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Abstract

An initial-boundary value problem with a Riemann-Liouville-Caputo space frac-
tional derivative of order α ∈ (1, 2) is considered, where the boundary conditions
are reflecting. A fractional Friedrichs’ inequality is derived and is used to prove that
the problem approaches a steady-state solution when the source term is zero. The
solution of the general problem is approximated using a finite difference scheme
defined on a uniform mesh and the error analysis is given in detail for typical solu-
tions which have a weak singularity near the spatial boundary x = 0. It is proved
that the scheme converges with first order in the maximum norm. Numerical re-
sults are given that corroborate our theoretical results for the order of convergence
of the difference scheme, the approach of the solution to steady state, and mass
conservation.

Keywords: Fractional differential equation, time-dependent problem,
Riemann-Liouville-Caputo fractional derivative, weak singularity, discrete
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1. Introduction

The problem considered in this paper is inspired by [1], which gives a lengthy
discussion of various types of fractional initial-boundary value problem and the
boundary conditions that are appropriate for each type. In particular, we shall focus
on the “Caputo fractional flux” and reflecting boundary conditions of [1, Section
6].

∗Corresponding author: m.stynes@csrc.ac.cn

Preprint submitted to Elsevier October 21, 2020



Set Ω := (0, L) and Q := Ω × (0,T ]. For (x, t) ∈ Ω and constant r > 0, define
the Riemann-Liouville integral operator Ir

x of order r by

Ir
xv(x, t) :=

1
Γ(r)

∫ x

s=0
(x − s)r−1v(s, t) ds.

Then for any positive constant β with n − 1 < β < n where n is a positive integer,
the Caputo fractional derivative of order β is defined by

Dβ
C,xv(x, t) := In−β

x
∂nv
∂xn (x, t).

Here we assume that the function v is such that the definitions make sense.
Let α be constant with 1 < α < 2. In this paper, we examine the initial-

boundary value problem

ut − Dα
RLC,xu = f for (x, t) ∈ Q, (1a)

u(x, 0) = φ(x) for x ∈ Ω, (1b)

Dα−1
C,x u(0, t) = Dα−1

C,x u(L, t) = 0 for t ∈ (0,T ], (1c)

where Dα
RLC,x is the Riemann-Liouville-Caputo fractional derivative of order α,

which is defined by

Dα
RLC,xu(x, t) :=

∂

∂x
Dα−1

C,x u(x, t) for x > 0 and 0 < t ≤ T.

This hybrid fractional derivative Dα
RLC,x has been suggested by several researchers,

from both modelling and mathematical viewpoints; see [8] for references. In [1]
the quantity Dα−1

C,x u is called the Caputo fractional flux.
The left boundary condition in (1c) is defined by

0 = Dα−1
C,x u(0, t) := lim

x→0+
Dα−1

C,x u(x, t).

It is suitable for certain physical models [3] and removes a troublesome singularity
from the solution u(x, t) at x = 0; see [1, 5, 8] and Remark 1 below. Furthermore,
both boundary conditions in (1c) are reflecting and ensure that mass is conserved;
see the discussion in [1].

Remark 1. In [8] it is shown that Dα−1
C,x u(0, t) = 0 in (1c) is equivalent to the

classical Neumann boundary condition ux(0, t) = 0 if Dα
RLC,xu(·, t) ∈ C[0, L]. Our

analysis in Sections 3 and 4 assumes that the solution u of problem (1) has this
regularity, so for convenience our numerical method will discretise ux(0, t) = 0
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instead of Dα−1
C,x u(0, t) = 0; but the other boundary condition Dα−1

C,x u(L, t) = 0
of (1c) cannot be simplified in the same way and must be handled directly.

Remark 2. For the function xβ with α − 1 < β < 1, one has [4, p. 193]

Dα−1
C,x xβ =

Γ(β + 1)
Γ(β − α + 2)

xβ−α+1 and
d
dx

xβ = βxβ−1.

Here β − α + 1 > 0 while β − 1 < 0, i.e., for these functions xβ, the boundary
condition Dα−1

C,x u(0, t) = 0 of (1c) does not imply the Neumann boundary condition
ux = 0, unlike the situation described in Remark 1. Thus replacing Dα−1

C,x u(0, t) = 0
by ux(x, 0) = 0 means we exclude functions u(x, t) that behave like a multiple
of xβ as x → 0 for some fixed value of t. But for such functions, in (1a) one has
Dα

RLC,xu(x, t) ∼ O(xβ−α) near x = 0 with β − α < 0, so we are merely excluding
certain singularities in the terms of the differential equation.

In [2, Proposition 19] it is proved that problem (1) with f ≡ 0 is well-posed
in the Banach space L1(0, L) for each value of t. We shall assume a reasonable
amount of smoothness of the solution — see equation (17) below. Our aim is to
approximate the solution u of problem (1) by a finite difference method whose
analysis requires these bounds on derivatives.

The structure of the paper is as follows. In Section 2 we discuss some proper-
ties of the solution u of problem (1). A fractional Friedrichs’ inequality for Caputo
fractional derivatives is established and is used to prove that u converges to the
steady state solution when f ≡ 0. A finite difference scheme for solving (1) on
a uniform mesh is defined in Section 3 and it is shown that it satisfies a discrete
comparison principle. In Section 4 this principle and an appropriate barrier func-
tion are used to prove that the solution of the finite difference scheme converges to
u with first order in the discrete maximum norm. Three numerical examples are
given in Section 5, to illustrate our theoretical results.

