
Tamed EM schemes for neutral stochastic differential delay
equations with superlinear diffusion coefficients

Shounian Denga,b, Chen Feic, Weiyin Feia,∗, Xuerong Maod

aThe Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education,
and School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, 241000, China.

bSchool of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
cGlorious Sun School of Business and Management, Donghua University, Shanghai, 200051, China

dDepartment of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

Abstract

In this article, we propose two types of explicit tamed Euler-Maruyama (EM) schemes for neutral
stochastic differential delay equations with superlinearly growing drift and diffusion coefficients.
The first type is convergent in the Lq sense under the local Lipschitz plus Khasminskii-type
conditions. The second type is of order half in the mean-square sense under the Khasminskii-
type, global monotonicity and polynomial growth conditions. Moreover, it is proved that the
partially tamed EM scheme has the property of mean-square exponential stability. Numerical
examples are provided to illustrate the theoretical findings.

Keywords: Neutral stochastic differential delay equations, tamed EM scheme, super-linear
growth, strong convergence, mean-square stability.

1. Introduction

As an important type of stochastic differential equations (SDEs), neutral stochastic differen-
tial delay equations (NSDDEs) play a significant part in many application fields, such as auto-
matic control, biology, power system and finance [1, 2]. In general, such SDEs with the neutral
term do not have any explicit solutions, and we must be content ourselves with an approxima-5

tion via a numerical approach. Due to the simple algebraic structure, easy implementation and
acceptable convergence rate, Euler-type schemes have been introduced to approximate the exact
solutions of NSDDEs. Li and Cao [3] presented a two-step Euler-Maruyama (EM) scheme for
NSDDEs and studied the mean-square stability of the scheme under the linear growth condition.
Mo et al. [4] proposed a split-step theta-method for NSDDEs with Poisson jumps, they also dis-10

cussed the exponential stability of the method. Ji and Yuan [5] analyzed the convergence rate of
tamed EM for NSDDEs with diffusion coefficients of linear growth. Influenced by the work of
Mao [6], Lan and Xia [7] developed a modified truncated EM method for SDEs, they extended
this method to the case of NSDDEs and obtained the exponential stability of the scheme in [8].
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Other related work on this topic can be found in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], and the15

references therein.
So far as we know, most of the convergence rate results on the numerical schemes for

NSDDEs require the conditions that the drift coefficients satisfy the linear or one-sided lin-
ear growth condition and the diffusion coefficients satisfy the linear growth condition, see e.g.,
[5, 10, 11, 19]. There are limited results on the convergence rate under weaker conditions than20

these. Zhou and Jin [9] discussed the strong convergence of the backward EM scheme for high-
ly nonlinear NSDDEs, where the diffusion coefficient is polynomially growing with respect to
delay term while for non-delay part the coefficient is linearly growing. As a result, our effort
is devoted to investigating the strong convergence of explicit numerical approximations, whose
convergence order can arrive at one half, for NSDDEs with superlinearly growing drift and d-25

iffusion coefficients. It is known that tamed (balanced) or truncation techniques can be used to
cope with the superlinearly growing parts appearing in the drift and diffusion coefficients when
SDEs are considered. For strong schemes for such SDEs, several types of methods have been
introduced: tamed EM schemes, originally proposed by Hutzenthaler et al. in [20], where the
coefficients are approximated by the function of the form F(x)/(1+∆α|F(x)|) (0 < α ≤ 1) to con-30

trol their superlinear growth, see e.g., [21, 22, 23, 24, 24, 25, 26, 27, 28]; truncated EM schemes,
originally proposed by Mao in [6], where coefficients of superlinear growth can be bounded by
the truncated function, see e.g., [29, 30, 31, 32, 33, 34, 35]. Moreover, another method, called
Semi-Discrete (SD) method, originally proposed by Halidias [36], also attracts researchers’ at-
tention. A major advantage of the SD method is the domain preservation of the solution process,35

a property that the EM method in general do not preserve [37]. There is an ongoing research
of the method and its properties, see for instance [38] for an application in a delay model with
jumps, and the recent [39] for the convergence order.

Inspired by the taming idea in Sabanis [21] together with the truncation techniques from
Mao [29], we propose a class of tamed EM scheme for NSDDEs with coefficients of superlinear40

growth. According to the scheme we derive some crucial properties P1-P3, which mean that the
modified coefficients f∆ and g∆ conserve the Khasminskii-type condition and behave linearly for
a fixed step size, see (3.11), (3.12) and (3.13). Based on these properties, a uniform moment
bound for the numerical solutions is established and then the tamed EM method can be shown to
converge strongly and conserve the stability in the mean-square sense.45

The main contribution of this paper is to develop two types of explicit tamed EM schemes
for NSDDEs, in which both drift and diffusion coefficients can be growing superlinearly, and
investigate the strong convergence, mean-square stability of the schemes for NSDDE (2.1). We
extend the tamed EM scheme presented in Sabanis [21] to the case of NSDDEs. Furthermore,
when the neutral term D is absent in NSDDE (2.1), compared with the convergence results of the50

truncated EM schemes for stochastic delay differential equations (SDDEs) from Fei et al. [32,
Theorem 3.6], our results obtain a better convergence order under almost the same conditions,
see Theorem 4.1.

The rest of the paper is organized as follows. In the next section, we present some prelimi-
naries and assumptions on the NSDDEs. The tamed EM scheme is proposed in Section 3. The55

discussion of the strong convergence of the tamed EM is given in Section 4. In Section 5, we
show the reproduction of mean-square stability of numerical solutions for the exact solution.
Numerical examples are presented in Section 6. In the final section, we close the paper by our
conclusion.
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2. Preliminaries60

Throughout this paper, let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all
P-null sets). Let τ > 0 be a constant and denote by C([−τ, 0];Rd) the space of all continuous
functions from [−τ, 0] to Rd with the norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. Let B(t) be an m-dimensional
Brownian motion. If A is a vector or matrix, its transpose is denoted by AT . If X ∈ Rd, then |X|65

is the Euclidean norm. If A is a matrix, its trace norm is denoted by |A| =
√

(AT A). For two real
numbers a and b, a ∨ b := max(a, b) and a ∧ b := min(a, b). For a set G, its indicator function is
denoted by IG. The scalar product of two vectors X,Y ∈ Rd is denoted by 〈X,Y〉 or XT Y . Denote
by bac the largest integer which is less or equal to a.

Consider a neutral stochastic differential delay equation of the form

d[x(t) − D(x(t − τ))] = f (x(t)), x(t − τ))dt + g(x(t), x(t − τ))dB(t), t ≥ 0, (2.1)

with the initial data {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C([−τ, 0];Rd), where D : Rd → Rd, f : Rd×Rd →

Rd and g : Rd × Rd → Rd×n are Borel-measurable functions. Unless specified otherwise, we
assume that the initial data ξ satisfies the following condition: there is a pair of constants K1 > 0
and % ∈ (0, 1] such that

|ξ(t) − ξ(s)| ≤ K1|t − s|%, ∀s, t ∈ [−τ, 0]. (2.2)

Moreover, we assume that D(0) = 0 and there exists a constant ν ∈ (0, 1) such that

|D(x) − D(y)| ≤ ν|x − y|, ∀x, y ∈ Rd. (2.3)

Consider the following assumptions:70

Assumption 2.1. (Local Lipschitz condition) For any R > 0, there exists a constant LR depend-
ing on R such that

| f (x, y) − f (x̄, ȳ)| ∨ |g(x, y) − g(x̄, ȳ)| ≤ LR(|x − x̄| + |y − ȳ|),

∀x, x̄, y, ȳ ∈ Rd with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ R.

Assumption 2.2. (Khasminskii-type condition) There exist positive constants K2 and p0 > 2
such that

(x − D(y))T f (x, y) +
p0 − 1

2
|g(x, y)|2 ≤ K2(1 + |x|2 + |y|2), ∀x, y ∈ Rd.

Under Assumptions 2.1 and 2.2, NSDDE (2.1) has a unique global solution x(t) on t ∈ [−τ,∞).
In addition, we have the following result regarding the moments of x(t), the proof is similar to
that of Mao [40, p.213, Theorem 4.5] and is therefore omitted.

Lemma 2.3. Suppose that Assumption 2.1 and 2.2 hold. Then

sup
−τ≤t≤T

E|x(t)|p0 < ∞, ∀T > 0. (2.4)
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Denote byU the family of continuous function U : Rd ×Rd → R+ such that for any R > 0, there
exists a positive constant L̄R for which

U(x, x̄) ≤ L̄R|x − x̄|2, ∀x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ R.

Assumption 2.4. (Global monotonicity with U function and polynomial growth conditions)
There exist constants p1 > 2, l ≥ 0 and K3 > 0,K4 > 0 as well as a function U ∈ U such that

(x − x̄ − D(y) + D(ȳ))T ( f (x, y) − f (x̄, ȳ)) +
p1 − 1

2
|g(x, y) − g(x̄, ȳ)|2

≤ K3(|x − x̄|2 + |y − ȳ|2) − U(x, x̄) + U(y, ȳ), ∀x, y ∈ Rd, (2.5)

and

| f (x, y) − f (x̄, ȳ)| ≤ K4(1 + |x|l + |y|l + |x̄|l + |ȳ|l)(|x − x̄| + |y − ȳ|), ∀x, y ∈ Rd, (2.6)

as well as

|g(x, y) − g(x̄, ȳ)|2 ≤ K4(1 + |x|l + |y|l + |x̄|l + |ȳ|l)(|x − x̄|2 + |y − ȳ|2), ∀x, y ∈ Rd. (2.7)

From (2.6) and (2.7), we have the following growth condition

| f (x, y)| ≤ K5(1 + |x|l+1 + |y|l+1) and |g(x, y)|2 ≤ K5(1 + |x|l+2 + |y|l+2), ∀x, y ∈ Rd, (2.8)

where K5 = 6K4 ∨ (4K4 + 2|g(0, 0)|2 + | f (0, 0)|2).75

Remark 2.5. If the neutral term D vanishes, the global monotonicity condition with U function
(2.5) reduces to Fei et al. [32, Assumption 2.3] and Guo et al. [34, Assumption 5.1]. In view of
Fei et al. [32, Example 6.2], the presence of U function in global monotonicity condition will
make the choice of the drift and diffusion coefficients for SDDEs more flexible.

