑
n=0

S0,n(t− t0)n, S1(t) =
∞∑
n=0

S1,n(t− t0)n,

whose coefficients satisfy a difference equation as in Theorem 2.1; for S0(t) it comes S0,0 = 1,
S0,1 = 0, and for n ≥ 0, S0,n+2 = −1

(n+2)(n+1)

∑n
m=0[(m + 1)An−mS0,m+1 + Bn−mS0,m], while

for S1(t) we have S1,0 = 0, S1,1 = 1, and S1,n+2 = −1
(n+2)(n+1)

∑n
m=0[(m + 1)An−mS1,m+1 +

Bn−mS1,m], for n ≥ 0.
The following lemma is necessary to compute the probability density function fX(t)(x).

Its proof is a consequence of the law of total probability [34, Ch. 6], [35, Def. 7.11].



LINEAR DIFFERENTIAL EQUATION WITH ANALYTIC UNCERTAINTIES 7

Lemma 3.2. Let U be an absolutely continuous random variable, independent of the random
vector (Z1, Z2), where Z1 6= 0 almost surely. Then Z1U + Z2 is absolutely continuous, with
density function fZ1U+Z2(z) = E[fU((z − Z2)/Z1)/|Z1|].

This lemma provides an alternative to the random variable transformation method [29,
Th. 1], in the case of affine mappings. It does not require that the random quantities have
an absolutely continuous probability law, a fact that presents advantages from the prac-
tical perspective. The drawback is that we need independence between U and (Z1, Z2) to
represent the probability density function as an expectation. The expectation can be approx-
imated via sampling-based statistical methods, as discussed later on. The following theorem,
which derives the probability density function of X(t), is a straightforward consequence of
Lemma 3.2.

Theorem 3.3. Let A(t) =
∑∞

n=0 An(t − t0)n and B(t) =
∑∞

n=0Bn(t − t0)n be two random
series in the L∞(Ω) setting, for t ∈ (t0 − r, t0 + r), being r > 0 finite and fixed. Suppose
that the initial conditions Y0 and Y1 belong to L2(Ω). If S0(t) 6= 0 almost surely, if Y0 is
absolutely continuous, with density function fY0, and it is independent of the rest of random
input parameters of (1.1), then the mean square solution X(t) has for probability density
function

fX(t)(x) = E
[
fY0

(
x− Y1S1(t)

S0(t)

)
1

|S0(t)|

]
. (3.1)

An important issue with expression (3.1) is that S0(t) and S1(t) are given by infinite series,
therefore truncated approximations are needed. We have to justify that it is legitimate to
reduce dimensionality and use truncated random power series for S0(t) and S1(t). In what
follows, we denote by SN0 (t) and SN1 (t) the N -th partial sums of S0(t) and S1(t), respectively,
which converge in L∞(Ω) for each t. Let XN(t) = Y0S

N
0 (t) + Y1S

N
1 (t) be a truncation of the

solution X(t), which converges in the mean square sense for each time t.
In the study of random differential equation problems with no closed-form expression of

the solution process but only an infinite expansion, one usually constructs an approximating
sequence of stochastic processes with reduced dimensionality and computable probability
density function. Thus, one obtains an approximating sequence of probability density func-
tions, which hopefully presents rapid convergence to the target density function. Moreover,
the discontinuity and non-differentiability points of the target density function are captured
with no difficulty. In the literature, one may find applications of this type of strategy with
power series and Karhunen-Loève developments [15, 36], finite difference schemes [12], and
PC expansions [37].

If SN0 (t) 6= 0 almost surely, the probability density function of XN(t) is

fXN (t)(x) = E
[
fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|

]
. (3.2)

This expression involves a maximum of 2N + 3 random variables (Y1, S0,n and S1,n for
0 ≤ n ≤ N). Thus, the expectation can be computed by numerical integration (in the case of
absolutely continuous random input coefficients), or by a Monte Carlo procedure [8, pp. 53–
54], by sampling realizations of Y1, SN0 (t) and SN1 (t). This is the same strategy as the one
followed in our recent paper [15]. The approach based on numerical integration would be
feasible only in the case of small N and A(t) = p(t;D), B(t) = q(t;D) (D random), as in [29],
otherwise it is impractical. This is because the integration dimension relies on the dimension
of the random space (the total number of input random variables). The Monte Carlo strategy
can cope with high uncertainty dimension and large N , albeit at the expense of introducing a
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statistical error due to sampling, in addition to the bias error. The sampling error is reduced
as the number of realizations increases, but at the cost of higher computational burden.

We need to justify that, for each t, limN→∞ fXN (t)(x) = fX(t)(x), for x ∈ R. This is
a strong mode of convergence. Indeed, as we are working with density functions, almost
everywhere convergence on R implies convergence in L1(R), due to Scheffé’s lemma [38,
p. 55], [39]. This lemma states that if a general sequence of integrable functions converges
almost everywhere to another integrable function, then convergence in L1(R) is equivalent
to convergence of the L1(R) norms. As density functions have L1(R) norms equal to 1 by
definition, we deduce that almost everywhere convergence of the density functions fXN (t)(x)
to fX(t)(x) as N → ∞ implies that ‖fX(t) − fXN (t)‖L1(R) =

∫
R |fX(t)(x) − fXN (t)(x)| dx → 0

as N → ∞. Convergence in L1(R) is also referred to as convergence in total variation [40,
p. 41]: ‖(P ◦ (XN(t))−1) − (P ◦ (X(t))−1)‖TV := sup{|P[XN(t) ∈ F ] − P[X(t) ∈ F ]| :
F ∈ F} = 1

2
‖fXN (t) − fX(t)‖L1(R). It is also equivalent to convergence in terms of the

Hellinger distance [41], H(P ◦ (XN(t))−1,P ◦ (X(t))−1) := (1/
√

2)‖f 1/2

XN (t)
− f 1/2

X(t)‖L2(R), via

the elementary inequalities H2 ≤ ‖ · ‖TV ≤
√

2H.
In fact, convergence in L1(R) may be generalized to convergence in Lp(R), for 1 < p <
∞, by imposing boundedness on R of fY0 . Indeed, in this case, taking a constant C >
0 such that |fXN (t)(x)| ≤ C and |fX(t)(x)| ≤ C, for N ≥ 0, t and x ∈ R, the mean
value theorem leads to |‖fXN (t)‖pLp(R) − ‖fX(t)‖pLp(R)| ≤ pCp−1‖fXN (t) − fX(t)‖L1(R), therefore

‖fXN (t)‖Lp(R) → ‖fX(t)‖Lp(R) as N →∞. By Scheffé’s lemma, there is convergence in Lp(R):

‖fX(t) − fXN (t)‖Lp(R) = (
∫
R |fX(t)(x)− fXN (t)(x)|p dx)1/p → 0 as N →∞.

The pointwise convergence is the object of the following important Theorem 3.6. The
result is proved in the spirit of our contribution [15], by utilizing the concept of Nemytskii
operator [15, Remark 2.6], [42, pp. 15–17], [43, pp. 154–163].

Lemma 3.4. Let {VN}∞N=1 be a sequence of random variables that converges to V in L2(Ω). If
P[V ∈ DfY0

] = 0, where DfY0
is the set of discontinuity points of fY0, and if fY0(y) ≤ α+βy2,

for certain constants α, β ≥ 0, then fY0(VN)→ fY0(V ) as N →∞ in L1(Ω).

