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RATIONAL POLYTOPES WITH EHRHART COEFFICIENTS OF

ARBITRARY PERIOD

TYRRELL B. MCALLISTER

Abstract. A seminal result of E. Ehrhart states that the number of integer
lattice points in the dilation of a rational polytope by a positive integer k is a
quasi-polynomial function of k — that is, a “polynomial” in which the coeffi-
cients are themselves periodic functions of k. Using a result of F. Liu on the
Ehrhart polynomials of cyclic polytopes, we construct not-necessarily-convex
rational polytopes of arbitrary dimension in which the periods of the coeffi-
cient functions appearing in the Ehrhart quasi-polynomial take on arbitrary
values.

1. Introduction

The Ehrhart function ehrP of an n-dimensional rational polytope P ⊆ Rn counts
the number of integer lattice points in the kth dilate of P . That is, ehrP(k) =
|kP ∩ Zn| for integers k ≥ 1. It is well known that ehrP(k) is a degree-n quasi-
polynomial function of k, meaning that

(1) ehrP(k) =

n∑

i=0

ci(k)k
i, for k ∈ Z≥1,

where the coefficient functions ci : Z → Q are periodic functions with finite periods.

In other words, writing Q̂ for the ring of periodic functions Z → Q, each rational

polytope P has an associated Ehrhart quasi-polynomial ehrP(t) ∈ Q̂[t]. (We refer
the reader to [2, 11, 23] for introductions to Ehrhart theory.)

The purpose of this paper is to study the possible periods of the coefficient
functions ci appearing in equation (1). Our main result (Theorem 1.2 below) is
that these periods may take on arbitrary values. Thus, we offer a contribution to
the project of characterizing the Ehrhart quasi-polynomials of all rational polytopes.
This latter project has been the subject of a great deal of work for several decades.
Many deep constraints on the coefficients ci have been found. See in particular [1,
4, 6–10, 12, 19, 21, 22, 24, 25] and references therein.

It is a remarkable and humbling fact that many of these famous results do not
make full use of convexity (cf. [25, Remark 1.12]). That is, the constraints discov-
ered are satisfied by types of rational polytopal balls that are more general than
just the convex polytopes, such as the star convex polytopes. Here, by a rational
polytopal ball, or a not-necessarily-convex rational polytope, we mean a topological
ball in Rn that is a union

⋃
i∈I Pi of a finite family {Pi : i ∈ I} of convex ratio-

nal polytopes, all with the same affine span, in which every nonempty intersection
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Pi ∩ Pj , i 6= j, is a common facet of Pi and Pj . Only in dimension n = 2 do we
have a complete characterization of the Ehrhart polynomials of precisely the convex
integral polygons [20]. Even here in dimension 2, the case of nonintegral convex
polygons remains open [10, 16].

Nonetheless, even in the not-necessarily-convex case, the complete characteri-
zation of Ehrhart quasi-polynomials of rational polytope still seems quite far off.
Chastened by the difficulty of such a complete characterization, we restrict our
attention in this paper and its predecessors ([16, 17]) to the periods of the coeffi-
cient functions ci. To this end, define the period sequence of P to be the sequence
(p0, p1, . . . , pn) in which pi is the (minimum) period of ci. That is, pi is the min-
imum positive integer such that ci(k) = ci(k + pi) for all k ∈ Z. Our motivating
question is thus: What are the possible period sequences of rational polytopes?

It is well known that, if P ⊆ Rn is n-dimensional, then the leading coeffi-
cient of ehrP(t) is the volume of P . In particular, cn is a constant, so pn = 1.
A result of Beck, Sam, and Woods [3] provides a polytope with period sequence
(p0, . . . , pn−1, 1), provided that the desired periods pi satisfy the divisibility re-
lations pn−1 | pn−2 | · · · | p0. In particular, the polytopes constructed in [3] all
satisfy p0 ≥ p1 ≥ · · · ≥ pn. Polytopes can fail to satisfy these inequalities when
they exhibit the phenomenon of period collapse [16]. Nonetheless, the construction
in [3] gives convex rational polytopes with arbitrary period sequences of the form
(p, 1, . . . , 1). (See Theorem 3.3 below.)