3. Tamed EM scheme for NSDDEs80

Assume that the step size ∆ is a fraction of τ. Define ∆ = τ/m ∈ (0, 1] for some positive
integer m and κ(t) := bt/∆c∆, for any t ≥ −τ. The discrete-time tamed EM scheme for NSDDE
(2.1) is defined as follows:

yk+1
∆ = D(yk+1−m

∆ ) + yk
∆ − D(yk−m

∆ ) + f∆(yk
∆, y

k−m
∆ )∆ + g∆(yk

∆, y
k−m
∆ )∆Bk, k = 0, 1, 2, · · · ,

yk
∆ = ξ(k∆), k = −m,−m + 1, · · · , 0, (3.1)

where ∆Bk = B((k+1)∆−k∆), the modified coefficients f∆ : Rd×Rd → Rd, g∆ : Rd×Rd → Rd×n

are Borel-measurable and satisfy some conditions given below. Define a continuous-time step
process Ȳ∆(t) on t ∈ [−τ,∞) by

Ȳ∆(t) =

∞∑
k=−m

yk
∆I[k∆,(k+1)∆)(t),
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where I is the indicator function. Then Ȳ∆(t − τ) = yk−m
∆

, for any t ∈ [k∆, (k + 1)∆) with k ≥ 0.
Define a new continuous-time process Y∆(t) on t ∈ [−τ,∞) by

Y∆(t) = D(Y∆(t − τ)) + ξ(0) − D(ξ(−τ)) +

∫ t

0
f∆(Ȳ∆(s), Ȳ∆(s − τ))ds

+

∫ t

0
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s), t ≥ 0,

Y∆(t) = ξ(t), −τ ≤ t ≤ 0. (3.2)

Obviously, Y∆(t) is well defined on [0, τ]. Once the process Y∆(t) on this interval is known, we
can proceed this argument on [τ, 2τ], [2τ, 3τ] etc. and hence obtain the process Y∆(t) on the entire
interval [−τ,∞). Moreover, Y∆(t) is an Itô process on [0,∞) with Itô differential

d[Y∆(t) − D(Y∆(t − τ))] = f∆(Ȳ∆(t), Ȳ∆(t − τ))dt + g∆(Ȳ∆(t), Ȳ∆(t − τ))dB(t). (3.3)

From (3.1) and (3.2), we conclude that

Y∆(∆) = D(ξ(∆ − τ)) + ξ(0) − D(ξ(−τ)) + f∆(ξ(0), ξ(−τ))∆ + g∆(ξ(0), ξ(−τ))∆B0 = y1
∆.

Similarly, we can show that for any t ∈ [k∆, (k + 1)∆) with k ≥ 0,

Y∆(k∆) = yk
∆ = Ȳ∆(t), (3.4)

that is, the discrete and continuous tamed EM solutions coincide at the grid points. Thus, it is
useful to know that for any t ∈ [k∆, (k + 1)∆) with k ≥ 0,

Y∆(k∆) − D(Y∆(k∆ − τ)) = Ȳ∆(t) − D(Ȳ∆(t − τ)) = yk
∆ − D(yk−m

∆ ) (3.5)

and

Y∆(t) − D(Y∆(t − τ)) − Ȳ∆(t) + D(Ȳ∆(t − τ))

=

∫ t

k∆

f∆(Ȳ∆(s), Ȳ∆(s − τ))ds +

∫ t

k∆

g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s). (3.6)

Remark 3.1. In most of the existing work on the numerical methods for NSDDEs, e.g., Ji and
Yuan [5], Lan [8], Tan and Yuan [19], D(Ȳ∆(t−τ)), rather than D(Y∆(t−τ)), as an approximation
to D(x(t − τ)), appears in the equation (3.2), which determines another form of continuous-time
process Y∗

∆
(t) defined by

Y∗∆(t) = D(Ȳ∆(t − τ)) + ξ(0) − D(ξ(−τ)) +

∫ t

0
f∆(Ȳ∆(s), Ȳ∆(s − τ))ds

+

∫ t

0
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s), t ≥ 0.

We then have the following form of difference between the exact solution x(t) and the tamed EM
solution Y∗

∆
(t),

x(t) − Y∗∆(t) − D(x(t − τ)) + D(Ȳ∆(t − τ))

=

∫ t

0

(
f (x(s), x(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))

)
ds

+

∫ t

0

(
g(x(s), x(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))

)
dB(s), t ≥ 0. (3.7)
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If we apply the Itô formula to (3.7) and use the global monotonicity condition with U function
(2.5), then there will be an extra term expressed by the following we have to address,

E
∫ t

0

(
− U(x(s),Y∗∆(s)) + U(x(s − τ),Y∗∆(κ(s) − τ))

)
ds, t ≥ 0. (3.8)

Note that the two time variables of the second U function in (3.8) are asynchronous, it is difficult
to treat (3.8) as an appropriate form. However, if we use Y∆(t) given by (3.2), (3.8) becomes

E
∫ t

0

(
− U(x(s),Y∆(s)) + U(x(s − τ),Y∆(s − τ))

)
ds, t ≥ 0. (3.9)

We observe from (4.35) that (3.9) can be addressed well. From the practical point of view,
using D(Y∆(t − τ)) to approximate D(x(t − τ)) in (3.7) avoids the presence of asynchronous time.
Moreover, Y∆(t) preserves the useful property (3.4) that Y∗

∆
(t) has.

Let us make some conditions on the coefficients of the scheme (3.1). Suppose that there is a
constant α ∈ (0, 1/2] such that the following conditions hold:
P1. For any R > 0, there is a positive constant NR depending on R such that for any x, y ∈ Rd,

sup
|x|∨|y|≤R

| f (x, y) − f∆(x, y)| ∨ |g(x, y) − g∆(x, y)| ≤ NR∆α. (3.10)

P2. There is a positive constant K̂1 such that for any ∆ ∈ (0, 1],

| f∆(x, y)| ≤ K̂1∆−α(1 + |x| + |y|) ∧ | f (x, y)|, ∀x, y ∈ Rd, (3.11)

and

|g∆(x, y)|2 ≤ K̂1∆−α(1 + |x|2 + |y|2) ∧ |g(x, y)|2, ∀x, y ∈ Rd. (3.12)

P3. There is a positive constant K̂2 such that

(x − D(y))T f∆(x, y) +
p0 − 1

2
|g∆(x, y)|2 ≤ K̂2(1 + |x|2 + |y|2), ∀x, y ∈ Rd. (3.13)

Property P3 means that modified coefficients f∆ and g∆ preserve the Khasminskii-type condition
2.2. While property P2 implies that for any ∆ ∈ (0, 1], f∆ and g∆ satisfy the linear growth85

condition which guarantees the existence of a unique solution to (3.3).
Now, we propose two types of modified coefficients f∆ and g∆ in (3.1). Let α ∈ (0, 1/2],

define

f∆(x, y) := π∆(x, y) f (x, y) and g∆(x, y) := π∆(x, y)g(x, y), (3.14)

where π∆ : Rd × Rd → (0, 1) is defined by

Type I: π∆(x, y) =
1

1 + ∆α(| f (x, y)| + |g(x, y)|2)
, ∀x, y ∈ Rd, ∆ ∈ (0, 1], (3.15)

or

Type II: π∆(x, y) =
1

1 + ∆α(|x|l + |y|l)
, ∀x, y ∈ Rd, ∆ ∈ (0, 1]. (3.16)
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Remark 3.2. Under Assumptions 2.1 and 2.2, we can show that the modified coefficients f∆
and g∆ with Type I given by (3.15) satisfy conditions P1-P3. If Assumptions 2.1 is replaced by
Assumption 2.4, the modified coefficients Type II also satisfy P1-P3. This type of tamed EM
scheme allows us to produce the optimal rate of convergence. But if we are only interested in90

the strong convergence (without order) of the numerical scheme, then using the tamed EM Type
I may suffice.

4. Strong convergence at time T > 0

4.1. Order of strong convergence of tamed EM (Type II) under monotonicity condition

Theorem 4.1. Suppose that Assumptions 2.2 and 2.4 hold with p0 ≥ 4 ∨ 2(1 + 2l) and α ∈
(0, 1/2] is arbitrary. Then the tamed EM solution Y∆(t) or Ȳ∆(t) with modified coefficients Type II
converges to the exact solution x(t) of NSDDE (2.1) with order α ∧ % in the mean-square sense,
i.e.,

sup
0≤t≤T

E|x(t) − Y∆(t)|2 ≤ C∆2(α∧%) and sup
0≤t≤T

E|x(t) − Ȳ∆(t)|2 ≤ C∆2(α∧%), ∀∆ ∈ (0, 1], (4.1)

where the positive constant C := C(T, ν, ‖ξ‖, p0, p1,K1,K2,K3,K4, l). In particular, letting α =

1/2 yields that[
E|x(T ) − Y∆(T )|2

]1/2
≤ C∆0.5∧% and

[
E|x(T ) − Ȳ∆(T )|2

]1/2
≤ C∆0.5∧%,∀∆ ∈ (0, 1]. (4.2)

From now on, C denotes a genetic positive real constant dependent on T , ν, ‖ξ‖ etc. but indepen-95

dent of ∆.

Remark 4.2. It should be pointed out that if the neutral term D vanishes in NSDDE (2.1), The-
orem 4.1 reduces to the convergence result of tamed EM scheme for SDDEs. In this case, com-
pared with the convergence result of the truncated EM scheme in Fei et al. [32, Corollary 3.8],
which has an order (0.5 − ε) ∧ % in the mean-square sense, where ε ∈ (0, 1/4] is arbitraty,100

we observe from (4.2) that our scheme has a better convergence order under almost the same
conditions as [32, Corollary 3.8].

Lemma 4.3. Suppose that P2 and P3 hold with p0 ≥ 4 and α ∈ (0, 1/2] is arbitrary. Then the
tamed EM solution Y∆(t) defined by (3.2) satisfies

sup
0<∆≤1

sup
0≤t≤T

E|Y∆(t)|p0 ≤ C,

where the positive constant C := C(p0,T,K2, ‖ξ‖, ν).
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Proof. Let P2 and P3 hold with p0 ≥ 4 and α ∈ (0, 1/2]. Then for any t ∈ [0,T ], applying the Itô
formula to (3.2) and P3, i.e., (3.13), we derive that

E|Y∆(t) − D(Y∆(t − τ))|p0

≤ |ξ(0) − D(ξ(−τ))|p0 + p0E
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2

×
(
[Y∆(s) − D(Y∆(s − τ))]T f∆(Ȳ∆(s), Ȳ∆(s − τ)) +

p0 − 1
2
|g∆(Ȳ∆(s), Ȳ∆(s − τ))|2

)]
ds

= |ξ(0) − D(ξ(−τ))|p0 + p0E
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2

×
(
[Ȳ∆(s) − D(Ȳ∆(s − τ))]T f∆(Ȳ∆(s), Ȳ∆(s − τ)) +

p0 − 1
2
|g∆(Ȳ∆(s), Ȳ∆(s − τ))|2

)]
ds

+ p0E
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2

× [Y∆(s) − D(Y∆(s − τ)) − Ȳ∆(s) + D(Ȳ∆(s − τ))]T f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds

≤ |ξ(0) − D(ξ(−τ))|p0 + CE
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)

]
ds + p0J(t)

≤ C + CE
∫ t

0

[
(|Y∆(s)|p0−2 + |D(Y∆(s − τ))|p0−2)(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)

]
ds + p0J(t)