Proof. There is a result in point-set topology that states that, given a sequence, if ev-
ery subsequence has a subsequence itself that converges to z0, then the complete sequence
converges to z0. This follows by a simple contradiction argument. Thus, it suffices to
prove that, for every subsequence {VNk

}∞k=1, there exists a subsequence {VNkl
}∞l=1 such that

liml→∞ fY0(VNkl
) = fY0(V ) in L1(Ω). Fix any subsequence {VNk

}∞k=1. Since limk→∞ VNk
= V

in L2(Ω), by [44, Th. 4.9] there exist a subsequence {VNkl
}∞l=1 and a random variable

V ∈ L2(Ω) such that liml→∞ VNkl
(ω) = V (ω) and |VNkl

(ω)| ≤ V (ω) almost surely. Since

P[V ∈ DfY0
] = 0, the continuous mapping theorem [45, p. 7, Th. 2.3] guarantees that

liml→∞ fY0(VNkl
(ω)) = fY0(V (ω)) almost surely. As fY0(VNkl

(ω)) ≤ α + β(VNkl
(ω))2 ≤

α + β(V (ω))2 ∈ L1(Ω), we can apply the dominated convergence theorem to conclude that
the desired limit holds: liml→∞ fY0(VNkl

) = fY0(V ) in L1(Ω). �

Remark 3.5. As S0(t0) = 1 and S0(t) is continuous in L∞(Ω), we can find a neighborhood of
t0, say (t0−δ, t0 +δ) for certain δ > 0, such that ‖S0(t)−1‖∞ < 1/4 for all t ∈ (t0−δ, t0 +δ).
Hence, S0(t) > 3/4 > 0 almost surely, for t ∈ (t0 − δ, t0 + δ). Notice that such neighborhood
may be limited; for instance, the deterministic function X(t) = sin t satisfies Ẍ(t)+X(t) = 0,
X(t0 = π/2) = 1 and Ẋ(t0 = π/2) = 0.
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For t ∈ (t0−δ, t0+δ) fixed, there exists an integer Nt > 0 such that ‖SN0 (t)−S0(t)‖∞ < 1/4,
for all N ≥ Nt. Then ‖SN0 (t)−1‖∞ ≤ ‖SN0 (t)−S0(t)‖∞+‖S0(t)−1‖∞ < 1/2. This implies
that SN0 (t) > 1/2 almost surely, N ≥ Nt. From now on, we will work with t ∈ (t0− δ, t0 + δ).

Theorem 3.6. Suppose the conditions of Theorem 3.3. If fY0 is continuous on R and
fY0(y) ≤ α+βy2, for certain constants α, β ≥ 0, then limN→∞ fXN (t)(x) = fX(t)(x), for each
t ∈ (t0 − δ, t0 + δ) and for every x ∈ R.

Proof. Fix t ∈ (t0 − δ, t0 + δ) and x ∈ R. Let

VN =
x− Y1S

N
1 (t)

SN0 (t)
, V =

x− Y1S1(t)

S0(t)
(3.3)

(here we drop the explicit dependencies of VN and V on t and x). First, notice that VN → V
as N → ∞ in L2(Ω), as an easy consequence of the following facts: SN0 (t) > 1/2 almost
surely, for all N ≥ Nt, S

N
0 (t) → S0(t) and SN1 (t) → S1(t) as N → ∞ in L∞(Ω), and

Y1 ∈ L2(Ω).
The conditions imposed on fY0 imply that the Nemytskii operator V 7→ fY0(V ) is continu-

ous from L2(Ω) to L1(Ω), by Lemma 3.4. Hence, limN→∞ fY0(VN)→ fY0(V ) in L1(Ω). Since
SN0 (t) > 1/2 almost surely, for all N ≥ Nt, and limN→∞ S

N
0 (t)→ S0(t) in L∞(Ω), we deduce

that fY0(VN)/SN0 (t)→ fY0(V )/S0(t) as N →∞ in L1(Ω).
In particular, the sequence of expectations, fXN (t)(x) = E[fY0(VN)/SN0 (t)], converges to

the density fX(t)(x) = E[fY0(V )/S0(t)], which completes the proof. �

In Section 5, the application of Theorem 3.6 will be illustrated numerically on Exam-
ples 5.1–5.2.

Remark 3.7. Having limN→∞ fY0(VN)/SN0 (t) = fY0(V )/S0(t) in L1(Ω) assures the con-
vergence of the expectations. If convergence of the variances is also needed, one needs to
extend the convergence to L2(Ω). In this case, the boundedness condition on fY0 should be
fY0(y) ≤ α + β|y| (apply an analogous proof to Lemma 3.4).

Remark 3.8 (Rate of convergence of the approximating density functions). Notice that,
under the conditions of Theorem 3.3, if fY0 is Lipschitz continuous on R (this assumption is
stronger than the hypotheses of Theorem 3.6), then fXN (t)(x) converges with N exponentially
to fX(t)(x), for t ∈ (t0 − δ, t0 + δ) and x ∈ R. This is because the Lipschitz condition allows
for estimating |fXN (t)(x)− fX(t)(x)| via the following inequality:

|fXN (t)(x)− fX(t)(x)| ≤ Ct
(
(|x|+ 1)‖SN0 (t)− S0(t)‖∞ + ‖Y1‖2‖SN1 (t)− S1(t)‖∞

)
,

and as discussed in Section 2, the Fröbenius method converges exponentially. In the previous
expression, Ct is a constant depending on t. Unfortunately, the exponential convergence
rate is not uniform with t and x. As |t − t0| grows, one needs to increase N to maintain
the accuracy. The same occurs with |x|, which increases the bias error ‖SN0 (t) − S0(t)‖∞
linearly.

In general, if fY0 is γ-Hölder continuous on R with exponent 0 < γ ≤ 1 (the case γ = 1
corresponds to Lipschitz continuity), then

|fXN (t)(x)−fX(t)(x)| ≤ Ct
{
‖SN0 (t)− S0(t)‖∞+

(
|x|‖SN0 (t)− S0(t)‖∞ + ‖Y1‖2‖SN1 (t)− S1(t)‖∞

)γ}
.

The same conclusion on the convergence holds in this case.

Notice that the regularity of fXN (t)(x) is inherited from fY0(y). These ideas are formalized
in the following theorem:
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Theorem 3.9. Under the assumptions of Theorem 3.6, if fY0 is C1(R) with bounded deriva-
tive on R, then fXN (t)(x) and fX(t)(x) are C1(R), with bounded derivatives, and f ′XN (t)(x)→
f ′X(t)(x) as N →∞, for each t ∈ (t0 − δ, t0 + δ) and for every x ∈ R.

Proof. Fix t ∈ (t0−δ, t0+δ). The following facts permit differentiating under the expectation
operator that defines fXN (t)(x) and fX(t)(x) [46, p. 142]: fY0 is differentiable with bounded

derivative, and SN0 (t) > 1/2 almost surely for all N ≥ Nt. Hence,

f ′XN (t)(x) = E

[
f ′Y0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

(SN0 (t))
2

]
, f ′X(t)(x) = E

[
f ′Y0

(
x− Y1S1(t)

S0(t)

)
1

(S0(t))2

]
.

The continuity and boundedness conditions imposed on f ′Y0
entail that the Nemytskii

operator V 7→ f ′Y0
(V ) is continuous from L2(Ω) to L1(Ω), by Lemma 3.4. Thereby, as in the

proof of Theorem 3.6, we deduce that limN→∞ f
′
XN (t)(x) = f ′X(t)(x), x ∈ R. �

Remark 3.10. It is important to realize that the previous theory works exchanging the role
of Y1 and Y0. Indeed, even though S1(t0) = 0, in contrast with S0(t0) = 1, we do have that
Ṡ1(t0) = 1. We may choose a neighborhood of t0, say (t0− µ, t0 + µ) for certain µ > 0, such
that Ṡ1(t) > 3/4 almost surely, for t ∈ (t0−µ, t0 +µ). We know that, in the sense of L∞(Ω),

S1(t) =
∫ t
t0
Ṡ1(r) dr. Then |S1(t)| > 3

4
|t− t0| = mt almost surely, for t ∈ (t0 − µ, t0 + µ). In

particular, as mt > 0 for t ∈ (t0 − µ, t0 + µ)\{t0}, the previous proofs work with Y1 in place
of Y0. The previous theoretical results may be restated in a completely analogous fashion, as

fX(t)(x) = E
[
fY1

(
x− Y0S0(t)

S1(t)

)
1

|S1(t)|

]
, fXN (t)(x) = E

[
fY1

(
x− Y0S

N
0 (t)

SN1 (t)

)
1

|SN1 (t)|

]
,

for t ∈ (t0 − µ, t0 + µ)\{t0}. In this case, one requires Y1 to have an absolutely continuous
probability law, with density function fY1, and to be independent of the rest of the random
input parameters in (1.1). For convergence, one imposes continuity for fY1 on R and bound-
edness fY1(y) ≤ α+βy2, for certain constants α, β ≥ 0. If fY1 is Lipschitz continuous on R,
then an exponential convergence holds. Finally, if fY1 is also C1(R) with bounded derivative
on R, then both fXN (t)(x) and fX(t)(x) are C1(R), with bounded derivative, and the sequence
of derivatives converges. These cases are considered in Example 5.3.

