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Abstract

We consider the problem of estimating expectations by using Markov chain
Monte Carlo methods and improving the accuracy by replacing IID uni-
form random points with quasi-Monte Carlo (QMC) points. Recently, it has
been shown that Markov chain QMC remains consistent when the driving
sequences are completely uniformly distributed (CUD). However, the defi-
nition of CUD sequences is not constructive, so an implementation method
using short-period Tausworthe generators (i.e., linear feedback shift regis-
ter generators over the two-element field) that approximate CUD sequences
has been proposed. In this paper, we conduct an exhaustive search of short-
period Tausworthe generators for Markov chain QMC in terms of the t-value,
which is a criterion of uniformity widely used in the study of QMC meth-
ods. We provide a parameter table of Tausworthe generators and show the
effectiveness in numerical examples using Gibbs sampling.

Keywords: Pseudorandom number generation, Quasi-Monte Carlo,
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expansion
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1. Introduction

We consider the problem of estimating the expectation Eπ[f(X)] by using
Markov chain Monte Carlo (MCMC) methods for a target distribution π and
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some function f . For this problem, we want to improve the accuracy by re-
placing independent and identically distributed (IID) uniform random points
with quasi-Monte Carlo (QMC) points. However, typical QMC points (e.g.,
Sobol’, Faure, and Niederreiter–Xing) are not applicable in general. Moti-
vated by a simulation study by Liao [20], Owen and Tribble [24] and Chen
et al. [2] proved that Markov chain QMC remains consistent when the driv-
ing sequences are completely uniformly distributed (CUD). Here, a sequence
u0, u1, u2, . . . ∈ [0, 1) is said to be CUD if overlapping s-blocks (ui, ui+1,
. . . , ui+s−1), i = 0, 1, 2, . . ., are uniformly distributed for every dimension
s ≥ 1.

Levin [19] provided several constructions for CUD sequences, but they
are not convenient to implement. Instead, to construct CUD sequences ap-
proximately, Tribble and Owen [32] and Tribble [31] proposed an implemen-
tation method using short-period linear congruential and Tausworthe gener-
ators (i.e., linear feedback shift register generators over the two-element field
F2 := {0, 1}) that run for the entire period. Chen et al. [3] implemented
short-period Tausworthe generators optimized in terms of the equidistribu-
tion property, which is a coarse criterion used in the area of pseudorandom
number generation (see [1, §8.1] for the complete parameter table). In the
theory of (t,m, s)-nets and (t, s)-sequences, the t-value is a central crite-
rion of uniformity. In fact, typical QMC points (e.g., Sobol’, Faure, and
Niederreiter–Xing) are optimized in terms of the t-value (see [23, 5]).

The aim of this paper is to conduct an exhaustive search of short-period
Tausworthe generators for Markov chain QMC in terms of the t-value and
to provide a parameter table of Tausworthe generators. It is known that
Tausworthe generators can be viewed as polynomial Korobov lattice point
sets with a denominator polynomial p(x) and a numerator polynomial q(x)
over F2 (e.g., see [17, 18]). For dimension s = 2, there is a connection between
the t-value and continued fraction expansions, that is, the t-value is optimal
(i.e., the t-value is zero) if and only if the partial quotients in the continued
fraction of q(x)/p(x) are all of degree one. To satisfy the definition of CUD
sequences approximately, we want to search for parameters (p(x), q(x)) whose
t-values are optimal for s = 2 and as small as possible for s ≥ 3. As a previous
study, in 1993, Tezuka and Fushimi [30] proposed an algorithm to search for
such parameters using a polynomial analogue of Fibonacci numbers from the
viewpoint of continued fraction expansions. Thus, we refine their algorithm
on modern computers, and conduct an exhaustive search again. In addition,
we report numerical examples using Gibbs sampling in which the resulting
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QMC point sets perform better than the existing point sets developed by
Chen et al. [3].

One might consider searching for parameters (p(x), q(x)) with t-value
zero for s = 3. Kajiura et al. [12] proved that there exists no maximal-period
Tausworthe generator with this property.

The remainder of this paper is organized as follows: In Section 2, we
briefly recall the definition of CUD sequences, Tausworthe generators, and
the t-value and equidistribution property. Section 3 is devoted to our main
results: we describe an exhaustive search algorithm and provide a table of
short-period Tausworthe generators for Markov chain QMC. We also compare
our new generators with existing generators developed by Chen et al. [3] in
terms of the t-value and equidistribution property. In Section 4, we present
numerical examples using Gibbs sampling. In Section 5, we conclude this
paper.

2. Preliminaries

We refer the reader to [23, 5, 17, 16] for general information.