≤ C + CE
∫ t

0

[
1 + |Y∆(s)|p0 + |Y∆(s − τ)|p0 + |Ȳ∆(s)|p0 + |Ȳ∆(s − τ)|p0

]
ds + p0J(t)

≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0

]
ds + p0J(t),

where

J(t) := E
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2

× (Y∆(s) − D(Y∆(s − τ)) − Ȳ∆(s) + D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds. (4.3)

From (3.4), we have the following useful estimate:

sup
0≤u≤s

E|Ȳ∆(u)|p0 ≤ sup
0≤u≤s

E|Y∆(u)|p0 . (4.4)

Consequently,

E|Y∆(t) − D(Y∆(t − τ))|p0 ≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds + p0J(t). (4.5)

We observe that

J(t) = E
∫ t

0

[
|Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2

× (Y∆(s) − D(Y∆(s − τ)) − Ȳ∆(s) + D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds

+ E
∫ t

0

[(
|Y∆(s) − D(Y∆(s − τ))|p0−2 − |Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2

)
8



× (Y∆(s) − D(Y∆(s − τ)) − Ȳ∆(s) + D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds

=: J1(t) + J2(t). (4.6)

Using (3.6) and P2, we have the following estimate

J1(t) = E
∫ t

0

[
|Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2

( ∫ s

κ(s)
f∆(Ȳ∆(u), Ȳ∆(u − τ))du

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

+ E
∫ t

0

[
|Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2

( ∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

≤ E
∫ t

0

[
|Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2| f∆(Ȳ∆(s), Ȳ∆(s − τ))|2

∫ s

κ(s)
du

]
ds

≤ C∆1−2αE
∫ t

0
|Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)ds

≤ C
∫ t

0

[
1 + sup

0≤u≤s
E|Ȳ∆(u) − D(Ȳ∆(u − τ))|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u − τ)|p0

]
ds

≤ C
∫ t

0

[
1 + ‖ξ‖p0 + sup

0≤u≤s
E|Ȳ∆(u) − D(Ȳ∆(u − τ))|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0

]
ds

≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds, (4.7)

where (4.4) has been used in the derivation of the last inequality.
For some p0 ≥ 4, applying the Itô formula to |Y∆(s) − D(Y∆(s − τ))|p0−2, we conclude from

(3.2) or (3.6) that

J2(t) = E
∫ t

0

[(
|Y∆(s) − D(Y∆(s − τ))|p0−2 − |Ȳ∆(s) − D(Ȳ∆(s − τ))|p0−2

)
×

(
Y∆(s) − D(Y∆(s − τ)) − Ȳ∆(s) + D(Ȳ∆(s − τ))

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

≤ E
∫ t

0

[{
(p0 − 2)

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T f∆(Ȳ∆(u), Ȳ∆(u − τ))du

+
(p0 − 2)(p0 − 3)

2

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4|g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du

+ (p0 − 2)
∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

}
×

( ∫ s

κ(s)
f∆(Ȳ∆(u), Ȳ∆(u − τ))du +

∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

=:
6∑

i=1

J2i(t),

where

J21(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T f∆(Ȳ∆(u), Ȳ∆(u − τ))du
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×
( ∫ s

κ(s)
f∆(Ȳ∆(s), Ȳ∆(s − τ))du

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

J22(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T f∆(Ȳ∆(u), Ȳ∆(u − τ))du

×
( ∫ s

κ(s)
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(u)

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

J23(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4|g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du

×
( ∫ s

κ(s)
f∆(Ȳ∆(s), Ȳ∆(s − τ))du

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

J24(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4|g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du

×
( ∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

J25(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

×
( ∫ s

κ(s)
f∆(Ȳ∆(u), Ȳ∆(u − τ))du

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds

J26(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−4(Y∆(u) − D(Y∆(u − τ))T g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

×
( ∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

)T
f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds. (4.8)

By P2 and (4.4), we have

J21(t) ≤ CE
∫ t

0

[
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|2∆

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−3| f∆(Ȳ∆(u), Ȳ∆(u − τ))|du

]
ds

≤ C∆E
∫ t

0

[
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|3

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−3du

]
ds

≤ C∆1−3αE
∫ t

0

[ ∫ s

κ(s)
(1 + |Ȳ(κ(s))|3 + |Ȳ(κ(s) − τ)|3)|Y∆(u) − D(Y∆(u − τ))|p0−3du

]
ds

≤ C∆2−3α
∫ t

0

[
1 + sup

0≤u≤s
E|Y∆(u) − D(Y∆(u − τ))|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u − τ)|p0

]
ds

≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.9)

Recall the Young inequality: for r−1
1 + r−1

2 = 1, r1, r2 > 1,

ab ≤
ar1

r1
+

br2

r2
, ∀a, b > 0.
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Letting r1 = p0, r2 =
p0

p0−1 in the above inequality, applying the Hölder and Burkholder-Davis-
Gundy inequalities, we have

J22(t) ≤ CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−3| f∆(Ȳ∆(u), Ȳ∆(u − τ))|du

×
∣∣∣ ∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

∣∣∣∣∣∣ f∆(Ȳ∆(s), Ȳ∆(s − τ))
∣∣∣]ds

≤ CE
∫ t

0

[(
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−3| f∆(Ȳ∆(u), Ȳ∆(u − τ))|du

)p0/(p0−1)

+
∣∣∣ ∫ s

κ(s)
g∆(Ȳ∆(u), Ȳ∆(u − τ))dB(u)

∣∣∣p0
]
ds

≤ CE
∫ t

0

[(
∆−2α

∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ))|p0−3(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)du

)p0/(p0−1)]
ds

+ C
∫ t

0

[
E
( ∫ s

κ(s)
|g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du

)p0/2]
ds

≤ C∆(1−2α)p0/(p0−1)
∫ t

0

[
1 + sup

0≤u≤s
E|Y∆(u) − D(Y∆(u − τ))|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0

+ sup
0≤u≤s

E|Ȳ∆(u − τ)|p0
]
ds + C∆(1−α)p0/2

∫ t

0

[
1 + sup

0≤u≤s
E|Ȳ∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u − τ)|p0

]
ds

≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.10)

Again using P2 and noting that α ∈ (0, 1/2], we have

J26(t) = CE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ)|p0−4(Y∆(u) − D(Y∆(u − τ))T |g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du

× f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds

≤ E
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ)|p0−3|g∆(Ȳ∆(u), Ȳ∆(u − τ))|2du| f∆(Ȳ∆(s), Ȳ∆(s − τ))|

]
ds

≤ C∆−2αE
∫ t

0

[ ∫ s

κ(s)
|Y∆(u) − D(Y∆(u − τ)|p0−3|(1 + |Ȳ∆(u)|2 + |Ȳ(u − τ)|2)du

× (1 + |Ȳ∆(s)| + |Ȳ(s − τ)|)
]
ds

≤ C∆1−2α
∫ t

0

[
1 + sup

0≤u≤s
E|Y∆(u) − D(Y∆(u − τ))|p0 + sup

0≤u≤s
E|Ȳ∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u − τ)|p0

]
ds

≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.11)

Similarly, we can derive that

J23(t) + J24(t) + J25(t)≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.12)
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From (4.9)-(4.12), we have

J2(t)≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.13)

Inserting (4.7) and (4.13) into (4.6), we derive from (4.5) that

sup
0≤u≤t

E|Y∆(u) − D(Y∆(u − τ))|p0 ≤ C + C
∫ t

0
sup

0≤u≤s
E|Y∆(u)|p0 ds. (4.14)

Recall the following inequality: for p > 1, ε > 0 and a, b ∈ R,

|a + b|p ≤ (1 + ε
1

p−1 )p−1
(
|a|p

ε
+ |b|p

)
, (4.15)

see [40, Lemma 4.1, p.211]. Consequently,

|Y∆(u)|p0 = |Y∆(u) − D(Y∆(u − τ)) + D(Y∆(u − τ))|p0

≤ (1 + ε
1

p0−1 )p0−1
(
|D(Y∆(u − τ))|p0

ε
+ |Y∆(u) − D(Y∆(u − τ))|p0

)
≤ (1 + ε

1
p0−1 )p0−1

(
νp0 |(Y∆(u − τ))|p0

ε
+ |Y∆(u) − D(Y∆(u − τ))|p0

)
.

Letting ε =
(

ν
1−ν

)p0−1
and taking expectations, we have

E|Y∆(u)|p0 ≤ νE|Y∆(u − τ)|p0 +
1

(1 − ν)p0−1 E|Y∆(u) − D(Y∆(u − τ))|p0 , ∀u ≥ 0. (4.16)

Therefore,

sup
0≤u≤s

E|Y∆(u)|p0 ≤ ν sup
0≤u≤s

E|Y∆(u − τ)|p0 +
1

(1 − ν)p0−1 sup
0≤u≤s

E|Y∆(u) − D(Y∆(u − τ))|p0

≤ ν‖ξ‖p0 + ν sup
0≤u≤s

E|Y∆(u)|p0 +
1

(1 − ν)p0−1 sup
0≤u≤s

E|Y∆(u) − D(Y∆(u − τ))|p0 , ∀s ≥ 0.

Rearranging this gives

sup
0≤u≤s

E|Y∆(u)|p0 ≤
ν

1 − ν
‖ξ‖p0 +

1
(1 − ν)p0

sup
0≤u≤s

E|Y∆(u) − D(Y∆(u − τ))|p0 , ∀s ≥ 0. (4.17)

Plugging (4.14) into (4.17) and applying the Gronwall inequality complete the proof. 2105

Lemma 4.4. Suppose that Assumptions 2.2 and 2.4 hold with p0 ≥ 4∨2(1 + 2l) and α ∈ (0, 1/2]

is arbitrary. Then for any p ∈
[
2,

p0

1 + 2l

]
, the tamed EM solution Y∆(t) defined by (3.2) with

modified coefficients Type II has the property that

E
∫ T

0
| f (Ȳ∆(s), Ȳ∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|pds ≤ C∆αp, ∀∆ ∈ (0, 1], (4.18)

and

E
∫ T

0
|g(Ȳ∆(s), Ȳ∆(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|pds ≤ C∆αp, ∀∆ ∈ (0, 1]. (4.19)
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Proof. Let α ∈ (0, 1/2] and p ∈
[
2,

p0

1 + 2l

]
. Consider the tamed EM scheme Type II. In view of

Lemma 4.3, we have

E
∫ T

0
| f (Ȳ∆(s), Ȳ∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|pds

≤ ∆αpE
∫ T

0

[
(|Ȳ∆(s)|l + |Ȳ∆(s − τ)|l)p| f (Ȳ∆(s), Ȳ∆(s − τ))|p

(1 + ∆α(|Ȳ∆(s)|l + |Ȳ∆(s − τ)|l))p

]
ds

≤ C∆αpE
∫ T

0

[
(|Ȳ∆(s)|lp + |Ȳ∆(s − τ)|lp)(1 + |Ȳ∆(s)|l+1 + |Ȳ∆(s − τ)|l+1)p

]
ds

≤ C∆αp
∫ T

0
E
(
1 + |Ȳ∆(s)|p(1+2l) + |Ȳ∆(s − τ)|p(1+2l)

)
ds

≤ C∆αp,

which yields (4.18). Applying the same techniques gives (4.19). 2
The following lemma provides the closeness between the two continuous versions of the

tamed EM solutions in the sense of Lp.