Notation: Denote by AC[0, L] the set of absolutely continuous functions on [0, L]
and by Lp(0, L) the usual Lebesgue space with norm ‖ · ‖LP(0,L). Throughout the
paper, C denotes a generic constant that can depend on the data of the problem (1)
but it is independent of the mesh used for its numerical solution. Note that C can
take different values in different places.

2. Some properties of the solution

In this section we first derive a Friedrichs’ inequality for Caputo derivatives
(Lemma 1). Hence, in Lemma 2, we prove convergence of the solution u to the
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constant steady-state solution
( ∫ L

x=0 φ(x) dx
)
/L in the special case when f ≡ 0.

This lemma implies uniqueness of the solution to (1) and stability of this solution
in terms of perturbations of the initial condition; see Corollary 1.

Lemma 1 (Friedrichs’ inequality for Caputo derivatives). Let β ∈ (0, 1). Suppose
that v ∈ AC[0, L] with

∫
Ω

v dx = 0 and ‖Dβ
C,xv‖L2(0,L) < ∞. Then

‖v‖L2(0,L) ≤
Lβ

Γ(β + 1)
‖Dβ

C,xv‖L2(0,L). (2)

Proof. For all x ∈ (0, L], by [4, Theorem 3.8] one has

z(x) := v(x) − v(0) = (Iβx Dβ
C,xv)(x) = (ωβ ∗ Dβ

C,xv)(x),

where ∗ denotes convolution and ωβ(x) := xβ−1/Γ(β). Hence, similarly to [6,
Lemma 2.6], we get

‖z‖L2(0,L) = ‖ωβ ∗ Dβ
C,xv‖L2(0,L)

≤ ‖ωβ‖L1(0,L)‖D
β
C,xv‖L2(0,L)

=
Lβ

Γ(β + 1)
‖Dβ

C,xv‖L2(0,L), (3)

using Young’s inequality for convolutions. But

‖z‖2L2(0,L) =

∫ L

x=0

[
v2(x) − 2v(0)v(x) + v2(0)

]
dx = ‖v‖2L2(0,L) + Lv2(0),

since
∫

Ω
vdx = 0. Thus, (3) implies (2).

Remark 3. If v ∈ AC[0, L] and 0 < β < 1, then ‖Dβ
C,xv‖Lp(0,L) < ∞ for 1 ≤ p < 1/β

by [4, Lemma 2.12]. Thus in Lemma 1 the hypothesis v ∈ AC[0, L] implies the
hypothesis ‖Dβ

C,xv‖L2(0,L) < ∞ when β < 1/2.

The next lemma shows that when f ≡ 0, the solution of problem (1) converges
(in the L2(0, L) sense) to the steady-state solution as t → ∞. A related result
was obtained in [1, Appendix] (see Remark 5 below), but using a very technical
argument. Our simpler proof is based on the Friedrichs’ inequality of Lemma 1.

Lemma 2. Assume that f ≡ 0 in (1). Assume also that the solution of problem (1)
satisfies u(x, ·) ∈ AC[0,T ] for each x and ux(·, t) ∈ AC[0, L] for each t. Then∥∥∥∥u(x, t) −

1
L

∫ L

x=0
φ(x) dx

∥∥∥∥
L2(0,L)

→ 0 as t → ∞.

4



Proof. Set

v(x, t) = u(x, t) −
1
L

∫ L

x=0
φ(x) dx .

Then

vt − Dα
RLC,xv = 0 for (x, t) ∈ Q, (4a)

v(x, 0) = φ(x) −
1
L

∫ L

x=0
φ(x) dx for x ∈ (0, L), (4b)

Dα−1
C,x v(0, t) = Dα−1

C,x v(L, t) = 0 for t ∈ (0,T ]. (4c)

Observe that v has the additional property that∫ L

x=0
v(x, 0) dx = 0.

Note first that mass is conserved, i.e., for each t we have∫ L

x=0
v(x, t) =

∫ L

x=0
v(x, 0) = 0; (5)

to see this, integrate vt − Dα
RLC,xv = 0 over [0, L] × [0, t] and use (4c) to eliminate

the x-derivative terms.
Let t ∈ [0,T ] be arbitrary. Let k be a constant that is chosen later. Multi-

ply (4a) by ektv(x, t) then integrate over [0, L]× [0, t]. Using ektvvt = ekt(v2)t/2 and
integration by parts in time and in space, we get

0 =
1
2

∫ L

x=0

[
ektv2(x, t) − v2(x, 0)

]
dx −

1
2

∫ t

s=0
keks

∫ L

x=0
v2(x, s) ds dx

+

∫ t

s=0
eks
∫ L

x=0
vx(x, s)Dα−1

C,x v(x, s) dx ds. (6)

These integrations by parts are justified since by hypothesis v(x, ·) ∈ AC[0,T ] for
each x and vx(·, t) ∈ AC[0, L] for each t, so Dα−1

C,x v(·, t) = I2−α
x vx(·, t) ∈ AC[0, L]

by [9, Lemma 2.3]. But by [10, Lemma 3.1] one has∫ L

x=0
vx(x, s)Dα−1

C,x v(x, s) dx =

∫ L

x=0
vx(x, s)(I2−α

x vx)(x, s) dx

≥

[
cos

(2 − α)π
2

] ∫ L

x=0

(
I1−α/2

x vx
)2

(x, s) dx
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=

[
cos

(2 − α)π
2

] ∫ L

x=0

(
Dα/2

C,x v
)2

(x, s) dx. (7)

