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Abstract

The original Ait-Sahalia model of the spot interest rate proposed by Ait-Sahalia assumes
constant volatility. As supported by several empirical studies, volatility is never constant in
most financial markets. From application viewpoint, it is important we generalise the Ait-Sahalia
model to incorporate volatility as a function of delay in the spot rate. In this paper, we study
analytical properties for the true solution of this model and construct several new techniques of the
truncated Euler-Maruyama (EM) method to study properties of the numerical solutions under the
local Lipschitz condition plus Khasminskii-type condition. Finally, we justify that the truncated
EM approximate solution can be used within a Monte Carlo scheme for numerical valuations of
some financial instruments such as options and bonds.

Key words: Stochastic interest rate model, Delay volatility, Truncated EM scheme, Strong
convergence, Monte Carlo scheme.

1 Introduction

Stochastic modelling of interest rates plays significant roles in calibration and valuation of financial
instruments. Many well-known stochastic models have been proposed to model dynamics of interest
rates, for example Black-Scholes (1973) [1], Merton (1973) [2], Vasicek (1977) [3], Dothan (1978) [4],
Brennan and Schwartz (1980) [5] and Cox, Ingersoll and Ross(CIR) (1985) [7]. These models were
generalised by Lewis (2000) [8] as a non-linear mean-reverting-theta process

dx(t) = α(µ− x(t))dt+ σx(t)θdB(t), (1)

x(0) = x0, for any t > 0, where α, µ and σ are constants, θ ≥ 1/2 and B is a scalar Brownian motion.
This is widely used to model dynamics of interest rates, volatility and other financial quantities. Mao
[11] studied analytical properties and strong convergence theory of the numerical solutions of SDE (1)
when θ ∈ [1/2, 1]. Higham and Mao [9] examined the strong convergence of Monte Carlo simulations
of SDE (1). Wu [10] established analytical properties of SDE (1) and convergence of EM approximate
solutions in probability when θ > 1.

Ait-Sahalia [12] conducted empirical studies to investigate several continuous-time interest rate
models. He tested parametric models by comparing their implied parametric density to the same
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density estimated nonparametrically. He discovered all existing univariate linear drift models could not
explain well the dynamics of Eurodollar interest rates. As a result, he proposed a new class of strongly
non-linear SDE described by

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)2)dt+ σx(t)θdB(t), (2)

x(0) = x0, for any t > 0, where α−1, α0, α1, α2 are positive constants and θ > 1, for modelling interest
rate dynamics. In his seminal paper, Ait-Sahalia used Feller test to show conditions under which almost
surely the solution of SDE (2) will not explode in finite time to infinity. Cheng [13] studied analytical
properties including nonnegativity of solution and boundedness of moments of SDE (2) and established
convergence of EM approximate solution to the true solution in probability. Szpruch et al. in [14]
generalised SDE (2) to

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ)dt+ σx(t)θdB(t), x(0) = x0, (3)

for any t > 0 and established analytical properties and strong convergence of backward and forward-
backward EM approximate solutions to the exact solution of this type of model when ρ > 1. Dung
(2016) in [15] derived explicit estimates for tail probabilities for solutions to SDE (3). Interestingly,
all the aforementioned interest rate models share a common characteristic, i.e. volatility is assumed
constant. However, several empirical studies proved that volatility is not constant in most financial
markets and any good financial model should possess important characteristic of reproducing volatility
’smiles’ and ’skews’ evident in option markets (e.g., see [17, 20] for detailed accounts).

There are several extensive literature where stochastic models with inherent features of past depen-
dency are used to describe volatility ’smiles’ and ’skews’ adequately. For instance, Kind et al. justified
in [19] that the instantaneous volatility is modelled in terms of the sample variance of the log-prices over
a past interval of fixed length. Mao and Sabanis [20] also extended the geometric Brownian motion
(GBM) to a delay geometric Brownian motion (DGBM) described by a stochastic delay differential
equation (SDDE ), where the volatility is modelled as a function of delay in asset price and justified it
as a rich alternative for modelling financial instruments in a complete market.

In this light, it is natural to introduce delayed volatility function into the generalised strongly
nonlinear Ait-Sahalia model described by the stochastic delay differential equation (SDDE ){

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ)dt+ V (x(t− τ))x(t)θdB(t), t ≥ 0,

x(t) = ξ(t), t ∈ [−τ, 0],
(4)

for evolution of interest rates. Here α−1, α0, α1, α2 are positive constants, ρ, θ > 1 are parameters, B(·)
is a scalar Brownian motion and V (·) is a volatility function which depends on x(t − τ), where τ > 0
and x(t− τ) denotes delay in x(t). The delayed volatility function V (x(t− τ)) is past-level-dependent
in this case and hence may capture dynamics of volatility ’smiles’ and ’skews’ adequately.

The solution to SDDE (4) obviously cannot be found by closed-form formulas. It is also obvious
SDDE (4) has superlinear coefficient terms. This is further complicated by α−1x(t)−1 in the drift term,
which may explode to infinity in finite time at the origin, and V (x(t− τ)) in the diffusion term. Hence
we cannot employ standadrd EM scheme to numerically approximate SDDE (4) since this scheme
diverges in strong mean-square sense at finite point for SDEs with superlinear coefficients (see [16]).
The truncated EM scheme was developed recently in [21] for numerical approximation of SDEs with
superlinear coefficients. However, the truncated EM scheme may fail to cope with SDDE (4).

In this work, we are concerned with constructing several new techniques of the truncated EM
scheme to numerically study SDDE (4) and establish strong convergence theory in finite time under
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the local Lipschitz condition plus Khasminskii-type condition. In particular, we aim to establish Lq-
strong convergence theory in finite time, where Lq ⊃ Lp, q ∈ [2, p) and p is a parameter in connection
with the Khasminskii-type condition.

The rest of the paper is organised as follows: In section 2, we will verify the existence and uniqueness
for the solution to SDDE (4) and show that the solution will never become negative. We will also study
analytical properties such as boundedness of pth moment of the true solution in section 2. In section
3, we will construct the truncated EM scheme for SDDE (4). We will explore numerical properties and
investigate a finite time strong convergence of this scheme in section 4. In section 5, we will apply the
strong convergence result within a Monte Carlo setting to value some financial instruments. Finally,
we will perform some numerical examples to support the established results in section 6.

