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Abstract

We study quasi-Monte Carlo (QMC) methods for numerical integra-
tion of multivariate functions defined over the high-dimensional unit cube.
Lattice rules and polynomial lattice rules, which are special classes of
QMCmethods, have been intensively studied and the so-called component-
by-component (CBC) algorithm has been well-established to construct
rules which achieve the almost optimal rate of convergence with good
tractability properties for given smoothness and set of weights. Since the
CBC algorithm constructs rules for given smoothness and weights, not
much is known when such rules are used for function classes with differ-
ent smoothness and/or weights.

In this paper we prove that a lattice rule constructed by the CBC algo-
rithm for the weighted Korobov space with given smoothness and weights
achieves the almost optimal rate of convergence with good tractability
properties for general classes of smoothness and weights which satisfy
some summability conditions. Such a stability result also can be shown for
polynomial lattice rules in weighted Walsh spaces. We further give bounds
on the weighted star discrepancy and discuss the tractability properties
for these QMC rules. The results are comparable to those obtained for
Halton, Sobol and Niederreiter sequences.
Keywords: Quasi-Monte Carlo, Lattice rules, Polynomial lattice rules,
Stability, Tractability, Weighted star discrepancy.
MSC classifications: 11K38, 65C05, 65D30, 65D32.

1 Introduction

We study numerical integration of multivariate functions defined over the s-
dimensional unit cube [0, 1)s. For an integrable function f : [0, 1)s → R we
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denote the integral of f by

I(f) =

∫

[0,1)s
f(x) dx.

For an N -element set P ⊂ [0, 1)s, we consider approximating I(f) by

QP (f) =
1

N

∑

x∈P

f(x).

Such an equal-weight quadrature rule is called a quasi-Monte Carlo (QMC) rule.
We refer to [1–5] for comprehensive information on QMC rules.

For a Banach spaceW with norm ‖·‖W , the worst-case error by the algorithm
QP is defined by

ewor(P ;W ) := sup
f∈W

‖f‖W≤1

|I(f)−QP (f)| .

Our interest is then to construct a good point set P such that the algorithm
QP makes ewor(P ;W ) small for a given W . However, it is often difficult to
know whether one point set P constructed for a certain function space works
well for different function spaces as well. In this paper we show some positive
results on this question for lattice rules in weighted Korobov spaces and also for
polynomial lattice rules in weighted Walsh spaces.

Lattice rules and polynomial lattice rules are defined respectively as follows
(here and in what follows, we denote the set of positive integers by N):

Definition 1 (lattice rules). For N ∈ N, let z = (z1, . . . , zs) ∈ {1, . . . , N − 1}s.
An N -element lattice point set is given by

P (z) =
{({nz1

N

}

, . . . ,
{nzs

N

})

| n = 0, 1, . . . , N − 1
}

,

where {x} = x− ⌊x⌋ denotes the fractional part of a non-negative real numbers
x. The resulting QMC algorithm QP (z) is called a lattice rule with generating
vector z.

Definition 2 (polynomial lattice rules). For a prime b and m ∈ N, let p ∈ Fb[x]
be a polynomial of degree deg(p) = m over the finite field Fb of order b and let
q = (q1, . . . , qs) ∈ (Gm \ {0})s where we write Gm = {g ∈ Fb[x] : deg(g) < m}.
A bm-element polynomial lattice point set is given by

P (p, q) =

{(

νm

(

n(x)q1(x)

p(x)

)

, . . . , νm

(

n(x)qs(x)

p(x)

))

| n ∈ Gm

}

,

where we write

νm

(

∞
∑

i=w

tix
−i

)

=
m
∑

i=max(w,1)

tib
−i ∈ [0, 1).

The resulting QMC algorithm QP (p,q) is called a polynomial lattice rule with
modulus p and generating vector q.
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To simplify the notation, we hide the dependence of z (resp., q) on N (resp.,
m) in the following.

For s > 2, there is no known explicit construction, free from any computer
search or table lookup, of generating vectors z for lattice rules or q for polyno-
mial lattice rules. Instead, the so-called component-by-component (CBC) algo-
rithm, a greedy algorithm which iteratively searches for one component zj (or
qj) with earlier ones z1, . . . , zj−1 (or, q1, . . . , qj−1, respectively) kept unchanged,
has been well-established, see for instance [6–12] among many others.

After the seminal work of Sloan and Woźniakowski [13], it has been standard
to consider weighted function spaces when constructing point sets, where a set
of weight parameters is introduced in the definition of function spaces to play
a role in moderating the relative importance of different variables or groups of
variables. It can be shown under some conditions on the weights that the worst-
case error bound for good (polynomial) lattice rules depends only polynomially
on the dimension s, or even, that the error bound is dimension-independent,
see for instance [6, 7, 9, 14]. To prove such tractability results for lattice rules
or polynomial lattice rules, not only the smoothness parameter of the function
space but also a set of weight parameters are required as inputs in the CBC
algorithm. In general, it is unknown whether one QMC rule constructed by
the CBC algorithm for given smoothness and weights does also work well for
different smoothness and weights.

In this paper we prove that a lattice rule constructed by the CBC algorithm
for the weighted Korobov space with certain smoothness and weights achieves
the almost optimal rate of convergence with good tractability properties for
general classes of smoothness and weights which satisfy some summability con-
ditions. The result with respect to the smoothness parameter is well understood
and can readily be derived from [1, Chapter 5] and Jensen’s inequality. We also
refer to an argument in [5, Section 4.4] which considers the CBC algorithm with
a different quality criterion independent of smoothness. However, the stabil-
ity with respect to the weights is much less known, and our present result is
new. Moreover, we show a similar result for polynomial lattice rules in weighted
Walsh spaces. We also give bounds on the weighted star discrepancy and discuss
the tractability properties of lattice rules and polynomial lattice rules.

2 Stability of lattice rules with respect to changes

in smoothness and weights

In this section, we study stability of lattice rules in weighted Korobov spaces.

2.1 Weighted Korobov space

Let f : [0, 1)s → R be periodic and given by its Fourier series

f(x) =
∑

k∈Zs

f̂(k) exp(2πik · x),
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where the dot · denotes the usual inner product of two vectors and f̂(k) denotes
the k-th Fourier coefficient defined by

f̂(k) =

∫

[0,1)s
f(x) exp(−2πik · x) dx.

We measure the smoothness of periodic functions by a parameter α > 1/2. A
set of weight parameters γ = (γu)u⊂N with γu ∈ R≥0 is considered to moderate
the relative importance of different variables or groups of variables. For a non-
empty subset u ⊆ {1, . . . , s} and ku ∈ (Z \ {0})|u|, we define

rα(γ,ku) := γu
∏

j∈u

1

|kj |2α
.