As vx(·, t) ∈ AC[0, L] for each t, one has Dα/2
C,x v(·, t) =

(
I1−α/2

x vx
)

(·, t) ∈ C[0, L]
for each t, by [9, Lemma 2.3]. Consequently ‖Dα/2

C,x v(·, t)‖L2(0,L) < ∞. Recalling (5),
we can apply Lemma 1 with β = α/2 to v(x, s) for each s. This gives∫ L

x=0
v2(x, s) dx ≤

Lα

[Γ (1 + α/2)]2

∫ L

x=0

(
Dα/2

C,x v
)2

(x, s) dx. (8)

Now choose

k = 2
[

cos
(2 − α)π

2

]
[Γ (1 + α/2)]2

Lα
. (9)

Then (7), (8) and (9) yield

k
2

∫ L

x=0
v2(x, s) dx ≤

∫ L

x=0
vx(x, s)Dα−1

C,x v(x, s) dx

for each s. Substituting this inequality into (6) gives

1
2

ekt
∫ L

x=0
v2(x, t) dx ≤

1
2

∫ L

x=0
v2(x, 0) dx for each t,

i.e.,
‖v(·, t)‖L2(0,L) ≤ e−kt/2‖v(·, 0)‖L2(0,L) for each t. (10)

Thus ‖v(·, t)‖L2(0,L) decays exponentially to 0 as t → ∞, and we are done.

Remark 4. Suppose that L = 1. From its definition in (9), we see that k increases
as α increases (for 1 < α < 2). Then inequality (10) in our proof of Lemma 2 hints
that an increase in α will speed up the convergence of the solution to steady state.
This surmise is borne out later by our numerical Example 3 of Section 5.

Remark 5. In [1, Appendix] it is shown that if in (1) with f ≡ 0 the boundary
condition at x = 0 is the absorbing condition u(0, t) = 0 and at x = L one has
u(L, t) = 0 or Dα−1

C,x (L, t) = 0 for 0 < t ≤ T, then the solution u(x, t) converges
(in the sense of Lp(0, L) with 1 ≤ p < ∞) exponentially fast to zero as t → ∞.
Our proofs of Lemmas 1 and 2, with very slight modifications, yield this result
for L2(0, L). Hölder’s inequality then implies the result also for Lp(0, L) when
1 ≤ p ≤ 2.

The result is also true if u(L, t) = 0 and either u(0, t) = 0 or Dα−1
C,x (0, t) = 0

for 0 < t ≤ T; the proof is essentially similar to the case above — one exploits the
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adjoint property [6, Property A.2] of the left and right Riemann-Liouville fractional
integrals in L2(0, L).

Corollary 1 (Stability and uniqueness of solution). Let u1 and u2 be two solutions
of (1) with respective initial conditions φ1 and φ2. Assume that u1 and u2 satisfy
the hypotheses of Lemma 2. Then

‖(u1 − u2)(·, t)‖L2(0,L) ≤ e−kt/2‖φ1 − φ2‖L2(0,L) for t ∈ [0,T ]. (11)

In addition, if problem (1) has a solution, then the solution is unique.

Proof. Inequality (11) is a consequence of (10). Uniqueness of the solution of (1)
follows immediately.

3. Finite difference scheme

We shall use a uniform mesh on [0, L] × [0,T ]. Let M and N be positive
integers. Set h = L/N and τ = T/N. Set x j = jh for j = 0, 1, . . . ,M and t j = jτ for
j = 0, 1, . . . ,N.

To discretise the spatial derivative in (1a) we follow [8], where the two-point
boundary value problem corresponding to (1a) was considered. The time derivative
in (1a) is discretised by the backward Euler method.

To discretise the boundary condition (1c) at x = 0, recall from [8, Section 2]
that Dα−1

C,x u(0, t) = 0 implies that ux(0, t) = 0 if Dα
RLC,xu(·, t) ∈ C[0, L]. From now

on, we assume that the solution u of problem (1) has this regularity, and then the
boundary condition ux(0, t) = 0 is approximated by a 2-point divided difference.

Our finite difference scheme is:

LM,Nun
m := D−t un

m − D+
x Dα−1

L1,xun
m = f (xm, tn) for 0 < m < M, 0 < n ≤ N, (12a)

u0
m = φ(xm) for 0 ≤ m ≤ M, (12b)

−D+
x un

0 = 0, Dα−1
L1,xun

M = 0 for 0 < n ≤ N, (12c)

where un
m is the solution of (12) at the point (xm, tn). In (12a) and (12c), the opera-

tors D−t and D+
x denote backward and forward divided differences:

D−t Zn
m :=

Zn
m − Zn−1

m

τ
, D+

x Zn
m :=

Zn
m+1 − Zn

m

h
.
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In (12c), Dα−1
L1,x is the standard L1 discretisation of the Caputo derivative Dα−1

C,x , viz.,

Dα−1
L1,xZn

m :=
1

hα−1Γ(3 − α)

m−1∑
k=0

(Zn
k+1 − Zn

k )dm−k

=
1

hα−1Γ(3 − α)

[
Zn

md1 − Zn
0dm +

m−1∑
k=1

Zn
k (dm−k+1 − dm−k)

]
, (13)

for m = 1, 2, . . . ,M, where dk := (2 − α)
∫ k

s=k−1 s1−α ds for k = 1, 2, . . . ,M.
Thus,

−D+
x (Dα−1

L1,xZn
m) =

1
h

(
Dα−1

L1,xZn
m+1 − Dα−1

L1,xZn
m
)