2 Properties of the generalised Ait-Sahalia model with delay

2.1 Mathematical preliminaries

Throughout this paper unless specified otherwise, we employ the following notation. Let {Ω,F ,P} be
a complete probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing
and right continuous while F0 contains all P null sets), and let E denote the expectation corresponding
to P. Let B(t), t ≥ 0, be a scalar Brownian motion defined on the above probability space. If x, y are
real numbers, then x∨ y denotes the maximum of x and y, and x∧ y denotes the minimum of x and y.
Let R = (−∞,∞) and R+ = (0,∞). For τ > 0, let C([−τ, 0];R+) denote the space of all continuous
functions ξ : [−τ, 0]→ R+ with the norm ‖ξ‖ = sup−τ≤t≤0 ξ(t). For an empty set ∅, we set inf ∅ =∞.
For a set A, we denote its indication function by 1A. Consider the following nonlinear dynamics

dx(t) = f(x(t))dt+ V (x(t− τ))g(x(t))dB(t), (5)

x(t) = ξ(t), on t ∈ [−τ,∞), as equation of SDDE (4) such that f(x) = α−1x
−1 − α0 + α1x − α2x

ρ

and g(x) = xθ, ∀x ∈ R+, with V (·) defined in C(R+;R+). Let C2,1(R × R+;R) be the family of all
real-valued functions H(x, t) defined on R × R+ such that H(x, t) is twice continuously differentiable
in x and once in t. Given H ∈ C2,1(R× R+;R), define an operator LH : R× R× R+ → R by

LH(x, y, t) = Ht(x, t) +Hx(x, t)f(x) +
1

2
Hxx(x, t)V (y)2g(x)2, (6)

called the diffusion operator of the dynamics (5) associated with the C2,1-function H, where

Ht(x, t) =
∂H(x, t)

∂t
, Hx(x, t) =

∂H(x, t)

∂x
and Hxx(x, t) =

∂2H(x, t)

∂x2
.

With the diffusion operator, the Itô formula can be written as

dH(x(t), t) = LH(x(t), x(t− τ), t)dt+Hx(x(t), t)V (x(t− τ))g(x(t))dB(t) a.s. (7)

See, for instance, [11] for further details.

2.2 Existence of nonnegative solution

We have already observed the f and g coefficient terms of SDDE (5) are non-globally Lipschitz con-
tinuous. Naturally, for SDDE (5) to have a unique global solution for any given initial data, both drift
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and diffusion terms are required to satisfy local Lipschitz condition plus superlinear growth condition
(e.g., see [14] for more details). Essentially, this requires to assume that the volatility function V (·) is
locally Lipschitz continuous and bounded. The following theorem illustrates that the SDDE (5) admits
a unique positive global solution. Moreover, since the SDDE (5) describes interest rate dynamics in the
financial market, it is important the solution x(t) should always be positive. The following conditions
are however sufficient to establish a pathwise-unique positive global solution x(t) to SDDE (5).

Assumption 2.1. (Boundedness of volatility function). The volatility function V : R+ → R+ of
SDDE (5) is Borel-measurable and bounded by a positive constant λ, that is

V (y) ≤ λ, ∀y ∈ R+. (8)

See, for instance, Mao and Sabanis [20] for detailed coverage of the above assumption. In addition to
Assumption 2.1, we also require the following assumption on the parameter values to help control the
potential growth likely to emerge from the diffusion term.

Assumption 2.2. (Condition on parameter values). The parameters of the SDDE (5) satisfy

1 + ρ > 2θ.

Theorem 2.3. Let Assumptions 2.1 and 2.2 hold. Then for any given initial data

{x(t) : −τ ≤ t ≤ 0} = ξ(t) ∈ C([−τ, 0]) : R), (9)

there exists a unique positive global solution x(t) to SDDE (5) on t ≥ 0. This solution can be computed
by the following step by step procedure: for k = 0, 1, 2, ... and t ∈ [kτ, (k + 1)τ ],

x(t) = x(kτ) +

∫ t

kτ

f(x(s))ds+

∫ t

kτ

V (x(s− τ))g(x(s))dB(s). (10)

Moreover, for any T > 0,
lim
n→∞

P(τn ≤ T ) = 0, (11)

where τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)} for every sufficiently large integer n.

We employ an inductive argument to establish this proof.

Proof. For t ∈ [0, τ ], the SDDE (5) becomes the following SDE

dx(t) = f(x(t))dt+ V (ξ(t− τ))g(x(t))dB(t),

with initial value x(0) = ξ(0) and has a well-known unique positive global solution

x(t) = ξ(0) +

∫ t

0

f(x(s))ds+

∫ t

0

V (ξ(s− τ))g(x(s))dB(s). (12)

The solution x(t) to SDE (12) on t ≥ 0 has been however established in various literature to satisfy
(11) (see, e.g., [12, 14] for more details). This implies (10) holds for k = 0. As x(t) is now known on
t ∈ [0, τ ], we may repeat this procedure over the interval t ∈ [τ, 2τ ] to obtain the SDE

dx(t) = f(x(t))dt+ V (x(t− τ))g(x(t))dB(t).
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This SDE has a unique positive global solution

x(t) = ξ(0) +

∫ t

0

f(x(s))ds+

∫ t

0

V (x(s− τ))g(x(s))dB(s). (13)

Clearly the solution x(t) is a continuous stochastic process on t ∈ [0, τ ] and so both integrals are well
defined. Hence the (10) holds for k = 1. Given that the solution x(t) to SDE (12) on t ≥ 0 satisfies
(11) implies it also satisfies (11) for SDE (13). Repeating this procedure for all k ≥ 0, we obtain a
unique positive global solution to SDDE (5) which satisfies (11).

2.3 Moment bound of the true solution

Moment bounds are essential for valuation and pricing of financial quantities. The following lemmas
give boundedness properties for the solution to SDDE (5).

Lemma 2.4. Let Assumptions 2.1 and 2.2 hold. Then for any p ≥ 2, the solution x(t) to SDDE (5)
is upper bounded, i.e.,

sup
0≤t<∞

(E|x(t)|p) ≤ C1, (14)

for any t ≥ 0 and

sup
0≤t<∞

(
E
∣∣∣ 1

x(t)

∣∣∣p) ≤ C2, (15)

where C1 and C2 are constants.

Proof. For every sufficiently large integer n, define the stopping time by

τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)}.

Apply the diffusion operator to H(x, t) = etxp to get

LH(x, y, t) = etxp + petxp−1f(x) +
1

2
p(p− 1)etxp−2(V (y)g(x))2

= etxp + petxp−1(α−1x
−1 − α0 + α1x− α2x

ρ) +
1

2
p(p− 1)etxp−2V 2(y)x2θ

≤ et[xp + pxp−2(α−1 − α0x+ α1x
2 − α2x

ρ+1 +
(p− 1)

2
λ2x2θ)]

By Assumption 2.2, there exists a constant K such that

LH(x, y, t) ≤ etK. (16)

By the Itô formula,

E[et∧τn|x(t ∧ τn)|p] ≤ |ξ(0)|p + E
∫ t∧τn

0

Kesds

≤ |ξ(0)|p +Ket.