Then the weighted Korobov space with smoothness α, denoted by HKor
α,γ , is a

reproducing kernel Hilbert space with the reproducing kernel [15]

KKor
α,γ (x,y) = 1 +

∑

∅6=u⊆{1,...,s}

∑

ku∈(Z\{0})|u|

rα(γ,ku) exp(2πiku · (xu − yu)),

where we write xu = (xj)j∈u and yu = (yj)j∈u. The inner product of the space
HKor

α,γ is given by

〈f, g〉Kor
α,γ = f̂(0)ĝ(0) +

∑

∅6=u⊆{1,...,s}

∑

ku∈(Z\{0})|u|

f̂(ku,0)ĝ(ku,0)

rα(γ,ku)
.

Here, for a non-empty subset u ⊆ {1, . . . , s} such that γu = 0, we assume that
the corresponding inner sum equals 0 and we set 0/0 = 0. The induced norm is
then given by

‖f‖Kor
α,γ =

√

√

√

√|f̂(0)|2 +
∑

∅6=u⊆{1,...,s}

∑

ku∈(Z\{0})|u|

|f̂(ku,0)|2

rα(γ,ku)
.

2.2 CBC algorithm for lattice rules

In order to construct a good lattice rule which works for the weighted Ko-
robov space HKor

α,γ with certain α and γ, we consider the worst-case error

ewor(P (z);HKor
α,γ ) as a quality criterion. Since the worst-case error depends

only on the generating vector z for fixed N , we simply write ewor(z;HKor
α,γ ). It

follows from the reproducing property of HKor
α,γ that we have

(

ewor(z;HKor
α,γ )

)2
=

∫

[0,1)s

∫

[0,1)s
KKor

α,γ (x,y) dz dy

−
2

N

∑

x∈P (z)

∫

[0,1)s
KKor

α,γ (x,y) dy +
1

N2

∑

x,y∈P (z)

KKor
α,γ (x,y).
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Define the dual lattice for P (z) by

P⊥(z) = {k ∈ Z
s | k · z ≡ 0 (mod N)}.

Then the following property is well known.

Lemma 1. For N ∈ N and z ∈ {1, . . . , N − 1}s, we have

1

N

∑

x∈P (z)

exp(2πik · z) =

{

1 if k ∈ P⊥(z),

0 otherwise.

For a non-empty subset u ⊆ {1, . . . , s}, define

P⊥
u (z) := {ku ∈ (Z \ {0})|u| | (ku,0) ∈ P⊥(z)}.

Then the squared worst-case error is given by
(

ewor(z;HKor
α,γ )

)2
=

∑

∅6=u⊆{1,...,s}

∑

ku∈P⊥
u (z)

rα(γ,ku) =: Pα,γ,N(z).

There is a concise computable form of the criterion Pα,γ,N(z) when 2α is a
natural number

Pα,γ,N (z) =
1

N

∑

x∈P (z)

∑

∅6=u⊆{1,...,s}

γu
∏

j∈u

(

(2π)2α

(−1)α+1(2α)!
B2α(xj)

)

,

where B2α is the Bernoulli polynomial of degree 2α.
Now the CBC algorithm for lattice rules proceeds as follows:

Algorithm 1 (CBC for lattice rules). Let s,N ∈ N, α > 1/2 and γ be given.

1. Let z∗1 = 1 and ℓ = 1.

2. Compute Pα,γ,N(z∗1 , . . . , z
∗
ℓ , zℓ+1) for all zℓ+1 ∈ {1, . . . , N − 1} and let

z∗ℓ+1 = argmin
zℓ+1

Pα,γ,N(z∗1 , . . . , z
∗
ℓ , zℓ+1).

3. If ℓ + 1 < s, let ℓ = ℓ+ 1 and go to Step 2.

Remark 1. For special types of weights γ, the necessary computational cost for
the CBC algorithm can be made small by using the fast Fourier transform [12].
In the case of product weights, i.e.,

γu =
∏

j∈u

γj

for γ1, γ2, . . . ∈ R≥0, the set of non-negative real numbers, we only need O(sN logN)
arithmetic operations with O(N) memory. In the case of POD weights, i.e.,

γu = Γ|u|

∏

j∈u

γj

for γ1, γ2, . . . ∈ R≥0 and Γ1,Γ2, . . . ∈ R≥0, we need O(sN logN + s2N) arith-
metic operations with O(sN) memory.
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As shown, for instance, in [4, Theorem 5.12], the squared worst-case error
for lattice rules constructed by the CBC algorithm can be bounded as follows.

Proposition 1. Let s,N ∈ N, α > 1/2 and γ be given. The generating vector
z constructed by Algorithm 1 satisfies

Pα,γ,N (z) ≤





1

ϕ(N)

∑

∅6=u⊆{1,...,s}

γλ
u(2ζ(2αλ))

|u|





1/λ

,

for any 1/(2α) < λ ≤ 1, where ζ denotes the Riemann zeta function and ϕ
denotes the Euler totient function defined by

ϕ(N) =
∑

1≤n≤N
gcd(n,N)=1

1.

Remark 2. Regarding the Euler totient function, a classical work by Rosser
and Schoenfeld [16, Theorem 15] shows that we have

1

ϕ(N)
<

1

N

(

ec log logN +
2.50637

log logN

)

,

for any N ≥ 3, with c = 0.577 . . . denoting the Euler’s constant. This implies
that, for arbitrarily small ε > 0, there exists a constant Aε such that

1

ϕ(N)
≤

Aε

N1−ε

holds where Aε → ∞ as ε → 0. Therefore, noting that Pα,γ,N(z) represents the
squared worst-case error, the lattice rules constructed by Algorithm 1 achieve a
convergence rate of the worst-case error arbitrarily close to O(N−α). Since we
know from [17] that it is not possible to achieve a convergence rate better than
O(N−α), the result in Proposition 1 is almost optimal.

Remark 3. For any 0 < δ ≤ 1, let us write γ1/δ = (γ
1/δ
u )u⊂N. Then it follows

from Jensen’s inequality that

(

Pα/δ,γ1/δ,N(z)
)δ

=





∑

∅6=u⊆{1,...,s}

∑

ku∈P⊥
u (z)

rα/δ(γ
1/δ,ku)





δ

≤
∑

∅6=u⊆{1,...,s}

∑

ku∈P⊥
u (z)

(

rα/δ(γ
1/δ,ku)

)δ

=
∑

∅6=u⊆{1,...,s}

∑

ku∈P⊥
u (z)

rα(γ,ku) = Pα,γ,N(z).