Lemma 4.5. Suppose that Assumptions 2.2 and 2.4 hold with p0 ≥ 4 ∨ (2 + l) and α ∈ (0, 1/2]

is arbitrary. Then for any p ∈
[
2,

p0

1 + l/2

]
, the tamed EM solution Y∆(t) defined by (3.2) with

modified coefficients Type II has the property that

sup
0≤t≤T

E|Y∆(t) − Ȳ∆(t)|p ≤ C∆(%∧0.5)p, ∀∆ ∈ (0, 1]. (4.20)

Proof. Let p ∈
[
2,

p0

1 + l/2

]
. Consider the tamed EM scheme Type II. Recall (3.6) that

Y∆(t) − Ȳ∆(t) = D(Y∆(t − τ)) − D(Ȳ∆(t − τ)) + ϕ∆(t), ∀t ∈ [0,T ], (4.21)

where

ϕ∆(t) :=
∫ t

κ(t)
f∆(Ȳ∆(s), Ȳ∆(s − τ))ds +

∫ t

κ(t)
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s).

We first show that there is a positive constant c̄p dependent of p such that

E|ϕ∆(t)|p ≤ c̄p∆0.5p, ∀t ∈ [0,T ]. (4.22)

By the elementary inequality, we have that for any t ∈ [0,T ]

E|ϕ∆(t)|p = E
∣∣∣∣ ∫ t

κ(t)
f∆(Ȳ∆(s), Ȳ∆(s − τ))ds +

∫ t

κ(t)
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s)

∣∣∣∣p
≤ 2p−1∆p−1E

∫ t

κ(t)
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|pds + 2p−1E

∣∣∣∣ ∫ t

κ(t)
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s)

∣∣∣∣p.
(4.23)
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On the basis of the Hölder inequality, Lemma 4.3 and P2, we have

2p−1∆p−1E
∫ t

κ(t)
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|pds ≤ C∆p−1E

∫ t

κ(t)

[
∆−pα(1 + |Ȳ∆(s)|p + |Ȳ(s − τ)|p)

]
ds

≤ C∆p(1−α). (4.24)

By the Burkholder-Davis-Gundy inequality, P2 and (2.8), we have

E
∣∣∣∣ ∫ t

κ(t)
g∆(Ȳ∆(s), Ȳ∆(s − τ))dB(s)

∣∣∣∣p ≤ CE
∣∣∣∣ ∫ t

κ(t)
|g∆(Ȳ∆(s), Ȳ∆(s − τ))|2ds

∣∣∣∣p/2
≤ CE

( ∫ t

κ(t)
(1 + |Ȳ∆(s)|l+2 + |Ȳ∆(s − τ)|l+2)ds

)p/2

≤ CE
(
(1 + |Y∆(κ(t))|l+2 + |Y∆(κ(t) − τ)|l+2)∆

)p/2

≤ C∆p/2
(
1 + sup

0≤s≤t
E|Y∆(s)|p(l/2+1)

)
≤ C∆p/2. (4.25)

Noting that α ∈ (0, 1/2], from (4.23)-(4.25), we get (4.22). On the other hand, by (4.15) and
(2.3), we see from (4.21) that

|Y∆(t) − Ȳ∆(t)|p = |D(Y∆(t − τ)) − D(Ȳ∆(t − τ)) + ϕ∆(t)|p

≤ (1 + ε
1

p−1 )p−1
(
|D(Y∆(t − τ)) − D(Ȳ∆(t − τ))|p

ε
+ |ϕ∆(t)|p

)
≤ (1 + ε

1
p−1 )p−1

(
νp|Y∆(t − τ) − Ȳ∆(t − τ)|p

ε
+ |ϕ∆(t)|p

)
, ∀t ∈ [0,T ].

Letting ε =
(

ν
1−ν

)p−1
gives that

|Y∆(t) − Ȳ∆(t)|p ≤ ν|Y∆(t − τ) − Ȳ∆(t − τ)|p +
1

(1 − ν)p−1 |ϕ∆(t)|p, ∀t ∈ [0,T ]. (4.26)

Taking expectations on the both sides of (4.26) and using (4.22), (2.2), we have

E|Y∆(t) − Ȳ∆(t)|p ≤ νE|Y∆(t − τ) − Ȳ∆(t − τ)|p +
1

(1 − ν)p−1 E|ϕ∆(t)|p

≤ ν sup
−τ≤t≤T

E|Y∆(t) − Ȳ∆(t)|p +
c̄p

(1 − ν)p−1 ∆0.5p

≤ ν sup
0≤t≤T

E|Y∆(t) − Ȳ∆(t)|p + νK p
1 ∆%p +

c̄p

(1 − ν)p−1 ∆0.5p. (4.27)

As this holds for any t ∈ [0,T ], thus

sup
0≤t≤T

E|Y∆(t) − Ȳ∆(t)|p ≤ ν sup
0≤t≤T

E|Y∆(t) − Ȳ∆(t)|p +

(
νK p

1 +
c̄p

(1 − ν)p−1

)
∆(%∧0.5)p. (4.28)

Rearranging this implies the desired assertion. 2
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Proof of Theorem 4.1. Consider the tamed EM solution Y∆(t) with modified coefficients
Type II. Denote

e∆(t) : = x(t) − Y∆(t) − D(x(t − τ)) + D(Y∆(t − τ)), ∀t ∈ [0,T ]. (4.29)

Thus, by (2.3) and the elementary inequality, we have that for any t ∈ [0,T ],

|x(t) − Y∆(t)|2 ≤ (1 + ε)|D(x(t − τ)) − D(Y∆(t − τ))|2 + (1 + ε−1)|e∆(t)|2

≤ (1 + ε)ν2|x(t − τ) − Y∆(t − τ)|2 + (1 + ε−1)|e∆(t)|2. (4.30)

Note that x(t) = Y∆(t) for any t ∈ [−τ, 0]. Then letting ε =
1 − ν
ν

and taking expectations on the
both sides of (4.30), we have

sup
0≤u≤t

E|x(u) − Y∆(u)|2 ≤ ν sup
0≤u≤t

E|x(u − τ) − Y∆(u − τ)|2 +
1

1 − ν
sup

0≤u≤t
E|e∆(u)|2

≤ ν sup
0≤u≤t

E|x(u) − Y∆(u)|2 +
1

1 − ν
sup

0≤u≤t
E|e∆(u)|2, ∀t ∈ [0,T ].

Rearranging this gives

sup
0≤u≤t

E|x(u) − Y∆(u)|2 ≤
1

(1 − ν)2 sup
0≤u≤t

E|e∆(u)|2, ∀t ∈ [0,T ]. (4.31)

By the Itô formula and the elementary inequality, we have that for any t ∈ [0,T ]

E|e∆(t)|2 = E
∫ t

0

[
2eT

∆(s)[ f (x(s), x(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))]

+ |g(x(s), x(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|2
]
ds

≤ E
∫ t

0

[
2eT

∆(s)[ f (x(s), x(s − τ)) − f (Y∆(s),Y∆(s − τ))]

+ (p1 − 1)|g(x(s), x(s − τ)) − g(Y∆(s),Y∆(s − τ))|2
]
ds

+ E
∫ t

0
2eT

∆(s)[ f (Y∆(s),Y∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))]ds

+
p1 − 1
p1 − 2

E
∫ t

0
|g(Y∆(s),Y∆(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|2ds. (4.32)

By Assumption 2.4, we have

E|e∆(t)|2 ≤ I1(t) + I2(t), (4.33)

where

I1(t) : = E
∫ t

0

[
|e∆(s)|2 + 2K3(|x(s) − Y∆(s)|2 + |x(s − τ) − Y∆(s − τ)|2)

− 2U(x(s),Y∆(s)) + 2U(x(s − τ),Y∆(s − τ))
]
ds
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and

I2(t) : = E
∫ t

0

[
| f (Y∆(s),Y∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|2

+
p1 − 1
p1 − 2

|g(Y∆(s),Y∆(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|2
]
ds.

Recalling that for any s ∈ [−τ, 0], x(s) = Y∆(s) and U(x(s),Y∆(s)) = 0, we have∫ t

0
|x(s − τ) − Y∆(s − τ)|2ds ≤

∫ t

0
|x(s) − Y∆(s)|2ds, (4.34)

and ∫ t

0
U(x(s − τ),Y∆(s − τ))ds ≤

∫ t

−τ

U(x(s),Y∆(s))ds =

∫ t

0
U(x(s),Y∆(s))ds, (4.35)

as well as

|e∆(s)|2 ≤ 2|x(s) − Y∆(s)|2 + 2ν2|x(s − τ) − Y∆(s − τ)|2, ∀s ∈ [0, t]. (4.36)

Inserting (4.36) into I1(t) and using (4.34), (4.35), we have

I1(t) ≤ (4K3 + 2 + 2ν2)
∫ t

0
E|x(s) − Y∆(s)|2ds. (4.37)

To estimate I2(t), we observe that

I2(t) ≤ I21(t) + I22(t),

where

I21(t) :=2
∫ T

0
E| f (Y∆(s),Y∆(s − τ)) − f (Ȳ∆(s), Ȳ∆(s − τ))|2ds

+
2(p1 − 1)

p1 − 2

∫ T

0
E|g(Y∆(s),Y∆(s − τ)) − g(Ȳ∆(s), Ȳ∆(s − τ))|2ds,

and

I22(t) :=2
∫ T

0
E| f (Ȳ∆(s), Ȳ∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|2ds

+
2(p1 − 1)

p1 − 2

∫ T

0
E|g(Ȳ∆(s), Ȳ∆(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|2ds.

By the condition p0 ≥ 4 ∨ 2(1 + 2l), we have

2p0

p0 − 2l
≤

2p0

2 + 2l
<

p0

1 + l/2
.