A polytope P ⊆ Rn is integral if all of its vertices lie in the integer lattice Zn.
In this case, ehrP(t) is simply a polynomial. That is, the period sequence of an
integral polytope is (1, . . . , 1). In [17], we constructed convex rational polytopes
with arbitrary period sequences of the form (1, p, 1, . . . , 1). It is straightforward
to glue the constructions in [3] and [17] along a common integral facet to form a
convex rational polytope establishing the following.

Theorem 1.1. Let positive integers p0 and p1 be given. Then there exists a convex
n-dimensional polytope with period sequence (p0, p1, 1, . . . , 1).

Controlling the periods of higher-degree coefficients proved to be more difficult.
In [17], we were able to exploit previously discovered solutions to the system of Dio-
phantine equations known as the ideal Prouhet–Tarry–Escott (PTE) problem [5] to
find n-dimensional polytopal balls with period sequences of the form (1, . . . , 1, p, 1),
provided that the dimension n satisfied either 3 ≤ n ≤ 11 or n = 13.

The main result of the current paper supersedes the PTE-based construction
from [17] by proving the existence of not-necessarily-convex polytopes of arbitrary
dimension n with arbitrary period sequences (p0, p1, . . . , pn−1, 1).

Theorem 1.2 (Proved in Section 5). Let positive integers p0, . . . , pn−1 be given.
Then there exists an n-dimensional polytopal ball Q∗ such that the period of the
coefficient of ti in ehrQ∗

(t) is pi for 0 ≤ i ≤ n− 1.

The proof of Theorem 1.2 depends upon a remarkable property of cyclic poly-
topes (Theorem 2.1 below). We recall these polytopes and their Ehrhart polynomi-
als in Section 2. In Section 3, we introduce the notation and basic building blocks
that we will use in our constructions. In Section 4, we build a rational polytopal
ball with a period sequence of the form (1, . . . , 1, p, 1, . . . , 1), in which a coefficient
function of arbitrary degree has arbitrary period. Finally, in Section 5, we combine
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the constructions from Section 4 to build a polytopal ball with an arbitrary period
sequence of the form (p0, p1, . . . , pn−1, 1).

2. Cyclic polytopes

Cyclic polytopes are perhaps most famous for their appearance in the Upper
Bound Theorem (McMullen [18]): A d-dimensional cyclic polytope attains the max-
imum number of faces of every dimension among all d-dimensional polytopes with
the same number of vertices. However, it is the Ehrhart polynomials of cyclic
polytopes, rather than their face lattices, that will be of particular interest to us.

We recall the definition of cyclic polytopes. Fix a subset T ⊆ Z of n + 1 inte-
gers. (The particular subset chosen will not matter for our purposes.) We define
a sequence of polytopes Ci ⊆ Ri, with 0 ≤ i ≤ n, as follows. Let C0 := {0} ⊆ R0.
For 1 ≤ i ≤ n, let χi : R → Ri be the moment curve x 7→ (x, x2, . . . , xi). Then
the cyclic polytope Ci ⊆ Ri is the convex hull of the image of T under χi. That is,
Ci := Conv(χi(T )).

The Ehrhart polynomials of cyclic polytopes are unusual in that all of their co-
efficients have straightforward geometric interpretations. Such interpretations are
always available for the two leading coefficients, cd and cd−1, of the Ehrhart poly-
nomial of an arbitrary d-dimensional integral polytope P . However, in the general
case, no such interpretations exist for the lower-degree coefficients of ehrP(t). The
cyclic polytopes are a striking exception. In particular, F. Liu [13] proved that the
Ehrhart polynomial of Ci satisfies a beautiful recursive expression first conjectured
by Beck et al. in [1]:

Theorem 2.1 (Liu [13]). The Ehrhart polynomials of the cyclic polytopes are given
by

(2) ehrCi
(t) = Vol(Ci)t

i + ehrCi−1
(t), for 1 ≤ i ≤ n,

or, equivalently,

ehrCi
(t) =

i∑

j=0

Vol(Cj)t
j ,

where Vol(Cj) denotes the volume of Cj in Rj. (By convention, C0 has volume 1.)