Thus, the generating vector z constructed by Algorithm 1 based on the criterion
Pα,γ,N(z) also works for weighted Korobov spaces with special types of smooth-
ness and weights, i.e.,

α′ =
α

δ
, γ′ = γ1/δ,
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for any 0 < δ ≤ 1. In the next subsection, we prove a more general stability
result than what we obtain simply from Jensen’s inequality.

2.3 Stability result

First we note that Pα,γ,N(z) is bounded below by another quality criterion, the
Zaremba index or also called figure of merit ( [1, Chapter 5], [2, Chapter 4])

ρα,γ,N (z) := max
∅6=u⊆{1,...,s}

max
ku∈P⊥

u (z)
rα(γ,ku).

This criterion turns out to be very useful in our context (it has for instance
recently also been used in [18]).

As one of the main results of this paper, we prove the following upper bound
on the squared worst-case error (cf. [1, Theorem 5.34], [19, 20]).

Theorem 1. Let s,N ∈ N and z ∈ {1, . . . , N − 1}s. For any α, α′ > 1/2 and
γ,γ′ ∈ RN

≥0 such that γv ≥ γu whenever v ⊂ u, we have

Pα′,γ′,N(z) ≤ cα′(ρα,γ,N (z))α
′/α

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

22α
′+1

22α′−1 − 1

)|u|

(log2 N)|u|−1,

with

cα′ = (1 + ζ(2α′)) + (22α
′

+ ζ(2α′))
22α

′−1 − 1

24α′ .

We defer the proof of this theorem to the end of this section.
Theorem 1 implies that, if we can construct a lattice rule with small ρα,γ,N(z)

value for given α and γ, the same lattice rule also does work for weighted Ko-
robov spaces with different smoothness and weights. As mentioned in Remark 3,
applying Jensen’s inequality leads to a kind of stability result, but it works only
for higher smoothness α′ = α/δ ≥ α and restrictive form of the weights.

Let z be the generating vector constructed by the CBC algorithm based on
the criterion Pα,γ,N (z) for given α and γ. Applying the result from Proposi-
tion 1, we have

Pα′,γ′,N(z) ≤ cα′





1

ϕ(N)

∑

∅6=u⊆{1,...,s}

γλ
u(2ζ(2αλ))

|u|





α′/(αλ)

×
∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

22α
′+1

22α′−1 − 1

)|u|

(log2 N)|u|−1, (1)

for any 1/(2α) < λ ≤ 1. Recalling Remark 2, the bound shown in (1) implies
that the lattice rules constructed by Algorithm 1 with α and γ also achieves
a convergence rate of the worst-case error arbitrarily close to O(N−α′

) for the
weighted Korobov space with different parameters α′ and γ ′, which is almost
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optimal. Moreover, we can show under some conditions on the weights γ and γ ′

that the worst-case error Pα′,γ′,N depends only polynomially on the dimension
s, or even, that the bound is independent of the dimension.

Corollary 1. Let s,N ∈ N, α, α′ > 1/2 and γ,γ′ ∈ RN

≥0 such that γv ≥ γu
whenever v ⊂ u. Let z ∈ {1, . . . , N − 1}s be constructed by Algorithm 1 based
on the criterion Pα,γ,N . Then the following holds true:

1. For general weights γ and γ′, assume that there exist λ, δ, q, q′ ≥ 0 such
that 1/(2α) < λ < 1, 0 < δ < α′/(αλ),

sup
s∈N

1

sq

∑

∅6=u⊆{1,...,s}

γλ
u(2ζ(2αλ))

|u| < ∞,

and

sup
s,N∈N

1

sq′(ϕ(N))δ

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

22α
′+1

22α′−1 − 1

)|u|

(log2 N)|u|−1 < ∞.

Then the worst-case error Pα′,γ′,N (z) depends only polynomially on s and
is bounded by

Pα′,γ′,N (z) ≤ Cδs
qα′/(αλ)+q′(ϕ(N))−α′/(αλ)+δ,

for some constant Cδ > 0 which is independent of s and N . If the above
conditions hold for q = q′ = 0, the worst-case error Pα′,γ′,N(z) is bounded
independently of s.

2. In particular, in the case of product weights γ and γ′, assume that there
exists λ ∈ (1/(2α), 1] such that

∞
∑

j=1

γλ
j < ∞ and

∞
∑

j=1

γ′
j

γ
α′/α
j

< ∞.

Then the worst-case error Pα′,γ′,N (z) is independent of s and bounded by

Pα′,γ′,N (z) ≤ Cδ(ϕ(N))−α′/(αλ)+δ,

for arbitrarily small δ > 0.

Proof. The result for the first item immediately follows from the bound (1).
The second item can be proven by combining arguments used in [9, Theorem 4]
and [21, Lemma 3].

One of the most important indications from the first item of Corollary 1 is
that, even for general weights γ′, by choosing γ, such that a fast component-
by-component construction is possible (for instance for product weights or POD
weights) and the conditions given in Item 1 of Corollary 1 are satisfied, then
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we can construct a good lattice rule which achieves the almost optimal rate of
convergence in HKor

α′,γ′ with good tractability properties. As far as the authors
know, such a constructive result for general weights has not been known in the
literature.

To illustrate Corollary 1, we provide some examples of α, α′ and γ,γ′ below,
which satisfy the summability conditions in Corollary 1.

Example 1. (product weights for γ and general weights for γ ′) Let α, α′ > 1/2
be arbitrarily given, and γ be the product weights with γj = j−2α. Then the
first summability condition given in Item 1 of Corollary 1 is satisfied for any
λ ∈ (1/(2α), 1] and q = 0. Now let γ ′ be given by

γ′
u = Γ|u|





1

|u|

∑

j∈u

j2α
′|u|





−1−ε

,

for some ε > 1/(2α′) and a sequence Γ1,Γ2, . . . ≥ 0. Using an elementary
inequality

1

|u|

∑

j∈u

j2α
′|u| ≥

∏

j∈u

j2α
′

,

we have
γ′
u

γ
α′/α
u

≤ Γ|u|

∏

j∈u

j−2α′ε.

Let Γ|u| = O(|u|τ ) or Γ|u| = O(exp(τ |u|)) for some τ ≥ 0. Since we assume

ε > 1/(2α′), which implies that
∑∞

j=1 j
−2α′ε < ∞, the argument used in [21,

Lemma 3] directly shows that the second summability condition given in Item 1
of Corollary 1 is satisfied for arbitrarily small δ > 0 and q′ = 0.