2.1. Discrepancy and completely uniformly distributed sequences

Let Ps = {u0,u1, . . . ,uN−1} ⊂ [0, 1)s be an s-dimensional point set of
N elements in the sense of a “multiset”. We recall the definition of the
discrepancy as a criterion of uniformity of Ps.

Definition 1 (Discrepancy). For a point set Ps = {u0,u1, . . . ,uN−1} ⊂
[0, 1)s, the (star) discrepancy is defined as

D∗s
N (Ps) := sup

J

∣

∣

∣

∣

ν(J ;Ps)

N
− vol(J)

∣

∣

∣

∣

,

where the supremum is taken over every sub-interval J = [0, t1) × · · · ×
[0, ts) ⊂ [0, 1)s, ν(J ;Ps) is the number of points from Ps that belong to J ,
and vol(J) := t1 · · · ts is the volume of J .

If D∗s
N (Ps) is close to zero, we regard Ps as highly uniformly distributed.
Next, we define the CUD property for a one-dimensional infinite sequence

{ui}∞i=0 ⊂ [0, 1).
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Definition 2 (CUD sequences). A one-dimensional infinite sequence u0, u1, u2,
. . . ∈ [0, 1) is said to be completely uniformly distributed (CUD) if overlap-
ping s-blocks satisfy

lim
N→∞

D∗s
N ((u0, . . . , us−1), (u1, . . . , us), . . . , (uN−1, . . . , uN+s−2)) = 0

for every dimension s ≥ 1, that is, the sequence of s-blocks (ui, . . . , ui+s−1), i =
0, 1, . . ., is uniformly distributed in [0, 1)s for every dimension s ≥ 1.

This is one of the definitions of a random sequence from Knuth [13]. From the
viewpoint of QMC, it is desirable that D∗s

N converges to zero fast if N →∞;
see [7, 6] for details. As a necessary and sufficient condition of Definition 2,
Chentsov [4] showed that non-overlapping blocks satisfy

lim
N→∞

D∗s
N

(

(u0, . . . , us−1), (us, . . . , u2s−1), . . . , (us(N−1), . . . , uNs−1)
)

= 0

for every dimension s ≥ 1. Thus, we use a sequence {ui}∞i=0 ⊂ [0, 1) for
Markov chain QMC in this order.

2.2. Tausworthe generators

We recall some results of Tausworthe generators. Let F2 := {0, 1} be
the two-element field, and perform addition and multiplication over F2 (or
modulo 2).

Definition 3 (Tausworthe generators [27, 14, 15]). Let p(x) := xm −
c1x

m−1 − · · · − cm−1x− cm ∈ F2[x]. Consider the linear recurrence

ai := c1ai−1 + · · ·+ cmai−m ∈ F2, (1)

whose characteristic polynomial is p(x). Let σ be a step size with 0 < σ <
2m − 1 and

ui :=

w−1
∑

j=0

aiσ+j2
−j−1 ∈ [0, 1) (2)

be the output at step i, where w is the word size of the intended machine. If
p(x) is primitive, (a0, . . . , am−1) 6= (0, . . . , 0), and gcd(σ, 2m−1) = 1, then the
sequences (1) and (2) are both purely periodic with maximal period 2m − 1.
Assume the maximal periodicity and σ ≥ w. A generator in such a class is
called a Tausworthe generator (or a linear feedback shift register generator).

4



Let N = 2m and consider a sequence

u0, u1, . . . , uN−2, uN−1 = u0, . . . ∈ [0, 1) (3)

generated from a Tausworthe generator with the period lengthN−1. We con-
sider s-dimensional overlapping points ui = (ui, . . . , ui+s−1) for i = 0, 1, . . . , N−
2, that is, u0 = (u0, . . . , us−1),u1 = (u1, . . . , us), . . . ,uN−2 = (uN−2, u0, . . . , us−2).
Adding the origin {0}, we regard a point set

Ps = {0} ∪ {ui}
N−2
i=0 ⊂ [0, 1)s (4)

as a QMC point set. Note that the cardinality is |Ps| = 2m.
Moreover, Tausworthe generators can be represented as a polynomial ana-

logue of linear congruential generators:

q(x) := xσ mod p(x) (5)

Xi(x) := q(x)Xi−1(x) mod p(x) (6)

Xi(x)/p(x) = aiσx
−1 + aiσ+1x

−2 + aiσ+2x
−3 + · · · ∈ F2((x

−1)). (7)

Then, the sequence (2) is expressed as ui = νw(Xi(x)/p(x)), where a map
νw : F2((x