Applying the Fatou lemma and letting n→∞ gives

E|x(t)|p ≤ |ξ(0)|p

et
+K <∞, (17)

and hence
sup

0≤t<∞
(E|x(t)|p) ≤ C1. (18)
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We can show (15) the same way by applying the Itô formula to H(x, t) = etx−p.

Lemma 2.5. Let Assumptions 2.1 and 2.2 hold. Then for any p ≥ 2, the solution x(t) to SDDE (5)
satisfies

E
(

sup |x(t)|p
)

0≤t≤T

≤ C3 (19)

on t ≥ 0, where C3 is a constant.

Proof. Define a function H ∈ C2(R+,R+) by

H(x) = xp. (20)

By the Itô formula,

dH(x(t)) = pxp−1dx(t) +
1

2
p(p− 1)xp−2(dx(t))2

= pxp−1(α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ +
1

2
p(p− 1)x(t)2(θ−1)+pV (y)2)dt

+ px(t)p+θ−1V (y)dB(t)

≤ [pxp−2(α−1 − α0x(t) + α1x(t)2 − α2x(t)ρ+1 +
(p− 1)

2
λ2x(t)2θ)]dt+ λpx(t)p+θ−1dB(t).

So

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P + E
∫ T

0

[pxp−2(α−1 − α0x(t) + α1x(t)2 − α2x(t)ρ+1

+
(p− 1)

2
λ2x(t)2θ)]dt+ E[ sup

0≤t≤T

∫ t

0

λpx(s)p+θ−1dB(s)].

By Assumption 2.2, there exists a constant K such that

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P +KT + E[ sup
0≤t≤T

∫ t

0

λpx(s)p+θ−1dB(s)].

By the Hölder and Burkholder-Davis Gundy inequalities we then obtain,

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P +KT + C
(∫ T

0

Ex(s)2(p+θ−1)ds
)1/2

,

where C is a constant which may vary from line to line. Hence

E
(

sup |x(t)|p
)

0≤t≤T

≤ C3.
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3 The truncated EM method

As we have already noted, the truncated EM method for SDEs under local Lipschitz condition plus
Khasminskii-type condition was developed in [21]. This numerical method was further developed in [22]
to study SDDEs under local Lipschitz condition plus generalised Khasminskii-type condition. Hence,
in order to study SDDE (5) using the truncated EM techniques, we require the following conditions on
the coefficient terms.

Assumption 3.1. (Local Lipschitz continuity of V ). For any R > 0, there exists a positive constant
LR such that volatility function V (·) in the diffusion term of SDDE (5) satisfies

|V (y)− V (ȳ)| ≤ LR|y − ȳ| (21)

for all y, ȳ ∈ [ 1
R ,R].

Lemma 3.2. (Local Lipschitz continuity of f and g). For any R > 0, there exists a positive constant
KR > 0 such that the f and g coefficient terms of SDDE (5) satisfy

|f(x)− f(x̄)| ∨ |g(x)− g(x̄)| ≤ KR|x− x̄| (22)

for all x, x̄ ∈ [ 1
R ,R].

Lemma 3.3. (Khasminskii-type condition). Let Assumptions 2.1 and 2.2 hold. For any p ≥ 2, there
exists K1 = K(p) > 0 such that the coefficients of SDDE (5) satisfy

xf(x) +
p− 1

2
|V (y)g(x)|2 ≤ K1(1 + |x|2) (23)

for all x, y ∈ R+.

Proof. By Assumption 2.1, ∀x, y > 0, we have that

xf(x) +
p− 1

2
|V (y)g(x)|2 = x(α−1x

−1 − α0 + α1x− α2x
ρ) +

p− 1

2
|V (y)xθ|2

≤ α−1 − α0x+ α1x
2 − α2x

ρ+1 +
p− 1

2
λ2x2θ.

By Assumption 2.2,

xf(x) +
p− 1

2
|V (y)g(x)|2 ≤ α−1 − α0x+ α1x

2 +K(p)

≤ α−1 + α1x
2 +K(p)

≤ K1(1 + |x|2),

where K(p) ≥ −α2x
ρ+1 + p−1

2
λ2x2θ and K1 = [(α−1 +K(p)) ∨ α1].

3.1 The truncated EM approximation

Before we proceed to construct the truncated EM scheme, let us extend the domain of the volatility
function V (·) from R+ to R by setting the volatility function V (x) = V (0) for x < 0. It is worth
to note that the solution for the SDDE (5) is already known to always be positive, so this extension
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does not in any way influence the solution. The local Lipschitz condition in Assumption 3.1 and the
boundedness condition on V (·) in (8) are also well preserved.

To define the truncated EM numerical solutions for the SDDE (5), we first choose a strictly increas-
ing continuous function µ : R+ → R+ such that µ(r)→∞ as r →∞ and

sup
1/r≤x≤r

(|f(x)| ∨ g(x)) ≤ µ(r), ∀r > 1. (24)

Denote by µ−1 the inverse function of µ. We define a strictly decreasing function h : (0, 1)→ R+ such
that

lim
∆→0

h(∆) =∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, 1]. (25)

Find ∆∗ ∈ (0, 1) such that µ−1(h(∆∗)) > 1 and f(x) > 0 for 0 < x < ∆∗. For a given step size
∆ ∈ (0,∆∗), let us define the truncated functions

f∆(x) = f
(

1/µ−1(h(∆)) ∨ (x ∧ µ−1(h(∆)))
)
, ∀x ∈ R

and

g∆(x) =

{
g
(
x ∧ µ−1(h(∆))

)
, if x ≥ 0

0, if x < 0.

That is, for x < 1/µ−1(h(∆)), we have f∆(x) = f(1/µ−1(h(∆))) and g∆(x) = 0. For x > µ−1(h(∆)), we
have f∆(x) = f(µ−1(h(∆))) and g∆(x) = g(µ−1(h(∆))). Moreover, for x ∈ [1/µ−1(h(∆)), µ−1(h(∆))],
we have f∆(x) = f(x) and g∆(x) = g(x) with

|f∆(x)| = |f(x)| ≤ max |f(z)|
1/µ−1(h(∆))≤z≤µ−1(h(∆))

≤ µ(µ−1(h(∆)))

= h(∆)

and

g∆(x) ≤ µ(µ−1(h(∆))) = h(∆).