= −
1

hαΓ(3 − α)

[
m∑

k=0

(Zn
k+1 − Zn

k )dm+1−k −

m−1∑
k=0

(Zn
k+1 − Zk)dm−k

]

= −
1

hαΓ(3 − α)

[
(Zn

1 − Zn
0)dm+1 +

m−1∑
k=0

(Zn
k+2 − 2Zn

k+1 + Zn
k )dm−k

]

= −
1

hαΓ(3 − α)
[
(Zn

1 − Zn
0)dm+1

]
− Dα

L2,xZn
m,

where Dα
L2,x is the L2 discretization [12, equation (4.1)] of the Caputo fractional

derivative Dα
C,xu(xn, tm). Rearranging terms, one has

−D+
x (Dα−1

L1,xZn
m) = −

1
hαΓ(3 − α)

[
Zn

m+1d1 + Zn
m(d2 − 2d1)

+Zn
0(dm − dm+1) +

m−1∑
k=1

Zn
k (dm−k+2 − 2dm−k+1 + dm−k)

]
. (14)

We shall prove that the scheme (12) satisfies a discrete comparison principle.
This property will be used to analyse the convergence of its solution {un

m} to the
solution u of problem (1).

Lemma 3 (Discrete comparison principle). Let {Zn
m}

M,N
m=0,n=0 be a mesh function. If

Z0
m ≥ 0 for 0 ≤ m ≤ M,

−D+Zn
0 ≥ 0 and Dα−1

L1,xZn
M ≥ 0 for 0 < n ≤ N,

LM,NZn
m ≥ 0 for 0 < m < M and 0 < n ≤ N,

then Zn
m ≥ 0 for 0 ≤ m ≤ M and 0 ≤ n ≤ N.
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Proof. Set Zn = (Zn
0 , . . . ,Z

n
M)T for each n. We use induction on n (cf. [11, Lemma

3.12]) to prove that Zn ≥ 0, i.e., that Zn
m ≥ 0 for each m. By hypothesis Z0 ≥ 0.

Assume that Zn ≥ 0 for some n ∈ {0, 1, . . . ,N − 1}; we wish to prove that Zn+1 ≥ 0.
The inequalities LM,NZn+1

m ≥ 0 for 0 < m < M, −D+Zn+1
0 ≥ 0 and Dα−1

L1,xZn+1
M ≥ 0

can be written in the form

LM,NZn+1 = AZn+1 − BZn ≥ 0

where A is a lower Hessenberg matrix whose entries are given below, and B is
the diagonal matrix with diagonal entries {0, 1/τ, 1/τ, . . . , 1/τ, 0}. By the induction
hypothesis, we have

AZn+1 ≥ 0. (15)

We now prove that A−1 > 0. The entries of the matrix A = (ai j)M
i, j=0 associated

with the boundary condition at x = 0 are

a00 = 1/h, a01 = −1/h, a0 j = 0 for j = 2, 3, . . . ,M − 1.

For 0 < i < M, recalling (14), the entries of the ith row of the matrix A are

ai0 =
di+1 − di

hαΓ(3 − α)
< 0

ai j =
−di− j + 2di− j+1 − di− j+2

hα Γ(3 − α)
< 0 for j = 1, 2, . . . , i − 1,

aii =
1
τ

+
2d1 − d2

hα Γ(3 − α)
> 0, ai,i+1 =

−d1

hα Γ(3 − α)
< 0,

ai j = 0 for j = i + 2, i + 3, . . . ,M

(the second inequality, ai j < 0, is verified in [12, Section 4.1]). If i = M, then (13)
yields

aM0 = −
dM

hα−1Γ(3 − α)
< 0, aM j =

dM− j+1 − dM− j

hα−1Γ(3 − α)
< 0 for j = 1, 2, . . . ,M − 1,

aMM =
d1

hα−1Γ(3 − α)
> 0.

Thus, the diagonal entries of A are positive and its off-diagonal entries are non-
positive. Furthermore, one has

M∑
j=0

a0 j = 0,
M∑
j=0

ai j =
1
τ
> 0 for 0 < i < M,

M∑
j=0

aM j = 0.
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It follows that A is an irreducibly diagonal dominant matrix [14, p.23]. Now [14,
Corollary 3.20, p.91] gives A−1 > 0. Thus, recalling (15), we get Zn+1 ≥ 0. This
completes the inductive step and the proof.

4. Error estimate for scheme

In this section an error bound for our difference scheme is derived. First, in
(17) we make an assumption on the behaviour of the derivatives of the solution u
that is motivated by considering the behaviour of steady-state solutions. This en-
ables truncation error bounds to be established for the scheme; see Section 4.2.
To convert these bounds to an error estimate for the computed solution, we shall
employ a barrier function whose construction is discussed in Section 4.3. Finally,
in Theorem 1, our error bound is obtained.