−1)) → [0, 1) is given by
∑∞

j=j0
kjx

−j−1 7→
∑w−1

j=max {0,j0}
kj2

−j−1,

which is obtained by substituting x = 2 into (7) and truncating the value
with the word size w. Furthermore, according to [17, § 5.5] and [18], a point
set Ps in (4) can also be represented as a polynomial Korobov lattice point
set:

Ps =

{

νw

(

h(x)

p(x)
(1, q(x), q(x)2, . . . , q(x)s−1)

)

∣

∣

∣
deg(h(x)) < m

}

, (8)

where m = deg(p(x)) and the map νw is applied component-wise. A pair of
polynomials (p(x), q(x)) is a parameter set of Ps. Thus, to construct a point
set that approximates CUD sequences in Definition 2, we want to find a pair
(p(x), q(x)) with small discrepancies D∗s

N (Ps) for each s ≥ 1.

2.3. Criteria of uniformity

Generally, calculating D∗s
N (Ps) is NP-hard [11]. A point set Ps in (4)

generated from a Tausworthe generator is a digital net, so we can compute
the t-value closely related to D∗s

N (Ps) for N = 2m.
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Definition 4 ((t,m, s)-nets). Let s ≥ 1 and 0 ≤ t ≤ m be integers. Then,
a point set Ps consisting of 2m points in [0, 1)s is called a (t,m, s)-net (in base
2) if every subinterval E =

∏s

j=1[rj/2
dj , (rj + 1)/2dj) in [0, 1)s with integers

dj ≥ 0 and 0 ≤ rj < 2dj for 1 ≤ j ≤ s and of volume 2t−m contains exactly
2t points of Ps.

For dimension s, the smallest value t for which Ps is a (t,m, s)-net is called
the t-value. D∗s

N (Ps) = O(2t(logN)s−1/N) holds, where the implied constant
in the O-notation only depends on s, so a small t-value is desirable. Thus,
we want to find Tausworthe generators with pairs of polynomials (p(x), q(x))
whose t-values are optimal (i.e., t = 0) for s = 2 and as small as possible for
s ≥ 3. Note that all Tausworthe generators have the t-value zero for s = 1.

Conversely, Chen et al. [3] used the following equidistribution property
as a criterion of uniformity:

Definition 5 (s-dimensional equidistribution with l-bit accuracy). For
1 ≤ s ≤ m and 1 ≤ l ≤ m, a point set Ps consisting of 2m points in [0, 1)s is
said to be s-dimensionally equidistributed with l-bit accuracy if we can parti-
tion the s-dimensional unit cube [0, 1)s into congruent cubic boxes of volume
2−sl by dividing each axis [0, 1) into 2l intervals, and can obtain an equal
number of points from Ps in each box.

For dimension s, the largest value of l for which this definition holds is called
the resolution of Ps and denoted by ls. We have a trivial upper bound ls ≤
⌊m/s⌋. As a criterion of uniformity, a high resolution ls is desirable. Thus,
we define the resolution gap ds = ⌊m/s⌋ − ls and the sum of resolution gaps
∆ =

∑m

s=1 ds. If ∆ = 0, the generator is said to be fully equidistributed (FE ).
Note that Ps contains the origin {0} and the output values of a Tausworthe
generator for the entire period of 2m − 1. Chen et al. [3] implemented FE
Tausworthe generators for Markov chain QMC.

3. Main result

3.1. An exhaustive search algorithm using Fibonacci polynomials

To construct a point set that approximates CUD sequences in Defini-
tion 2, we search for a pair of polynomials (p(x), q(x)) whose t-values are
optimal for s = 2 and as small as possible for s ≥ 3. Thus, we refine the
algorithm of Tezuka and Fushimi [30].
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For dimension s = 2, there is a connection between the t-value of poly-
nomial Korobov lattice point sets (8) and continued fraction expansion of
q(x)/p(x). Let

q(x)

p(x)
= A0(x) +

1

A1(x) +
1

A2(x) +
1

. . .
+

1

Av(x)

=: [A0(x);A1(x), A2(x), . . . , Av(x)]

be the continued fraction expansion of the rational function q(x)/p(x) with a
polynomial part A0(x) ∈ F2[x] and partial quotients Ak(x) ∈ F2[x] satisfying
deg(Ak(x)) ≥ 1 for 1 ≤ k ≤ v.

Theorem 1 ([23, 30]). Let p(x) ∈ F2[x] with m = deg(p(x)) and q(x) ∈
F2[x] with deg(q(x)) < m. Assume gcd(p(x), q(x)) = 1. Then, the two-
dimensional point set

P2 =

{

νw

(

h(x)

p(x)
(1, q(x))

)

∣

∣

∣
deg(h(x)) < m

}

is a (0, m, 2)-net (i.e., the t-value is zero) if and only if the partial quotients
in the continued fraction expansion [0;A1(x), A2(x), . . . , Av(x)] of q(x)/p(x)
all have degree one, so v = m.