We remark that the known proofs of this elegant result are far from trivial [13–
15].

3. Notation and building blocks

In this section, we briefly review notation and results developed in [17, Sections
2 and 3], to which we refer the reader for additional discussion and examples.

Our goal is to build polytopes of arbitrary dimension with arbitrary prescribed
period sequences. Since adding a polynomial to a quasi-polynomial does not change
the period sequence, we will consider two quasi-polynomials to be equivalent if

their difference is a polynomial. Recall that we write Q̂ for the ring of periodic
functions Z → Q.

Definition 3.1. Two quasi-polynomials q(t), r(t) ∈ Q̂[t] are equivalent if q(t) −
r(t) ∈ Q[t]. In this case, we write q(t) ≡ r(t).
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The chief convenience of this notation is that, if Q ∪ R is a union of rational
polytopes Q and R such that Q∩R is integral, then ehrQ∪R(t) ≡ ehrQ(t)+ehrR(t).

Since Q[t] is not an ideal in the ring Q̂[t], care must taken when multiplying quasi-
polynomials. Nonetheless, a limited kind of substitution holds: if f(t) ∈ Q[t] and

q(t) ≡ r(t) ∈ Q̂[t], then f(t)q(t) ≡ f(t)r(t).
Fix a positive integer p. (Typically, p will be the desired period of a coefficient

function in the Ehrhart quasi-polynomial of a rational polytope.) Our constructions
begin with two fundamental building blocks: the closed line segment ℓ := [− 1

p
, 0] ⊆

R, and the convex pentagon1 P in R2 with vertices u+, u−, v+, v−, w, where

u± := ±qe1, v± := ±(q − 1)e1 + e2, w :=
q

p
e2,(3)

and q := p2−p+1. (Here and below, we write ei for the ith standard basis vector.)
A key fact, proved in [16], is that the Ehrhart quasi-polynomials of P and ℓ are

“complements” of each other in the sense that the periodic parts of their coefficients
cancel when the quasi-polynomials are added together. That is,

(4) ehrP (t) ≡ − ehrℓ(t).

Furthermore, this equivalence is respected by the operation of taking i-fold pyra-
mids over P and ℓ. The pyramid ∆(Q) over a polytope Q ⊆ Rd is the convex hull
of the embedded copy of Q in Rd+1 at height 0 together with the standard basis
vector ed+1. That is, ∆(Q) := Conv({(x, 0) : x ∈ Q} ∪ {ed+1}). This operation

may be iterated, yielding the i-fold pyramid ∆i(Q) := ∆(∆i−1(Q)) ⊆ Rd+i. (Of
course, ∆0(Q) := Q.)

Proposition 3.2 ([17, Proposition 3.1]). Let P and ℓ be the pentagon and line
segment defined above. Then, for i ≥ 0,

(5) ehr∆i(P )(t) ≡ − ehr∆i(ℓ)(t).

Note that the i-fold pyramid ∆i(ℓ) ⊆ Ri+1 over ℓ is the simplex

∆i(ℓ) = Conv
{
0,− 1

p
e1, e2, . . . , ei+1

}
.

An important fact for the constructions below is that the period sequence of ∆i(ℓ)
is (p, 1, . . . , 1).

Theorem 3.3 ([3, Theorem 2]). Let ℓ := [− 1
p
, 0]. Then the period sequence of

∆i(ℓ) is the (i + 2)-tuple (p, 1, . . . , 1).

