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Abstract

A novel class of explicit high-order energy-preserving methods are proposed for
general Hamiltonian partial differential equations with non-canonical structure ma-
trix. When the energy is not quadratic, it is firstly done that the original system is
reformulated into an equivalent form with a modified quadratic energy conservation
law by the energy quadratization approach. Then the resulting system that satis-
fies the quadratic energy conservation law is discretized in time by combining ex-
plicit high-order Runge-Kutta methods with orthogonal projection techniques. The
proposed schemes are shown to share the order of explicit Runge-Kutta method
and thus can reach the desired high-order accuracy. Moreover, the methods are
energy-preserving and explicit because the projection step can be solved explicitly.
Numerical results are addressed to demonstrate the remarkable superiority of the
proposed schemes in comparison with other structure-preserving methods.
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1 Introduction

Hamiltonian partial differential equations (PDEs) play an important role in science
and engineering, some particularly important examples include: quantum mechanics,
fluid mechanics and electromagnetics ect. The general form of Hamiltonian PDEs with
independent variables (x,t) € Q x [0,7] C R x R, d = 1,2 or 3, functions z belonging
to a Hilbert space W(Q) with values z(x,t) = [21(x,1), z2(X,1), -+, zm(x,1)]T € R™ is
given by

Bz = D(z)(”;iz), (1.1)

where D(z) is a m-by-m matrix operator which is skew-adjoint for all z. Here, H :=
SH(2)
)

H(z) is the Hamiltonian energy functional, and is the variational derivative of the
Hamiltonian energy functional with respect to the variable z. One of the most famous
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geometric characteristics of is that the exact flow has the invariant (also called
first integral) H=const. A numerical scheme that preserves one or more invariants of
Hamiltonian PDEs is known as an energy-preserving scheme or integral-preserving
scheme. During the past decade, it has been shown that non-energy-preserving schemes
may easily show nonlinear blow-up or lead to instability (see Ref. [2I]). This is because
such schemes may introduce truncation errors that destroy the physical law numerically.
In addition, the energy-preserving property has been showed to be a crucial role in the
proof of stability, convergence, existence and uniqueness of the solution for numerical
methods (e.g., see Ref. [33]).

As a matter of fact, over the years, there has been an increasing interest in energy-
preserving numerical methods for convertive systems. In Ref. [16], Cooper proved that
all RK methods conserve linear invariants and an irreducible RK method can preserve
all quadratic invariants if and only if their coefficients (A € R%*% b € R®) satisfy
bia; ; + bjaj; — bib; = 0 for all 4,5 = 1,---,s. However, no RK method can preserve
arbitrary polynomial invariants of degree 3 or higher of arbitrary vector fields [10]. To
overcome this difficulty, various different numerical methods which can preserve general
invariants are proposed such as the discrete gradient method [37] (including the averaged
vector field (AVF) method [7, 12], 22], [34] B39]), discrete variational derivative methods
[17, 20, 36], the local energy-preserving methods [7, 28, 48] and the Kahan’s method
[19]. However, to our best knowledge, most of the existing energy-preserving schemes
are only second order in time, which can’t provide long time accurate solutions with a
given large time step. Thus, how to design high-order and energy-preserving numerical
schemes for conservative systems has attracted much attention in recent years. The
noticeable ones include the high-order AVF methods [32, 39, 47|, Hamiltonian Boundary
Value Methods (HBVMs) [1l 2 3], continuous stage Runge-Kutta (CSRK) methods
[15] 25 138, 46] as well as projection methods [5], 24], B1]. More recently, Jiang et al [30]
developed a class of arbitrarily high-order energy-preserving schemes for Camassa-Holm
equation by combining the methodology of the invariant energy quadratization (IEQ)
approach introduced in Refs. [23] [49] 52] with a symplectic RK method (see e.g., Refs.
[40L [41]). Other high-order energy-preserving schemes can be found in Refs. [13, 85} 50].
Despite the exciting high-order schemes are energy-preserving and achieve high-order
accuracy in time, all of them are fully implicit which further implies that the practical
implementation of the methods is complicated and expensive unless a fast nonlinear
solver is proposed [4, 38].