Example 2. (Product weights for both γ and γ′) For arbitrarily given α, α′ >
1/2 and product weights γ,γ′, let γj = j−r for some r > 1. If there exists an

arbitrarily small ε > 1 such that γ′
j = j−α′r/α−ε, then the conditions given in

Item 2 of Corollary 1 are satisfied for any max(1/(2α), 1/r) < λ ≤ 1.

Example 3. (POD weights for both γ and γ′) For arbitrarily given α, α′ > 1/2,
let

γu = Γ|u|

∏

j∈u

γj and γ′
u = Γ′

|u|

∏

j∈u

γ′
j

for sequences γ1, γ2, . . . ≥ 0, Γ1,Γ2, . . . ≥ 0, γ′
1, γ

′
2, . . . ≥ 0 and Γ′

1,Γ
′
2, . . . ≥ 0.

Following [22, Lemma 6.3], if there exist 1 < p < 2α and n ∈ N such that

Γ|u| = ((|u|+ n)!)p and

∞
∑

j=1

2γ
1/p
j ζ

(

2α

p

)

< 1,

then the first summability condition given in Item 1 of Corollary 1 holds with
q = 0 and λ = 1/p. Moreover, if there exists a constant C > 0 such that

Γ′
|u|

Γ
α′/α
|u|

≤ C

9



for any non-empty u ⊂ N, the second summability condition holds with q′ = 0
and an arbitrarily small δ > 0 as long as

∞
∑

j=1

γ′
j

γ
α′/α
j

< ∞.

In the proof of Theorem 1, we shall use the following elementary inequality.
We refer to [3, Lemma 13.24] for the proof.

Lemma 2. For any real b > 1 and any k, t0 ∈ N, we have

∞
∑

t=t0

b−t

(

t+ k − 1

k − 1

)

≤ b−t0

(

t0 + k − 1

k − 1

)(

1−
1

b

)−k

.

Proof of Theorem 1. Recalling the definition of rα′ , we have

Pα′,γ′,N (z) =
∑

∅6=u⊆{1,...,s}

γ′
u

∑

ku∈P⊥
u (z)

∏

j∈u

1

|kj |2α
′ .

Let us define P⊥
u,0(z) = {ku ∈ Z|u| \ {0} | (ku,0) ∈ P⊥(z)}, for which we have

P⊥
u (z) ⊆ P⊥

u,0(z). Moreover, let

φu,0(z) := min
ku∈P⊥

u,0(z)

∏

j∈u

max (1, |kj|)

and
φu(z) := min

ku∈P⊥
u (z)

∏

j∈u

|kj |.

Then it is straightforward to see that

ρα,γ,N (z) = max
∅6=u⊆{1,...,s}

γu max
ku∈P⊥

u (z)

∏

j∈u

1

|kj |2α
= max

∅6=u⊆{1,...,s}

γu
(φu(z))2α

.

Hence it holds for any non-empty subset u ⊆ {1, . . . , s} that

φu(z) ≥

(

γu
ρα,γ,N (z)

)1/(2α)

.

Moreover, by assuming γv ≥ γu whenever v ⊂ u, we obtain a lower bound

φu,0(z) = min
∅6=v⊆u

φv(z) ≥ min
∅6=v⊆u

(

γv
ρα,γ,N (z)

)1/(2α)

=

(

γu
ρα,γ,N (z)

)1/(2α)

. (2)

For a non-empty subset u ⊆ {1, . . . , s}, we denote by µu the largest integer
such that 2µu < φu,0(z) holds. It follows from the proof of [1, Theorem 5.34]
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that the inner sum on the expression of Pα′,γ′,N (z) for a given u with |u| ≥ 2
is bounded above by

∑

ku∈P⊥
u (z)

∏

j∈u

1

|kj |2α
′ ≤

∑

ku∈P⊥
u,0(z)

∏

j∈u

1

max(1, |kj |)2α
′

≤
2|u|

(φu,0(z))2α
′

[

(1 + ζ(2α′))

(

µu + |u| − 1

|u| − 1

)

+ (22α
′

+ ζ(2α′))
∞
∑

k=1

2(1−2α′)k

(

k + µu + |u| − 2

|u| − 2

)

]

.

For the first term in the parenthesis, we have

(

µu + |u| − 1

|u| − 1

)

=

|u|−1
∏

i=1

µu + i

i
≤ (µu + 1)|u|−1.

For the second term in the parenthesis, applying Lemma 2 with t0 = µu+1, k =
|u| − 1 and b = 22α

′−1 gives

∞
∑

k=1

2(1−2α′)k

(

k + µu + |u| − 2

|u| − 2

)

= 2(2α
′−1)µu

∞
∑

k=µu+1

2−(2α′−1)k

(

k + |u| − 2

|u| − 2

)

≤ 2−(2α′−1)

(

µu + |u| − 1

|u| − 2

)

(

22α
′−1

22α′−1 − 1

)|u|−1

≤
22α

′−1 − 1

24α′−2

(

22α
′−1

22α′−1 − 1

)|u| |u|−2
∏

i=1

µu + i+ 1

i

≤
22α

′−1 − 1

24α′−2

(

22α
′−1

22α′−1 − 1

)|u|

(µu + 2)|u|−2

≤
22α

′−1 − 1

24α′

(

22α
′

22α′−1 − 1

)|u|

(µu + 1)|u|−2.

Using these bounds, we obtain

∑

ku∈P⊥
u (z)

∏

j∈u

1

|kj |2α
′

≤
2|u|

(φu,0(z))2α
′

[

(1 + ζ(2α′))(µu + 1)|u|−1

+ (22α
′

+ ζ(2α′))
22α

′−1 − 1

24α′

(

22α
′

22α′−1 − 1

)|u|

(µu + 1)|u|−2

]
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≤ cα′

(

22α
′+1

22α′−1 − 1

)|u|
(µu + 1)|u|−1

(φu,0(z))2α
′ .

Note that this bound on the inner sum on the expression of Pα,γ,N(z) also
applies to the case |u| = 1.

As shown in (2), φu,0(z) has a lower bound. On the other hand, as proven in
[1, Lemma 5.8], φu,0(z) also has a trivial upper bound, which is φu,0(z) ≤ N/2.
This bound directly means that µu ≤ log2 N − 1. Therefore we can bound
Pα′,γ′,N(z) as

Pα′,γ′,N(z) ≤ cα′

∑

∅6=u⊆{1,...,s}

γ′
u

(

22α
′+1

22α′−1 − 1

)|u|
(µu + 1)|u|−1

(φu,0(z))2α
′

≤ cα′(ρα,γ,N (z))α
′/α

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

22α
′+1

22α′−1 − 1

)|u|

(log2 N)|u|−1.