The continuity condition on R imposed in Theorem 3.6 is somewhat restrictive, as we do
not allow some common probability distributions for Y0 whose density function possesses
discontinuity points, such as the Uniform, Exponential or general truncated distributions.
Notice that this assumption in Theorem 3.6 may be relaxed to almost everywhere continuity
on R, by adding absolute continuity on Y1. This fact is a consequence of the continuous
mapping theorem [45, p. 7, Th. 2.3]. Indeed, for t ∈ (t0−min{δ, µ}, t0 + min{δ, µ})\{t0}, as

|S1(t)| > mt > 0 almost surely and Y1 is absolutely continuous, then V = x−Y1S1(t)
S0(t)

is abso-

lutely continuous, by Lemma 3.2. Therefore, the probability that V lies in the discontinuity
set of fY0 is 0. This assures that fY0(VN)→ fY0(V ) in L1(Ω) as N →∞, by Lemma 3.4.

The precise restatement of Theorem 3.6 is the following:

Theorem 3.11. Suppose the conditions of Theorem 3.3. If fY0 is almost everywhere contin-
uous on R, fY0(y) ≤ α+βy2 for certain constants α, β ≥ 0, Y1 is absolutely continuous, and
Y1 is independent of (A,B), then limN→∞ fXN (t)(x) = fX(t)(x), for t ∈ (t0 −min{δ, µ}, t0 +
min{δ, µ})\{t0} and for every x ∈ R.

Theorem 3.11 will be applied in Example 5.4. An alternative version, with Y1 playing the
role of Y0, can be formulated following Remark 3.10. Notice that, nowhere in our theoretical
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exposition, we require independence between the coefficients of A(t) and B(t). We do not
need any assumption on their probability distributions either, which might be discrete or
continuous (but always bounded).

The methodology and theory presented in the paper do not cover all situations. For
instance, let us study (1.1) involving discrete uncertainties. Other situations could be anal-
ogously analyzed.

Theorem 3.12. Suppose the conditions of Theorem 3.3. Assume that the coefficients
A0, A1, . . ., B0, B1, . . . are deterministic constants. If fY0 has at most a countable num-
ber of discontinuities on R, fY0(y) ≤ α + βy2 for certain constants α, β ≥ 0, and Y1 is a
discrete random variable, then limN→∞ fXN (t)(x) = fX(t)(x) for almost every x ∈ R, for each
t ∈ (t0 − δ, t0 + δ).

Proof. Fix t ∈ (t0− δ, t0 + δ). Let VN(x) = (x−Y1S
N
1 (t))/SN0 (t), V (x) = (x−Y1S1(t))/S0(t)

(now we make the dependence of VN and V on x explicit). We know that VN(x)→ V (x) in
L2(Ω) as N →∞, for all x ∈ R. Given the discontinuity set of fY0 , DfY0

, we need to justify
that P[V (x) ∈ DfY0

] = 0, for almost every x ∈ R. In this case, fY0(VN(x)) → fY0(V (x)) in

L1(Ω) as N →∞, for almost every x ∈ R.
Write DfY0

= {d1, d2, d3, . . .}. As Y1 is a discrete random variable, its support may be ex-

pressed as SY1 = {y1
1, y

2
1, y

3
1, . . .}. Then the support of V (x) is SV (x) = {(x− yj1S1(t))/S0(t) :

j = 1, 2, 3, . . .}. The problematic x’s are those such that x = yj1S1(t) + dkS0(t). Let
Λ = {yj1S1(t) + dkS0(t) : j, k = 1, 2, 3, . . .}, which is a countable set. For every x /∈ Λ,
P[V (x) ∈ DfY0

] = 0. As a consequence, limN→∞ fY0(VN(x)) = fY0(V (x)) in L1(Ω), x /∈ Λ, by
Lemma 3.4. This gives limN→∞ fXN (t)(x) = fX(t)(x), x /∈ Λ, and we are done. �

Once again, one can state a similar version with Y1 playing the role of Y0 (see Remark 3.10)
and working on (t0 − µ, t0 + µ)\{t0}, instead. Example 5.5 covers this situation.

4. Crude Monte Carlo algorithm: Computational aspects

We recast the proposed methodology in the form of Algorithm 1, which corresponds to
the case of Y0 having a density, see (3.1); following Remark 3.10, one can exchange the role
of Y0 and Y1 in Algorithm 1, provided that Y1 has a density.

By judiciously exploiting its expression in (3.2), fXN (t)(x) can be approximated via a
Monte Carlo procedure [8, pp. 53–54] to evaluate the expectation: using M randomly gener-
ated realizations of Y1, SN0 (t) and SN1 (t), we compute the sample average of VN(x, t) in (3.3).
Algorithm 1 corresponds to symbolic computations with symbolic variables x and t [47]; it

computes a function fN,MX (x, t), which is a complex closed-form expression approximating
fX(t)(x). To speed up the execution of the algorithm, numerical values of t and/or x may be
provided.

The estimation error can be split into two contributions: fX(t)(x)−fN,MX (x, t) = θN(x, t)+
EN,M(x, t). The first contribution, θN(x, t) = fX(t)(x)− fXN (t)(x), is the bias error caused by
the truncation order N in the Fröbenius method. It is deterministic and decays exponen-
tially as N →∞ for each t and x by Remark 3.8. The second contribution is the sampling
error EN,M(x, t) = fXN (t)(x) − fN,MX (x, t), due to using a finite number M of samples (sta-
tistical error). This contribution is random and EN,M(x, t) → 0 with M almost surely, as a
consequence of the law of large numbers. If the variance

σ2
N(x, t) := V

[
fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

SN0 (t)

]
(4.1)
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Algorithm 1 Estimation of fXN (t)(x) via a crude Monte Carlo procedure.

Inputs: t0; N ; fY0 ; probability distribution of A0, . . . , AN , B0, . . . , BN , Y1; and number
M of realizations in the classical Monte Carlo procedure.

1: S0,0 ← 1, S0,1 ← 0, S1,0 ← 0, S1,1 ← 1 . Initial conditions
2: Σ← 0 . Initialize the samples sum
3: for i = 1, . . . ,M do . Monte Carlo loop
4: Draw randomly a realization of (A0, . . . , AN−2, B0, . . . , BN−2) and Y1

5: for n = 0, . . . , N − 2 do
6: S0,n+2 ← −1

(n+2)(n+1)

∑n
m=0[(m+ 1)An−mS0,m+1 +Bn−mS0,m]

7: S1,n+2 ← −1
(n+2)(n+1)

∑n
m=0[(m+ 1)An−mS1,m+1 +Bn−mS1,m]

8: end for
9: SN0 (t)← 1 +

∑N
n=1 S0,n(t− t0)n . Realization of SN0 (t)

10: SN1 (t)←
∑N

n=1 S1,n(t− t0)n . Realization of SN1 (t)

11: Σ← Σ + fY0

(
x−Y1SN

1 (t)

SN
0 (t)

)
1

|SN
0 (t)| . Update the samples sum

12: end for
13: fN,MX (x, t)← Σ/M . Set sample average

14: Return fN,MX (x, t) . Approximation of fXN (t)(x)

is finite, then the asymptotic probability distribution of EN,M(x, t) as M → ∞ is, by the
central limit theorem, Normal(0, σ2

N(x, t)/M). The variance σ2
N(x, t) tends, as N → ∞, to

σ2(x, t) := V[fY0(x−Y1S1(t)
S0(t)

) 1
S0(t)

] (see Remark 3.7). In this case, we say that the sampling

error is of order 1/
√
M , and write O(1/

√
M). On the contrary, if σ2

N(x, t) = ∞, then the
almost sure convergence EN,M(x, t) → 0 with M remains valid, although it might be much
slower and affect the approximation to fXN (t)(x) severely. See the forthcoming Example 5.3
for an illustration of this issue.