Compared to the fully implicit methods, explicit ones are simple and easy to im-
plementation. Thus, in the past few decades, there have been many existing attempts
to develop explicit high-order energy-preserving methods. In Ref. [6], del Buono and
Mastroserio proposed an explicit fourth-order rational RK method which preserve a
quadratic invariant. Later on, Calvo et al. [9] developed a novel class of high-order
explicit methods to preserve quadratic invariants in the numerical integration of the un-
derlying system by using the incremental direction projection technique associated with
explicit RK methods. Further studies on such method have been carried out in Ref.
[11]. However, for general invariants, their methods need to solve a nonlinear equations,
at every time level, which may lead to expensive costs. Recently, Zhang et al. [51] con-
structed a class of explicit high-order numerical methods that can preserve a quadratic
invariant for the perturbed Kepler two-body system and the one dimensional nonlinear
Schrodinger equation, respectively, by using the incremental direction projection and
the EQ strategy. In this paper, we will propose a framework for developing explicit
high-order energy-preserving methods for general Hamiltonian PDEs , based on
the idea of the IEQ approach and the orthogonal projection technique. We first utilize
the idea of the IEQ approach to reformulate the system where the energy is not



quadratic, into a reformulated system, which inherits a quadratic invariant. Then, the
resulting system is solved by the orthogonal projection method associated with explicit
RK methods. We show that the Lagrange multiplier of the projected methods can be
explicitly obtained, and the resulting methods can retain the order of the RK method.
Thus, our methods are energy-preserving, explicit and can achieve desired high-order
accuracy. Moreover, different from Ref. [51], in this paper, we mainly focus on the
Hamiltonian PDEs where the invariant is boundness (i.e., defined in the senses of
a norm). This is because the boundness of numerical solution can be directly obtained
by these discrete invariants. Therefor it is valuable to expect that the proposed meth-
ods for this class of systems will produce richer information. For illustration purposes,
we solve the two dimensional nonlinear Schrodinger equation and the one and two di-
mensional sine-Gordon equation to demonstrate the effectiveness of the selected new
scheme, respectively. To show their accuracy and efficiency, we also compare our pro-
posed scheme with the Gauss collocation method and the one provided by incremental
direction projection.

The rest of this paper is organized as follows. In Section [2], we use the idea of the
IEQ approach to reformulate the system into an equivalent form. In Section
the explicit high-order energy-preserving schemes are introduced, and their energies-
preservation are discussed. In Sections[4] several numerical examples are shown to illus-
trate the power of our proposed explicit high-order schemes. We draw some conclusions
in Section [l

2 Model reformulation

In this section, we apply the IEQ approach to reformulate the Hamiltonian PDEs
when the energy is not quadratic. The reformulated model satisfies a quadratic en-
ergy conservation law, which is equivalent to the original system in the continuous level.
This process provides an elegant platform for developing explicit high-order energy-
preserving schemes.

For the purpose of illustration, we assume the energy is given by the following

M= %(Z,Bz) +(F(2)1), (2.1)

where B is a linear, self-adjoint, positive definite operator, and f(z) is bounded from
below (i.e., f(z) > By for all z) that only depends on z itself, but not its spatial
derivatives. Here, (-,-) represents the inner product defined by (f,g) = > i~ [q, figidx
for any f,g € (L*(Q))™ and denote || - || as the L?(2)-norm, i.e., || f||? = (£, f).

Then, the energy can be rewritten as a quadratic form

1 1
H=5(2B2) + 5 lal* = Co, (2.2)

by introducing an auxiliary variable ¢ = 4 /2( flz)+ %), where Cj is a constant large

enough to make ¢ well-defined for all z and |Q| = [, dx.
Denote g(z) = —_J'&) We then reformulate the system ((1.1)) into an equivalent

2(f(z>+%1
form
&z =D(=) (B + 9(2)a).
g = g(2)0z,



with the consistent initial conditions

C
2(x,0) = 20(x), ¢(x,0) = \/2<f(z(x, 0)) + ﬁ) (2.4)

Denoting ® = [ z }, the system ([2.3) then can be written as the following compact
form

b
0P = Q((P)%, (2.5)

with a quadratic energy (12.2)) and a modified structure matrix

1

g(®) = [ g(z

s |Pe)L o)
It is worth mentioning that G is still skew-adjoint for any ®, so that the quadratic
energy conservation law is satisfied by the reformulated system (2.5 (or (2.3))

dH 0H 0H 0H
o <5(I)76tq)> = (@’g(q))&b> =0. (2.6)

Remark 2.1. On the one hand, the emergy quadratization reformulation is not nec-
essary for conservation systems whose invariant is quadratic. For example, the mass
of the nonlinear Schrédinger equation is a quadratic invariant (see Section . On the
other hand, the energy quadratization approach can also work for a more general f
which depends on z and its spatial derivatives. If f is unbounded from below, we can
use the splitting strategy to divide f into several differences which are bounded from be-
low. Then the energy can be transformed into a quadratic form by introducing multiple
auziliary variables and the corresponding model reformulation can be derived (see [29]).
In addition, apart from the IEQ) approach, the scalar auziliary variable (SAV) approach
proposed in Refs. [43, [44] is also an efficiently strategy to obtain the reformulated mod-
els which admits a quadratic energy conservation law. Here, we should note that the
modified energy and the reformulated system are equivalent to the original
energy and system in the continuous level, but not for the discrete case.