It is easy to see that
|f∆(x)| ∨ g∆(x) ≤ h(∆), ∀x ∈ R. (26)

Obviously, both truncated functions f∆ and g∆ are bounded although both f and g may not. The
following lemma illustrates f∆ and g∆ preserve the Khasminskii-type condition in (23) very well.

Lemma 3.4. Let Assumption 2.1 and 2.2 hold. Then, for all ∆ ∈ (0,∆∗) and p ≥ 2, the truncated
functions satisfy

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 ≤ K̄(1 + |x|2) (27)

∀x, y ∈ R, where K̄ is a positive constant independent of ∆.

Proof. Fix any ∆ ∈ (0,∆∗). For x, y ∈ R with x ∈ [1/µ−1(h(∆)), µ−1(h(∆))], by (27), we have

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 = xf(x) +

p− 1

2
|V (y)g(x)|2 ≤ K1(1 + |x|2)
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as the required assertion. For x ∈ R with x ∈ (0, 1/µ−1(h(∆))), we have

0 < xµ−1(h(∆)) < 1.

So

xf∆(x) = xf(1/µ−1(h(∆)))

= xµ−1(h(∆))
1

µ−1(h(∆))
f(1/µ−1(h(∆)))

≤ xµ−1(h(∆))(1 + [1/µ−1(h(∆))2])

≤ K1(1 + 1) = 2K1.

Therefore, we have

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 ≤ 2K1 +

p− 1

2
|V (y)g∆(x)|2

≤ 2K1 +
p− 1

2
λ2g∆(x)2

≤ 2K1 +
p− 1

2
λ2

≤ K2(1 + |x|2),

where K2 = 2K1 + p−1
2
λ2. But for x, y ∈ R with x ≤ 0, we have

f∆(x) = f(1/µ−1(h(∆))) > 0 and g∆(x) = 0.

Therefore,

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 ≤ 0 ≤ K1(1 + |x|2).

Finally, for x, y ∈ R with x > µ−1(h(∆)), we have

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 ≤ xf(1/µ−1(h(∆)) ∨ µ−1(h(∆))) +

p− 1

2
|V (y)g(µ−1(h(∆)))|2

≤ µ−1(h(∆))f(µ−1(h(∆))) +
p− 1

2
|V (y)g(µ−1(h(∆))|2

+ (
x

µ−1(h(∆))
− 1)µ−1(h(∆))f(µ−1(h(∆)))

≤ K1(1 + [µ−1(h(∆))]2) + (
x

µ−1(h(∆))
− 1)µ−1(h(∆))f(µ−1(h(∆))),

where (23) with K1 independent of ∆ has been used. But once again we see from (23) that xf(x) ≤
K1(1 + |x|2) for any x ∈ R+. We therefore have

xf∆(x) +
p− 1

2
|V (y)g∆(x)|2 ≤ K1(1 + [µ−1(h(∆))]2) + (

x

µ−1(h(∆))
− 1)K1(1 + [µ−1(h(∆))]2)

≤ x

µ−1(h(∆))
K1(1 + [µ−1(h(∆))]2)

≤ x ·K1(1/2 + µ−1(h(∆)))

≤ x ·K1(1/2 + x) ≤ 2K1(1 + |x|2).

It is worthwhile to note that K̄ = (K1 ∨K2).
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From now on, we will let the step size ∆ ∈ (0, 1) be a fraction of τ . That is, we will use ∆ = τ/N for
sufficiently large integer N . Let form the discrete-time truncated approximation for SDDE (5). Define
tk = k∆ for k = −N,−(N − 1), .., 0, 1, 2, ... Set X∆(tk) ≈ ξ(tk) for k = −N,−(N − 1), .., 0 and form

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + V (X∆(tk−N))g∆(X∆(tk))∆Bk (28)

for k = 0, 1, 2..., where ∆Bk = B(tk+1)− B(tk). Let us now form two versions of the continuous-time
truncated EM solutions. The first is defined by

x̄∆(t) =
∞∑

k=−N

X∆(tk)1[k∆,(k+1)∆](t). (29)

This is the continuous-time step-process x̄∆(t) on t ∈ [−τ,∞], where 1[k∆,(k+1)∆] is the indicator function
on [k∆, (k + 1)∆]. The other is the continuous-time continuous process x∆(t) on t ∈ [−τ,∞] defined
by setting x∆(t) = ξ(t) for t ∈ [−τ, 0] while for t ≥ 0

x∆(t) = ξ(0) +

∫ t

0

f∆(x̄∆(s))ds+

∫ t

0

V (x̄∆(s− τ))g∆(x̄∆(s))dB(s). (30)

We see that x∆(t) is an Itô process on t ≥ 0 with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt+ V (x̄∆(t− τ))g∆(x̄∆(t))dB(t). (31)

We can clearly observe that x∆(tk) = x̄∆(tk) = X∆(tk) for all k = −N,−(N − 1), ... We would like
to point out that this numerical scheme is not positivity-preserving. This will however be tackled
elsewhere.

4 Numerical properties of the truncated EM solution

4.1 Moment bound of the truncated EM solution

To upper bound the pth moment of the truncated EM solution, we require the following lemma which
shows x∆(t) and x̄∆(t) are close to each other in Lp sense.

Lemma 4.1. Let Assumption 2.1 hold. For any fixed ∆ ∈ (0,∆∗] and p ≥ 2, we have that

E|x∆(t)− x̄∆(t)|p ≤ Cp∆
p/2(h(∆))p, ∀t ≥ 0, (32)

where Cp stands for generic positive real constants dependent only on p and may change between oc-
currences. Consequently,

lim
∆→0

E|x∆(t)− x̄∆(t)|p = 0, ∀t ≥ 0. (33)

Proof. Fix any ∆ ∈ (0,∆∗) and t ≥ 0. There exists an integer k ≥ 0 such that tk ≤ t ≤ tk+1. By
elementary inequality and (26), we obtain from (30) that

E|x∆(t)− x̄∆(t)|p ≤ 2p−1
(
E|
∫ t

tk

f∆(x̄∆(s))ds|p + E|
∫ t

tk

V (x̄∆(s− τ))g∆(x̄∆(s))B(s)|p
)

≤ 2p−1
(

∆p−1E
∫ t

tk

|f∆(x̄∆(s))|pds+ c̄p∆
(p−2)/2E

∫ t

tk

|V (x̄∆(s− τ))g∆(x̄∆(s))|pds
)

≤ 2p−1
(

∆p−1∆(h(∆))p + c̄p∆
(p−2)/2∆(λh(∆))p

)
≤ 2p−1(1 ∨ c̄pλp)∆p/2(h(∆))p

≤ Cp∆
p/2(h(∆))p,
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where Cp = 2p−1(1 ∨ c̄pλp). Noting from (25) that ∆p/2(h(∆))p ≤ ∆p/4, we get (33) from (32).