The next theorem asserts the existence of q(x) with the above property for
every irreducible polynomial p(x).

Theorem 2 ([22]). Let p(x) be an irreducible polynomial with m = deg(p(x))
and q(x) ∈ F2[x] with deg q((x)) < m. For each p(x), there are exactly two
polynomials q(x) for which the partial quotients of the continued fraction
expansion of q(x)/p(x) all have degree one.

In fact, the two polynomials are q(x) and q−1(x) mod p(x), which mean
that we generate Tausworthe generators in normal order and reverse order,
respectively. Hence, they yield essentially the same polynomial lattice point
set Ps.
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To obtain (p(x), q(x)) satisfying the above theorems, Tezuka and Fushimi
[30] defined a polynomial analogue of Fibonacci numbers as follows:

Fk(x) = Ak(x)Fk−1(x) + Fk−2(x) (k ≥ 2), (9)

F0(x) = 1, F1(x) = A1(x), (10)

Ak(x) = x or x+ 1 (k ≥ 1). (11)

They called a pair of polynomials (Fk(x), Fk−1(x)) a pair of “Fibonacci poly-
nomials” because the partial quotients in the continued fraction of Fk−1(x)/Fk(x)
are all of degree one. Figure 1 shows the initial part of a tree of Fibonacci
polynomials, which was originally illustrated in [28, Figure 4.5]. Note that
there are 2m different pairs (Fm(x), Fm−1(x)) for Fibonacci polynomials with
degree m. From them, we choose a suitable pair (p(x), q(x)) that approxi-
mates CUD sequences in Definition 2.

Figure 1: A tree of Fibonacci polynomials.

Now we refine the algorithm of Tezuka and Fushimi [30]. Our exhaustive
search algorithm proceeds as follows:
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Algorithm 1 An exhaustive search algorithm

1: Generate all the pairs (Fm(x), Fm−1(x)) using the recurrence relation of
Fibonacci polynomials (9)–(11).

2: Check the primitivity of Fm(x).
3: Find σ such that xσ ≡ Fm−1(x) mod Fm(x) and 0 < σ < 2m− 1. Check

gcd(σ, 2m − 1) = 1 and σ ≥ w.
4: Choose pairs (Fm(x), Fm−1(x)) whose t-value is equal to or smaller than

3 for s = 3.
5: Let t(s) be a t-value for dimension s. For each (Fm(x), Fm−1(x)), make a

vector (t(4), t(5), t(6), . . . , t(m)) of the t-values.
6: Sort pairs (Fm(x), Fm−1(x)) in lexicographic order based on

(t(4), t(5), t(6), . . . , t(m)) starting from dimension 4.
7: Choose one of the best (or smallest) pairs (Fm(x), Fm−1(x)) in Step 6.
8: Set (p(x), q(x))← (Fm(x), Fm−1(x)).

In Step 4, this criterion means that the t-value is sufficiently small for
s = 3; see Remark 2 for details. In Steps 4 and 5, we calculate the t-values
by using Gaussian elimination [25] instead of solving Diophantine equations
in [30, Theorem 1].

Remark 1. In the original paper [30], before Step 2, Tezuka and Fushimi
checked the condition

Fm−1(x)
m + Fm−1(x)

n + 1 = 0 mod Fm(x),

where 0 < n < m, to obtain fast Tausworthe generators using trinomial
generalized feedback shift register generators. They also restricted the calcu-
lation of the t-values to only 3 ≤ s ≤ 6. A reason for these conditions might
be the difficulty of checking from Steps 2–5 on computers around 1990. As
a result, in the range 3 ≤ m ≤ 32, there exist pairs (Fm(x), Fm−1(x)) only
for m = 3, 5, 7, 15, 17, 18, 20, 22, 23, 25, 28, and 31; otherwise, there exists no
pair. In the related paper [29], the authors found pairs (Fm(x), Fm−1(x)) for
all 3 ≤ m ≤ 21 under a pentanomial condition. Currently, it is not difficult
to remove these conditions when we conduct an exhaustive search on mod-
ern computers. In Remark 3, we note a reasonably fast generation method
instead of the direct use of Definition 3.

Remark 2. In Step 4, we observed that the smallest t-values are 2 or 3
for 10 ≤ s ≤ 32 by exhaustive search. More precisely, there exist pairs
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(p(x), q(x)) with t-value two only for 10 ≤ s ≤ 14 and s = 16 and 17,
and the number of them are quite few, compared with the number of pairs
with t-value three. For example, in the case where s = 17, there exist four
pairs with t-value two but 464 pairs with t-value three. Thus, to find a pair
(p(x), q(x)) with smaller t-value even for s ≥ 4, we adopted this criterion.