Even though the bias error decays very fast, the sampling error is inevitable. In numerical
computations, for fixed M , there is usually an index N from which the global error does not
go down anymore because the sampling error O(1/

√
M) becomes dominant.

Within the main loop of Algorithm 1 (loop over the samples), we first generate one re-
alization for each random variable A0, . . . , AN−2, B0, . . . , BN−2 and Y1; these realizations
are used to compute by recursion the corresponding realizations of SN0 (t) and SN1 (t). In
our implementation, this procedure is more efficient than expressing first SN0 (t) and SN1 (t)
recursively in terms of symbolic variables A0, . . . , AN−2, B0, . . . , BN−2 and Y1, and then eval-
uate for the realizations of A0, . . . , AN−2, B0, . . . , BN−2 and Y1. This is due to the excessive
complexity of the symbolic expressions of SN0 (t) and SN1 (t), which makes the computational
time of their evaluation for specific realizations prohibitively large.

The computational complexity of Algorithm 1 is at most O(MN2) (the nested loop over n

demands
∑N−2

n=0 O(n) = O(N2) operations in general). As we show in the following Section 5,
the implemented algorithm is certainly applicable and suitable for stochastic computations.

By taking M = O(1/ε2), the variance of the statistical error is V[EN,M(x, t)] = O(ε2)
(assuming the variance in (4.1) finite). Under exponential convergence of the bias, by picking
N = O(log(1/ε))+O(1) the bias error is |θN(x, t)| = O(ε). Then the root mean square error

of the algorithm is ‖fX(t)(x) − fN,MX (x, t)‖2 =
√
θN(x, t)2 + V[EN,M(x, t)] = O(ε), with a

computational complexity O(MN2) = O
(
ε−2 log2 ε

)
.
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The complexity of Algorithm 1 is significantly reduced if A(t) and B(t) are random polyno-
mials, instead of infinite series. Suppose for instance that Aj = 0 and Bj = 0, for j ≥ N0−1.
Then, within the nested loop over n, we actually sum N0 terms, instead of n terms. There-
fore, the nested loop demands N0O(N) = O(N) operations. The whole algorithm then
requires O(MN) operations only. If we take M = O(1/ε2) and N = O(log(1/ε)) + O(1)
to ensure a root mean square error of order ε, the computational complexity becomes
O(MN) = O(ε−2 log(ε−1)). Notice that 0 < log(ε−1) < (log(ε−1))2 = log2 ε, for 0 < ε < e−1,
so the complexity is lessened.

In the case in which A(t) and B(t) are deterministic expansions, the loop over n and the
assignments for SN0 (t) and SN1 (t) may be run once for all at the beginning of the algorithm
and before the loop over the samples. The computational complexity then reduces even more
to O(M) + O(N2) operations and the global cost is generally dominated by the sampling.
To guarantee a global root mean square error of order ε with M = O(1/ε2) and N =
O(log(1/ε)) + O(1), the computational complexity becomes O(ε−2) + O(log2 ε) = O(ε−2).
This scenario allows for increasing M and obtaining more accurate results by improving
the statistical convergence. If A(t) and B(t) are simply deterministic polynomials, then the
overall cost reduces further to O(M) + O(N) operations, which yields in the end O(ε−2)
calculations.

In the view of computational applications, an important drawback of our exposition is
the lack of awareness on the specific values of δ and µ, which are necessary to prove the
theoretical convergence. Given any t, one can apply Algorithm 1 and check the convergence
of the estimator with M and N . The results can be validated using other stochastic methods
and using statistics based on the estimated density. Notice that, in Algorithm 1, we have
put |SN0 (t)| instead of SN0 (t). Even though we assume that SN0 (t) > 0 almost surely, for t ∈
(t0− δ, t0 + δ) and N ≥ Nt, the absolute value ensures positiveness in numerical applications
even if |t− t0| ≥ δ.

5. Crude Monte Carlo algorithm: Numerical examples

In this section, we numerically illustrate our theoretical findings, using the crude Monte
Carlo Algorithm 1 to estimate the density of the solution to (1.1). Several cases, differing
by the probability distributions of the random input coefficients, are considered to cover a
large class of situations and show the broad applicability of our theory.

In each of these examples, we first check that the necessary theoretical conditions hold; we
then estimate the density function fXN (t)(x) for several increasing values of N to highlight the
convergence toward fX(t)(x). To this end, we employ the Monte Carlo sampling procedure
outlined in Algorithm 1.

The theoretical results of Section 3 motivate the structure and the choice of the following
five examples. In Example 5.1, we address the case where A(t) and B(t) are random poly-
nomials; while Example 5.2 concerns infinite expansions and infinite dimensionality. These
first two examples showcase the applicability of Theorem 3.6. Example 5.3 is designed to
highlight Remark 3.10. Up to this example, fY0 or fY1 are continuous on the whole real line.
In contrast, Example 5.4 considers experiments with fY0 possessing discontinuity points,
thus evoking Theorem 3.11. Finally, Example 5.5 considers the case where A(t) and B(t)
are deterministic, so that Theorem 3.12 applies.

The implementations and computations are performed with Mathematica R©, version 11.2
[48], owing to its capability to handle both symbolic and numeric computations. In general,
Algorithm 1 is applied with M = 20, 000 samples, as beyond this limit, the computational
burden is becoming massive. The output function fN,MX (x, t) is handled symbolically on
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t and x. To simplify the notations, we refer to the Monte Carlo estimate fN,MX (x, t) as

f̂XN (t)(x). We recall that the estimate f̂XN (t)(x) has two sources of error: bias and sampling.
Although the bias error decays very fast (exponentially under the conditions of Remark 3.8),

the sampling error is unavoidable and at least of order O(1/
√
M).

In each one of the following examples, we perform a complete analysis of the errors. As
the exact density function fX(t)(x) is not known, we first analyze differences in consecutive
(in N) estimates, both pointwise, using

δεN(x, t) := |f̂XN+1(t)(x)− f̂XN (t)(x)|, (5.1)

and globally, using the norm

∆εN(t) := ‖f̂XN+1(t) − f̂XN (t)‖L1(R). (5.2)

As successive differences do not directly characterize the error, we also report

EN(t) := ‖f̂XL(t) − f̂XN (t)‖L1(R) (5.3)

for some pre-fixed L � 1, selected such that f̂XL(t) plays the role of a bias-free estimate of
the function fX(t). We set L = 30 in the following. The L1(R) norms are computed by direct
numerical integration, using a standard quadrature rule (standard NIntegrate routine in
Mathematica R©).

Example 5.1. We start with the stochastic problem (1.1) where both A(t) and B(t) are
random polynomials of degree 1: A(t) = A0 + A1t, and B(t) = B0 + B1t. We set A0 = 4,
A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2), B1 ∼ Bernoulli(0.35), Y0 ∼ Normal(2, 1) and
Y1 ∼ Poisson(2), all being independent random variables. In order for the hypotheses of
Theorem 2.1 and Theorem 3.6 to be satisfied, the Gamma distribution is truncated. For the
Gamma distribution with shape and rate 2, it can be checked that the interval [0, 4] contains
approximately 99.7% of the probability, so we actually consider B0 ∼ Gamma(2, 2)|[0,4].