Thus, according to Lemma 4.4, we have

I22(t) ≤ C∆2α, (4.38)
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and applying the Hölder inequality, Lemmas 4.3 and 4.5, as well as Assumption 2.4 we have that
for any s ∈ [0,T ]

E| f (Y∆(s),Y∆(s − τ)) − f (Ȳ∆(s), Ȳ∆(s − τ))|2

≤ CE
[
(1 + |Y∆(s)|2l + |Y∆(s − τ)|2l + |Ȳ∆(s)|2l + |Ȳ∆(s − τ)|2l)

× (|Y∆(s) − Ȳ∆(s)|2 + |Y∆(s − τ) − Ȳ∆(s − τ)|2)
]

≤ C
(
1 + E|Y∆(s)|p0 + E|Y∆(s − τ)|p0 + E|Ȳ∆(s)|p0 + E|Ȳ∆(s − τ)|p0

)2l/p0

×
(
E|Y∆(s) − Ȳ∆(s)|2p0/(p0−2l) + E|Y∆(s − τ) − Ȳ∆(s − τ)|2p0/(p0−2l)

)(p0−2l)/p0

≤ C∆2%∧1. (4.39)

Similarly, we can deduce that

E|g(Y∆(s) − Y∆(s − τ)) − g(Ȳ∆(s), Ȳ∆(s − τ))|2 ≤ C∆2%∧1. (4.40)

Noting that α ∈ (0, 1/2], combining (4.37), (4.38), (4.39) and (4.40) together, we observe from
(4.33) that

E|e∆(t)|2 ≤ C
∫ t

0
E|x(s) − Y∆(s)|2ds + C∆2(α∧%).

As this holds for any t ∈ [0,T ], thus

sup
0≤u≤t

E|e∆(u)|2 ≤ C
∫ t

0
sup

0≤u≤s
E|x(u) − Y∆(u)|2ds + C∆2(α∧%).

Substituting this into (4.31) gets

sup
0≤u≤t

E|x(u) − Y∆(u)|2 ≤ C
∫ t

0
sup

0≤u≤s
E|x(u) − Y∆(u)|2ds + C∆2(α∧%).

Applying the Gronwall inequality give the first assertion in (4.1). Combining this with Lemma110

4.5 yields the second in (4.1). Thus, the proof is complete. 2

4.2. Strong convergence (without order) of tamed EM (Type I) under local Lipschitz condition
In this section, we mainly discuss the convergence issue of tamed EM scheme when global

monotonicity and polynomial growth conditions are replaced by the local Lipschitz condition.
Note that Lemma 4.3 requires the condition p0 ≥ 4, however, if we are only concerned with the115

convergence (without order) of the tamed EM scheme, then this condition can be substituted by
a more relaxed p0 > 2 . The price we pay for this is a narrow scope of the parameter α, which
will lead to a decrease in the convergence rate in view of Theorem 4.1. Borrowing the method of
the proof of moments boundedness in Mao [6, Lemma 3.2], we have the following lemma.

Lemma 4.6. Suppose that Assumptions 2.1 and 2.2 hold with p0 > 2 and α ∈ (0, 1/3] is arbi-
trary. Then the tamed EM solution Y∆(t) given by (3.2) with modified coefficients Type I satisfies

sup
0<∆≤1

sup
0≤t≤T

E|Y∆(t)|p0 ≤ C,

where the positive constant C := C(p0,T,K2, ‖ξ‖, ν).120
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Proof. Let Assumptions 2.1 and 2.2 hold with p0 > 2. Consider the tamed EM scheme Type I.
Let us begin with an assertion that for any p̂ > 0,

E
[∣∣∣Y∆(t) − Ȳ∆(t) − D(Y∆(t − τ)) + D(Ȳ∆(t − τ))

∣∣∣p̂∣∣∣Fκ(t)]
≤ C∆ p̂(1−α)/2(1 + |Ȳ∆(t)|p̂ + |Ȳ∆(t − τ)| p̂), ∀t ≥ 0, (4.41)

where C is a positive constant independent of ∆. Recall that

Y∆(t) − Ȳ∆(t) − D(Y∆(t − τ)) + D(Ȳ∆(t − τ)) = ϕ∆(t), ∀t ≥ 0,

where ϕ∆(t) is defined in (4.21), namely

ϕ∆(t) = f∆(Y∆(κ(t)),Y∆(κ(t) − τ))(t − κ(t)) + g∆(Y∆(κ(t)),Y∆(κ(t) − τ))(B(t) − B(κ(t))). (4.42)

Then for any p̂ ≥ 2, using P2 gives

E
[∣∣∣ϕ∆(t)

∣∣∣p̂∣∣∣Fκ(t)] ≤ CE
[∣∣∣ f∆(Y∆(κ(t)),Y∆(κ(t) − τ))(t − κ(t))

∣∣∣ p̂∣∣∣Fκ(t)]
+ CE

[∣∣∣g∆(Y∆(κ(t)),Y∆(κ(t) − τ))(B(t) − B(κ(t)))
∣∣∣p̂∣∣∣Fκ(t)]

≤ C∆ p̂(1−α)(1 + |Y∆(κ(t))|p̂ + |Y∆(κ(t) − τ)|p̂)

+ C∆ p̂(1−α)/2(1 + |Y∆(κ(t))|p̂ + |Y∆(κ(t) − τ)| p̂)

≤ C∆ p̂(1−α)/2(1 + |Ȳ∆(t)|p̂ + |Ȳ∆(t − τ)| p̂), (4.43)

this also holds for any 0 < p̂ < 2 due to the Hölder inequality. Thus, we get the assertion (4.41).
Now recall (4.5) that

E|Y∆(t) − D(Y∆(t − τ))|p0 ≤ C + C
∫ t

0

[
‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds + p0J(t), t ≥ 0, (4.44)

with J(t) defined in (4.3), i.e.,

J(t) = E
∫ t

0

[
|Y∆(s) − D(Y∆(s − τ))|p0−2

× (Y∆(s) − Ȳ∆(s) − D(Y∆(s − τ)) + D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ))
]
ds.

By the Young inequality, we have

J(t) ≤
p0 − 2

p0
E

∫ t

0
|Y∆(s) − D(Y∆(s − τ))|p0 ds +

2
p0

Π(t), (4.45)

where

Π(t) = E
∫ t

0
|Y∆(s) − Ȳ∆(s) − D(Y∆(s)) + D(Ȳ∆(s − τ))|p0/2| f∆(Ȳ∆(s), Ȳ∆(s − τ))|p0/2ds.

Let α ∈ (0, 1/3], using (4.41) and P2 as well as (4.4) yields

Π(t) ≤ C∆(1−α)p0/4−αp0/2E
∫ t

0

(
1 + |Ȳ∆(s))|p0/2 + |Ȳ∆(s − τ))|p0/2

)2
ds

≤ C∆(1−3α)p0/4
∫ t

0

[
1 + sup

0≤u≤s
E|Ȳ∆(u)|p0 + sup

0≤u≤s
E|Ȳ∆(u − τ)|p0

]
ds

≤ C
∫ t

0

[
1 + ‖ξ‖p0 + sup

0≤u≤s
E|Y∆(u)|p0

]
ds. (4.46)
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We observe from (4.44) and (4.45) as well as (4.46) that

sup
0≤u≤t

E|Y∆(u) − D(Y∆(u − τ))|p0 ≤ C + C
∫ t

0
sup

0≤u≤s
E|Y∆(u)|p0 ds.

Inserting this into (4.17) and using the Gronwall inequality give the desired assertion. 2

Lemma 4.7. Suppose that Assumptions 2.1 and 2.2 hold with p0 > 2 and α ∈ (0, 1/3] is arbi-
trary. Consider the tamed EM solution Y∆(t) defined by (3.2) with modified coefficients Type I. For
any real number R > ‖ξ‖ and ∆ ∈ (0, 1], define the stoping time ρ̄∆,R = inf{t ≥ 0 : |Y∆(t)| ≥ R}.
Then

P
(
ρ̄∆,R ≤ T

)
≤

C
R2 ,

where C is a positive constant independent of ∆ and R.

Proof. Write ρ̄∆,R = ρ̄ for short. By the Itô formula and (3.13), we have

E|Y∆(T ∧ ρ̄) − D(Y∆(T ∧ ρ̄ − τ))|2 − |ξ(0) − D(ξ(−τ))|2

= E
∫ T∧ρ̄

0

[
2(Y∆(s) − D(Y∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ)) + |g∆(Ȳ∆(s), Ȳ∆(s − τ))|2

]
ds

= E
∫ T∧ρ̄

0

[
2(Ȳ∆(s) − D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ)) + |g∆(Ȳ∆(s), Ȳ∆(s − τ))|2

]
ds + 2I?(T )

≤ 2K̂2E
∫ T∧ρ̄

0
(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)ds + 2I?(T )

≤ 2K̂2

∫ T

0
E(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)ds + 2I?(T ) (4.47)

where

I?(T ) = E
∫ T∧ρ̄

0

[
(Y∆(s) − Ȳ∆(s) − D(Y∆(s − τ)) + D(Ȳ∆(s − τ)))T f∆(Ȳ∆(s), Ȳ∆(s − τ))

]
ds.

By (3.11) and (4.41) as well as the condition that α ∈ (0, 1/3], we have

I?(T ) ≤
∫ T

0
E
[
|Y∆(s) − Ȳ∆(s) − D(Y∆(s − τ)) + D(Ȳ∆(s − τ))|| f∆(Ȳ∆(s), Ȳ∆(s − τ))|

]
ds

=

∫ T

0
E

(
| f∆(Ȳ∆(s), Ȳ∆(s − τ))|E

[
|Y∆(s) − Ȳ∆(s) − D(Y∆(s − τ)) + D(Ȳ∆(s − τ))|

∣∣∣Fκ(s)

])
ds

≤ C∆(1−3α)/2
∫ T

0
E(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)ds

≤ C
∫ T

0
E(1 + |Ȳ∆(s)|2 + |Ȳ∆(s − τ)|2)ds. (4.48)

Inserting this into (4.47) and using Lemma 4.6 give

E|Y∆(T ∧ ρ̄) − D(Y∆(T ∧ ρ̄ − τ))|2 ≤ C. (4.49)
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Note that

I{ρ̄≤T }|Y∆(ρ̄) − D(Y∆(ρ̄ − τ))| ≥ I{ρ̄≤T }

(
|Y∆(ρ̄)| − |D(Y∆(ρ̄ − τ))|

)
≥ R − νI{ρ̄≤T }|Y∆(ρ̄ − τ)| ≥ R − νR = (1 − ν)R. (4.50)

Thus, from (4.49) and (4.50), we get

P (ρ̄ ≤ T ) ≤
E

[
I{ρ̄≤T }|Y∆(ρ̄) − D(Y∆(ρ̄ − τ))|2

]
(1 − ν)2R2

≤
E

[
|Y∆(T ∧ ρ̄) − D(Y∆(T ∧ ρ̄ − τ))|2

]
(1 − ν)2R2

≤
C

(1 − ν)2R2 , (4.51)

which gives the desired assertion. 2
Similarly, we can show the following lemma.