3.2. Specific parameters

Table 1 lists specific parameters for w = 32, 64 and 10 ≤ m ≤ 32. In
Table 1, each first and second row shows the coefficients of p(x) and q(x) re-
spectively; for example, 1 1 0 1 means 1+x+x3. We also note the step size σ
corresponding to q(x). For m = 21 and 28, we obtained the pairs of polyno-
mials (p(x), q(x)) with somewhat large defects ∆ = 6 and 4, respectively, so
we replaced them by the second-best pairs. Table 2 summarizes the t-values
and sum of resolution gaps ∆ for our new Tausworthe generators (labeled
“New”) and the existing Tausworthe generators developed by Chen et al. [3]
(labeled “Chen”) in the range of 2 ≤ s ≤ 20. For 2 ≤ s ≤ 5, our new genera-
tors have the t-values equal to or smaller than the existing generators (except
for m = 32). It is known that QMC are successful in high-dimensional prob-
lems, particularly in the case in which problems are dominated by the first
few variables, so we focus on the optimization of leading dimensions. Con-
versely, from the viewpoint of the FE property, our generators are not FE.
We can also optimize both the t-values and FE property, but the t-values
slightly increase. Thus, we prioritized the t-values over the FE property for
simplicity. The code in C is available at https://github.com/sharase/cud.

Remark 3. We note a reasonably fast generation method for Tausworthe
generators. Let xi = (aiσ, aiσ+1, . . . , aiσ+m−1, aiσ+m, . . . , aiσ+w−1)

T be a w-bit
state vector at step i form ≤ w. We can define a state transition xi+1 = Bxi,
where B :=

(

b0 . . . bm−1 0 . . . 0
)

is a w × w state transition matrix
consisting of w-bit column vectors b0, . . . ,bm−1 and w−m w-bit zero column
vectors 0. Then, we have the recurrence relation xi+1 = aiσb0 ⊕ aiσ+1b1 ⊕
· · · ⊕ aiσ+m−1bm−1, which can be calculated by adding column vectors bj if
aiσ+j = 1 holds for j = 0, . . . , m−1, where the symbol ⊕ denotes the bitwise
exclusive-or operation. Using this method, we can generate {ui}

∞
i=0 in (2)

with reasonable speed. See [16, §3 and 5.1] for the construction of B.

10
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Table 1: Specific parameters of pairs of polynomials (p(x), q(x)) and step sizes σ.
m = 10 1 0 0 0 0 0 1 1 0 1 1

0 1 0 1 1 1 0 1 0 1 (σ = 70)
m = 11 1 1 0 0 1 0 0 1 1 0 1 1

0 1 0 0 0 0 1 1 1 0 1 (σ = 179)
m = 12 1 1 1 1 1 0 0 1 0 0 1 1 1

0 0 1 0 0 1 1 1 1 0 1 1 (σ = 146)
m = 13 1 1 1 0 1 0 0 0 1 0 1 1 1 1

1 0 1 0 1 1 1 1 1 0 0 1 1 (σ = 139)
m = 14 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1

1 0 1 1 1 1 0 1 0 0 1 0 1 1 (σ = 5192)
m = 15 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1

0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 (σ = 1028)
m = 16 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1

1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 (σ = 12749)
m = 17 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 (σ = 20984)
m = 18 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1

1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 (σ = 72349)
m = 19 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 (σ = 92609)
m = 20 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1

0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 (σ = 226826)
m = 21 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 (σ = 1127911)
m = 22 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1

0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 (σ = 629680)
m = 23 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1

1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 (σ = 1796311)
m = 24 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1

1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 (σ = 7017398)
m = 25 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1

0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 (σ = 2947446)
m = 26 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 1

1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 (σ = 19101221)
m = 27 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1

0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 (σ = 4397933)
m = 28 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 1

0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 (σ = 167713336)
m = 29 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 1 (σ = 83189117)
m = 30 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1

0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 (σ = 315800840)
m = 31 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1

0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 (σ = 36109125)
m = 32 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1

0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 (σ = 686019401)
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Table 2: Comparison of the t-values and ∆ for our new Tausworthe generators and the
existing Tausworthe generators developed by Chen et al. [3].
m dim. s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ∆
10 New 0 3 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 2

Chen 2 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 0
11 New 0 3 3 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 1

Chen 2 5 5 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 0
12 New 0 3 4 5 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 2

Chen 2 3 5 5 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 0
13 New 0 2 3 5 6 6 7 7 7 8 8 8 8 8 9 9 9 9 9 0