By Theorem 2.1, the unique mean square solution to the problem can be written as a
random power series X(t) =

∑∞
n=0Xnt

n that is mean square convergent for all t ∈ R.
With Theorem 3.6, we approximate pointwise the probability density function fX(t)(x) with

f̂XN (t)(x), N ≥ 0, and use Algorithm 1 taking advantage from the fact that A(t) and B(t)
are random polynomials and not infinite expansions. We consider times t = 0.5, 1 and 1.5.
In Figure 1 we present the graphs of f̂XN (t)(x) at the corresponding times. Observe that
the estimates are smooth, due to the regularity of the initial density fY0 , see Theorem 3.9.
Observe also that, as N increases, the density functions become closer, reflecting the theoret-
ical convergence. The convergence is made clear in the corresponding successive differences
δεN(x, t) (see (5.1)) reported in Figure 2. Table 1 presents the L1(R) norms of the successive
differences, ∆εN(t) (see (5.2)).

N = 1 N = 2 N = 3 N = 4 N = 5
t = 0.5 0.903091 0.622968 0.270690 0.0923362 0.0178834

N = 6 N = 7 N = 8 N = 9 N = 10
t = 1 0.691809 0.263246 0.0912177 0.0345686 0.026688

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.348643 0.180075 0.0721679 0.0320314 0.0198364

Table 1. Norm ∆εN(t) of differences in consecutive estimates (see (5.2)) for
different times t and truncation orders N . This table corresponds to Exam-
ple 5.1.
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Figure 1. Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.5 (left), t = 1 (center) and t = 1.5 (right), with orders of truncation
N = 1–6, N = 6–11 and N = 11–16, respectively. This figure corresponds to
Example 5.1.
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Figure 2. Differences in consecutive estimates δεN(x, t) (see (5.1)) at t = 0.5
(left), t = 1 (center) and t = 1.5 (right), with orders of truncation N = 1–5,
N = 6–10 and N = 11–15, respectively. This figure corresponds to Exam-
ple 5.1.

The left plot in Figure 3 reports (in log-scale) the error estimate EN(t) (see (5.3)), for
t = 0.5, t = 1 and t = 1.5. From the plot, it is clear that there is an index N from which the
error does not go down anymore, because of the sampling error (recall that we used a fixed
number of samples M = 20, 000). Notice also that, as |t− t0| = |t| gets larger, a higher order
of truncation N is required to enhance the approximations of fX(t)(x). In the right plot of
Figure 3, we report the error estimate, EN(t), as a function of the consecutive difference,
∆εN(t), for t = 0.5, t = 1 and t = 1.5. We also plot a regression line through the data to
reflect the exponential relationship between EN(t) and ∆εN(t), at a given t,

logEN(t) ≈ log β(t) + α(t) log ∆εN(t). (5.4)

There are three regression lines, one for each time t. We observe a strong linear relation
with N between the errors and the successive differences in log-scale, with slope α(t) being
approximately 1, at least up to the truncation order at which the sampling error becomes
dominant. This finding suggests that it is possible to estimate the norm of the bias error,
‖θN(·, t)‖L1(R), from the norm of the successive differences ∆εN(t), provided that M is large
enough, and choose N according to the targeted accuracy.

The decay of the sampling error as the inverse of the square root of the number of real-
izations can be documented. Let us fix a truncation order N = 20. Define the Monte Carlo
error for P realizations at time t as

MCEP (t) := ‖fN,PX (·, t)− fN,MX (·, t)‖L1(R). (5.5)
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Figure 3. Left: error EN(t) (see (5.3)), for different times as indicated.
Right: relation between logEN(t) and log ∆εN(t), for t = 0.5, t = 1 and
t = 1.5. Also reported are linear regressions. This figure corresponds to Ex-
ample 5.1.

Here M = 20, 000 is the maximum amount of realizations. Figure 4 shows MCEP (t) defined
by (5.5) for t = 0.5, 1 and 1.5, using logarithm scale for both axes. We have considered nested
samples of length P ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800} growing geometrically. We
observe the decline of the sampling error as P grows. Obviously, the error MCEP (t) depends
on the random numbers generated. Theoretically, the mean error E[MCEP (t)] decreases at
rate given by the inverse of the square root of the sample length P . In the figure, the line
corresponding to the 1/

√
P decay has been drawn, for comparison with MCEP (t).

5 6 7 8 9
log P

-7

-6

-5

-3

log MCEP(t)

t=0.5

t=1

t=1.5

1/ P

Figure 4. Sampling error (5.5) with the number of realizations P , for differ-
ent times as indicated. This figure corresponds to Example 5.1.

Example 5.2. In the second example, we consider problem (1.1) with A(t) and B(t) having
infinite expansions with coefficients An ∼ Beta(11, 15) for n ≥ 0, B0 = 0, Bn = 1/n2 for

n ≥ 1, while Y0 ∼ fY0(y) =
√

2
π(1+y4)

(−∞ < y < ∞) and Y1 ∼ Poisson(2). All these random

quantities are assumed to be independent. The power series of A(t) and B(t) converge
on (−1, 1) (that is for r = 1), so the mean square solution X(t) =

∑∞
n=0Xnt

n given by
Theorem 2.1 is defined on (−1, 1). Theorem 3.6 allows for approximating fX(t)(x) with

f̂XN (t)(x), N ≥ 0.

Figure 5 shows graphical representations of f̂XN (t)(x) for times t = 0.25, 0.75 and 0.99,

with orders of truncation N = 1–5. The evident regularity of f̂XN (t)(x) is inherited from the
smoothness of the density fY0 , by Theorem 3.9.

To better assess the convergence, Figure 6 shows the successive differences δεN(x, t) defined
in (5.1) at the same times as in Figure 5; these differences are decreasing to 0 pointwise as
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Figure 5. Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.25 (left), t = 0.75 (center) and t = 0.99 (right), with orders of
truncation N as indicated. This figure corresponds to Example 5.2.

theoretically expected, see Theorem 3.6. As pointwise convergence of densities implies L1(R)
convergence, we report in Table 2 the consecutive norms ∆εN(t) defined by (5.2). The norms
decay, albeit not monotonically; for instance, when t = 0.25 the difference is larger for N = 4
than in N = 3.
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Figure 6. Differences in consecutive estimates δεN(x, t) (see (5.1)) at t = 0.25
(left), t = 0.75 (center) and t = 0.99 (right), and for orders of truncation as
indicated. The plots correspond to Example 5.2.

N = 1 N = 2 N = 3 N = 4
t = 0.25 0.0215530 0.00607417 0.000600201 0.00167170
t = 0.75 0.147952 0.0545970 0.0436801 0.00419704
t = 0.99 0.225868 0.0945261 0.127495 0.00985133

Table 2. Norm ∆εN(t) of differences in consecutive estimates (see (5.2)) for
different times t and truncation orders N . This table corresponds to Exam-
ple 5.2.

Figure 7 reports in the left plot the error estimates logEN(t) defined in (5.3). We see that
the errors decrease quickly before stagnating because of the sampling error. This example,
despite being more complex than the previous one in Example 5.1, in terms of dimensionality,
requires smaller orders N , since for t ∈ (−1, 1) we have |t − t0| = |t| < 1, which implies

|t − t0|n
n→∞−→ 0. The right plot of Figure 7 aims at showing the relation between the

errors EN(t) and the successive differences ∆εN(t). Specifically, for the times t shown, a
collinearity is found in log-scale through the model (5.4). In other words, the decay pattern
of the consecutive differences characterizes the convergence of the global error as long as the
bias error dominates the sampling error.
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Figure 7. Left: error EN(t) in (5.3), for different times as indicated. Right:
relation between logEN(t) and log ∆εN(t), for t = 0.25, 0.5, 0.75 and 0.99.
Also reported are linear regressions. This figure corresponds to Example 5.2.