Since the EQ-reformulated form in ([2.5)) has a quadratic energy, we next discuss how
to devise explicit high-order energy-preserving schemes for it.

3 Explicit temporal semi-discrete high-order energy-preserving
methods

In this section, a class of explicit high-order energy-preserving methods is proposed
for the energy-quadratized system by utilizing explicit high-order RK methods and
orthogonal projection techniques. For simplicity of notations, we denote F(®) = G(P) %‘
and then rewrite the EQ reformulation into the following form

9,® = F(®), (3.1)

which conserves the quadratic energy H = %(<I>, L) with £ = diag(B, 1). We here mainly
focus on developing temporal semi-discrete methods, thus, in the following discussions,
the spatial variables of the PDE system are still continuous. Let M is a positive
integer and denote t, = nr, n = 0,1,2,--- , M where 7 = % is the time step. The

approximation of the function ®(x,t) at time ¢t = ¢,, is denoted by ®" := ®"(x).



3.1 Explicit schemes for modular Hamiltonian PDE systems

In this subsection, we consider the system with the special energy H = 1||®||?,
which is called a modular Hamiltonian system. Combining the explicit RK methods and
the orthogonal projection technique, we obtain the following explicit energy-preserving
methods for the modular conservative system:

Scheme 3.1. For given ®", ®"*! is calculated by the following two steps
1. Explicit RK: we compute P+l Using

i—1
lﬁ:f((bn), ki =F (I>"+TZa¢jkj y 1=2,--- 5,
j=1

\ (3.2)
= 9" £ 7Y biki,
i=1
where b;, a;; are RK coefficients.
2. Projection: we update ®" ' via
et = M&S"H, (3.3)

NESE

where ||®")2 = (®", ") and ||D"||2 = (D", D).

Theorem 3.1. If the explicit RK step has order p and ®™ # 0, then there exists 7™ > 0
such that Scheme has at least order p for all T € (0,7*]. Moreover, Scheme

preserves the semi-discrete energy conservation law

HH =H W= %||<1>"||2, Vn > 0. (3.4)
Proof. Since the explicit RK step has order p, we have the local error

O = Bty +7) + Cpra ()77 + O(2), (3:5)
which leads to

1B = [|B(tn + 7)[* + O, (3.6)

Here, Cp1(®") represents a constant which is dependent on the exact solution ® at
t = t,, and independent of 7. Then noticing that the modular conservative system ([3.1)
satisfies the energy conservation 3||®(t, + 7)||? = 3||®°||> = 5/|®"||?, thus we obtain

18" H)? = [[@7]* + O(7F+). (3.7)

According to (3.7) and ®" # 0, there exists 7* > 0 such that ||®"+!|| > 0 for all
7 € (0,7*]. Therefore, we can deduce from (3.7)

[l B o). (3.8)
[ogandl
Using (3.5) and (3.8]) leads to
o ~
Fntl — [ I "t = &(t, + 7) + O(PH1). (3.9)
[ogandl

The discrete energy conservation (3.4) is clearly held by following the projection step
(3.3). This completes the proof. O



Remark 3.1. If the initial condition is taken as ®° = 0, then the modular conservation
system here satisfies the zero exact solution. So we’re only thinking about the case where

PO s non-zero. It’s not hard to see that Scheme can work when Pntl # 0. Eq. (3.7)
implies @1 £ 0 for sufficiently small 7. Therefore, if ®*1 is calculated to be zero in
numerical calculations, the time step T needs to be reduced to recalculate "t that is
not zero.

Remark 3.2. Quadratic invariants of the form H = %HQJHQ appear in many physi-
cal problems, such as the nonlinear Schrodinger equation and the Korteweg-de Vries
equation. The proposed methods here will be considered for the nonlinear Schrodinger
equation in this paper.

Remark 3.3. As a matter of fact, the projection step (3.3)) is explicit and can be derived
by the standard projection method

1 n+1 Fn+12 : . 1 n+1)12 1 n|2

§||<I> —®""|* — min subject to §||<I> II“ = §||<I> [|“. (3.10)

However, for general quadratic energy H = %(@,E@) where L # I, the standard projec-
tion method always derives an implicit format, which needs to be solved by a nonlinear
iteration.