Lemma 4.8. Suppose that Assumptions 2.1 and 2.2 hold with p0 > 2. For any real number
R > ‖ξ‖, define the stoping time ρR = inf{t ≥ 0 : |x(t)| ≥ R}. Then

P (ρR ≤ T ) ≤
C
R2 ,

where C is a positive constant independent of R.125

Theorem 4.9. Suppose that Assumptions 2.1 and 2.2 hold with p0 > 2 and α ∈ (0, 1/3] is
arbitrary. Consider the tamed EM scheme Type I. Then for any q ∈ [2, p0),

lim
∆→0

E|x(T ) − Y∆(T )|q = 0 and lim
∆→0

E|x(T ) − Ȳ∆(T )|q = 0. (4.52)

Proof. For any R > ‖ξ‖, denote θ∆,R := ρR ∧ ρ̄∆,R and e?
∆

(t) := x(t) − Y∆(t), recall e∆(t) =

x(t)−D(x(t− τ))−Y∆(t) + D(Y∆(t− τ)). Then for any q ∈ [2, p0) and η > 0, the Young inequality
gives

E|e?∆(T )|q = E
[
|e?∆(T )|qI{θ∆,R>T }

]
+ E

[
|e?∆(T )|qI{θ∆,R≤T }

]
≤ E

[
|e?∆(T )|qI{θ∆,R>T }

]
+

qη
p0

E|e?∆(T )|q +
p0 − q

p0ηq/(p0−q) P
(
θ∆,R ≤ T

)
. (4.53)

In this subsection, CR denotes a positive constant depending on R, its value may be different for
different appearance. By Lemmas 2.3 and 4.6, we have

E|e?∆(T )|q ≤ 2q−1 (E|x(T )|q + E|Y∆(T )|q) ≤ C. (4.54)

While by Lemmas 4.7 and 4.8

P
(
θ∆,R ≤ T

)
≤ P (ρR ≤ T ) + P

(
ρ̄∆,R ≤ T

)
≤

C
R2 . (4.55)
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Plugging (4.54) and (4.55) into (4.53), we get

E|e?∆(T )|q ≤ E
[
|e?∆(T )|qI{θ∆,R>T }

]
+

Cqη
p0

+
C(p0 − q)

p0R2ηq/(p0−q) . (4.56)

Next, we shall prove that for any R > 0, there exist a positive constant CR such that

E|e?∆(T ∧ θ∆,R)|q ≤ CR∆(α∧%)q. (4.57)

In the same way as Lemma 4.5 was proved, applying Assumption 2.1 and P2, we can show that

sup
0≤t≤T

E|Y(t) − Ȳ(t)|q ≤ CR∆q/2. (4.58)

In the similar way as the (4.31) was obtained, we have

sup
0≤u≤T

E|e?∆(u ∧ θ∆,R)|q ≤
1

(1 − ν)q sup
0≤u≤T

E|e∆(u ∧ θ∆,R)|q. (4.59)

By the stochastic inequality and Assumption 2.1, we have that for any t ∈ [0,T ],

E|e∆(t ∧ θR)|q ≤ CE
∫ t∧θR

0
| f (x(s), x(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|qds

+ CE
∫ t∧θR

0
|g(x(s), x(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|qds

≤ CRE
∫ t∧θR

0

[
|x(s) − Y∆(s)|q + |x(s − τ) − Y∆(s − τ)|q

]
ds

+ CE
∫ t∧θR

0
| f (Y∆(s),Y∆(s − τ)) − f (Ȳ∆(s), Ȳ∆(s − τ))|qds

+ CE
∫ t∧θR

0
| f (Ȳ∆(s), Ȳ∆(s − τ)) − f∆(Ȳ∆(s), Ȳ∆(s − τ))|qds

+ CE
∫ t∧θR

0
|g(Y∆(s),Y∆(s − τ)) − g(Ȳ∆(s), Ȳ∆(s − τ))|qds

+ CE
∫ t∧θR

0
|g(Ȳ∆(s), Ȳ∆(s − τ)) − g∆(Ȳ∆(s), Ȳ∆(s − τ))|qds

=:
5∑

j=1

Π j(t). (4.60)

By (2.2), we get

Π1(t) ≤ CR

∫ T

0
sup

0≤u≤s
E|e?∆(u ∧ θ∆,R)|qds + CR∆%q. (4.61)

By Assumption 2.1, (2.2) and (4.58), we have

Π2(t) + Π4(t) ≤ CR

∫ T

0
E|Y∆(s) − Ȳ∆(s)|qds + CR

∫ T

0
|ξ(s) − ξ(κ(s))|qds ≤ CR∆(0.5∧%)q. (4.62)
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According to P1, we obtain

Π3(t) ≤ C
∫ T

0
E| f (Ȳ∆(s ∧ θ∆,R), Ȳ∆(s ∧ θ∆,R − τ)) − f∆(Ȳ∆(s ∧ θ∆,R), Ȳ∆(s ∧ θ∆,R − τ))|qds

≤ CNq
R∆αq = CR∆αq. (4.63)

Similarly, we can show

Π5(t) ≤ CR∆αq. (4.64)

From (4.61)-(4.64), we derive from (4.60) that

sup
0≤u≤T

E|e∆(u ∧ θ∆,R)|q ≤ CR

∫ T

0
sup

0≤u≤s
E|e?∆(u ∧ θ∆,R)|qds + CR∆(α∧%)q. (4.65)

In the light of (4.59) and (4.65), we have

sup
0≤u≤T

E|e?∆(u ∧ θ∆,R)|q ≤ CR

∫ T

0
sup

0≤u≤s
E|e?∆(u ∧ θ∆,R)|qds + CR∆(α∧%)q. (4.66)

Now, using the Gronwall inequality gives the assertion (4.57). Inserting (4.57) into (4.56) gives

E|e?∆(T )|q ≤
Cqη
p0

+
C(p0 − q)

p0R2ηq/(p0−q) + CR∆(α∧%)q. (4.67)

Then for any ε > 0 we can choose η such that

Cqη
p0

<
ε

3
,

and then take R such that
C(p0 − q)

p0R2ηq/(p0−q) <
ε

3
,

finally for such R choose ∆ sufficiently small for

CR∆(α∧%)q <
ε

3
,

so that, in (4.67),
E|e?∆(T )|q < ε,

as required. 2

5. Mean-square stability

Let us concentrate on the mean-square stability of the tamed EM scheme for NSDDE (2.1)
in this section. We assume that f and g can be decomposed as f (x, y) = F1(x, y) + F(x, y) and
g(x, y) = G1(x, y) + G(x, y), where F1, F : Rd×Rd → Rd and G1,G : Rd×Rd → Rd×n. Moreover,

F1(0, 0) = F(0, 0) = G1(0, 0) = G(0, 0) = 0, (5.1)

the coefficients F1, F, G1, G satisfy the following conditions.
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Assumption 5.1. For any R > 0, there exists constants L̂ and L̃R depending on R such that

|F1(x, y) − F1(x̄, ȳ)| ∨ |G1(x, y) −G1(x̄, ȳ)| ≤ L̂(|x − x̄| + |y − ȳ|),

for any x, x̄, y, ȳ ∈ Rd and

|F(x, y) − F(x̄, ȳ)| ∨ |G(x, y) −G(x̄, ȳ)| ≤ L̃R(|x − x̄| + |y − ȳ|),

for any x, x̄, y, ȳ ∈ Rd with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R.

Assumption 5.2. There exist nonnegative constants ϑ, λ1, λ2, λ3 and λ4 satisfying λ1 > λ2 +

λ3 + λ4 such that

2〈x − D(y), F1(x, y)〉 + (1 + ϑ)|G1(x, y)|2 ≤ −λ1|x|2 + λ2|y|2,

2〈x − D(y), F(x, y)〉 + (1 + ϑ−1)|G(x, y)|2 ≤ λ3|x|2 + λ4|y|2, (5.2)

for any x, y ∈ Rd.130

When ϑ = 0, we set ϑ−1|G(x, y)|2 = 0, when ϑ = ∞, we set ϑ|G1(x, y)|2 = 0. Moreover, we see
from Assumption 5.2 that

2〈x − D(y), f (x, y)〉 + |g(x, y)|2 ≤ −(λ1 − λ3)|x|2 + (λ2 + λ4)|y|2, ∀x, y ∈ Rd. (5.3)

Thus, the solution to NSDDEs (2.1) is stable exponentially in mean-square sense, see e.g., Zong
and Wu [10, Theorem 3.1]. We state this result as a lemma.

Lemma 5.3. Suppose that Assumptions 5.1 and 5.2 hold. Then for any initial data ξ ∈ C([−τ, 0];Rd),
the solution x(t; ξ) to the NSDDE (2.1) has the property that

lim sup
t→∞

logE|x(t; ξ)|2

t
≤ −

(
γ? ∧

2
τ

log
1
ν

)
, (5.4)

where γ? is the unique root of the following equation

γ?(1 + ν) − (λ1 − λ3) + eγ
?τ

(
γ?ν(ν + 1) + λ2 + λ4

)
= 0. (5.5)

The following lemma shows that the partially tamed coefficients f∆ and g∆ conserve the stable
condition 5.3.

Lemma 5.4. Suppose that Assumptions 5.1 and 5.2 hold and α ∈ (0, 1/3] is arbitrary. Define
the following partially modified coefficients f∆ and g∆ by

f∆(x, y) = F1(x, y) + F∆(x, y) and g∆(x, y) = G1(x, y) + G∆(x, y), (5.6)

where

F∆(x, y) := π∆(x, y)F(x, y) and G∆(x, y) := π∆(x, y)G(x, y)

with

π∆(x, y) =
1

1 + ∆α(|F(x, y)| + |G(x, y)|2)
, ∀x, y ∈ Rd, ∆ ∈ (0, 1].
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Then

2(x − D(y))T f∆(x, y) + |g∆(x, y)|2 ≤ −(λ1 − λ3)|x|2 + (λ2 + λ4)|y|2, ∀x, y ∈ Rd, (5.7)

and

| f∆(x, y)|2∆ ≤ ε∆(|x|2 + |y|2), ∀x, y ∈ Rd, (5.8)

where ε∆ = 4(L̂ + L̃1)2∆ + 4∆1−2α.135

Proof. Write π∆(x, y) = π∆ for short. Note that 0 < π∆ < 1. By Assumptions 5.1 and 5.2 as well
as (5.6), we have

2(x − D(y))T F∆(x, y) + (1 + ϑ−1)|G∆(x, y)|2 = 2(x − D(y))Tπ∆F(x, y) + (1 + ϑ−1)|π∆G(x, y)|2

≤ 2π∆(x − D(y))T F(x, y) + π∆(1 + ϑ−1)|G(x, y)|2

≤ π∆(λ3|x|2 + λ4|y|2)

≤ λ3|x|2 + λ4|y|2, ∀x, y ∈ Rd. (5.9)

Consequently,

2(x − D(y))T f∆(x, y) + |g∆(x, y)|2 ≤ 2(x − D(y))T F1(x, y) + (1 + ϑ)|G1(x, y)|2

+ 2(x − D(y))2F∆(x, y) + (1 + ϑ−1)|G∆(x, y)|2

≤ −(λ1 − λ3)|x|2 + (λ2 + λ4)|y|2, ∀x, y ∈ Rd. (5.10)

Now let us estimate (5.8). By Assumption 5.1 and condition (5.1), we have

|F1(x, y)| ≤ L̂(|x| + |y|), ∀x, y ∈ Rd. (5.11)

For any x, y ∈ Rd with |x| ∨ |y| ≤ 1, by Assumption 5.1 and condition (5.1), we have

|F∆(x, y)| = |π∆F(x, y)| ≤ |F(x, y)| ≤ L̃1(|x| + |y|).