The following lemma reveals the boundedness property of the truncated EM numerical solutions.

Lemma 4.2. Let Assumptions 2.1 and 2.2 hold. Then

sup
0≤∆≤∆∗

sup
0≤t≤T

(E|x∆(t)|p) ≤ C4, ∀T > 0, (34)

where C4 stands for generic positive real constants dependent on T, p,K, ξ but independent of ∆ and
may change between occurrences.

Proof. Fix any ∆ ∈ (0,∆∗) and T ≥ 0. By the Itô, we derive from (30) that, for 0 ≤ t ≤ T ,

E|x∆(t)|p ≤ |ξ(0)|p + E
∫ t

0

p|x∆(s)|p−2
(
x∆(s)f∆(x̄∆(s)) +

p− 1

2
|V (x̄∆(s− τ))g∆(x̄∆(s))|2

)
ds

= |ξ(0)|p + E
∫ t

0

p|x∆(s)|p−2
(
x̄∆(s)f∆(x̄∆(s)) +

p− 1

2
|V (x̄∆(s− τ))g∆(x̄∆(s))|2

)
ds

+ E
∫ t

0

p|x∆(s)|p−2(x∆(s)− x̄∆(s))f∆(x̄∆(s))ds

By Lemma 3.4 and the Young inequality

ap−2b ≤ p− 2

p
ap +

2

p
bp/2, ∀a, b ≥ 0,

we then have

E|x∆(t)|p ≤ |ξ(0)|p + E
∫ t

0

K|x∆(s)|p−2(1 + |x̄∆(s)|2)ds

+ (p− 2)E
∫ t

0

|x∆(s)|pds+ 2E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds

≤ C5 + C6

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds+ 2E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds

where C5 and C6 are positive constants independent of ∆. By Lemma 4.1 and inequalities (26) and
(25), we have

E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds ≤ (h(∆))p/2
∫ T

0

E(|x∆(s)− x̄∆(s)|p/2)ds

≤ (h(∆))p/2
∫ T

0

(E|x∆(s)− x̄∆(s)|p)1/2ds

≤ (h(∆))p/2
∫ T

0

(Cp∆
p/2(h(∆))p)1/2ds

≤ CpT (h(∆))p∆p/4 ≤ CpT.

We therefore have

E|x∆(t)|p ≤ C5 + 2CpT + C6

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds

≤ C5 + 2CpT + 2C6

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.
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As this holds for any t ∈ [0, T ] while the right-hand side is non-decreasing in t, we then see

sup
0≤u≤t

(E|x∆(u)|p) ≤ C5 + 2CpT + 2C6

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.

The well-known Gronwall inequality gives us

sup
0≤u≤T

(E|x∆(u)|p) ≤ C4.

As this holds for any ∆ ∈ (0,∆∗) while C4 = (C5 + 2CpT )e2C6T is independent of ∆, we obtain the
required assertion.

4.2 Strong convergence

For the numerical solution to converge in finite time to the true solution in Lq, we need the following
condition on the initial data (see, e.g, [23]).

Assumption 4.3. There is a pair of constant K4 > 0 and γ ∈ (0, 1] such that for all −τ ≤ s ≤ t ≤ 0,
the initial data ξ satisfies

|ξ(t)− ξ(s)| ≤ K4|t− s|γ. (35)

In addition to the above condition, we also need the following lemma.

Lemma 4.4. Let Assumptions 2.1, 2.2, 3.1 and 4.3 hold and T > 0 be fixed. Then for any ε ∈ (0, 1),
there exists a pair of positive constants n = n(ε) and ∆1 = ∆1(ε) such that

P(ρn ≤ T ) ≤ ε (36)

for each ∆ ∈ (0,∆1], where

ρn = ρn(∆) = inf{t ∈ [0, T ] : x∆(t) /∈ (1/n, n)}

is the stopping time.

Proof. Define a C2-function, H : R+ → R+ by

H(x) = 1/x2 + x2. (37)

Clearly, H(x)→∞ as x→∞ or x→ 0. For s ∈ [0, t ∧ ρn], we can derive from the Itô formula that

E(H(x∆(t ∧ ρn))) = H(ξ(0)) + E
∫ t∧ρn

0

(
Hx(x∆(s))f∆(x̄∆(s)) (38)

+
1

2
Hxx(x∆(s))V (x̄∆(s− τ))2g∆(x̄∆(s))2

)
ds.

But

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))V (x̄∆(s− τ))2g∆(x̄∆(s))2

≤ LH(x∆(s), x∆(s− τ)) +Hx(x∆(s))
(
f∆(x̄∆(s))− f∆(x∆(s))

)
+

1

2
Hxx(x∆(s))

(
V (x̄∆(s− τ))2g∆(x̄∆(s))2 − V (x∆(s− τ))2g∆(x∆(s))2

)
,
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where LH is (6) with H independent of t, defined here by

LH(x∆(s), x∆(s− τ)) = Hx(x∆(s))f∆(x∆(s)) +
1

2
Hxx(x∆(s))V (x∆(s− τ))2g∆(x∆(s))2.

By Assumptions 2.1 and 2.2, there exists a constant K3 such that

LH(x∆(s), x∆(s− τ)) ≤ K3

and

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))V (x̄∆(s− τ))2g∆(x̄∆(s))2

≤ K3 +Hx(x∆(s))
(
f∆(x̄∆(s))− f∆(x∆(s))

)
+

1

2
Hxx(x∆(s))

(
V (x̄∆(s− τ))2g∆(x̄∆(s))2

− V (x∆(s− τ))2g∆(x∆(s))2
)
.

Recalling Lemma 3.2, we have that for s ∈ [t ∧ ρn]

|f∆(x̄∆(s))− f∆(x∆(s))| = Kn|x̄∆(s)− x∆(s)|.

For any x̄∆(s), x∆(s) ∈ [1/n, n], by (24), |g∆(x̄∆(s))| ∨ |g∆(x∆(s))| ≤ µ(n). Hence by Lemma 3.2, we
have that for s ∈ [t ∧ ρn]

|g∆(x̄∆(s))2 − g∆(x∆(s))2| = |g∆(x̄∆(s))− g∆(x∆(s))||g∆(x̄∆(s)) + g∆(x∆(s))|
≤ 2µ(n)Kn|x̄∆(s)− x∆(s)|.