This completes the proof.

2.4 Bound on the weighted star discrepancy

Here we study tractability properties of the weighted star discrepancy for lattice
rules constructed by the CBC algorithm based on the criterion Pα,γ,N .

For an N -element point set P ⊂ [0, 1)s, the local discrepancy function is
defined by

∆P (y) :=
1

N

∑

x∈P

1[0,y)(x)− λ ([0,y)) ,

for y ∈ [0, 1)s, where [0,y) = [0, y1) × [0, y2) × · · · × [0, ys) and 1[0,y) denotes
the characteristic function of the interval [0,y). For a non-empty subset u ⊆
{1, . . . , s}, let us write Pu = {xu = (xj)j∈u | x ∈ P}. Then the weighted star
discrepancy is defined by

D∗
γ,N (P ) = max

∅6=u⊆{1,...,s}
γu sup

yu∈[0,1)|u|

|∆Pu(yu)| .

In what follows, we focus on lattice point sets and simply write D∗
γ,N (z) instead

of D∗
γ,N (P (z)).
As shown in [23, Section 2], the weighted star discrepancy for a lattice point

set with generating vector z is bounded above by

D∗
γ,N(z) ≤

∑

∅6=u⊆{1,...,s}

γu

[

1−

(

1−
1

N

)|u|

+
Ru,N (z)

2

]

,

where

Ru,N (z) =
∑

k∈P⊥
u,0(z)∩C∗

N,|u|

∏

j∈u

1

max(1, |kj |)
,

12



with

C∗
N,|u| =

{

ku ∈ Z
|u| \ {0} | −

N

2
< kj ≤

N

2
, ∀j ∈ u

}

.

Moreover, as proven in [1, Theorem 5.35], we have

Ru,N (z) ≤
1

φu,0(z)

[

log 2 (log2 N)|u| + 3 (2 log2 N)|u|−1
]

,

for any non-empty u ⊆ {1, . . . , s}. By using the lower bound (2) on φu,0(z), the
following result holds true.

Theorem 2. Let s,N ∈ N and z ∈ {1, . . . , N − 1}s. For any α > 1/2 and
γ,γ′ ∈ RN

≥0 such that γv ≥ γu whenever v ⊂ u, we have

D∗
γ′,N (z) ≤

∑

∅6=u⊆{1,...,s}

γ′
u

[

1−

(

1−
1

N

)|u|

+
(ρα,γ,N (z))1/(2α)

2γ
1/(2α)
u

[

log 2 (log2 N)|u| + 3 (2 log2 N)|u|−1
]

]

.

Applying the result from Proposition 1, we can prove the following tractabil-
ity properties. For general weights γ′ we use

1−

(

1−
1

N

)|u|

≤
|u|

N
,

for any non-empty u ⊆ {1, . . . , s}. We assume that the sum
∑∞

j=1 γ
′
j < ∞ in

the case of product weights to ensure a dimension independent bound on the
sum

∑

∅6=u⊆{1,...,s}

γ′
u

[

1−

(

1−
1

N

)|u|
]

.

We refer to [23, Lemma 1] for the case of product weights.

Corollary 2. Let s,N ∈ N, α > 1/2 and γ,γ ′ ∈ RN

≥0 such that γv ≥ γu
whenever v ⊂ u. Let z ∈ {1, . . . , N − 1}s be constructed by Algorithm 1 based
on the criterion Pα,γ,N . Then the following holds true:

1. For general weights γ and γ′, assume that there exist λ, δ, q, q′, q′′ ≥ 0
such that 1/(2α) < λ < 1, 0 < δ < 1/(αλ),

sup
s∈N

1

sq

∑

∅6=u⊆{1,...,s}

γλ
u(2ζ(2αλ))

|u| < ∞, sup
s∈N

1

sq′
∑

∅6=u⊆{1,...,s}

γ′
u|u| < ∞,

and

sup
s,N∈N

1

sq′′ (ϕ(N))δ

∑

∅6=u⊆{1,...,s}

γ′
u

γ
1/(2α)
u

(2 log2 N)|u| < ∞.
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Then the weighted star discrepancy D∗
γ′,N (z) depends only polynomially

on s and is bounded by

D∗
γ′,N (z) ≤ Csmax(q′,q/(2αλ)+q′′)(ϕ(N))−1/(2αλ)+δ ,

for some constant C > 0 which is independent of s and N . If the above
conditions hold for q = q′ = q′′ = 0, then the weighted star discrepancy
D∗

γ′,N (z) is bounded independently of s.

2. In particular, in the case of product weights γ and γ′, assume that there
exists λ ∈ (1/(2α), 1] such that

∞
∑

j=1

γλ
j < ∞ and

∞
∑

j=1

γ′
j

γ
1/(2α)
j

< ∞.

Then the weighted star discrepancy D∗
γ′,N (z) is bounded independently of

s by
D∗

γ′,N (z) ≤ C(ϕ(N))−1/(2αλ)+δ ,

for arbitrarily small δ > 0.

Let us consider product weights for both γ and γ ′. The first summability
condition on γ is satisfied for any λ ∈ (1/(2α), 1] if γj = j−2α. Then the second
summability condition is given by

∞
∑

j=1

jγ′
j < ∞.

The weighted star discrepancy is bounded independently of s and decays with
the almost optimal rate N−1+δ for arbitrarily small δ > 0. We note that
the summability condition on γ′ is the same as that obtained in [24] (see also
[25, 26]), where the authors considered explicitly constructed point sets due to
Halton, Sobol’, and Niederreiter. It should be pointed out, however, that the
latter constructions are extensible in N , whereas our lattice point sets are not,
so that we need to rerun Algorithm 1 with different values of N based on the
same criterion Pα,γ,N .

3 Stability of polynomial lattice rules

Let us move on to stability of polynomial lattice rules in weighted Walsh spaces.

3.1 Weighted Walsh spaces

Definition 3. Let b be a prime and ωb := exp(2πi/b). For k ∈ N ∪ {0}, we
denote the b-adic expansion of k by k = κ0 + κ1b+ · · · , where all except a finite
number of κi are 0. The k-th Walsh function walk : [0, 1) → C is defined by

walk(x) := ωκ0ξ1+κ1ξ2+···
b ,
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where the b-adic expansion of x ∈ [0, 1) is denoted by x = ξ1/b + ξ2/b
2 + · · · ,

which is understood to be unique in the sense that infinitely many of the ξi are
different from b− 1.