3.2 Explicit schemes for general Hamiltonian PDE systems

In this subsection, we are committed to developing explicit energy-preserving meth-
ods for the EQ system with general quadratic energy H = %(@,ﬁfb). Changing
the standard projection method in Scheme to the modified projection technique (see
P. 111 of Ref. [26]), we derive the following explicit schemes for general Hamiltonian
PDEs:

Scheme 3.2. For given ®", ®"*! is calculated by the following two steps
1. Explicit RK: we calculate Pntl through an explicit RK method .
2. Modified projection: we update "1 via
" = (I 4+ X\, L))"+, (3.11)
where A\, is a constant given by

Bn + B’r% - O‘n(sn’

n

(3.12)

and o, = (B L37HY) B, = (L, L207HY), 6, = (D", LOHL)— (D7, LO™).

Theorem 3.2. If the explicit RK step has order p and L®™ # 0, then there exists 7% > 0
such that Scheme has at least order p for all T € (0,7*]. Scheme preserves the
discrete energy conservation law

1
HL =N, H = 5(@”, LO™), Vn >0. (3.13)
Proof. Since the explicit RK step has order p, we have the local error

O = @(ty + 1) + O(H) = 2" + O(7), (3.14)



which leads to

an = (", L3D™) + O(7), (3.15)
B = (", L2D™) + O(1), (3.16)
6 = (Pt +7), LO(t, + 7)) — (", LO") + O(rPT). (3.17)

Noticing the energy conservation 3 (®(t, +7), LO(t, + 7)) = (20, LB0) = 3 (", LI"),
we obtain

6 = O(TPTh). (3.18)
Using (3.15)), (3.16) and (3.18)), we can derive
B2 — apby = (B, L2®™)% + O(1). (3.19)

Since L is self-adjoint and we suppose L®" # 0, we have (®", L20") = (LO", L") > 0,
for all n. Then, according to and , there exists 7% > 0 such that 5, >
0, 82 — a,d, > 0 for all 7 € (0,7*], which makes A, well-defined. In addition, we can
derive from Egs. (3.16]), (3.18)) and (3.19)

Ap = O(7PTh). (3.20)

Therefore, Scheme has at least order p.
By a direct calculation, the discrete energy conservation (3.13)) is readily proved by
following the projection step (3.11). This completes the proof. O

Remark 3.4. For general conservation system, the energy H = %(@,Efb) s generally
nonzero, which implies L® # 0. If By, is calculated to be zero or B2 — and, <0, the time
step T needs to be reduced to recalculate @ so that B, > 0,32 — apdy > 0.

Remark 3.5. In this paper, we focus on the case that the operator L is self-adjoint and
positive definite so that the energy H is bounded. In this case, the developed energy-
preserving methods may produce some unexpected nonlinear stability. On the one hand,
we give numerical examples in a classical explicit RK method of order 4, where their
coefficients are given by the following Butcher table

C1 0
co | ag 1/2 | 1/2
Cc3 | az1 as2 = 1/2 0 1/2
Cq4 a41 a42 a43 1 0 0 1
| bi by by by | 1/6 2/6 2/6 1/6

On the other hand, we have replaced the classical RK method with the well known DO-
PRI5(4) of Dormand-Prince [18] that allows a variable step size for the proposed schemes
in following practice computations.

Remark 3.6. To prevent the numerical accumulation of roundoff errors in energy, we
replace ®" in (3.3) and (3.12)) with ®°, respectively, in following numerical simulations.

4 Numerical results

In the previous sections, we present some explicit high-order energy-preserving schemes
for general Hamiltonian PDEs. In this section, we apply the proposed Schemes (3.1
and to solve two benchmark Hamiltonian PDE systems, the nonlinear Schrodinger
(NLS) equation and the sine-Gordon (SG) equation, respectively, where the periodic
boundary condition is considered. For the spatial discretization, we shall pay special
attention the following three aspects:



e preserve the skew-adjoint property of the operator G(®) and the self-adjoint, pos-
itive definite property of the operator L;

e preserve the discrete integration-by-parts formulae [17];
e is high-order accuracy which is comparable to that of the time-discrete methods.

Based on these statements and the boundary condition, the standard Fourier pseudo-
spectral method is employed which is omitted here due to space limitation. Interested
readers are referred to Refs. [14] [42] for details.