4. Nonconvex polytopes with period sequence (1, . . . , 1, p, 1, . . . , 1)

In this section, we construct an n-dimensional nonconvex rational polytope Qi

for which all Ehrhart coefficients are constants, except for the coefficient of ti, which
has period p, for arbitrary integers p ≥ 1 and 0 ≤ i ≤ n− 1.

In the case where i = 0, it suffices to set Q0 := ∆n−1(ℓ) by Theorem 3.3. Fur-
thermore, we settled the n = 2 case in [16]. We thus proceed with the assumption
that i ≥ 1 and n ≥ 3.

1When p = 1, P is a triangle.
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As in Section 3, let ℓ := [− 1
p
, 0] and let P be the pentagon defined in terms of p

by equations (3). Consider the n-dimensional polytope2

(6) Li :=
(
Ci ×∆n−i−1(ℓ)

)
− ei+1

and its facet

(7) L′
i := (Ci × Conv {0, e2, . . . , en−i})− ei+1,

as well as the n-dimensional polytope

(8) Ri :=
(
Ci−1 ×∆n−i−1(P )

)
+ ei+1

and its facet

(9) R′
i := (Ci−1 × Conv {qe1,−qe1, e3, . . . , en−i+1}) + ei+1.

(Recall from Section 3 that q := p2 − p+ 1.) Observe that L′
i and R′

i are (n − 1)-
dimensional integral polytopes in Rn, with L′

i contained in the hyperplane xi+1 =
−1 and with R′

i contained in the hyperplane xi+1 = 1. Furthermore, Li is contained
in the halfspace xi+1 ≤ −1, and Ri is contained in the halfspace xi+1 ≥ 1. Let
Mi := Conv(L′

i∪R′
i). Then Mi is an n-dimensional integral polytope lying between

the hyperplanes xi+1 = −1 and xi+1 = 1. In particular, Li, Mi, and Ri have
pairwise disjoint interiors and integral intersections.

We are now ready to construct the not-necessarily-convex polytope Qi with
period sequence (1, . . . , 1, p, 1, . . . , 1). We define

Qi := Li ∪Mi ∪Ri.

Theorem 4.1. Fix an arbitrary dimension n, degree i with 0 ≤ i ≤ n − 1, and
period p. Then the n-dimensional polytopal ball Qi constructed above has an Ehrhart
quasi-polynomial ehrQi

(t) in which all coefficient functions are constants, except for
the coefficient of ti, which has period p.

Proof. As indicated at the beginning of this section, we may assume that i ≥ 1 and
n ≥ 3. Since Mi is an integral polytope meeting Li and Ri at integral facets, it
follows from the construction above that

ehrQi
(t) ≡ ehrLi

(t) + ehrRi
(t).

Thus,

ehrQi
(t) ≡ ehrCi×∆n−i−1(ℓ)(t) + ehrCi−1×∆n−i−1(P )(t)

= ehrCi
(t) ehr∆n−i−1(ℓ)(t) + ehrCi−1

(t) ehr∆n−i−1(P )(t)

≡
(
Vol(Ci)t

i + ehrCi−1
(t)

)
ehr∆n−i−1(ℓ)(t)− ehrCi−1

(t) ehr∆n−i−1(ℓ)(t)

= Vol(Ci)t
i ehr∆n−i−1(ℓ)(t).

In this sequence of computations, the third line is the crucial step invoking Liu’s
Theorem 2.1, as well as Proposition 3.2. The second line uses the general fact that
ehrP×R(t) = ehrP(t) ehrR(t).