4.1. Bounds on derivatives

To prove convergence of the scheme (12), one needs a priori bounds on certain
derivatives of u. We shall assume these bounds in (17) below. To motivate them,
consider first a particular case of the steady version of the problem (1):

−Dα
RLCv(x) + bv(x) =

∑̀
i=0

ai

i!
xi for x ∈ (0, L), (16a)

Dα−1
C v(0) = 0, Dα−1

C v(L) = 0, (16b)

with constants ai for i = 0, 1, . . . , `, constant b > 0 and
∑`

i=0 |ai| , 0 (as otherwise
v ≡ 0.) By means of Laplace transforms, one finds that the solution of this problem
is (see [8] for a related calculation)

v(x) =

(∑`
i=0 aiLiEα,2+i(bLα)

bEα,2(bLα)

)
Eα,1(bxα) −

∑̀
i=0

aixα+iEα,1+i+α(bxα),

where Eδ,γ(z), for δ, γ, z ∈ R and δ > 0, denotes the two-parameter Mittag-Leffler
function defined by

Eδ,γ(z) =

∞∑
k=0

zk

Γ(δk + γ)
.
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If ` = 0, the solution of (16) is constant with v ≡ a0/b. Otherwise,

v(x) =

∑`
i=0 aiLiEα,2+i(bLα)

bEα,2(bLα)
+

xα

Γ(1 + α)

(∑`
i=0 aiLiEα,2+i(bLα)

Eα,2(bLα)
− a0

)
+ higher-order terms.

One sees that the derivatives of v satisfy |v(i)(x)| ≤ Cxα−i for i = 1, 2, . . ..
A similar bound is proved in [8, Corollary 2.1], where a two-point boundary

value problem with variable coefficients is examined, but with a different boundary
condition at x = L. This alteration of the boundary condition at x = L should not
modify significantly the behaviour of the derivatives of the solution, since any loss
of regularity occurs near x = 0.

For the time-dependent problem (1), one expects that the classical time deriva-
tive will not affect the behaviour of the spatial derivatives. Thus, we assume the
following bounds on the derivatives of the solution:∣∣∣∣∂ ju

∂t j (x, t)
∣∣∣∣ ≤ C for j = 0, 1, 2 and

∣∣∣∣∂iu
∂xi (x, t)

∣∣∣∣ ≤ Cxα−i for i = 1, 2, 3, (17)

for all (x, t) ∈ Q.

4.2. Truncation error estimates

It is easy to see that |D−t u(xm, tn)−ut(xm, tn)| ≤ Cτ. Next, [8, Lemma 4.1] gives

|LM,N(un
m − u(xm, tn))| ≤ Chx−1

m + Cτ,

|D+
x (u(0, tn) − un

0)| ≤ Chα−1.

It remains to bound the truncation error at xM = L.

Lemma 4. Assume that the derivatives of the solution u of the problem (1) sat-
isfy (17). Then there exists a constant C such that∣∣Dα−1

L1,xu(xM, tn) − Dα−1
C,x u(xM, tn)

∣∣ ≤ Chmin{α,3−α} ≤ Ch for n = 1, 2, . . . ,N.

Proof. The truncation error for this term is

Dα−1
L1,xu(xM, tn) − Dα−1

C,x u(xM, tn) =

M−1∑
k=0

TMk,
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where

TMk :=
1

Γ(2 − α)

∫ xk+1

s=xk

(xM − s)1−α
[

u(xk+1, tn) − u(xk, tn)
h

−
∂u
∂s

(s, tn)
]

ds.

Proceeding similarly to the derivation of [13, equations (5.13) and (5.14)] but us-
ing (17), we get

|TM0| ≤ Chα and |TM,M−1| ≤ Ch3−α.

If 0 < k < M − 1, by imitating [13, equation (5.6)] one has

|TMk| ≤ Ch2
(

max
s∈[xk ,xk+1]

|uxx(s, tn)|
)∫ xk+1

s=xk

(xM − s)−αds

≤ Ch3xα−2
k (xm − xk+1)−α

≤ Chkα−2[M − (k + 1)]−α,

from (17). Using this bound for |TMk| like the derivation of [13, equations (5.9) and
(5.10)], one obtains

dM/2e−1∑
k=1

|TMk| ≤ Ch2 and
M−2∑

k=dM/2e−1

|TMk| ≤ Ch3−α.

Adding all these bounds, we get∣∣Dα−1
L1,xu(xM, tn) − Dα−1

C,x u(xM, tn)
∣∣ ≤ Chmin{α,3−α} ≤ Ch.

4.3. Discrete barrier function

To obtain a bound on the error in the solution computed by the finite difference
method (12), we shall use a barrier function. That is, on the grid {(xm, tn)}M,Nm,n=0 we

construct a non-negative discrete function
{

Ψ̃n
m
}M,N

m=0,n=0 that satisfies

|LM,N(u(xm, tn) − un
m)| ≤ LM,NΨ̃n

m for 0 < m < M and 0 < n ≤ N, (18a)

| − D+
x (u(0, tn) − un

0)| ≤ −D+
x Ψ̃n

0 for 0 < n ≤ N, (18b)

|Dα−1
L1,x(u(L, tn) − un

M)| ≤ Dα−1
L1,xΨ̃

n
M for 0 < n ≤ N. (18c)

Then, applying Lemma 3 (discrete comparison principle) to Ψ̃n
m ± (un

m − u(xm, tn)),
one gets

|un
m − u(xm, tn)| ≤ Ψ̃n

m for all m and n.

12



The mesh function {Ψ̃n
m}

M,N
m=0,n=0 is called a discrete barrier function.

To construct this discrete barrier function, we start from [8, Section 4], where
the following discrete barrier function was used (for a two-point boundary value
problem equivalent to our steady-state problem, but with a different boundary con-
dition at x = L):

Ψm = C1h| ln h|
(

L| ln h|−1+α−1 − Tm

)
for 0 ≤ m ≤ M, (19)

where C1 is a user-chosen constant and {Tm}
M
m=0 is defined by

Dα−1
L1,xTm =

1
Γ(2 − α)

x| ln h|−1

m for m ≥ 1, T0 = 0.