Figure 8 plots the sampling error MCEP (t) (5.5) for truncation order N = 7, times t =
0.25, 0.5, 0.75 and 0.99, nested samples of size P ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800},
and M = 20, 000. Similar conclusions to Example 5.1 are derived here. The decay pattern,
although depending on the random numbers generated, is captured by the rate 1/

√
P , as

theoretically expected.
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Figure 8. Sampling error (5.5) with the number of realizations P , for differ-
ent times as indicated. This figure corresponds to Example 5.2.

Example 5.3. In this example, we consider the previous degree one polynomial prob-
lem, with the following independent distributions: A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼
Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35), Y0 ∼ Poisson(2) and Y1 ∼ Normal(2, 1). This ex-
ample coincides with Example 5.1, except that Y0 and Y1 have been interchanged: now Y0

is discrete, while Y1 is absolutely continuous. This exchange puts this example in a different
theoretical case compared to Example 5.1.

By Theorem 2.1, the unique mean square solution is expressible as a random power series
X(t) =

∑∞
n=0 Xnt

n that is mean square convergent for all t ∈ R. According to Remark 3.10,
we can approximate the probability density function of X(t), fX(t)(x), for t 6= 0.

Figure 9 reports the approximations f̂XN (t)(x) at times t = 0.5, 1 and 1.5. As N grows, the
graphical representations tend to overlap, denoting the convergence of the expansions. The
densities are all smooth, as expected from the smoothness of fY1 , except for f̂XN=12(t=1.5)(x)
whose estimate presents noisy features.

The noisy features in f̂XN=12(t=1.5)(x) are due to several reasons. First, there is a compu-
tational issue of Mathematica R© caused by numerical overflow-underflow when too small or
too large quantities are involved (for instance exp(z) for |z| � 1). Some sample paths of
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Figure 9. Graphical representations of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.5 (left), t = 1 (center) and t = 1.5 (right), with varying orders of
truncation N as indicated. This figure corresponds to Example 5.3.

SN=12
1 (t) are vanishing near t = 1.5, thus making the denominator SN=12

1 (t) in the definition
of VN(t) (in (3.3) by for the role of Y0 and Y1 exchanged) very small, with a loss of precision
as a result. This is illustrated in Figure 10, where we show some randomly generated sample
paths of SN=12

1 (t). We also report sample paths for N = 11 and N = 13 for comparison.
Second, and not totally unrelated to the numerical overflow, we have V[1/|SN1 (t = 1.5)|] =∞
for N = 12 when it remains finite for the other values of N shown. As a result, the variance
σ2
N=12 in the Monte Carlo method (see (4.1)) is unbounded or very large for N = 12, while

it behaves well for other N , as illustrated in the last panel of Figure 10 (bottom right plot).
As a result, for N = 12, the convergence of the Monte Carlo procedure is slowed down due
to the large or infinite variance, the rate O(1/

√
M) is not obtained (see the discussion from

Section 4), and some noisy features plague the estimator.

Luckily, the noise in f̂XN=12(t=1.5)(x) is not present for N > 12. In situations where large
or infinite variance occurs for some N , one should focus on the truncation orders N for
which the approximation f̂XN (t)(x) behaves nicely, without noise. In this manner, correct
approximations to fX(t)(x) are obtained with a feasible number of samples.

Figure 11 (left and center plots) presents the consecutive differences δεN(x, t) given by (5.1),
for times t = 1 and 1.5. These consecutive differences are not monotonically decreasing with
N , although a decay pattern towards 0 is perceptible. Further, the impact of the noisy
estimate f̂XN=12(t=1.5)(x) is clearly visible in the reported differences. The plots are entirely
consistent with the theoretical results and Remark 3.10. In Table 3, we report the cor-
responding L1(R) norms ∆εN(t) (see (5.2)) as a summary of Figure 11. The last plot of
Figure 11 reports the estimate errors logEN(t) in (5.3). Again, the convergence and the
sampling error are observed. This example also emphasizes that the Fröbenius method dete-
riorates for large times, as N needs to increase with t to maintain accurate approximations.

N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.320171 0.618382 0.333094 0.0893759 0.0291202

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.308293 0.185148 0.0605758 0.0256469 0.0216692

N = 11 N = 12 N = 13 N = 14 N = 15
t = 1.5 0.301694 0.155185 0.0677696 0.0375570 0.0202081

Table 3. Norm ∆εN(t) of differences in consecutive estimates (see (5.2)) for
different times t and truncation orders N . This table corresponds to Exam-
ple 5.3.
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Figure 10. Random trajectories of SN1 (t) for N = 11, 12 and 13. For N = 12,
observe that some trajectories vanish very close to t = 1.5, while for N 6= 12
the trajectories remain away from 0. The plot in the bottom right panel
shows the corresponding empirical estimates of σ2

N(x, t = 1.5). Observe that
for N = 11 and N = 13 the variances are small, while σ2

N=12 is large (the
range has been restricted to 15). This figure corresponds to Example 5.3.
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Figure 11. Differences in consecutive estimates δεN(x, t) at t = 1 (left) and
t = 1.5 (center), with orders of truncation as indicated. The last plot presents
the errors EN(t) (see (5.3)), for different times as indicated. This figure cor-
responds to Example 5.3.

Example 5.4. Consider the problem with infinite expansions forA andB, An ∼ Beta(11, 15)
for n ≥ 0, B0 = 0, Bn = 1/n2 for n ≥ 1, Y0 ∼ Uniform(−1, 1) and Y1 ∼ Exponential(2).
These random inputs are again assumed to be independent. In contrast with Example 5.2,
the probability density function of Y0 has now two discontinuity points at y0 = ±1, while
Y1 follows an absolutely continuous law. Hence, Theorem 3.6 cannot be employed here.
The mean square analytic solution X(t) =

∑∞
n=0 Xnt

n given by Theorem 2.1 is defined on
(−1, 1) and we must apply Theorem 3.11 to approximate fX(t)(x) for t 6= 0. We compute the
approximations at time t = 0.99 (near the limit 1), with orders of truncation N = 1–5. Fig-

ure 12 (left plot) depicts the graphs of f̂XN (t)(x). Promptly, the successive approximations
of the density function tend to superimpose, thus entailing rapid convergence to the target
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density function fX(t)(x). In contrast to Example 5.2, the non-differentiability of the approx-
imated density functions inherited from fY0 is evident (here one cannot apply Theorem 3.9).
Thereby, our method can capture peaks induced by non-differentiability. This feature is a
definite advantage of our method, compared to classical sample paths approximation meth-
ods where a kernel density estimation of the density would smear-out the approximation at
the non-differentiability points.

A richer analysis of the convergence in this example is provided in the centered plot
of Figure 12 and Table 4, which depict consecutive differences δεN(x, t) (see (5.1)) and
their norms ∆εN(t) (see (5.2)), respectively. Even though the errors are not decreasing
monotonically to 0 (as in the previous Example 5.3), the convergence is evident and follows
from Theorem 3.11. Finally, in Figure 12 (last panel) we also plot the error estimate logEN(t)
(see (5.3)), for distinct times. Similar to Example 5.2, the plot shows that this example needs
small orders N for all t ∈ (−1, 1) because of the decay of |t|N .
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Figure 12. Graphical representation of the Monte Carlo estimates f̂XN (t)(x)
at t = 0.99 (left), with orders of truncationN = 1–5. Differences in consecutive
estimates δεN(x, t) (see (5.1)) at t = 0.99 (center), with orders of truncation
N = 1–4. Error EN(t) (see (5.3)), for different times as indicated (right). This
figure corresponds to Example 5.4.