For s ≥ 2 and k = (k1, . . . , ks) ∈ (N ∪ {0})s, the s-dimensional k-th Walsh
functions walk : [0, 1)

s → C is defined by

walk(x) :=
s
∏

j=1

walkj (xj).

Note that we always use a fixed prime b in the definition of Walsh functions
in the rest of this paper. The system of Walsh functions is a complete orthogonal
system in L2([0, 1)

s). Let f : [0, 1)s → R be given by its Walsh series

f(x) =
∑

k∈(N∪{0})s

f̂(k)walk(x),

where f̂(k) denotes the k-th Walsh coefficient defined by

f̂(k) =

∫

[0,1)s
f(x)walk(x) dx.

Following [14], we measure a smoothness of non-periodic functions by a
parameter α > 1/2. For k ∈ N with the b-adic expansion given by k = κ0 +
κ1b+ · · ·+ κa−1b

a−1 such that κa−1 6= 0, let µ(k) = a. For a non-empty subset
u ⊆ {1, . . . , s} and ku ∈ N|u|, let µ(ku) =

∑

j∈u µ(kj). Given a set of weights
γ = (γu)u⊂N, we define

rα(γ,ku) := γub
−2αµ(ku).

Then the weighted Walsh space with smoothness α, denoted by Hwal
α,γ , is a

reproducing kernel Hilbert space with the reproducing kernel

Kwal
α,γ(x,y) = 1 +

∑

∅6=u⊆{1,...,s}

∑

ku∈N|u|

rα(γ,ku)walku
(xu)walku

(yu),

and the inner product

〈f, g〉wal
α,γ = f̂(0)ĝ(0) +

∑

∅6=u⊆{1,...,s}

∑

ku∈N|u|

f̂(ku,0)ĝ(ku,0)

rα(γ,ku)
.

Here, for a non-empty subset u ⊆ {1, . . . , s} such that γu = 0, we assume that
the corresponding inner sum equals 0 and we set 0/0 = 0. The induced norm is
then given by

‖f‖wal
α,γ =

√

√

√

√|f̂(0)|2 +
∑

∅6=u⊆{1,...,s}

∑

ku∈N|u|

|f̂(ku,0)|2

rα(γ,ku)
.
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3.2 CBC algorithm for polynomial lattice rules

In order to construct a polynomial lattice rule which works for the weighted
Walsh space Hwal

α,γ with certain α and γ, we consider the worst-case error

ewor(P (p, q);Hwal
α,γ) as a quality criterion. Since the worst-case error depends

only on the generating vector q for a given modulus p ∈ Fb[x] with deg(p) = m,
we simply write ewor(q;Hwal

α,γ).
For k = κ0+κ1b+ · · · ∈ N∪{0}, let trm(k) := κ0+κ1x+ · · ·+κm−1x

m−1 ∈
Gm. Define the dual lattice for P (p, q) by

P⊥(p, q) = {k ∈ (N ∪ {0})s | trm(k) · q ≡ 0 (mod p)},

where we write trm(k) · q = trm(k1)q1 + · · ·+ trm(ks)qs ∈ Fb[x]. The following
property was first used in [27] and is now well known, see [3, Lemma 4.75].

Lemma 3. For m ∈ N, p ∈ Fb[x] with deg(p) = m and q ∈ (Gm \ {0})s, we
have

1

bm

∑

x∈P (p,q)

walk(x) =

{

1 if k ∈ P⊥(p, q),

0 otherwise.

For a non-empty subset u ⊆ {1, . . . , s}, let us write

P⊥
u (p, q) := {ku ∈ N

|u| | (ku,0) ∈ P⊥(p, q)}.

Then the squared worst-case error is simply given by

(

ewor(q;Hwal
α,γ)

)2
=

∑

∅6=u⊆{1,...,s}

∑

ku∈P⊥
u (p,q)

rα(γ,ku) =: Pα,γ,bm(q).

There is a concise computable form of the criterion Pα,γ,bm(q)

Pα,γ,bm(q) =
1

bm

∑

x∈P (p,q)

∑

∅6=u⊆{1,...,s}

γu
∏

j∈u

φα(xj),

where

φα(x) =

{

b−1
b2α−b for x = 0,
b−1

b2α−b −
b2α−1

b(2α−1)a(b2α−b)
for ξ1 = · · · = ξa−1 = 0 and ξa 6= 0,

see for instance [14]. We note that Pα,γ,bm(q) is bounded below by another
quality criterion

ρα,γ,bm(q) := max
∅6=u⊆{1,...,s}

max
ku∈P⊥

u (p,q)
rα(γ,ku).

The CBC algorithm for polynomial lattice rules proceeds as follows:

Algorithm 2 (CBC for polynomial lattice rules). Let s,m ∈ N, p ∈ Fb[x] with
deg(p) = m, α > 1/2 and γ be given.
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1. Let q∗1 = 1 ∈ Fb[x] and ℓ = 1.

2. Compute Pα,γ,bm(q∗1 , . . . , q
∗
ℓ , qℓ+1) for all qℓ+1 ∈ Gm \ {0} and let

q∗ℓ+1 = argmin
qℓ+1

Pα,γ,bm(q∗1 , . . . , q
∗
ℓ , qℓ+1).

3. If ℓ + 1 < s, let ℓ = ℓ+ 1 and go to Step 2.

Remark 4. Similarly to lattice rules, the necessary computational cost for the
CBC algorithm for polynomial lattice rules can be also made significantly small
by using the fast Fourier transform. For instance, in the case of product weights,
we only need O(sN logN) arithmetic operations with O(N) memory.

As shown in [10, Theorem 4.4] for the product-weight cases, the worst-case
error for polynomial lattice rules constructed by the CBC algorithm can be
bounded as follows.

Proposition 2. Let s,m ∈ N, α > 1/2 and γ be given. Let p ∈ Fb[x] be
irreducible with deg(p) = m. The generating vector q constructed by Algorithm 2
satisfies

ρα,γ,bm(q) ≤ Pα,γ,bm(q) ≤





1

bm − 1

∑

∅6=u⊆{1,...,s}

γλ
u

(

b − 1

b2αλ − b

)|u|




1/λ

, (3)

for any 1/(2α) < λ ≤ 1.

The rate of convergence of the worst-case error obtained from Proposition 2
can be arbitrarily close to O(N−α), and analogously to Remark 2, this is almost
optimal. Also, an argument similar to Remark 3 leads to

(

Pα/δ,γ1/δ,bm(q)
)δ

≤ Pα,γ,bm(q)

for any 0 < δ ≤ 1. Thus the generating vector q constructed by Algorithm 2
based on the criterion Pα,γ,bm(q) also works for weighted Walsh spaces with
special types of smoothness and weights, i.e.,

α′ =
α

δ
, γ′ = γ1/δ.