Moreover, for s ∈ [t ∧ ρn], we obtain from Assumptions 2.1 and 3.1 that

|V (x̄∆(s− τ))2 − V (x∆(s− τ))2| = |V (x̄∆(s− τ))− V (x∆(s− τ))||V (x̄∆(s− τ)) + V (x∆(s− τ))|
≤ 2λLn|x̄∆(s− τ)− x∆(s− τ)|.

Consequently,

V (x̄∆(s− τ))2g∆(x̄∆(s))2 − V (x∆(s− τ))2g∆(x∆(s))2 = V (x̄∆(s− τ))2g∆(x̄∆(s))2

− V (x̄∆(s− τ))2g∆(x∆(s))2 + V (x̄∆(s− τ))2g∆(x∆(s))2 − V (x∆(s− τ))2g∆(x∆(s))2

= g∆(x∆(s))2(V (x̄∆(s− τ))2 − V (x∆(s− τ))2) + V (x̄∆(s− τ))2(g∆(x̄∆(s))2 − g∆(x∆(s))2)

≤ 2λ(µ(n))2Ln|x̄∆(s− τ)− x∆(s− τ)|+ 2λ2µ(n)Kn|x̄∆(s)− x∆(s)|.

So we have

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))V (x̄∆(s− τ))2g∆(x̄∆(s))2

≤ K3 + λ(µ(n))2LnHxx(x∆(s))|x̄∆(s− τ)− x∆(s− τ)|

+
(
KnHx(x∆(s)) + λ2Knµ(n)Hxx(x∆(s))

)
|x̄∆(s)− x∆(s)|

≤ K3 + ζn|x̄∆(s− τ)− x∆(s− τ)|+ ζ∗n|x̄∆(s)− x∆(s)|,

where
ζn = max

1/n≤x≤n

[
λ(µ(n))2LnHxx(x)

]
13



and
ζ∗n = max

1/n≤x≤n

[
KnHx(x) + λ2Knµ(n)Hxx(x)

]
.

We now have

E(H(x∆(t ∧ ρn))) ≤ H(ξ(0)) + E
∫ t∧ρn

0

(K3 + ζn|x̄∆(s− τ)− x∆(s− τ)|+ ζ∗n|x̄∆(s)− x∆(s)|)ds

≤ H(ξ(0)) +K3T + ζnE
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|ds+ (ζn + ζ∗n)

∫ T

0

E|x∆(s)− x̄∆(s)|ds

≤ H(ξ(0)) +K3T + ζnK4∆γτ + (ζn + ζ∗n)

∫ T

0

(E|x∆(s)− x̄∆(s)|p)1/pds.

By Lemma 4.1 and (25), we obtain

E(H(x∆(t ∧ ρn))) ≤ H(ξ(0)) +K3T + ζnK4∆γτ + (ζn + ζ∗n)TC1/p
p ∆1/4.

Therefore

P(ρn ≤ T ) ≤ H(ξ(0)) +K3T + ζnK4∆γτ + (ζn + ζ∗n)TC
1/p
p ∆1/4

H(1/n) ∧H(n)
. (39)

For ε ∈ (0, 1), we may choose sufficiently large n such that

H(ξ(0)) +K3T

H(1/n) ∧H(n)
≤ ε

2
(40)

and sufficiently small step size ∆ ∈ (0,∆1] such that

ζnK4∆γτ + (ζn + ζ∗n)TC
1/p
p ∆1/4

H(1/n) ∧H(n)
≤ ε

2
. (41)

Combining (40) and (41), we get the required assertion.

To establish the strong convergence of the truncated EM scheme, we first define the stopping time

υn = τn ∧ ρn, (42)

where τn and ρn are (11) and (36) respectively.

Lemma 4.5. Let Assumptions 2.1, 3.1 and 4.3 hold. Then, for any p ≥ 2, T > 0 and sufficiently large
n

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ (C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)eC3(n,p,T ) (43)

and
lim
∆→0

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

= 0 (44)

where
C1(n, p, T ) = 4p−1T

p−2
2 C(p)LnK

p
4τ(µ(n))p,

C2(n, p, T ) = 8p−1Cp(T
p
2 (µ(n))pC(p)Ln + T

p
2λpC(p)Kn + 21−pT p)

and
C3(n, p, T ) = 8p−1(T

p−2
2 (µ(n))pC(p)Ln + T

p−2
2 λpC(p)Kn + 21−pT p−1).
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Proof. It follows from (5) and (31) that

[x∆(t ∧ υn)− x(t ∧ υn)] =

∫ t∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds+

∫ t∧υn

0

[V (x̄∆(s− τ))g∆(x̄∆(s))

− V (x(s− τ))g(x(s))]dB(s).

Applying the inequality |a+ b|p ≤ 2p−1(|a|p + |b|p) yields

|x∆(t ∧ υn)− x(t ∧ υn)|p ≤ 2p−1
(∣∣∣ ∫ t∧υn

0

[f∆(x̄∆(s))− f(x(x))]ds
∣∣∣p +

∣∣∣ ∫ t∧υn

0

[V (x̄∆(s− τ))g∆(x̄∆(s))

− V (x(s− τ))g(x(s))]dB(s)
∣∣∣p).

For t1 ∈ [0, T ],

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1

(
E
∣∣∣ ∫ t1∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds
∣∣∣p

+ E( sup
0≤t≤t1

∣∣∣ ∫ t1∧υn

0

[V (x̄∆(s− τ))g∆(x̄∆(s))

− V (x(s− τ))g(x(s))]dB(s)
∣∣∣p)).

By the Hölder inequality

E
(
|
∫ t1∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds|p
)
≤ T p−1E

(∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s))|pds
)
.

Also using Theorem 7.2 in [11], we obtain

E
(

sup
0≤t≤t1

∣∣∣ ∫ t1∧υn

0

(V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s)))dB(s)
∣∣∣p)

≤ T
p−2
2 C(p)E

(∫ t1∧υn

0

|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|pds
)
,

where C(p) is a constant. We now have

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1

(
T p−1E

∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s))|pds

+ T
p−2
2 C(p)E

∫ t1∧υn

0

|V (x̄∆(s− τ))g∆(x̄∆(s))

− V (x(s− τ))g(x(s))|pds
)
.

Meanwhile

E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|p)ds

= E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g∆(x̄∆(s)) + V (x(s− τ))g∆(x̄∆(s))

− V (x(s− τ))g(x(s))|p)ds.
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By elementary inequality,

E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|p)ds

≤ 2p−1E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g∆(x̄∆(s))|p

+ |V (x(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|p)ds

≤ 2p−1E
∫ t1∧υn

0

g∆(x̄∆(s))p|V (x̄∆(s− τ))− V (x(s− τ))|p + V (x(s− τ))p|g∆(x̄∆(s))− g(x(s))|p)ds.