Chen 1 5 5 5 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 0
14 New 0 3 4 5 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 1

Chen 1 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 10 10 10 0
15 New 0 3 4 6 7 8 8 9 9 9 9 10 10 10 10 10 10 10 10 1

Chen 2 4 5 7 7 7 8 8 9 9 9 9 9 9 9 9 9 10 10 0
16 New 0 3 4 7 7 8 10 10 10 11 11 11 11 11 11 11 11 11 11 1

Chen 3 4 5 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 12 0
17 New 0 3 4 7 7 7 8 10 10 10 10 11 11 11 11 11 12 12 12 1

Chen 2 5 6 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 0
18 New 0 3 5 6 7 9 9 9 10 10 10 10 11 11 11 12 12 13 13 2

Chen 3 4 5 7 8 9 9 12 12 12 12 12 12 12 12 12 12 12 12 0
19 New 0 3 5 6 7 12 12 12 12 12 12 12 13 13 13 13 13 13 13 1

Chen 2 4 8 8 8 9 9 9 11 12 12 12 12 12 12 12 12 12 12 0
20 New 0 3 5 7 7 10 10 11 11 12 12 13 13 13 13 13 13 13 13 2

Chen 3 4 8 8 8 13 13 13 13 13 13 13 13 14 14 14 14 14 14 0
21 New 0 3 5 8 8 9 10 10 10 13 13 13 13 13 13 13 13 14 14 1

Chen 3 6 8 8 8 11 11 11 12 12 12 12 12 12 12 12 13 13 15 0
22 New 0 3 5 7 10 10 12 12 12 12 13 13 13 13 15 15 15 15 15 1

Chen 7 7 7 8 8 14 14 14 14 14 14 14 14 14 14 14 14 14 15 0
23 New 0 3 5 9 9 11 12 13 13 13 13 13 13 13 15 15 15 15 15 1

Chen 5 5 9 9 9 9 11 15 15 15 15 15 15 15 15 15 15 15 15 0
24 New 0 3 6 8 10 11 12 13 14 14 14 14 15 17 17 17 17 17 17 3

Chen 5 5 8 8 11 11 11 12 14 14 14 14 14 14 14 15 15 16 16 0
25 New 0 3 6 7 12 12 12 13 13 13 14 14 16 16 16 18 18 18 18 3

Chen 4 6 8 8 9 10 11 12 12 12 14 16 16 16 16 16 16 16 16 0
26 New 0 3 6 8 12 12 12 13 13 13 14 14 15 15 15 16 16 16 18 2

Chen 6 7 7 9 11 11 12 13 13 14 15 15 16 16 16 16 17 17 17 0
27 New 0 3 7 7 11 12 13 13 13 14 14 14 16 16 16 16 16 16 16 3

Chen 3 6 8 11 12 12 14 14 14 15 15 15 15 15 16 16 16 17 17 0
28 New 0 3 7 9 9 13 13 13 13 14 15 17 17 17 17 17 17 17 17 2

Chen 4 5 13 13 13 13 13 14 15 15 15 16 16 16 17 17 17 18 18 0
29 New 0 3 6 9 11 13 14 14 14 20 20 20 20 20 20 20 20 20 20 1

Chen 5 5 12 12 12 12 14 14 15 17 17 17 17 17 17 17 17 17 18 0
30 New 0 3 7 9 12 13 14 14 16 16 16 17 17 17 17 17 17 18 19 1

Chen 2 7 7 10 13 13 13 14 17 17 17 17 17 17 18 18 18 18 19 0
31 New 0 3 7 9 12 12 15 15 15 16 18 19 19 19 19 19 19 19 20 1

Chen 2 5 9 10 13 13 15 15 15 15 17 18 18 18 18 18 19 19 19 0
32 New 0 3 7 10 13 14 14 15 15 17 17 17 18 18 20 20 20 20 20 4

Chen 5 5 9 9 13 13 15 15 15 15 16 16 17 18 18 18 19 19 20 0
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4. Numerical examples

In this section, we provide numerical examples to confirm the performance
of Markov chain QMC.

4.1. Two-dimensional Gaussian Gibbs sampling

Our first example is a systematic Gibbs sampler to generate the two-
dimensional Gaussian distribution

X =

(

X1

X2

)

∼ N

((

0
0

)

,

(

1 ρ
ρ 1

))

for correlation ρ ∈ (−1, 1). This can be implemented as

Xi,1 ← ρXi−1,2 +
√

1− ρ2Φ−1(u2i−2),

Xi,2 ← ρXi,1 +
√

1− ρ2Φ−1(u2i−1),

where Φ is the cumulative distribution function for the standard normal dis-
tribution. For the output values (3) generated from Tausworthe generators,
we define two-dimensional non-overlapping points starting from the origin:

(0, 0), (u0, u1), (u2, u3), . . . , (uN−2, u0), (u1, u2), . . . , (uN−3, uN−2), (12)

where N = 2m. We apply digital shifts, that is, we add (z1, z2) to each point
in (12) using bitwise exclusive-or ⊕, where z1 and z2 are IID samples from
U(0, 1).