By Theorem 3.3, all coefficient functions in ehr∆n−i−1(ℓ)(t) are constants, ex-
cept for the “constant” coefficient—that is, the coefficient function in the degree-0
term—which has period p. Thus, all coefficient functions in Vol(Ci)t

i ehr∆n−i−1(ℓ)(t)

2We adopt the natural conventions to deal with the extreme cases i = 1 and i = n− 1. Hence,
R1 := ∆n−2(P ) + e2, R′

1
:= Conv {±qe1, e3, . . . , en} + e2, L′

n−1
:= (Cn−1 × {0}) − en, and

R′

n−1
:= (Cn−2 × Conv {±qe1}) + en.
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are constant functions, except for the coefficient of ti, which has period p. It fol-
lows from the equivalence of quasi-polynomials shown above that the same is true
of ehrQi

(t), as desired. �

5. Nonconvex polytopes with period sequence (p0, p1, . . . , pn−1, 1)

In this section, we construct a nonconvex polytope Q∗ for which the Ehrhart
quasi-polynomial has an arbitrary period sequence. Let the desired period sequence
be (p0, p1, . . . , pn−1, 1), where each pi is a positive integer. The previous section
showed how to construct a polytope Qi with period sequence (1, . . . , 1, pi, 1, . . . , 1),
where pi is the period of the ith coefficient. In this section, we will modify that
construction so that the resulting “modified Qi” can be glued together to build the
polytope Q∗ with the desired period sequence.

For 0 ≤ i ≤ n − 1, let ℓi := [− 1
pi

, 0], and let Pi be the pentagon defined by

equations (3) after replacing p by pi and q by qi := p2i − pi + 1.
We first deal with the periods pi with i ≥ 1. Observe that the construction of Qi

in Section 4 goes through if we replace the translations by ±ei+1 in equations (6)–
(9) with translations by ±kiei+1, where ki is an arbitrary positive integer (to be
fixed below), as follows:

Li :=
(
Ci ×∆n−i−1(ℓi)

)
− kiei+1,(10)

L′
i := (Ci × Conv {0, e2, . . . , en−i})− kiei+1,(11)

Ri :=
(
Ci−1 ×∆n−i−1(Pi)

)
+ kiei+1,(12)

R′
i := (Ci−1 × Conv {qie1,−qie1, e3, . . . , en−i+1}) + kiei+1.(13)

Likewise, to handle the periodicity p0 in the degree-0 term, we may define a trans-
lated version of the polytope Q0 from Section 4, as well as one of its facets:

Q0 := ∆n−1(ℓ0)− k0e1,(14)

Q′
0 := Conv {0, e2, . . . , en} − k0e1.(15)

As in Section 4, we find that L′
i and R′

i are (n−1)-dimensional integral polytopes
in Rn, with L′

i contained in the hyperplane xi+1 = −ki and with R′
i contained in the

hyperplane xi+1 = ki. Furthermore, Li is contained in the halfspace xi+1 ≤ −ki,
and Ri is contained in the halfspace xi+1 ≥ ki. Finally, Q′

0 is contained in the
hyperplane x1 = −k0, and Q0 is contained in the halfspace x1 ≤ −k0.

We now fix the translation parameters k0, k1, . . . , kn−1 in equations (10)–(15)
to be sufficiently large so that the vertices of the facets Q′

0, L
′
1, R

′
1, . . . , L

′
n−1, R

′
n−1

all lie in convex position. That is, we choose k0, k1, . . . , kn−1 so that each of these
facets is a facet of the integral polytope

M := Conv
(
Q′

0 ∪ L′
1 ∪R′

1 ∪ · · · ∪ L′
n−1 ∪R′

n−1

)
.

(The values of ki that are sufficiently large will depend upon the desired periods
p0, p1, . . . , pn−1, as well as on the particular (n+1)-subset T ⊆ Z used to construct
the cyclic polytopes Ci in Section 2.)

Using these translated versions for Li and Ri, let us redefine the polytope Qi

for 1 ≤ i ≤ n − 1 by setting Qi := Li ∪M ∪ Ri. As in Section 4, Qi has period

sequence (1, . . . , 1, pi, 1, . . . , 1). Finally, we let Q∗ :=
⋃n−1

i=0 Qi. As in the proof
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of Theorem 4.1, we compute that

ehrQ∗
(t) ≡

n−1∑

i=0

Vol(Ci)t
i ehr∆n−i−1(ℓi)(t).

Therefore, the period sequence of Q∗ is (p0, p1, . . . , pn−1, 1), as desired.
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