While for any x, y ∈ Rd with |x| ∨ |y| > 1, by (5.6), we have

|F∆(x, y)| =
|F(x, y)|

1 + ∆α(|F(x, y)| + |G(x, y)|2)
≤ ∆−α ≤ ∆−α(|x| + |y|).

Thus,

|F∆(x, y)| ≤ (L̃1 + ∆−α)(|x| + |y|), ∀x, y ∈ Rd. (5.12)

Consequently, by (5.11) and (5.12), we obtain

| f∆(x, y)|2∆ ≤ (L̂ + L̃1 + ∆−α)2(|x| + |y|)2∆

≤ 4(L̂ + L̃1)2∆ + 4∆1−2α(|x|2 + |y|2), ∀x, y ∈ Rd.

Thus, the proof is complete. 2
The following theorem shows that the tamed EM solution can share the mean-square stability

of the exact solution.
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Theorem 5.5. Suppose that Assumptions 5.1 and 5.2 hold and α ∈ (0, 1/3] is arbitrary. Choose
∆? ∈ (0, 1] such that ε∆? ≤ (λ1 − λ2 − λ3 − λ4)/2, where ε∆ is defined in (5.8). Then for any
∆ ∈ (0,∆?] and any initial data ξ ∈ C([−τ, 0];Rd), the tamed EM approximation yk

∆
defined by

(3.1) with modified coefficients (5.6) has the property that

lim sup
k→∞

log(E|yk
∆
|2)

k∆
≤ −

(
γ?∆ ∧

2
τ

log
1
ν

)
, (5.13)

where γ?
∆

is the unique root of the following equation

1 − e−γ
?
∆

∆

∆
(1 + ν) − (λ1 − λ3 − ε∆) + eγ

?
∆
τ

(
1 − e−γ

?
∆

∆

∆
ν(1 + ν) + (λ2 + λ4 + ε∆)

)
= 0. (5.14)

Moreover,

lim
∆→0

γ?∆ = γ?. (5.15)

Proof. Let Assumptions 5.1 and 5.2 hold. Consider the tamed EM scheme (3.1) with f∆ and g∆

given by (5.6). Then

|yk+1
∆ − D(yk+1−m

∆ )|2 = |yk
∆ − D(yk−m

∆ )|2 + 2(yk
∆ − D(yk−m

∆ ))T f∆(yk
∆, y

k−m
∆ )∆

+ |g∆(yk
∆, y

k−m
∆ )|2∆ + | f∆(yk

∆, y
k−m
∆ )|2∆2 + Mk, k = 0, 1, 2, · · · , (5.16)

where

Mk = 2(yk
∆ − D(yk−m

∆ ))T g∆(yk
∆, y

k−m
∆ )∆Bk + 2( f∆(yk

∆, y
k−m
∆ ))T [g∆(yk

∆, y
k−m
∆ )∆Bk]∆

+ |g∆(yk
∆, y

k−m
∆ )∆Bk |

2 − |g∆(yk
∆, y

k−m
∆ )|2∆.

Obviously, EMk = 0. Denote zk
∆

:= yk
∆
− D(yk−m

∆
). Now choose ∆? ∈ (0, 1] such that ε∆? ≤

(λ1 − λ2 − λ3 − λ4)/2, where ε∆? is defined in Lemma 5.4. Then for any ∆ ∈ (0,∆?], taking
expectations on both sides of (5.16) and applying Lemma 5.4, we have

E|zk+1
∆ |

2 ≤ E|zk
∆|

2 − (λ1 − λ3)E|yk
∆|

2∆ + (λ2 + λ4)E|yk−m
∆ |2∆ + ε∆(E|yk

∆|
2 + E|yk−m

∆ |2)∆

= E|zk
∆|

2 − (λ1 − λ3 − ε∆)E|yk
∆|

2∆ + (λ2 + λ4 + ε∆)E|yk−m
∆ |2∆. (5.17)

For any r > 1, we have

r(k+1)∆E|zk+1
∆ |

2 − rk∆E|zk
∆|

2 ≤ −(λ1 − λ3 − ε∆)r(k+1)∆E|yk
∆|

2∆ + (λ2 + λ4 + ε∆)r(k+1)∆E|yk−m
∆ |2∆

+ (r(k+1)∆ − rk∆)E|zk
∆|

2. (5.18)

By the elementary inequality, we have

|x − D(y)|2 ≤ (1 + ν)|x|2 + (1 + ν−1)ν2|y|2 = (1 + ν)|x|2 + (ν2 + ν)|y|2, ∀x, y ∈ Rd. (5.19)
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Then we see from (5.18) that

rk∆E|zk
∆|

2 ≤ E|z0
∆|

2 − (λ1 − λ3 − ε∆)
k−1∑
j=0

r( j+1)∆E|y j
∆
|2∆ + (λ2 + λ4 + ε∆)

k−1∑
j=0

r( j+1)∆E|y j−m
∆
|2∆

+

k−1∑
j=0

(r( j+1)∆ − r j∆)
(
(1 + ν)E|y j

∆
|2 + (ν2 + ν)E|y j−m

∆
|2
)

= |ξ(0) − D(ξ(−τ))|2 +
[
−(λ1 − λ3 − ε∆)∆ + (1 − r−∆)(1 + ν)

] k−1∑
j=0

r( j+1)∆E|y j
∆
|2

+
[
(λ2 + λ4 + ε∆)∆ + (1 − r−∆)(ν2 + ν)

] k−1∑
j=0

r( j+1)∆E|y j−m
∆
|2, k = 1, 2, · · · . (5.20)

Note that

k−1∑
j=0

r( j+1)∆E|y j−m
∆
|2 =

−1∑
j=−m

r( j+1+m)∆E|y j
∆
|2 +

k−m−1∑
j=0

r( j+1+m)∆E|y j
∆
|2

≤
rτ

1 − r−∆
‖ξ‖2 + rτ

k−1∑
j=0

r( j+1)∆E|y j
∆
|2, k = 1, 2, · · · . (5.21)

Substituting this into (5.20), we obtain

rk∆E|zk
∆|

2 ≤ H∆(r) − H̄∆(r)
k−1∑
j=0

r( j+1)∆E|y j
∆
|2∆, k = 1, 2, · · · , (5.22)

where

H∆(r) : =

[
rτ

1 − r−∆

[
(λ2 + λ4 + ε∆)∆ + (1 − r−∆)(ν2 + ν)

]
+ (1 + ν)2

]
‖ξ‖2, (5.23)

H̄∆(r) : = (λ1 − λ3 − ε∆) −
1 − r−∆

∆
(1 + ν) −

[
(λ2 + λ4 + ε∆) +

1 − r−∆

∆
(ν2 + ν)

]
rτ. (5.24)

For any ∆ ∈ (0,∆?], we have

H̄∆(1) = λ1 − λ2 − λ3 − λ4 − 2ε∆ > 0, (5.25)

and

H̄∆(r̄) < 0, with r̄ =

(
λ1 − λ3 − ε∆
λ2 + λ4 + ε∆

)1/τ

> 1, (5.26)

as well as

dH̄∆(r)
dr

< 0. (5.27)
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From (5.25)-(5.27), there is a positive constant r?
∆
∈ (1, r̄) such that H̄∆(r?

∆
) = 0. If 1 < r < r?

∆

and 1 < r < ν−
2
τ , which means 1 − rτν2 > 0, by the elementary inequality and the connection

between yk
∆

and zk
∆

, we see from (5.22) that

rk∆E|yk
∆|

2 ≤ rk∆(1 + η)E|zk
∆|

2 + rk∆(1 + η−1)ν2E|yk−m
∆ |2

≤ (1 + η)H∆(r?∆) +
(
rτ(1 + η−1)ν2

)
r(k−m)∆E|yk−m

∆ |2, k = 0, 1, 2, · · · , (5.28)

where inequality rk∆E|zk
∆
|2 < (r?

∆
)k∆E|zk

∆
|2 ≤ H∆(r?

∆
) has been used and η is a positive constant to

be determined. Denote ak := rk∆E|yk
∆|

2, then (5.28) becomes

ak ≤ (1 + η)H∆(r?∆) +
(
rτ(1 + η−1)ν2

)
ak−m, k = 0, 1, 2, · · · . (5.29)

Hence,

ai ≤ (1 + η)H∆(r?∆) +
(
rτ(1 + η−1)ν2

)
sup
−m≤i≤k

ai, 0 ≤ i ≤ k,

ai ≤ ‖ξ‖
2 < H∆(r?∆), −m ≤ i ≤ 0.

Thus,

sup
−m≤i≤k

ai ≤ (1 + η)H∆(r?∆) +
(
rτ(1 + η−1)ν2

)
sup
−m≤i≤k

ai, k = 0, 1, 2, · · · . (5.30)

Now, taking η >
rτν2

1 − rτν2 , i.e., rτ(1 + η−1)ν2 < 1, we obtain from (5.30) that

sup
−m≤i≤k

ri∆E|yi
∆|

2 ≤
(1 + η)H∆(r?

∆
)

1 − rτ(1 + η−1)ν2 < ∞, k = 0, 1, 2, · · · . (5.31)

Therefore,

lim sup
k→∞

logE|yk
∆
|2

k∆
≤ − log r. (5.32)

Similarly, if 1 < r?
∆
≤ r and 1 < r < ν−

2
τ , replacing r by r?

∆
in the above procedure between

(5.28) and (5.31), we also have

lim sup
k→∞

logE|yk
∆
|2

k∆
≤ − log r?∆ . (5.33)

Combining (5.32) and (5.33) gives

lim sup
k→∞

logE|yk
∆
|2

k∆
≤ − log(r?∆ ∧ r), with 1 < r < ν−

2
τ , (5.34)

where r?
∆

is the unique root of (5.24). Taking r = eγ → ν−
2
τ and r?∆ = eγ

?
∆ , then (5.34) becomes

(5.13). Finally, notice that ε∆ → 0 and
1 − e−γ

?
∆

∆

∆
→ γ?∆ as ∆→ 0. Comparing (5.5) with (5.14),140

we obtain the desired assertion (5.15). Thus, the proof is finished. 2
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6. Numerical examples

In this section, we carry out some numerical experiments to support the findings derived. In
the following two examples, the diffusion coefficients of NSDDEs are superlinearly growing and
therefore one can not apply the results of Li and Cao [3], Ji and Yuan [5], Zong and Wu [10] and145

Tan [11].