By (8)

E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|pds)

≤ 2p−1E
∫ t1∧υn

0

g∆(x̄∆(s))p|V (x̄∆(s− τ))− V (x(s− τ))|pds+ 2p−1λpE
∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.

Moreover, by (24), for any x̄∆(s) ∈ [1/n, n], clearly |g∆(x̄∆(s))| ≤ µ(n). Hence

E
∫ t1∧υn

0

(|V (x̄∆(s− τ))g∆(x̄∆(s))− V (x(s− τ))g(x(s))|pds)

≤ 2p−1(µ(n))pE
∫ t1∧υn

0

|V (x̄∆(s− τ))− V (x(s− τ))|pds+ 2p−1λpE
∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.

We note from Assumption 3.1 that

|V (x̄∆(s− τ))− V (x(s− τ))|p ≤ Ln|x̄∆(s− τ)− x(s− τ)|p.

So by Assumption 4.3, for s ∈ [t1 ∧ υn] we obtain

E
∫ t1∧υn

0

|V (x̄∆(s− τ))− V (x(s− τ))|pds ≤ LnE
∫ t1∧υn

0

|x̄∆(s− τ)− x(s− τ)|pds

≤ LnE
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|pds+ LnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

≤ LnK
p
4∆pγτ + LnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

We now have

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1T p−1E

∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s)|pds

+ 4p−1T
p−2
2 (µ(n))pC(p)LnK

p
4∆pγτ

+ 4p−1T
p−2
2 (µ(n))pC(p)LnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

+ 4p−1T
p−2
2 λpC(p)E

∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.
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We note from the definition of the truncated functions f∆ and g∆ that

f∆(x̄∆(s)) = f(x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s))

for s ∈ [t1 ∧ υn]. Hence by Lemma 3.2, we have

|f(x̄∆(s))− f(x(s))|p ∨ |g(x̄∆(s))− g(x(s))|p ≤ Kn|x̄∆(s)− x(s)|p

for s ∈ [t1 ∧ υn]. This implies

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 4p−1T

p−2
2 C(p)LnK

p
4 (µ(n))p∆pγτ

+ 2p−1T p−1KnE
∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

+ 4p−1T
p−2
2 (µ(n))pC(p)LnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

+ 4p−1T
p−2
2 λpC(p)KnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

This yields

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 4p−1T

p−2
2 C(p)LnK

p
4 (µ(n))p∆pγτ

+ 4p−1
(
T

p−2
2 (µ(n))pC(p)Ln + T

p−2
2 λpC(p)Kn + 21−pT p−1Kn

)
× E

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

Using elementary inequality, we have

E
∫ t1∧υn

0

|x̄∆(s)− x(s) + x∆(s)− x∆(s)|pds ≤ 2p−1E
(∫ t1∧υn

0

(|x̄∆(s)− x∆(s)|p + |x∆(s)− x(s)|p)ds
)

≤ 2p−1
(∫ T

0

E|x̄∆(s)− x∆(s)|pds+ E
∫ t1

0

sup
0≤t≤T

|x∆(t ∧ υn)

− x(t ∧ υn)|pds
)
.

This implies

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

≤ 4p−1T
p−2
2 C(p)LnK

p
4τ(µ(n))p∆pγ

+ 8p−1
(
T

p−2
2 (µ(n))pC(p)Ln + T

p−2
2 λpC(p)Kn + 21−pT p−1Kn

)
×
(∫ T

0

E|x̄∆(s)− x∆(s)|pds+ E
∫ t1

0

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|pds
)
.
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By Lemma 4.1

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

≤ 4p−1T
p−2
2 C(p)LnK

p
4τ(µ(n))p∆pγ

+ 8p−1Cp

(
T

p
2 (µ(n))pC(p)Ln + T

p
2λpC(p)Kn + 21−pT p

)
∆p/4

+ 8p−1
(
T

p−2
2 (µ(n))pC(p)Ln + T

p−2
2 λpC(p)Kn + 21−pT p−1

)
E
∫ t1

0

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|pds

By the Grownwall inequality, we obtain

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ (C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)eC3(n,p,T )

as the required assertion. Moreover, we obtain (44) by letting ∆→ 0.

Theorem 4.6. Let Assumptions 2.1, 2.2, 3.1 and 4.3 hold. Then, for q ∈ [2, p)

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− x(t)|q
)

= 0. (45)

Proof. Let υn be the same as before. Set

e∆(t) = x∆(t)− x(t).

Clearly

E
(

sup
0≤t≤T

|e∆(t)|q
)

= E
(

sup
0≤t≤T

|e∆(t)|q1{τn>T and ρn>T}

)
+ E

(
sup

0≤t≤T
|e∆(t)|q1{τn≤T or ρn≤T}

)
. (46)

For any arbitrary % ≥ 0, the Young inequality

(%ap)q/p
( b(p/p−q)

%(q/p−q)

)(p−q/p)
≤ q%

p
ap +

p− q
p%(q/p−q) b

(p/p−q), ∀a, b > 0,

gives us

E
(
|e∆(t)|q

)
1{τn≤T or ρn≤T} ≤

q%

p
E
(

sup
0≤t≤T

|e∆(t)|p
)

+
p− q

p%q/(p−q)
P(τn ≤ T or ρn ≤ T ).

Consequently,

E
(

sup
0≤t≤T

|e∆(t)|q
)
≤ E

(
sup

0≤t≤T
|e∆(t)|q1{τn>T and ρn>T}

)
+
q%

p
E
(

sup
0≤t≤T

|e∆(t)|p
)

(47)

+
p− q

p%q/(p−q)
P(τn ≤ T or ρn ≤ T ).

By elementary inequality, we can derive to obtain

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ 2p−1E

(
sup

0≤t≤T
(|x∆(t)|p + |x(t)|p)

)
≤ 2pE

(
sup

0≤t≤T
(|x∆(t)|p) ∨ sup

0≤t≤T
(|x(t)|p)

)
..
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So by Lemmas 2.4 and 4.2

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ 2p(C1 ∨ C4). (48)

Moreover,

E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ρn>T}

)
= E

(
sup

0≤t≤T
|e∆(t)|p1{υn>T}

)
≤ E

(
sup

0≤t≤T
|x∆(t ∧ υn)− x(t ∧ υn)|p

)
.