4.1 Nonlinear Schrodinger equation

We consider the nonlinear Schrodinger equation given as follows
i0u + Au + Blul?u = 0, (4.1)

where i = v/—1 is the complex unit, u is the complex-valued wave function, A is the
usual Laplace operator, and ( is a given real constant.
If we suppose u = p + ig, the nonlinear Schrodinger equation (4.1)) is rewritten into

{ O = —Aq — B(P* + ¢*)q,

42
g = Ap + B(p* + ¢*)p. (42)

Denoting ® = [ 2 ] , then the system (4.2) is equivalently transformed into the system

(2.5) with a quadratic invariant

1 1
H = le1* = S(pl* + llall*), (4.3)

and a structure matrix

_ A= B0+ %)
9= [ A+ B +q%) '

Applying Scheme to system (4.2), we obtain

Scheme 4.1. For given (p",q"), (p"*1, ¢"*1) is calculated by the following two steps

1. Ezplicit RK: we compute (p"+1, g"t1)

to the system (4.2)).

2. Projection: we update (p"*t1, ¢" 1) wia

e \/” P+ I i e _ \/n AR

by using the explicit RKj method (see remark

ﬁn+1||2_|_ ||E]’n+1||2 f)’n+l||2+ ||an+1||2

For simplicity of notation, we shall introduce the discrete quadratic invariant in
one space dimension, i.e. d = 1 in (4.2) and Section Generalizations to d = 2
are straightforward. Choose the spatial domain € = [a,b] and the mesh size h =
(b —a)/N, where N is an even positive integer, and denote the grid points by x; = jh
for j =0,1,2,--- ,N; let P/" and Q} be the numerical approximations of p(xj,tn) and
q(zj,t,) forn =0,1,2,--- ,M and j = 0,1,2,--- , N, and P" := [pg,pP, - ,p}_,]7,



Q" == [q, ¢+ ,q% ;] be the numerical solution vectors. In addition, for any grid
function vectors U™ and V", we define the discrete inner product and L?-norm as follows

N—-1 N—-1
(U™ V™ =h> UMV (U =h ) (U
j=0 j=0

According to Theorem [3.1] the Scheme 3.1 preserves the following discrete mass con-
servation law

1
Hn:§(|‘Pn||i21+”QnH}2l)’ n=1,---, M. (4.5)

In order to quantify the residuals of the discrete mass conservation law, we use the
relative mass residual between the discrete mass (i.e., H™) at ¢t = ¢, and the initial
discrete ones, respectively, as

H™ — HO

RM”Z‘ HO

L n=0,1,2,---, M. (4.6)

Remark 4.1. Since the original energy is quadratic, the Scheme 4.1 can preserve the
discrete energy in the original variables.

First of all, we present the time mesh refinement tests to show the order of accuracy of
the proposed scheme. Also, the following high-order schemes for preserving the discrete
quadratic energy are chosen for comparisons:

o 4th-order GM: the 2-stage Gauss method described in Refs. [40}, 41];

e 4th-order PM: the projection method for quadratic invariants proposed in Refs.
[9, [51].

e DOPRI5(4): we replace the explicit RK4 method (see Remark with the well
known DOPRI5(4) of Dormand-Prince in Ref. [18] at each time level. Note that,
in our computations, we implement DOPRI5(4) by the matlab library function
ode45.m.

As a summary, the properties of these schemes have been given in Tab.

Table. 1: Comparison of properties of different numerical schemes

Sch
cheme 4th-order GM 4th-order PM The proposed method
Property
Conserving quadratic energy Yes Yes Yes
Temporal accuracy 4th 4th 4th
Explicit No Yes Yes

The first test example is the nonlinear Schrédinger equation (4.1)) in one dimension,
which has a single soliton solution given by [27]

200 .
u(x,t) = 1/gel(%cz_(ictamsecb(\/a(:c —ct)), z€R, t>0, (4.7)

where « and ¢ are two real parameters.



The computations are done on the space interval = [—40, 40] and choose param-
eters a = 1, 8 =2 and ¢ = 4. To test the temporal discretization errors of the three
numerical schemes, we fix the Fourier node 800 so that spatial errors play no role here.
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Fig. 1. Time step refinement tests using the different numerical schemes for the one
dimensional Schrodinger equation (4.1)).
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Fig. 2: The numerical error versus the CPU time using the different numerical schemes
for the one dimensional Schrodinger equation (4.1)).
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1 —— 4th-order GM

>

< ‘ ———DOPRI5(4)
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Fig. 3: The relative energy residuals using the different numerical schemes with time
step 7 = 0.01 and Fourier node 256 for the one dimensional Schrodinger equation (4.1)).