Now 0 ≤ Tm ≤ x| ln h|−1+α−1
m for 0 ≤ m ≤ M (see [8, equation (4.14)]), so (19)

implies that Ψm ≥ 0 for 0 ≤ m ≤ M. In addition, in [8] it is proved that

−D+
x Ψ0 = C1(2 − α)e−1hα−1| ln h|, (20)

−D+
x Dα−1

L1,xΨm ≥
C1he−1

2Γ(2 − α)
x−1

m , (21)

Dα−1
L1,xΨM = −

C1h| ln h|
Γ(2 − α)

. (22)

But Dα−1
L1,xΨM < 0, so this mesh function cannot satisfy condition (18c). Thus,

we shall modify it by adding another mesh function {Bn
m}

M,N
m=0,n=0 to deal with the

boundary condition at x = L and also the term |D−t u(xm, tn) − ut(xm, tn)|, in order
that (18a), (18b) and (18c) are all satisfied.

Define {Rm}
M
m=0 by

Dα−1
L1,xRm = (L − αxm)Γ(α) for m = 1, 2, . . . ,M, R0 = 0. (23)

Since Dα−1
C,x (Lxα−1 − xα) = (L − αx)Γ(α), we see that {Rm}

M
m=0 is the approximation

to {Lxα−1
m − xαm} that is computed by the L1 scheme. Hence, an inspection of [13,

Lemma 5.2 and Theorem 5.3] shows that

|Rm − (Lxα−1
m − xαm)| ≤ Chα−1 for all m,

where C is independent of M. It follows that

max
0≤m≤M

|Rm| ≤ C2,

where the constant C2 is independent of M.

13



Consider the mesh function

Bn
m := C3(τ + h| ln h|)(1 + tn) −C4h| ln h|Rm

where C3 and C4 are positive constants that we shall specify later. Define

Ψ̃n
m := Ψm + Bn

m = C1h| ln h|(L| ln h|−1+α−1 − Tm) + Bn
m for all m and n.

This mesh function will be our barrier function.

4.4. Error bound for scheme
We can now prove an error estimate for the solution computed by our scheme.

Theorem 1. Assume that the derivatives of the solution u of the problem (1) sat-
isfy (17). Assume that h < L/α. Choose the constants C3 and C4 to satisfy

C4 >
C1

L(α − 1)Γ(2 − α)Γ(α)
and C3 ≥ C4 max{Γ(α + 1),C2}. (24)

Then there exists a constant C such that

max
0≤m≤M
0≤n≤N

|un
m − u(xm, tn)| ≤ C(τ + h| ln h|),

where {un
m}

M,N
m=0,n=0 is the solution of the finite difference scheme (12).

Proof. To prove that
{

Ψ̃n
m
}M,N

m=0,n=0 is a barrier function for the errors {|un
m−u(xm, tn)|},

note first that (24) implies that

Bn
m ≥ h| ln h|(C3 −C4Rm) ≥ 0 for all m and n.

As Ψm ≥ 0, clearly Ψ̃n
m = Ψm + Bn

m ≥ 0 for all m and n.
Consider the boundary condition at x = L. From (23) and 1 < α < 2 we have

Dα−1
L1,xRM = L(1 − α)Γ(α) < 0. Hence, Dα−1

L1,xBn
M = −C4h| ln h|Dα−1

L1,xRM > 0, and

Dα−1
L1,xΨ̃

n
M = Dα−1

L1,xΨM + Dα−1
L1,xBn

M = h| ln h|
[

C4L(α − 1)Γ(α) −
C1

Γ(2 − α)

]
> 0,

from the choice of C4 in (24).
Now consider the boundary condition at x = 0. We need to compute R1 in

order to ascertain the sign of D+
x Bn

0. From the definition of the L1 scheme, one has

Dα−1
L1,xR1 =

1
hα−1Γ(3 − α)

(R1 − R0)d1 =
R1

hα−1Γ(3 − α)
.

14



Hence R1 = hα−1Γ(3 − α)Γ(α)(L − αh) > 0, where we used (23). Now

−D+
x Bn

0 = C4h| ln h|
R1 − R0

h
= C4| ln h|R1 > 0.

Using this inequality and (20) yields

−D+
x Ψ̃n

0 = −D+
x Ψ0 − D+

x Bn
0 ≥ Chα−1| ln h|.

Finally, at the interior mesh points, recalling the definition of {Rm}
M
m=0 in (23),

one obtains

LM,N Bn
m = C3(τ + h| ln h|)

tn+1 − tn
τ

+ C4h| ln h|D+
x Dα−1

L1,xRm

= C3(τ + h| ln h|) + C4Γ(α)h| ln h|
(L − αxm+1) − (L − αxm)

h
= C3τ + h| ln h|(C3 −C4Γ(α + 1))

≥ C3τ,

where (24) was used. From this inequality and (21) one has

LM,NΨ̃n
m = LM,N Bn

m + LM,NΨm ≥ C3τ +
C1he−1

2Γ(2 − α)
x−1

m .

That is, the mesh function Ψ̃n
m satisfies (18a), (18b) and (18c). Consequently

|un
m − u(xm, tn)| ≤ Ψ̃n

m ≤ C(τ + h| ln h|) for all m and n,

as desired.