We estimate E(X1) and E(X2) by taking the sample mean. Hence, the
true values are zero. We compare the following driving sequences:

1. New: our new Tausworthe generators;

2. Chen et al. (2012): Tausworthe generators developed by Chen et al. [3];
and

3. IID: Mersenne Twister [21].

Figure 4.1 shows a summary of standard deviations (in log2 scale) for ρ =
0, 0.3 and 0.9 and 12 ≤ m ≤ 25 using 100 digital shifts. Our new generators
outperformed Chen’s generators for no correlation ρ = 0 and weak correlation
ρ = 0.3. Even for strong correlation ρ = 0.9, our new generators were still
better than Chen’s generators. In Figure 4.1, we generated scatter plots of
sampling (X1, X2) from our new and Chen’s Tausworthe generators for ρ = 0

13



and m = 12. In the scatter plots, Chen’s generator has a pattern of wiggly
strips of points, which is optimized in terms of 64 × 64 grids for s = 2, but
our generator seems to be highly balanced both for X1 and X2. Therefore, it
can be expected that our new generators have better marginal distributions
than the existing generators.

In addition, as a test function, we estimated E(X1X2), which has the true
value ρ. Figure 4.1 shows a summary of standard deviations (in log2 scale)
for ρ = 0, 0.3 and 0.9 and 12 ≤ m ≤ 25 using 100 digital shifts. We obtained
the results in which our new generators were superior to Chen’s generators
especially for ρ = 0 and 0.3.

4.2. A hierarchical Bayesian model

Our second example is a hierarchical Bayesian model [9] used in [24,
31, 20]. Following [26, Example 7.12], we explain the problem setting. We
consider multiple failures of ten pumps in a nuclear plant, with the data
given in Table 3. The modeling is based on the assumption that the number
of failures of the jth pump follows a Poisson process with parameter λj

(j = 1, . . . , 10). For an observation time tj, the number of failures Xj is thus
a Poisson P(λjtj) random variable. The standard prior distributions are
gamma distributions G(α, β) with shape parameter α and rate parameter β,
which lead to the hierarchical model

Xj ∼ P(λjtj), j = 1, . . . , 10,

λj ∼ G(α, β), j = 1, . . . , 10,

β ∼ G(γ, δ),

where the hyperparameter values are α = 1.802, γ = 0.1, and δ = 1. Our
goal is to estimate the posterior means E[λj] and E[β] by taking the sample
mean. For this purpose, we use a Gibbs sampler based on the full conditional
distributions

λj | β, tj, xj ∼ G(xj + α, tj + β), j = 1, . . . , 10,

β | λ1, . . . , λ10 ∼ G

(

γ + 10α, δ +

10
∑

j=1

λj

)

.

Note that the state vector (λ1, . . . , λ10, β) has eleven dimensions. The start-
ing point uses the maximum likelihood estimates xj/tj for λj together with

14
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Figure 2: Estimation of E(X1) and E(X2) for ρ = 0, 0.3 and 0.9.
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Figure 4: Estimation of E(X1X2) for ρ = 0, 0.3 and 0.9.
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the full conditional mean of β, given the starting λj. The Gibbs sam-
pling is driven by inversion of gamma cumulative density functions. Sim-
ilarly to (12), for the output values (3), we define eleven-dimensional non-
overlapping points (u0, . . . , u10), (u11, . . . , u21), . . . , (u11(N−2), . . . , u11(N−1)−1),
starting from the origin (0, . . . , 0), where N = 2m and gcd(2m − 1, 11) = 1.

Table 4 shows a summary of sample variances of posterior mean estimates
for m = 12, 14, 16, and 18 using 300 digital shifts. Our new Tausworthe gen-
erators were comparable to or even better than Chen’s Tausworthe generators
with a few exceptions (e.g., λ7, λ8, and λ9 for m = 14). Such exceptions oc-
curred in pumps for short monitoring periods, and this implies that it might
be difficult to estimate those parameters with high accuracy from the per-
spective of Bayesian inference. In any case, our new generators were at least
superior to IID uniform random number sequences generated by Mersenne
Twister.

Table 3: Number of failures and times of observation of ten pumps in a nuclear plant [8].