Example 6.1. Consider the following one-dimensional NSDDE:

d
[
x(t) +

1
2

x(t − τ)
]

=

[
6x(t) +

5
2

x(t − τ) − 5
(
x(t) +

1
2

x(t − τ)
)∣∣∣∣x(t) +

1
2

x(t − τ)
∣∣∣∣] dt

+

[
x(t) + sin x(t − τ) +

∣∣∣∣x(t) +
1
2

x(t − τ)
∣∣∣∣3/2] dB(t), t ≥ 0,

x(t) = 1, −τ ≤ t ≤ 0, (6.1)

where B(t) is a scalar Wiener process and τ = 1/8. We first verify the Assumptions 2.1, 2.2 and
2.4. Obviously, Assumptions 2.1 is satisfied. For any x, y ∈ R, set f (x, y) = f1(x, y) + f2(x, y),
g(x, y) = g1(x, y) + g2(x, y), where f1(x, y) = a(x + 0.5y) − a(x + 0.5y)|x + 0.5y|, f2(x, y) = x,
g1(x, y) = |x + 0.5y|3/2, g2(x, y) = x + sin y, and a = 5. Donote D(y) = −0.5y, X := x + 0.5y =

x − D(y), Y := x̄ + 0.5ȳ = x̄ − D(ȳ), F(X) := aX(1 − |X|), G(X) := |X|3/2. Then f1(x, y) = F(X),
g1(x, y) = G(X), f1(x̄, ȳ) = F(Y), g1(x̄, ȳ) = G(Y). If 4 ≤ p0 ≤ a + 1 = 6, then

2 〈x − D(y), f (x, y)〉 + (p0 − 1)|g(x, y)|2

= 2(x + 0.5y)
(
6x +

5
2

y − a(x + 0.5y)|x + 0.5y|
)

+ (p0 − 1)
(
x + sin y + |x + 0.5y|3/2

)2

≤ 2(x + 0.5y)
(
6x +

5
2

y
)

+ 2(p0 − 1)(x + sin y)2 + 2(p0 − 1 − a)|x + 0.5y|3

≤ 2(x + 0.5y)
(
6x +

5
2

y
)

+ 2(p0 − 1)(x + sin y)2

≤ K2(1 + |x|2 + |y|2), (6.2)

which means that Assumption 2.2 is satisfied. Moreover, we can derive that

〈x − D(y) − x̄ + D(ȳ), f1(x, y) − f1(x̄, ȳ)〉= 〈X − Y, a(X − Y) − a(X|X| − Y |Y |)〉

= a|X − Y |2 − a(X − Y)(X|X| − Y |Y |) ≤ a|X − Y |2 − a(|X| + |Y |)(|X| − |Y |)2, (6.3)

where we have used the following estimates

− 〈X − Y, X|X| − Y |Y |〉 ≤ −(|X| + |Y |)(|X| − |Y |)2, ∀X,Y ∈ Rd,

and

|g1(x, y) − g1(x̄, ȳ)|2 = |G(X) −G(Y)|2 = (|X|3/2 − |Y |3/2)2 ≤ 2(|X| + |Y |)(|X| − |Y |)2, (6.4)

see [21, Appendix, p.2104]. If p1 ≤ a/2 + 1 = 3.5, then we conclude from (6.3) and (6.4) that

2 〈x − D(y) − x̄ + D(ȳ), f1(x, y) − f1(x̄, ȳ)〉 + 2(p1 − 1)|g1(x, y) − g1(x̄, ȳ)|2

≤ 2a|X − Y |2 − 2a(|X| + |Y |)(|X| − |Y |)2 + 4(p1 − 1)(|X| + |Y |)(|X| − |Y |)2

= 2a|X − Y |2 + [4(p1 − 1) − 2a](|X| + |Y |)(|X| − |Y |)2

≤ 2a|X − Y |2 = 2a|x − x̄ − D(y) + D(ȳ)|2 ≤ 4a(|x − x̄|2 + |y − ȳ|2). (6.5)
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Table 1: ε∆ and γ?
∆

with different step sizes for solving (5.14) in example (6.2):
λ1 = 5/2, λ2 = 13/8, λ3 = 0, λ4 = 1/4, L̂ = 2, L̃1 = 3, τ = 1, ν = 1/2, α = 1/4, ∆? = 0.0015,
2
τ

log 1
ν

= 1.3863, γ? = 0.1427

∆ 10−3 10−4 10−5 10−6 10−7 10−8

ε∆ 0.2265 0.0500 0.0136 0.0041 0.0013 0.0004
γ?

∆
0.0389 0.1196 0.1364 0.1408 0.1421 0.1425

Thus,

2 〈x − D(y) − x̄ + D(ȳ), f (x, y) − f (x̄, ȳ)〉 + (p1 − 1)|g(x, y) − g(x̄, ȳ)|2

≤ 2 〈x − D(y) − x̄ + D(ȳ), f1(x, y) − f1(x̄, ȳ)〉 + 2(p1 − 1)|g1(x, y) − g1(x̄, ȳ)|2

+2 〈x − D(y) − x̄ + D(ȳ), f2(x, y) − f2(x̄, ȳ)〉 + 2(p1 − 1)|g2(x, y) − g2(x̄, ȳ)|2

≤ 4a(|x − x̄|2 + |y − ȳ|2) + 2 〈x + 0.5y − x̄ − 0.5ȳ, x − x̄〉 + 2(p1 − 1)|x − x̄ + sin y − sin ȳ|2

≤ 4a(|x − x̄|2 + |y − ȳ|2) + 2|x − x̄|2 + |y − ȳ||x − x̄| + 4(p1 − 1)(|x − x̄|2 + |y − ȳ|2)

≤ 4(a + p1)(|x − x̄|2 + |y − ȳ|2), (6.6)

which impies that the global monotonicity condition is satisfied. In addition,

| f1(x, y) − f1(x̄, ȳ)| = a|(X − Y) − (X|X| − Y |Y |)|
≤ a(1 + |X| + |Y |)|X − Y |

≤ a
(
1 + |x| + |y| + |x̄| + |ȳ|

)(
|x − x̄| + |y − ȳ|

)
. (6.7)

Thus, we derive from the definitions of f and g that polynomial growth condition is satisfied.
Taking l = 1, p0 = 6, p1 = 3.5, p = 2 and % = 0.5, we conclude from Theorem 4.1 that the tamed
EM solution Y∆(t) with modified coefficients Type II is convergent to the exact solution x(t) with
order one half in the sense of mean-square. Now define the root of mean-square error

ê∆(T ) :=
(
E|x(T ) − Y∆(T )|2

)1/2
.

Set α = 1/2, we apply the tamed EM scheme (3.1) with modified coefficients Type II to approxi-
mate the exact solution x(t) of NSDDE (6.1). Tamed EM solution Y∆(t) with step size ∆ = 2−14 is
taken as the replacement of the exact solution x(t). Fig.1(a) shows the root of mean-square errors
ê∆(T ) between the exact solution x(T ) and the tamed EM solution Y∆(T ) with different step sizes150

2−6, 2−7, · · · 2−11 at time T = 1 for 500 simulations. A least square fit of errors ê∆ produces the
strong convergence order 0.5431 and is thus close to the theoretical value 0.5.

Example 6.2. Consider the following one-dimensional NSDDE:

d
[
x(t) −

1
2

sin x(t − τ)
]

=

[
−2x(t) − x3(t) +

1
2

sin x(t − τ)
]

dt +

[
1
2

x2(t) +
1
4

x(t − τ)
]

dB(t), t ≥ 0,

x(t) = 2, −τ ≤ t ≤ 0, (6.8)
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Fig. 1. Numerical simulations for (6.1) and (6.8)

where B(t) is a scalar Wiener process and τ = 1. Set D(y) =
1
2

sin y with ν = 1/2, f (x, y) =

F1(x, y) + F(x, y), g(x, y) = G1(x, y) + G(x, y), where F1(x, y) = −2x + 1
2 sin y, G1(x, y) = 1

4 y,
F(x, y) = −x3 and G(x, y) = 1

2 x2. We compute

|F1(x, y) − F1(x̄, ȳ)| ∨ |G1(x, y) −G1(x̄, ȳ)| ≤ 2(|x − x̄| + |y − ȳ|), (6.9)

for any x, x̄, y, ȳ ∈ R and

|F(x, y) − F(x̄, ȳ)| ∨ |G(x, y) −G(x̄, ȳ)| ≤ (3R2 ∨ R)(|x − x̄| + |y − ȳ|), (6.10)

for any x, x̄, y, ȳ ∈ R with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R. Thus, Assumption 5.1 is satisfied. By the
elementary inequality, we have the following estimates

2 〈x − D(y), F1(x, y)〉 + 2|G1(x, y)|2=

〈
2x − sin y,−2x +

1
2

sin y
〉

+ 2
(

1
4

y
)2

= −4x2 + 3x sin y −
1
2

sin2 y +
1
8

y2 ≤ −4x2 +
3
2

(x2 + y2) +
1
8

y2 = −
5
2

x2 +
13
8

y2,

and

2 〈x − D(y), F(x, y)〉 + 2|G(x, y)|2 =
〈
2x − sin y,−x3

〉
+ 2

(
1
2

x2
)2

= −2x4 + x3 sin y +
1
2

x4 = −
3
2

x4 + x3 sin y ≤ −
3
2

x4 +
3
4

x4 +
1
4

sin4 y

≤ −
3
2

x4 +
3
4

x4 +
1
4

y2 ≤
1
4

y2,

where the Young inequality and the inequality that sin2 y ≤ y2 have been used. Thus Assumptions
5.2 is satisfied with λ1 = 5

2 , λ2 = 13
8 , λ3 = 0, λ4 = 1

4 and ϑ = 1. From (6.9) and (6.10), we have
L̂ = 2 and L̃1 = 3. Let α = 1/4, solving ε∆? = 4(L̂ + L̃1)2∆? + 4(∆?)1−2α = (λ1 − λ2 − λ3 − λ4)/2155
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gives ∆? = 0.0015. Computational results such as ε∆ and γ?
∆

as well as γ? are shown in Table 1.
According to Lemma 5.3, the exact solution x(t) of NSDDE (6.8) is mean-square exponentially

stable with exponent −
(
γ? ∧ 2

τ
log 1

ν

)
. On the other hand, based on Theorem 5.5 the tamed EM

solution Y∆(t) with modified coefficients given by (5.6) is also mean-square exponentially stable
with exponent −

(
γ?

∆
∧ 2

τ
log 1

ν

)
for any ∆ ∈ (0,∆?]. Fig.1(b) plots the sample paths of tamed160

EM solutions Y∆(t) applied to NSDDE (6.8) for 200 simulations with step size ∆ = 0.001 and
α = 1/4. We see from Fig.1(b) and Table 1 that the numerical solution is stable and γ?

∆
tends to

γ? as ∆ goes to zero. Our experiments confirm the conclusion from Theorem 5.5.

7. Conclusion

In this work, we mainly examine the strong convergence and stability of tamed EM scheme165

for NSDDEs, where the drift and diffusion coefficients may be allowed to grow superlinearly.
By virtue of tamed technology, uniform boundedness of numerical solutions is obtained and then
strong convergence results are established. The results show that the tamed EM approximation
Y(t) can arrive at an order one half of strong convergence. Meanwhile, it is proved that the tamed
EM solution has the property of reproduction of mean-square stability for the exact solution.170

Numerical experiments are provided to show the agreement with the theoretical results.
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