Remark 6. If in the problem (1) a Dirichlet boundary condition were imposed at
x = L and in the scheme we set un

M = u(L, tn) for n = 0, 1, . . . ,N, then the simpler
barrier function

Ψ̃n
m := C(τtn + Ψm)

can be used, where {Ψm}
M
m=0 is defined in (19). One then obtains the error estimate

max
0≤m≤M
0≤n≤N

|un
m − u(xm, tn)| ≤ C(τ + h| ln h|).

5. Numerical experiments

We present numerical results for three examples. In the first example, the exact
solution is known and satisfies the bounds (17); its numerical results illustrate the
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error estimates of Theorem 1. In the second example the exact solution is unknown,
so bounds on its partial derivatives are not available. Nevertheless, the results show
that the scheme (12) is convergent. In the third example, convergence to steady
state and mass conservation are discussed.

Example 1. Consider the problem

ut − Dα
RLC,xu = f (x, t) for (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = (−x2 + rxα) for x ∈ (0, 1),

Dα−1
C,x u(0, t) = Dα−1

C,x u(1, t) = 0 for t ∈ (0, 1],

where f (x, t) is chosen such that

u(x, t) = (1 + t3)(−x2 + rxα),

and the constant r is chosen so that the boundary conditions are satisfied:

Dα−1
C,x u(x, t) = (1 + t3)

(
−2

Γ(4 − α)
x3−α + rΓ(α + 1)x

)
so Dα−1

C,x u(0, t) = 0 and r = 2
Γ(4−α)Γ(α+1) yields

Dα−1
C,x u(1, t) = (1 + t3)

(
−2

Γ(4 − α)
+ rΓ(α + 1)

)
= 0.

In this example the solution u(x, t) is chosen to agree with the bounds on deriva-
tives stated in (17). The solution u(x, t) of Example 1 is approximated by the solu-
tion {un

m}
M,N
m=0,n=0 of the scheme (12). The maximum nodal errors are

EM,N := max
0≤m≤M
0≤n≤N

|un
m − u(xm, tn)|.

These values are used to compute the orders of convergence

pM,N := log2

(
EM,N

E2M,2N

)
.

In order to compute separate error estimates for the dependence of the error
on the spatial and temporal mesh widths, in the numerical experiments we take
one of the discretization parameters (M or N) smaller than the other one (N or
M). The values of EM,N and pM,N are given in Tables 1 and 2 where N = 4M
and M = 4N, respectively. In both tables one observes that (12) is a first-order
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convergent scheme, which is slightly better than the error estimate of Theorem 1.

Table 1: Example 1: Maximum nodal errors and orders of convergence

M=32 M=64 M=128 M=256 M=512 M=1024
N=128 N=256 N=512 N=1024 N=2048 N=4096

α = 1.2 4.164E-02 2.109E-02 1.063E-02 5.337E-03 2.675E-03 1.340E-03
0.982 0.989 0.993 0.996 0.998

α = 1.4 4.254E-02 2.178E-02 1.106E-02 5.590E-03 2.815E-03 1.414E-03
0.966 0.977 0.985 0.990 0.993

α = 1.6 4.042E-02 2.126E-02 1.104E-02 5.679E-03 2.901E-03 1.474E-03
0.927 0.945 0.959 0.969 0.977

α = 1.8 2.987E-02 1.641E-02 8.861E-03 4.722E-03 2.489E-03 1.301E-03
0.864 0.889 0.908 0.924 0.936

Table 2: Example 1: Maximum nodal errors and orders of convergence

M=64 M=128 M=256 M=512 M=1024 M=2048
N=16 N=32 N=64 N=128 N=256 N=512

α = 1.2 3.371E-02 1.681E-02 8.405E-03 4.205E-03 2.103E-03 1.052E-03
1.004 1.000 0.999 0.999 0.999

α = 1.4 3.234E-02 1.619E-02 8.115E-03 4.068E-03 2.038E-03 1.021E-03
0.998 0.996 0.996 0.997 0.998

α = 1.6 2.902E-02 1.478E-02 7.514E-03 3.809E-03 1.926E-03 9.712E-04
0.973 0.976 0.980 0.984 0.987

α = 1.8 2.067E-02 1.090E-02 5.716E-03 2.979E-03 1.544E-03 7.961E-04
0.924 0.931 0.940 0.948 0.956

Example 2. Consider the problem

ut − Dα
RLC,xu = 10 sin(2πx) for (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = −x3 + rx2 for x ∈ (0, 1),

Dα−1
C,x u(0, t) = Dα−1

C,x u(1, t) = 0 for t ∈ (0, 1],

where r = 3/Γ(4 − α).

Note that Dα−1
C,x u(0, 0) = Dα−1

C,x u(1, 0) = 0 by the choice of r.
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The exact solution of Example 2 is unknown, so we estimate the orders of con-
vergence by means of the two-mesh principle [7]: the scheme (12) is used to com-
pute solutions {un

m}
M,N
m=0,n=0 and {ûn

m}
2M,2N
m=0,n=0 on two uniform meshes {(xm, tn)}M,Nm=0,n=0

and {(x̂m, t̂n)}2M,2N
m=0,n=0 respectively. Since the meshes are uniform, one has xm = x̂2m

for m = 0, 1, . . . ,N and tn = t̂2n for n = 0, 1, . . . ,N. Use these solutions to calculate
the maximum two-mesh nodal difference

DM,N := max
0≤m≤M
0≤n≤N

∣∣un
m − û2n

2m

∣∣ ,
then estimate the orders of convergence by

qM,N := log2

(
DM,N

D2M,2N

)
.