The L? errors and L™ errors in numerical solution of u in short time (i.e., t = 1)
are calculated using three different numerical schemes with various time steps 7 =
0.0025,0.00125,0.000625 and 0.0003125, and the results are displayed in Fig. [1] In Fig.
we show the global L? errors and L* errors of u versus the CPU time using the
different schemes at ¢ = 1 with the Fourier node 800. From Figs. [I] and [2| we can draw
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the following observations: (i) all methods have fourth order accuracy in time; (ii) the
error provided by the 4th-order GM is smallest, and the one provided by the proposed
scheme has the same order of magnitude as the one of the 4th-order PM; (iii) for a given
global error, the cost of 4th-order GM is most expensive while the one of DOPRI5(4)
is cheapest. Although the proposed scheme is much cheaper than the 4th-order PM ,
the efficiency improvement of the proposed scheme is not even 1 order of magnitude
better than the 4th-order PM. The following numerical experiments also appear similar
results. This is due to that the 4th-order PM is also fully explicit scheme.

To further investigate the energy-preservation of the proposed scheme, we provide
the energy errors using the different numerical schemes for the 1D Schrodinger equation
over the time interval ¢ € [0,1000] in Fig. [3] which shows that all methods can preserve
the discrete quadratic invariant up to round-off error and the 4th-order GM admits
largest energy error. According to Theorem and Ref. [9], the residual in the energy
for the explicit schemes under consideration should be zero, but it remains almost con-
stant along the time in Fig. [3] The following numerical experiments also appear similar
situations. We thank that it is due to the round off error introduced by the numerical
simulations. In addition, the residual in energy of the 4th-order GM looks like to show
linear decrease in long time computation, we suspect that it is due to solve the discrete
nonlinear system by using the iterative method.

We then test the superposition of two solitons, a slower one ahead of a faster one,
such that initially they are well separated, for the 1D nonlinear Schrodinger equation
(4.1)). The initial profile is given by [27]

u(z,0) = \/%eiécwsech(\/ax) + eiéc?(x_‘s)sech(\/&(z —9)) (4.8)

with a = %, B=1,c1=1, cg = %0 and § = 25. We take the space interval 2 = [—20, 80]
and the the superposition of two solitons are showed in Fig. 4. As illustrated in Fig. (a),
the collision between two solitons seems quite elastic, and the solitary waves propagate
in their original directions with the same velocities. which can be verified in Fig. (b)
again. The simulated solutions are precisely consistent to existing results in Ref. [27].
In Fig. |5, we present the residuals in the quadratic energy over the time interval
t € [0,44] calculated with different numerical schemes and the results, which shows that
all of the schemes can preserve the quadratic energy exactly. It is remarked that, when
fixing the spatial step and enlarged the time step (i.e., 7 = 0.004), we find that the
numerical results provided by the explicit schemes are wrong, this is because for some
explicit methods some bounds on the step size could be necessary to control high order
harmonics.
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Fig. 4: Time evolution with the soliton collision using the proposed scheme with time
step 7 = 0.001 and Fourier node 1024: (a) the profile of |u| over the time interval
t € [0,44] and (b) snapshots of |u| at times ¢ = 0, 23 and 44.
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Fig. 5: The relative energy residuals using the different numerical schemes for the
collision of two solitons with time step 7 = 0.001 and Fourier node 1024 for the one
dimensional Schrodinger equation (4.1)).

Finally, we test the two dimensional nonlinear Schrédinger equation (4.1) which
possesses the following analytical solution

w5, t) = Aexp(i(krz + kay — wt)), w = k? + k3 — B AP (4.9)

Here we use the space interval Q = [0,27]? and choose parameters A =1, k1 = ky = 1
and g = —2.

To test the temporal discretization errors of the different numerical schemes, we
fix the Fourier node 16 x 16 such that the spatial discretization errors are negligible.
The L? errors and L® errors in numerical solution of u in long time (i.e., t = 50)
are calculated using three different numerical schemes with various time steps 7 =
0.005,0.0025,0.00125 and 0.000625, and the results are displayed in Fig. [6] In Fig. [7]
we show the global L? errors and L™ errors of u versus the CPU time using the different
numerical schemes at ¢ = 50. It is clear to see that the observations obtained from Figs.
[6] and [7] behave similarly as those given in Figs. [I] and

To further investigate the energy-preservation of the proposed scheme, we provide the
energy errors using the different numerical schemes for the two dimensional Schrédinger
equation over the time interval ¢ € [0, 1000] in Fig. |8, which shows that all methods can
exactly preserve the quadratic invariant , which behaves similarly as that given in

Fig.
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Fig. 6: Time step refinement tests using the different numerical schemes for the two
dimensional Schrédinger equation (4.1)).