N = 1 N = 2 N = 3 N = 4
t = 0.25 0.00666810 0.00482414 0.00169730 0.00275401
t = 0.5 0.0266447 0.0301975 0.00469989 0.00524461
t = 0.75 0.0582143 0.0920184 0.0176119 0.00756466
t = 0.99 0.0947395 0.190933 0.0597380 0.0107980

Table 4. Norm ∆εN(t) of differences in consecutive estimates (see (5.2)) at
different times t and for different truncation orders N . This table corresponds
to Example 5.4.

Example 5.5. In this final example, we deal with discrete uncertainties, under the setting
of Theorem 3.12. Consider again the polynomial problem of Example 5.1, with A0 = 4,
A1 = 2, B0 = 0, B1 = −1, and now Y0 ∼ Bernoulli(0.4) and Y1 ∼ Uniform(−1, 1), being all
independent. By Theorem 2.1, there is a unique mean square solution X(t) =

∑∞
n=0Xnt

n

on R. For each t 6= 0, the random variable X(t) is absolutely continuous, due to the
absolute continuity of Y1. Theorem 3.12, with Y1 playing the role of Y0 (see Remark 3.10)
allows for approximating fX(t)(x) by utilizing the convergence limN→∞ fXN (t)(x) = fX(t)(x),
which holds for almost every x ∈ R. In this particular example, Algorithm 1 is used with
M = 1, 000, 000 iterations, because the deterministic values for A(t) and B(t) make the
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computational load much less demanding (see the discussion of Section 4). We will thus

identify f̂XN (t)(x) = fN,MX (x, t). For the time t = 1.5, the numerical estimates f̂XN (t)(x)
are displayed in Figure 13 (left plot). Observe that the computed density functions are
completely different to those of the previous examples: they are discontinuous, in fact step
functions, mainly due to the discontinuities in fY1 . This example highlights the ability of
our method to capture discontinuities. The analysis of the convergence is completed with
the centered plot from Figure 13 and Table 5, where the consecutive differences δεN(x, t)
(see (5.1)) and their norms ∆εN(t) (see (5.2)) are reported, respectively. Table 5 considers
times t = 0.5, 1 and 1.5. Finally, the last panel from Figure 13 plots logEN(t) (see (5.3))
as a function of N . The lower bound for the global error is the sampling error, which is
smaller than in the previous four examples, owing to the larger number of samples considered.
Comparing the last plot from Figure 13 with the corresponding figures from the previous four
examples, the non-monotonic decay of the error is also more pronounced for the three times.
The discontinuity in the graph of the target distribution fX(t)(x) can explain the highly
non-monotonic decay with the truncation order. Moreover, fY1 is not Lipschitz continuous,
so the exponential convergence rate discussed in Remark 3.8 is not applicable in the present
example. Finally, as for the other examples, the truncation order needed to reduce the error
to the sampling contribution increases as we move away from the origin t0 = 0. This behavior
may pose severe challenges for large times t.
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Figure 13. In the left plot, graphical representations of the Monte Carlo
estimates f̂XN (t)(x) at t = 1.5, with orders of truncation N as indicated. In the

center plot, differences in consecutive estimates δεN(x, t) (see (5.1)) at t = 1.5.
In the last plot, error EN(t) (see (5.3)), for different times as indicated. This
figure corresponds to Example 5.5.

N = 2 N = 3 N = 4 N = 5 N = 6
t = 0.5 0.833333 0.678571 0.140704 0.0280760 0.0190810

N = 7 N = 8 N = 9 N = 10 N = 11
t = 1 0.785425 0.0767401 0.187360 0.0665995 0.00866170

N = 15 N = 16 N = 17 N = 18 N = 19
t = 1.5 0.331941 0.0569325 0.0732120 0.0390644 0.00346696

Table 5. Norm ∆εN(t) of differences in consecutive estimates (see (5.2)) at
different times t and truncation orders N . This table corresponds to Exam-
ple 5.5.
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6. Control variates method: Computational aspects and numerical analysis

In Section 4 we saw that the estimation error is split into two contributions: bias error
caused by the Fröbenius method and statistical error due to using a finite number M of
samples. The statistical error, denoted as EN,M(x, t) = fXN (t)(x) − fN,MX (x, t), has mean
zero and variance σ2

N(x, t)/M asymptotically with M , where σ2
N(x, t) is defined by (4.1)

(assuming that σ2
N(x, t) < ∞). Thus, the Monte Carlo error depends on the sample length

M and on the variance of the estimator.
Variance reduction techniques aim at improving the Monte Carlo estimates for a given

computational effort [49]. In what follows, we describe the control variates method applied
for this setting. Let

ZN(x, t) = fY0

(
x− Y1S

N
1 (t)

SN0 (t)

)
1

|SN0 (t)|
,

such that fXN (t)(x) = E[ZN(x, t)] and σ2
N(x, t) = V[ZN(x, t)]. Let SN0(t) be the control

variate constructed from the power series SN0
0 (t) and/or SN0

1 (t) truncated at level N0 < N .
The statistics of SN0(t) can be exactly computed with no difficulties. Indeed, SN0(t) is
just a polynomial in t, so its statistical moments are calculated using the linearity of the
expectation and the precomputed moments of the random inputs A0, . . . , AN0 , B0, . . . , BN0 .
Let τN0(t) = E[SN0(t)]. Let

ZN,∗(x, t) = ZN(x, t) + c∗(x, t)
(
SN0(t)− τN0(t)

)
(6.1)

be an unbiased estimator of fXN (t)(x), where c∗(x, t) is a function that minimizes the variance

V[ZN,∗(x, t)] = V[ZN(x, t)] + (c∗(x, t))2 V[SN0(t)] + 2c∗(x, t)Cov[ZN(x, t), SN0(t)].

The function c∗(x, t) is usually referred to as the control coefficient. It is easy to see that

c∗(x, t) = −Cov[ZN(x, t), SN0(t)]

V[SN0(t)]
. (6.2)

The variance of the new estimator results

V[ZN,∗(x, t)] =
(

1− ρ2
ZN (x,t),SN0 (t)

)
V[ZN(x, t)] < V[ZN(x, t)],

where ρZN (x,t),SN0 (t) ∈ (−1, 1) is the correlation coefficient.

From the computational viewpoint, (6.2) is calculated as follows: the variance of SN0(t)
from the denominator is determined exactly, as previously explained; whereas the covariance
from the numerator is not available in general and is estimated by executing crude Monte
Carlo simulation, using a moderate number of realizations. Once (6.2) is estimated, a crude
Monte Carlo procedure, similar to that from Algorithm 1, is conducted for ZN,∗(x, t) (6.1).
The steps are briefly described in Algorithm 2. We do not explicitly write the parts corre-
sponding to crude Monte Carlo procedures, as they were already detailed in Algorithm 1.
Here we recommend to set numeric values for t and x, otherwise the computational burden
is prohibitive.

Algorithm 2 is more efficient than Algorithm 1, as the variance of the Monte Carlo estima-
tor has been lowered. In numerical computations, this entails several consequences. Suppose
that the number M of realizations is fixed, and we vary the truncation order N . The error
decreases exponentially with N until the sampling error is reached. The variance reduction
technique allows for a lower sampling error for the same sample length M , so the exponential
decay of the error with N is prolonged. On the other hand, suppose that N is fixed and
M varies. In log-log scale, the Monte Carlo error is approximately a line with slope −1/2;



24 MARC JORNET, JULIA CALATAYUD, OLIVIER P. LE MAÎTRE, JUAN CARLOS CORTÉS

Algorithm 2 Estimation of fXN (t)(x) via a control variates method.

Inputs: t0; N0 < N ; fY0 ; probability distribution of A0, . . . , AN , B0, . . . , BN , Y1; control
variate SN0(t); and number M of realizations.

1: Calculate τN0(t)← E[SN0(t)], and V[SN0(t)] . Exact
2: Crude Monte Carlo simulation for Cov[ZN(x, t), SN0(t)] .