Tables 3 and 4 display DM,N and qM,N for α = 1.2, 1.4, 1.6 and 1.8. We take
N = 4M in Table 3 so that the two-mesh nodal differences associated with the
spatial mesh width dominate the errors associated with the temporal mesh width.
In Table 4 we take M = 4N to see the temporal errors. These numerical results
show that the method (12) converges and the orders of convergence tend to 1 as M
and N increase, which agrees with the error estimate of Theorem 1.

Table 3: Example 2: Maximum two-mesh nodal differences and orders of convergence

M=32 M=64 M=128 M=256 M=512
N=128 N=256 N=512 N=1024 N=2048

α = 1.2 1.174E-01 6.370E-02 3.326E-02 1.701E-02 8.602E-03
0.882 0.937 0.968 0.983

α = 1.4 4.913E-02 2.627E-02 1.365E-02 6.977E-03 3.534E-03
0.903 0.945 0.968 0.981

α = 1.6 2.435E-02 1.325E-02 7.016E-03 3.650E-03 1.877E-03
0.877 0.918 0.943 0.959

α = 1.8 1.043E-02 5.905E-03 3.247E-03 1.749E-03 9.287E-04
0.820 0.863 0.892 0.913

The computed solution {un
m}

M,N
m=0,n=0 for N = M = 64 and α = 1.2, 1.6 is shown

in Figure 1; it does not exhibit steep gradients, which agrees with our assump-
tion (17) that ut and ux are bounded. In Figure 2 the discrete space derivative D−x un

m
for N = M = 64 is shown and a singularity near x = 0 is observed, which is
consistent with our implicit assumption in (17) that uxx(x, t) blows up at x = 0.

In the final example we illustrate Lemma 2 by showing convergence to a steady-
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Table 4: Example 2: Maximum two-mesh nodal differences and orders of convergence

M=64 M=128 M=256 M=512 M=1024
N=16 N=32 N=64 N=128 N=256

α = 1.2 1.394E-01 9.233E-02 5.444E-02 2.984E-02 1.566E-02
0.594 0.762 0.867 0.930

α = 1.4 7.552E-02 4.846E-02 2.790E-02 1.511E-02 7.893E-03
0.640 0.796 0.885 0.937

α = 1.6 5.099E-02 3.066E-02 1.731E-02 9.272E-03 4.811E-03
0.734 0.824 0.901 0.947

α = 1.8 3.737E-02 2.237E-02 1.241E-02 6.568E-03 3.389E-03
0.741 0.850 0.918 0.955
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Figure 1: Example 2: Computed solutions with the method (12) for N = M = 64 and α = 1.2, 1.6.

state solution.

Example 3. Consider the problem

ut − Dα
RLC,xu = 0 for (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = 50(x4 + rx3 + sx2) for x ∈ (0, 1),

Dα−1
C,x u(0, t) = Dα−1

C,x u(1, t) = 0 for t ∈ (0, 1],

where the constants r and s are chosen so that

Dα−1
C,x u(0, 0) = Dα−1

C,x u(1, 0) = 0 and
∫ 1

x=0
u(x, 0) = 0.

19



1

-5

0

D
- x u

mn

0.8

Time

0.5

5

0.6

Space

0.4
0.2

0 0

(a) Whole domain

0.15-8

-6

0.1

-4

1

-2

D
- x u

mn

0

2

Space

4

0.8

Time

0.6 0.050.4 0.2 00

(b) Zoom near x = 0

Figure 2: Example 2: Discrete spacial derivative for N = M = 64 and α = 1.2 in the whole domain
(left figure), with a zoom near x = 0 (right figure).

That is,

r =
4(4 − α)

α

(
1
5
−

4
(5 − α)(4 − α)

)
and s = −3

(
1
5

+
r
4

)
.

In Table 5 we give the two-mesh differences DM,N and the orders of conver-
gence qM,N for α = 1.2, 1.4, 1.6 and 1.8 with N = M. The computed orders of
converge again agree with Theorem 1.

Table 5: Example 3: Maximum two-mesh nodal differences and orders of convergence

M=32 M=64 M=128 M=256 M=512
N=32 N=64 N=128 N=256 N=512

α = 1.2 1.191E-01 7.605E-02 4.522E-02 2.546E-02 1.375E-02
0.647 0.750 0.829 0.888

α = 1.4 8.820E-02 5.416E-02 3.107E-02 1.694E-02 8.920E-03
0.704 0.801 0.876 0.925

α = 1.6 7.966E-02 4.855E-02 2.757E-02 1.492E-02 7.824E-03
0.714 0.816 0.886 0.931

α = 1.8 8.438E-02 5.113E-02 2.880E-02 1.552E-02 8.112E-03
0.723 0.828 0.892 0.936

In Figure 3 we display the computed solutions with the method (12) for N =

M = 64 and α = 1.2, 1.4, 1.6, 1.8. For each value of α, it is clear that for t suf-
ficiently large, the steady-state solution u(·, t) ≡ 0 predicted by Lemma 2 is ap-
proached. This steady-state solution conserves the mass of the initial condition.
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Figure 3: Example 3: Computed solutions with the method (12) for N = M = 64 and α =

1.2, 1.4, 1.6, 1.8.

For each n ∈ {0, 1, . . . ,N}, we approximate ‖u(·, tn)‖L2(0,1) by the composite
trapezoidal rule on {xm}

M
m=1, using the computed values {un

m}
M
m=1. These approx-

imate values of ‖u(·, tn)‖L2(0,1) are given in Figure 4 and it is observed that the
smaller α is, the later the steady state is reached; this agrees with our Remark 4.
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