We show more general stability of polynomial lattice rules in the subsequent
subsection.

3.3 Stability result

As an analogous result for polynomial lattice rules, we prove the following upper
bound on the squared worst-case error.
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Theorem 3. Let s,m ∈ N, p ∈ Fb[x] with deg(p) = m, and q ∈ (Gm \ {0})s be
given. For any α, α′ > 1/2 and γ,γ′ ∈ RN

≥0, we have

Pα′,γ′,bm(q) ≤ (ρα,γ,bm(q))α
′/α

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

b2α
′−1(b− 1)

b2α′−1 − 1

)|u|

(m+1)|u|−1.

Proof. Recalling the definition of rα′ , we have

Pα′,γ′,bm(q) =
∑

∅6=u⊆{1,...,s}

γ′
u

∑

ku∈P⊥
u (p,q)

b−2α′µ(ku).

Let us define
φu(q) := min

ku∈P⊥
u (p,q)

µ(ku).

Since P⊥
u (p, q) ⊆ N|u|, it is easy to see that φu(q) ≥ |u|. Moreover, as we have

ρα,γ,bm(q) = max
∅6=u⊆{1,...,s}

γu max
ku∈P⊥

u (p,q)
b−2αµ(ku) = max

∅6=u⊆{1,...,s}
γub

−2αφu(q),

it holds that

φu(q) ≥
1

2α
logb

γu
ρα,γ,bm(q)

, (4)

for any non-empty subset u ⊆ {1, . . . , s}.
Now it follows from the definition of φu(q) that the inner sum of Pα′,γ′,bm(q)

over ku becomes

∑

ku∈P⊥
u (p,q)

b−2α′µ(ku) =

∞
∑

h=φu(q)

b−2α′h
∑

ku∈P⊥
u (p,q)

µ(ku)=h

1

=

∞
∑

h=φu(q)

b−2α′h
∑

ℓu∈N
|u|

|ℓu|1=h

∑

ku∈P⊥
u (p,q)

µ(kj)=ℓj ,∀j∈u

1.

Regarding the inner-most sum above, [3, Lemma 13.8] gives

∑

ku∈P⊥
u (p,q)

µ(kj)=ℓj ,∀j∈u

1 ≤











0 if |ℓu|1 < φu(q),

(b− 1)|u| if φu(q) ≤ |ℓu|1 < φu(q) + |u|,

(b− 1)|u|b|ℓu|1−(φu(q)+|u|−1) otherwise.

In particular, when |ℓu|1 ≥ φ(qu), we can simplify this bound as

∑

ku∈P⊥
u (p,q)

µ(kj)=ℓj,∀j∈u

1 ≤ (b− 1)|u|b|ℓu|1−φu(q).
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Thus, by applying Lemma 2 with t0 = φu(q) − |u|, k = |u|, and b taken to be
b2α

′−1, we have

∑

ku∈P⊥
u (p,q)

b−2α′µ(ku) ≤ (b− 1)|u|
∞
∑

h=φu(q)

b−2α′h
∑

ℓu∈N
|u|

|ℓu|1=h

bh−φu(q)

= (b− 1)|u|b−φu(q)
∞
∑

h=φu(q)

b−(2α′−1)h

(

h− 1

|u| − 1

)

=

(

b− 1

b2α′−1

)|u|

b−φu(q)
∞
∑

h=φu(q)−|u|

b−(2α′−1)h

(

h+ |u| − 1

|u| − 1

)

≤

(

b2α
′−1(b− 1)

b2α′−1 − 1

)|u|

b−2α′φu(q)

(

φu(q)− 1

|u| − 1

)

=

(

b2α
′−1(b− 1)

b2α′−1 − 1

)|u|

b−2α′φu(q)

|u|−1
∏

i=1

φu(q)− |u|+ i

i

≤

(

b2α
′−1(b− 1)

b2α′−1 − 1

)|u|

b−2α′φu(q)(φu(q)− |u|+ 1)|u|−1.

Here we show that φu(q) has a trivial upper bound, that is φu(q) ≤ m+ |u|.
Consider the case kj = 1 for all j ∈ u \ {i} with arbitrarily chosen i ∈ u.
Recalling that every ku ∈ P⊥

u (p, q) satisfies

trm(ku) · qu = trm(ku\{i}) · qu\{i} + trm(ki)qi ≡ 0 (mod p),

if trm(ku\{i}) · qu\{i} 6≡ 0 (mod p), then trm(ki)qi 6≡ 0 (mod p). Since qi 6≡
0 (mod p), there exists a unique ki ∈ {1, . . . , bm − 1} such that trm(ki)qi ≡
−trm(ku\{i}) · qu\{i} (mod p). Thus we have

µ(ku) =
∑

j∈u\{i}

µ(1) + µ(ki) ≤ |u| − 1 +m.

Now let us assume trm(ku\{i}) · qu\{i} ≡ 0 (mod p). Then we must have

trm(ki)qi ≡ 0 (mod p). Since ki > 0 for any ku ∈ P⊥
u (p, q), ki is given by

ℓbm for ℓ ∈ N. Taking ki = bm, we have

µ(ku) =
∑

j∈u\{i}

µ(1) + µ(bm) = |u| − 1 + (m+ 1) = |u|+m.

This argument means that there exists at least one ku ∈ P⊥
u (p, q) such that

µ(ku) ≤ |u|+m.

which proves our claim

φu(q) = min
ku∈P⊥

u (p,q)
µ(ku) ≤ m+ |u|.
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Using this upper bound on φu(q) and the lower bound on φu(q) given in (4),
we have

∑

ku∈P⊥
u (p,q)

b−2α′µ(ku) ≤ (ρα,γ,bm(q))
α′/α

γ−α′/α
u

(

b2α
′−1(b − 1)

b2α′−1 − 1

)|u|

(m+1)|u|−1.

Finally we can bound Pα′,γ′,bm(q) as

Pα′,γ′,bm(q) ≤ (ρα,γ,bm(q))
α′/α

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

b2α
′−1(b− 1)

b2α′−1 − 1

)|u|

(m+1)|u|−1.

This completes the proof.

Considering the result from Proposition 2, we can show tractability results
similarly to Corollary 1.