—p— The proposed method —#— The proposed method
propoesee ¢ —6— 4th-order PM
—6— 4th-order PM —— 4th-order GM

—s— dth-order GM 107 —— DOPRI5(4)

—sk— DOPRI5(4)

L2 error
L error

CPU time CPU time

Fig. 7: The numerical error versus the CPU time using the different numerical schemes
for the two dimensional Schrédinger equation (4.1)).

—o— The proposed scheme
- — 4th-order PM

— 4th-order GM

——— DOPRI5(4)

Relative energy residuals

0 500 1000
time

Fig. 8: The relative energy residuals using the different numerical schemes with time
step 7 = 0.01 and Fourier node 16 x 16 for the two dimensional Schrodinger equation

().

4.2 Sine-Gordon equation

In this subsection, we focus on the sine-Gordon equation given as follows
Owu — Au + sin(u) = 0, (4.10)

where the Hamiltonian energy functional is given by

H= %(HUH2+(u,—Au)+2(1—cos(u),1)). (4.11)

13



We let ¢ = \/ 2((1 —cos(u)) + |C—0‘>, and rewrite the Hamiltonian energy functional as

1
H =5 (lvl* + (u, —Au) + ql*) = Co. (4.12)

According to the ITEQ reformulation, we obtain the following equivalent system

Ou = v,
Do — A sin(u)q ’
\/2((1 — cos(u)) + %I) (4.13)
Brq — sin(u)du ’
\/2((1 —cos(u)) + %)

with the consistent initial condition
u(z,t =0) = up(z), v(z,t =0) = dwu(z,0),

C (4.14)
gzt =0) = ¢2((1 — cos(uo(z))) + ﬁ)

u
Supposing ® = | v |, then the system (4.13) is equivalently reformulated into the
q

system (3.1)) with a quadratic energy

—-A

H = %(CID,DI)), L= 1 , (4.15)
1
and a modified structure matrix
[0 1 0 i
-1 0 —sin(u)
g(@) _ \/2<(1—c0s(u))+|6;§)|>
sin(u) 0
\/2 ((lfcos(u))Jr%)

Applying Scheme to system (4.13]), we have

n+1

Scheme 4.2. For given (u™,v", q"), (u", 0", ") is calculated by the following two

steps:

1. Explicit RK: we compute (u™1, 5"+, g" 1) by using the explicit RKJ method (see

remark to the system (4.13)).

2. Projection: we update (u™1, o™t ¢t wig
utt = gl )\n< - Aa”“), (4.16)
oL = gt N o (4.17)

(4.18)

)

qn+1 _ qn+1 + )\nqn+1

where Ay, is given by (3.12)).
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Let Uj, V" and Q7 be the numerical approximations of uw(zj,tn), v(zj,t,) and
q(xj,ty) for n = 0,1,2--- M and j = 0,1,2,--- , N, respectively, and denote U" :=
[U(T)lﬂ Ulnv T 7U]1\17—1]T7 V= [Vbn? V1n7 T 7VNn—1]T and Q" := [ 87 ?7 T 7Q?\/—l]T be
the numerical solution vectors. According to Theorem the Scheme 4.2 preserves
the following discrete energy conservation law

n 1 n n n n
H" = (V7 + (U7, =A™ + 1Q"3) — G, (4.19)

where Ay, represents the Fourier pseudo-spectral matrix.

Remark 4.2. We should note that the energy (4.11) is non-quadratic, thus, according
to Remark [2.1], the Scheme 4.1 can not preserve the following discrete energy in the
original variables

(V™7 + (U™, =ApU™ ) + 2(1 = cos(U™), 1)), (4.20)

| =

Hp =

where 1 =[1,1,---,1]7 € RV,

We repeat the time step refinement test first and choose the parameter Cy = 1. The
one dimensional sine-Gordon equation (4.10) admits the analytical solution

u(x,t) = 4arctan(tsech(z)).

We set the space interval Q = [—50,50] with a periodic boundary. The L? errors and
L*> errors of u at time ¢ = 10 using the different numerical schemes, Fourier node
1024 and various time steps 7 = 0.01,0.005,0.0025, and 0.00125 are showed in Fig. [9]
Moreover, we plot the global L? errors and L* errors of u versus the the CPU time
at time ¢t = 10 using the different schemes with Fourier node 1024 in Fig. [I0] Here
we observe similar results, i.e., all methods have fourth order accuracy in time errors ,
the error provided by the 4th-order GM is smallest, and our scheme has the same order
of magnitude as the one of the 4th-order PM. Analogously, for a given global error,
DOPRI5(4) is computationally cheapest and the 4th-order GM is most expensive.