Pump j 1 2 3 4 5 6 7 8 9 10

Failures xj 5 1 5 14 3 19 1 1 4 22
Time tj 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

Remark 4. In our experiments, we set w = 32. In fact, Chen et al. [3]
originally defined Tausworthe generators in (2) with m-bit precision, that is,
ui =

∑m−1
j=0 aiσ+j2

−j−1 ∈ [0, 1). In this definition, we could not observe clear
differences between our new generators and Chen’s generators. However, we
increased the precision of points and redefined Tausworthe generators with
w bits as in (2), and then the differences became clear.

Remark 5. Sequential Monte Carlo (SMC) can be used to perform Bayesian
inference when the data are accumulated sequentially rather than being given
a priori. Recently, Gerber and Chopin [10] developed a class of algorithms
combining SMC and randomized QMC to accelerate convergence.

5. Conclusion

We conducted an exhaustive search of short-period Tausworthe generators
for Markov chain QMC in terms of the t-value. Our key technique was to
use the continued fraction expansion of q(x)/p(x) by refining the algorithm
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Table 4: Variance of posterior mean estimates for pump failure data.

m = 12

Parameter λ1 λ2 λ3 λ4 λ5

IID 1.77e-07 1.98e-06 4.12e-07 1.96e-07 2.40e-05
Chen 4.77e-11 7.18e-10 8.91e-11 4.69e-11 7.44e-09
New 8.13e-12 2.41e-10 1.96e-11 9.86e-12 4.11e-09

Parameter λ6 λ7 λ8 λ9 λ10 β

IID 4.14e-06 9.79e-05 9.00e-05 1.05e-04 4.80e-05 2.29e-04
Chen 1.09e-09 1.03e-07 4.53e-08 3.81e-08 1.23e-08 1.68e-07
New 2.44e-10 1.78e-07 3.49e-08 2.38e-08 2.81e-09 5.21e-08

m = 14

Parameter λ1 λ2 λ3 λ4 λ5

IID 4.33e-08 5.44e-07 9.21e-08 6.67e-08 5.46e-06
Chen 4.86e-12 1.07e-10 1.05e-11 5.15e-12 5.64e-09
New 5.96e-13 2.48e-11 1.16e-12 6.13e-13 1.03e-09

Parameter λ6 λ7 λ8 λ9 λ10 β

IID 1.12e-06 2.21e-05 2.32e-05 2.40e-05 1.21e-05 6.28e-05
Chen 9.75e-11 7.08e-09 1.37e-08 5.68e-09 1.46e-09 2.41e-08
New 2.12e-11 5.60e-08 2.37e-07 1.18e-08 4.51e-10 4.86e-09

m = 16

Parameter λ1 λ2 λ3 λ4 λ5

IID 1.08e-08 1.42e-07 2.42e-08 1.21e-08 1.44e-06
Chen 4.03e-13 8.28e-12 1.07e-12 4.73e-13 7.05e-11
New 2.78e-14 1.53e-12 5.23e-14 2.40e-14 7.03e-11

Parameter λ6 λ7 λ8 λ9 λ10 β

IID 3.01e-07 5.34e-06 5.65e-06 6.79e-06 2.61e-06 1.67e-05
Chen 8.74e-12 5.11e-10 5.34e-10 3.90e-10 9.90e-11 2.20e-09
New 1.52e-12 2.16e-10 5.23e-10 1.71e-10 2.22e-11 1.05e-09

m = 18

Parameter λ1 λ2 λ3 λ4 λ5

IID 2.48e-09 3.21e-08 7.49e-09 3.47e-09 3.88e-07
Chen 2.50e-14 1.05e-12 5.12e-14 2.58e-14 1.86e-11
New 2.41e-15 7.97e-14 5.60e-15 1.86e-15 1.72e-12

Parameter λ6 λ7 λ8 λ9 λ10 β

IID 8.30e-08 1.34e-06 1.64e-06 1.65e-06 6.65e-07 4.24e-06
Chen 1.39e-12 7.52e-11 1.83e-10 9.83e-11 1.68e-11 9.01e-10
New 7.84e-14 4.23e-11 8.99e-11 4.72e-11 3.80e-12 1.15e-10
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of Tezuka and Fushimi [30] on modern computers. As a result, we obtained
the point sets with t-values optimal for s = 2 and small for s ≥ 3. We
also reported numerical examples using Gibbs sampling in which our new
generators performed better than the existing generators of Chen et al. [3].
The code in C is available at https://github.com/sharase/cud.

As a future work, we will attempt more realistic numerical examples as in
[1, 32, 31]. For this purpose, we believe that the next task is to embed our new
and existing generators into several programming languages for statistical
computing; for example, R, Stan, and Python. Thus, we are now planning a
software implementation of Markov chain QMC.
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