Corollary 3. Let s,m ∈ N, α, α′ > 1/2 and γ,γ′ ∈ RN

≥0. Let p ∈ Fb[x] with
deg(p) = m be irreducible and q ∈ (Gm \ {0})s be constructed by Algorithm 2
based on the criterion Pα,γ,bm . Then the following holds true:

1. For general weights γ and γ′, assume that there exist λ, δ, q, q′ ≥ 0 such
that 1/(2α) < λ < 1, 0 < δ < α′/(αλ),

sup
s∈N

1

sq

∑

∅6=u⊆{1,...,s}

γλ
u

(

b− 1

b2αλ − b

)|u|

< ∞,

and

sup
s,m∈N

1

sq′bδm

∑

∅6=u⊆{1,...,s}

γ′
u

γ
α′/α
u

(

b2α
′−1(b − 1)

b2α′−1 − 1

)|u|

(m+ 1)|u|−1 < ∞.

Then the worst-case error Pα′,γ′,bm(q) depends only polynomially on s and
is bounded by

Pα′,γ′,bm(q) ≤ Csqα
′/(αλ)+q′b−(α′/(αλ)−δ)m,

for some constant C > 0 which is independent of s and m. If the above
conditions hold for q = q′ = 0, the worst-case error Pα′,γ′,bm(q) is bounded
independently of s.

2. In particular, in the case of product weights γ and γ′, assume that there
exists λ ∈ (1/(2α), 1] such that

∞
∑

j=1

γλ
j < ∞ and

∞
∑

j=1

γ′
j

γ
α′/α
j

< ∞.

Then the worst-case error Pα′,γ′,bm(q) is independent of s and bounded by

Pα′,γ′,bm(q) ≤ Cb−(α′/(αλ)−δ)m,

for arbitrarily small δ > 0.
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3.4 Bound on weighted star discrepancy

Finally we study tractability properties of the weighted star discrepancy for
polynomial lattice rules constructed by the CBC algorithm based on the cri-
terion Pα,γ,bm . In what follows, we write D∗

γ,bm(q) to denote the weighted
star discrepancy for a polynomial lattice point set with a given modulus p and
generating vector q.

For a non-empty subset u ⊆ {1, . . . , s} we write

P⊥
u,0(p, q) = {ku ∈ (N ∪ {0})|u| \ {0} | (ku,0) ∈ P⊥(p, q)},

and
G∗

m,u =
{

ku ∈ (N ∪ {0})|u| \ {0} | kj < bm, ∀j ∈ u
}

.

According to [3, Corollary 10.16], the weighted star discrepancy for a polynomial
lattice point set is bounded above by

D∗
γ,bm(q) ≤

∑

∅6=u⊆{1,...,s}

γu

[

1−

(

1−
1

N

)|u|

+Ru,bm(q)

]

,

where
Ru,bm(q) =

∑

ku∈P⊥
u,0(p,q)∩G∗

m,u

∏

j∈u

r̃(kj),

with

r̃(k) =

{

1 if k = 0,
1

ba sin(πκa−1/b)
if k = κ0 + κ1b+ · · ·+ κa−1b

a−1 with κa−1 6= 0.

The weighted star discrepancy is further bounded above as follows.

Theorem 4. Let s,m ∈ N, p ∈ Fb[x] with deg(p) = m, and q ∈ (Gm \ {0})s be
given. For any α > 1/2 and γ,γ′ ∈ RN

≥0 such that γv ≥ γu whenever v ⊂ u, we
have

D∗
γ′,bm(q) ≤

∑

∅6=u⊆{1,...,s}

γ′
u

[

1−

(

1−
1

N

)|u|

+ (b − 1)
(ρα,γ,bm(q))1/(2α)

γ
1/(2α)
u

(kb(m+ 1))|u|

]

,

where k2 = 1 and kb = 1 + 1/ sin(π/b) for a prime b > 2.

Proof. It suffices to give a bound on Ru,bm(q). Let us define

φu,0(q) := min
ku∈P⊥

u,0(p,q)
µ(ku).

By assuming γv ≥ γu whenever v ⊂ u, it follows from (4) that

φu,0(q) = min
∅6=v⊆u

φv(q) ≥ min
∅6=v⊆u

1

2α
logb

γv
ρα,γ,bm(q)

=
1

2α
logb

γu
ρα,γ,bm(q)

.
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Applying the result from [1, Theorem 4.34], Ru,bm(q) is bounded by

Ru,bm(q) ≤ (b− 1)
(kb(m+ 1))|u|

bφu,0(q)

≤ (b− 1)(kb(m+ 1))|u|
(

ρα,γ,bm(q)

γu

)1/(2α)

,

from which the result immediately follows.

From this bound on the weighted star discrepancy and Proposition 2, we
obtain a result similar to Corollary 2.

Corollary 4. Let s,m ∈ N, α, α′ > 1/2 and γ,γ ′ ∈ RN

≥0 such that γv ≥ γu
whenever v ⊂ u. Let p ∈ Fb[x] with deg(p) = m be irreducible and q ∈ (Gm \
{0})s be constructed by Algorithm 2 based on the criterion Pα,γ,bm . Then the
following holds true:

1. For general weights γ and γ′, assume that there exist λ, δ, q, q′, q′′ ≥ 0
such that 1/(2α) < λ < 1, 0 < δ < 1/(αλ),

sup
s∈N

1

sq

∑

∅6=u⊆{1,...,s}

γλ
u

(

b − 1

b2αλ − b

)|u|

< ∞, sup
s∈N

1

sq′
∑

∅6=u⊆{1,...,s}

γ′
u|u| < ∞,

and

sup
s,m∈N

1

sq′′bmδ

∑

∅6=u⊆{1,...,s}

γ′
u

γ
1/(2α)
u

(kb(m+ 1))|u| < ∞.

Then the weighted star discrepancy D∗
γ′,bm(q) depends only polynomially

on s and is bounded by

D∗
γ′,bm(q) ≤ Csmax(q′,q/(2αλ)+q′′)b−m(1/(2αλ)−δ),

for some constant C > 0 which is independent of s and m. If the above
conditions hold for q = q′ = q′′ = 0, the the weighted star discrepancy
D∗

γ′,bm(q) is bounded independently of s.

2. In particular, in the case of product weights γ and γ′, assume that there
exists λ ∈ (1/(2α), 1] such that

∞
∑

j=1

γλ
j < ∞ and

∞
∑

j=1

γ′
j

γ
1/(2α)
j

< ∞.

Then the weighted star discrepancy D∗
γ′,bm(q) is independent of s and

bounded by
D∗

γ′,bm(q) ≤ Cb−m(1/(2αλ)−δ),

for arbitrarily small δ > 0.
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