Low number of samples � M ;
Analogous to Algorithm 1

3: c∗(x, t)← − Ĉov[ZN (x,t),SN0 (t)]

V[SN0 (t)]
. See (6.2)

4: Crude Monte Carlo simulation for E[ZN,∗(x, t)] . See (6.1); Analogous to Algorithm 1

5: Return fN,MX (x, t)← Ê[ZN,∗(x, t)] . Approximation of fXN (t)(x)

the control variates method translates the error line lower according to the difference of the
logarithms of the standard deviations of the estimators ZN(x, t) and ZN,∗(x, t). Obviously,
the performances depend on the particular random numbers generated.

Example 6.1. The setting is the same as Example 5.1: A(t) = A0 + A1t and B(t) =
B0 + B1t, where A0 = 4, A1 ∼ Uniform(0, 1), B0 ∼ Gamma(2, 2)|[0,4], B1 ∼ Bernoulli(0.35),
Y0 ∼ Normal(2, 1) and Y1 ∼ Poisson(2), all being independent random variables. The goal
of this example is to show that the control variates method entails a lower statistical error.
Due to the previous theoretical exposition, this fact is generalizable to any other situation.

We choose as control variate SN0(t) = SN0
0 (t), N0 = 10. The covariance Cov[ZN(x, t), SN0(t)]

is estimated by using crude Monte Carlo simulation, with 2500 realizations. Given M =
20, 000, the output function fN,MX (x, t) is denoted as f̂XN (t)(x). In Table 6, we tabulate the

differences in consecutive (in N) estimates, ∆εN(t), defined in (5.2). For t = 1.5, the results
for both Algorithms 1 and 2 are reported, for comparison. Notice that, while the consecutive
differences start to stabilize when N ≥ 14 for the crude Monte Carlo algorithm, they keep
decreasing for the control variates method. This can be visually observed in Figure 14. In
the first panel, we report the errors EN(t) defined by (5.3) (we set L = 30). The semi-log
plot shows exponential decay with N until the statistical error is attained. For the simple
Monte Carlo approach, the decay stops and stabilizes earlier than for the control variates
method. The second panel of the figure presents, for N = 20 fixed, how the statistical
error MCEP (t) decreases with the sample length P , see (5.5). The log-log plot reflects the

decrease rate O(1/
√
P ); the control variates method has lower constant corresponding to O

and becomes more efficient as P grows.

N = 11 N = 12 N = 13 N = 14 N = 15
Crude Monte Carlo 0.348643 0.180075 0.0721679 0.0320314 0.0198364

Control variates 0.32902 0.171683 0.0769344 0.0296144 0.00371231

Table 6. Norm ∆εN(t = 1.5) of differences in consecutive estimates
(see (5.2)) for different truncation orders N , for the crude Monte Carlo and
the control variates methods. This table corresponds to Example 6.1.

We finish this example by showing in Figure 15 the correlation ρ(x, t) = ρZN (x,t),SN0 (t) and
the control coefficient c∗(x, t), for N = 20, N0 = 10 and t = 1.5. Observe that the correlation
coefficient lies within (−1, 1) for all x. The variance reduction in the pointwise estimation
of the density at x depends on the magnitude of the correlation coefficient. On the other
hand, the control coefficient is non-negligible on the interval (−1, 5), approximately, which
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Figure 14. Left: error EN(t = 1.5) (see (5.3)). Right: sampling error
MCEP (t = 1.5) (see (5.5)) with the number of realizations P . This figure
corresponds to Example 6.1.

corresponds to the domain where the density is also not negligible, see the third panel from
Figure 1.
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Figure 15. Left: correlation coefficient. Right: control coefficient. This
figure corresponds to Example 6.1.

7. Conclusions and perspectives

In this paper, we address the analysis of the random non-autonomous second order linear
differential equation. When the data A(t) and B(t) are given by random power series on
(t0 − r, t0 + r) in L∞(Ω), and the initial conditions Y0 and Y1 belong to L2(Ω), it is possible
to construct a random power series solution X(t) on (t0− r, t0 + r) in the mean square sense,
whose coefficients satisfy a random difference equation. This approach is the generalization
of the Fröbenius method to the random setting. The convergence rate of the power series of
X(t) is exponential for each time t, but not uniformly on the whole time domain (t0−r, t0+r).
For a fixed tolerance on the mean square error of X(t), the order of truncation of the power
series needs to be increased, in general, when |t− t0| grows.

We proved the existence of solution X(t) when A(t) and B(t) are bounded. In the un-
bounded case, we present in this paper two counterexamples of existence. In practice, the
hypotheses can be fulfilled by truncating unbounded random coefficients.

The probability density function of X(t) can be expressed as the expectation of a random
process Z(x, t), fX(t)(x) = E[Z(x, t)], using the law of total probability. A closed-form
expression for Z is derived in terms of the fundamental set by exploiting the linearity of the
system. However, to compute this expectation, one needs to perform a dimension reduction
of the problem, by truncating the series of the fundamental set used to express the solution
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X(t). Denoting XN(t), N ≥ 0, the truncation of X(t), we show that fXN (t)(x) converges to
fX(t)(x) pointwise as N → ∞ under certain conditions (regarding Nemytskii operators); in
some cases, an exponential convergence may be achieved for each t and x. The pointwise
convergence also implies convergence in Lp(R), 1 ≤ p < ∞. In particular, the convergence
in L1(R) is equivalent to the convergence in the total variation and the Hellinger distances,
which are instances of f -divergences.

From a numerical standpoint, the expectation defining fXN (t)(x) = E[ZN(x, t)] is com-
putable via a Monte Carlo sampling strategy. We propose a crude Monte Carlo algorithm
for that purpose, which estimates fXN (t)(x). This algorithm is implemented in the software
Mathematica R©, and it can be used to compute pointwise approximations of the density
function fX(t)(x). One key feature of the algorithm is that it handles discontinuity and non-
differentiability points of fX(t)(x) appropriately, without smoothing them out. To improve
the efficiency of the algorithm, several variance reduction methods can be conducted. We
employ the control variates method to lower the sampling error for the same computational
cost.

To the best of our knowledge, this paper is the first one to provide such analysis of random
second order linear differential equations. However, we point out certain limitations of our
methodology, which constitute potential avenues for future developments.

To start with, despite the exponential convergence rate, the approximations substantiated
on the Fröbenius method may deteriorate for large |t − t0|. This fact is inherent to Taylor
series-based methods and also plagues other types of stochastic computations, such as PC
expansions. Following [50], using random time-transformations may help to improve the
convergence of the Fröbenius method and mitigate this issue.

Another point requiring a more in-depth analysis is the ignorance of the specific values of
δ and µ. In particular, we showed that if the truncated processes from the fundamental set
vanish for some trajectories near the time t of interest, the numerical estimate of the density
becomes very noisy (see Example 5.3). This effect is due to the variance of ZN(x, t) that
may be very large or infinite, with a severely deteriorated Monte Carlo convergence in these
situations. We are currently exploring different strategies to sort out this issue, such as the
path-wise selection of the variable (Y0 or Y1) used in the expression of ZN(x, t), in order to
control its variance.

Efforts to weaken or modify the theoretical hypotheses and enlarge the applicability of our
method shall also be carried out. As an example, the extension of the method to the case of
Y0 and Y1 not absolutely continuous would also present a valuable achievement. Similarly, an
extension of the present methodology to linear systems of second order random differential
equations may be of great interest, while the application to other stochastic models of our
expertise on random expansions and density approximations could be interesting.

At the computational level, the Monte Carlo estimation of fXN (t)(x) introduces a sta-
tistical error since, in numerical computations, we are restricted to a finite number M of
realizations. Therefore, an error of order 1/

√
M is unavoidable, even for N very large. The

results presented in the paper have highlighted the crucial importance of bias and sampling
errors. In the future, it would be beneficial to rely on improved sampling strategies, such as
multilevel Monte Carlo [51,52], to balance the bias and sampling errors, while reducing the
computational cost of the Monte Carlo estimates of the density. This topic is the focus of
our current efforts.
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