So by Lemma 4.5

E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ρn>T}

)
≤ (C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)eC3(n,p,T ). (49)

Also,
P(τn ≤ T or ρn ≤ T ) ≤ P(τn ≤ T ) + P(ρn ≤ T ). (50)

Substituting the inequalities (48), (49) and (50) into (47), we obtain

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ 2p(C1 ∨ C4)q%

p
+ (C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)eC3(n,p,T )

+
p− q

p%q/(p−q)
P(τn ≤ T ) +

p− q
p%q/(p−q)

P(ρn ≤ T ).

For any given ε ∈ (0, 1), we may choose % such that

2p(C1 ∨ C4)q%

p
≤ ε

4
. (51)

By Theorem 2.3 and Lemma 4.4, for any given ε ∈ (0, 1) , there exists no such that for n ≥ no we may
choose % to have

p− q
p%q/(p−q)

P(τn ≤ T ) ≤ ε

4
(52)

and choose n(ε) ≤ no such that for ∆ ∈ (0,∆1]

p− q
p%q/(p−q)

P(ρn ≤ T ) ≤ ε

4
. (53)

Lastly, we may select ∆ ∈ (0,∆1] sufficiently small for ε ∈ (0, 1) such that

(C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)eC3(n,p,T ) ≤ ε

4
. (54)

Combining (51), (52), (53) and (54), we get

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
≤ ε

as the required assertion.
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5 Applications to finance

It is well known that the strong convergence of numerical solutions guarantees convergence in Monte
Carlo simulations relevant for valuing many path dependent financial quantities (see e.g.,[9]). In this
section we apply the strong convergence result obtained in Theorem 4.6 to value some financial instru-
ments such as a bond and a barrier option.

5.1 Bond valuation

If the short-term interest rate dynamics is described by SDDE (4), then the payoff of a bond at the
end of time T is given by

B(T ) = E
[

exp
(
−
∫ T

0

x(t)
)]
.

Using the step function x̄(t) defined in (29), the approximate payoff based on the truncated EM method
becomes

B̄∆(T ) = E
[

exp
(
−
∫ T

0

x̄∆(t)
)]
.

It then follows from Theorem 4.6 that

lim
∆→0
|B(T )− B̄∆(T )| = 0.

5.2 Barrier option valuation

Consider a barrier option with a European payoff P . Let the asset price be the exact solution x(T ) to
SDDE (4) at expiry date T , B a fixed barrier and K a strike price. The payoff at expiry date is

P (T ) = E
[
(x(T )−K)+1sup0≤t≤T

x(t) < B)
]
.

The approximate payoff using the truncated EM scheme defined in (29) becomes

P∆(T ) = E
[
(x̄∆(T )−K)+1sup0≤t≤T

x̄∆(t) < B)
]
.

So from Theorem 4.6, we have
lim
∆→0
|P (T )− P̄∆(T )| = 0.

You may consult [9, 11] for detailed coverage of the proofs and further examples.

6 Numerical Experiments

To illustrate efficiency of our proposed truncated EM scheme for SDDE (4), we will perform two
numerical examples with different Ait-Sahalia-type models. In the first numerical example, we will
implement Ait-Sahalia-type model with α−1x(t)−1 term in the drift and delayed volatility function.
In the second numerical example, we will implement and perform comparative assessment of delayed
Ait-Sahalia-type model without α−1x(t)−1 term in the drift using both truncated EM (TEM) and
backward EM (BEM) schemes. This becomes necessary because it is unknown if the backward EM
scheme could cope with α−1x(t)−1 term at the origin. We would like to point out that we consider
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this case and use BEM scheme in our numerical study because the main available literature for one
half strong order approximation of Ait-Sahalia-type model focuses on the BEM method (see e.g [25]).
There is so far no relevant literature devoted to strong convergent approximation of Ait-Sahalia-type
model with α−1x(t)−1 term and delayed volatility function.

6.1 Numerical example I

In this numerical illustration, we consider the following delayed Ait-Sahalia-type model

dx(t) = (0.1x(t)−1 − 0.3 + x(t)− 0.5x(t)3)dt+ V (x(t− 1))x(t)3/2dB(t), (55)

with initial data ξ(0) = 0.2 and V (·) is defined by

V (y) =

{
1
2

(1+(ey−e−y))
(ey+e−y)

, if y ≥ 0
1
4
, Otherwise.

(56)

Note (56) is a special type of sigmoid function. Naturally, sigmoid functions like (56) are bounded, real-
valued functions and hence fulfill Assumption 2.1. Moreover, parameterising sigmoid-based functions
in financial models on past data are observed to capture volatility skews and smiles (see, e.g., [26]). Do
also note the drift and diffusion coefficient terms of (55) satisfy

sup
1/u≤x≤u

(|f(x)| ∨ g(x)) ≤ 1.9u3, u ≥ 1.

This means we can have µ(u) = 1.9u3 with inverse µ−1(u) = (u/1.9)1/3. If we define ∆ = 10−3 and
h(∆) = ∆−2/3, then µ−1(h(∆)) = (∆−2/3/1.9)1/3 and 1/µ−1(h(∆)) = (∆−2/3/1.9)−1/3. Displayed in
Figure 1.0 is a Monte Carlo simulated sample path of x(t) with step size 10−2 using the TEM scheme.

6.2 Numerical example II

In this subsection, we will assess the performance of TEM scheme with BEM scheme. We already
noted there exists no relevant literature on strong convergent approximation of SDDE (57). Hence, we
have to fall on the BEM method which has 0.5 strong order approximation of Ait-Sahalia-type model
without the delayed volatility function. Consider the following delayed Ait-Sahalia-type model

dx(t) = (0.2 + 0.3x(t)− 0.5x(t)2)dt+ V (x(t− 1))x(t)4/3dB(t), (57)

with initial data ξ(0) = 0.2 and the same volatility function V (·) in (56). Clearly, we have µ(u) = u2

with inverse µ−1(u) = u1/2. Using TEM and BEM schemes with step size 10−3, we obtain Monte Carlo
simulated sample paths of x(t) in Figure 2.0. We notice that both simulated sample paths are almost
the same. Figure 3.0 depicts log-log plot of the strong errors between TEM and BEM schemes using
step sizes 10−3, 10−4, 10−5 and 10−6. For the purpose of comparison, we also plotted the reference line
with slop 1.0. We can see the strong error between TEM and BEM schemes has order 1.0 though this
has not been proved theoretically. .
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Figure 1: Monte Carlo simulated sample path of x(t) by TEM scheme.
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Figure 2: Monte Carlo simulated sample paths of x(t) by TEM and BEM schemes.
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Figure 3: The strong errors between TEM and BEM schemes.
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