In Fig. we display the errors in the discrete invariants over the time interval
t € [0,1000], which shows that the DOPRI5(4), the 4th-order GM, 4th-order PM and the
proposed scheme can preserve the discrete modified energy , and our scheme can
only preserve the discrete Hamiltonian energy approximately, which is consistent
with Remark

—e— The poposed method
—6— dilvorder PM
—e— dilvonder GM

—#— The poposed method 3
—6— dthorder PM
-6 —e— dthorder GM 6l

|
4

-9

Iogl(J(L2 error)
log10(L" error)

22 24 2.6 2.8 3 2 22 2.4 2.6 2.8 3
log10(1/1) log10(1/t)

Fig. 9: Time step refinement tests using the different numerical schemes for the one

dimensional sine-Gordon equation (4.10]).
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1072 —e— 4th-order GM

—h— DOPRI5(4)

10" 10° 10" 10° 10" 10° 10" 10°

CPU time CPU time

Fig. 10: The numerical error versus the CPU time using the different numerical schemes
for one dimensional sine-Gordon equation (4.10)).

107

10"

0

é w0t

1<) The proposed scheme
§ 1070 — — 4th-order PM

S —— 4th-order GM

% 1072] Hamiltonian energy
° — — —DOPRI5(4)

1071

107 W
0

500 1000
time

Fig. 11: The relative energy residuals including the discrete quadratic energy
using the different numerical schemes and the discrete Hamiltonian energy pro-
vided by the proposed scheme with the time step 7 = 0.02 and Fourier node 256 for one
dimensional sine-Gordon equation .

Next, we apply the proposed scheme to simulate the collision of four ring solitons for
the two dimensional sine-Gordon equation with initial conditions given as follows [45]

u(z,y,0) = 4tan™* lexp (4 V(z+3)% + (y+7)2>] |

0.436
4.13
ut(xay’o) = 4 32 2 ) ($7y) EQ'
COSh( SV >

We choose the space interval Q = [-30,10]? and a periodic boundary condition. The
collision precisely among four expanding circular ring solitons are summarized in Fig.
showing a strong agreement with the existing results presented in Refs. [8,45]. Here,
one should notice that the numerical solutions includes the extension across x = —10 and
y = —10 by symmetry properties of the problem. The errors including the quadratic
energy (4.19) calculated with different schemes and the discrete Hamiltonian energy
(4.20]) provided by the proposed scheme over the time interval ¢ € [0,100] are shown in
Fig. [I3], which behaves similarly as that given in Fig. [T1]
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Fig. 12: The profile of sin(u/2) at t = 0,2.5,5,7.5 and 10 using time step 7 = 0.1
and Fourier node 200 x 200 with the proposed scheme for two dimensional sine-Gordon

equation (4.10)).
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Fig. 13: The relative energy residuals including the discrete quadratic energy
using the four numerical schemes and the discrete Hamiltonian energy provided
by the proposed scheme with time step 7 = 0.1 and Fourier node 200 x 200 for two
dimensional sine-Gordon equation .

5 Concluding remarks

In this paper, we have presented a new systematic and unified way to develop explicit
high-order energy-preserving methods for general Hamiltonian PDEs by combining the
orthogonal projection method with the explicit RK methods. Numerical examples are
addressed to illustrate the accuracy, CPU time and invariants-preservation of the pro-
posed methods. Compared with the two existing energy-preserving schemes of same
order, the proposed high-order schemes show remarkable efficiency.

We conclude this paper with some remarks. First, compared with the incremental
direction method proposed in Ref. [9], the proposed method required to evaluate the gra-
dient of the energy, and can not preserve linear invariants and affine invariants, however,
for the quadratic invariant, the analytical expression of the gradient for the invariant is
easily obtained and numerical results show the computation cost of our method is much
cheaper. In addition, the expression of the Lagrange multiplier A\, (see ) is more
concise. Second, the proposed method might not work well for highly unstable systems,
thus, implicit projections (e.g., see Ref. [5]) become necessary. However, such trade-
offs among methods should be further investigated. Finally, for several invariants, the
Lagrange multiplier of the proposed projection can not be explicitly obtained. Thus,
a possible future work is to develop explicit high-order multiple invariants-preserving
methods.
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