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Abstract

In this study, a numerical quadrature for the generalized inverse Gaussian distribution is derived

from the Gauss–Hermite quadrature by exploiting its relationship with the normal distribution.

The proposed quadrature is not Gaussian, but it exactly integrates the polynomials of both

positive and negative orders. Using the quadrature, the generalized hyperbolic distribution is

efficiently approximated as a finite normal variance–mean mixture. Therefore, the expectations

under the distribution, such as cumulative distribution function and European option price, are

accurately computed as weighted sums of those under normal distributions. The generalized

hyperbolic random variates are also sampled in a straightforward manner. The accuracy of the

methods is illustrated with numerical examples.

Keywords: generalized hyperbolic distribution, inverse Gaussian distribution, normal

variance–mean mixture, Gaussian quadrature

1. Introduction

The inverse Gaussian (IG) distribution, ig(γ, δ), has the density function

fig(x | γ, δ) =
δ√

2πx3
exp

(
−(γx− δ)2

2x

)
for γ ≥ 0, δ > 0.

The first passage time of a drifted Brownian motion, γt + Bt, to a level, δ, is distributed by

ig(γ, δ). The term inverse refers to the time of Brownian motion at a fixed location, whereas

the Gaussian distribution refers to the location at a fixed time. See Folks and Chhikara [1] for a

review on the properties of the IG distribution. It is further extended to the generalized inverse
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Gaussian (GIG) distribution, gig(γ, δ, p), with density

fgig(x | γ, δ, p) =
(γ/δ)p xp−1

2Kp(γδ)
exp

(
−γ

2x2 + δ2

2x

)
,

where Kp(·) is the modified Bessel function of the second kind with index p. With K−1/2(z) =√
π/2z e−z, it can be shown that ig(γ, δ) ∼ gig(γ, δ,−1/2). The GIG random variate, X ∼

gig(γ, δ, p), has the scaling property: X ∼ (δ/γ)gig(σ, σ, p) with σ =
√
γδ. Therefore, any

statement for gig(σ, σ, p) can be easily generalized to gig(γ, δ, p). The reciprocal also follows a

GIG distribution: 1/X ∼ gig(δ, γ,−p). See Koudou and Ley [2] for the properties of the GIG

distribution. The mean, variance, skewness, and ex-kurtosis of ig(σ, σ) are 1, 1/σ2, 3/σ, and

15/σ2, respectively. Therefore, the IG (and GIG) distribution is more skewed and heavy-tailed

as σ becomes smaller.

When X ∼ gig(γ, δ, p) is used as the mixing distribution of the normal variance–mean

mixture,

Y = µ+ βX +
√
XZ for standard normal variate Z, (1)

the generalized hyperbolic (GH) variate, Y ∼ gh(µ, β, γ, δ, p), is obtained with density

fgh(y |µ, β, γ, δ, p) =

√
α (γ/αδ)p√
2πKp(δγ)

eβ(y−µ)Kp−1/2(α
√
δ2 + (y − µ)2)

(δ2 + (y − µ)2)(1−2p)/4
,

where α =
√
β2 + γ2.1 The scaling property of the GIG distribution implies that the parameters

of Y ∼ gh(µ, β, γ, δ, p) can be normalized to
√
γ/δ (Y − µ) ∼ gh(0, β̃, σ, σ, p) where σ =

√
γδ

and β̃ = β
√
δ/γ. Therefore, any statement for gh(0, β̃, σ, σ, p) can be easily generalized to

gh(µ, β, γ, δ, p).

As the name suggests, the GH distribution generalizes the hyperbolic distribution, the p = 1

case, originally studied for the sand particle size distributions [3]. Later, the GH distribution

was applied to finance [4, 5]. Particularly, the normal inverse Gaussian (NIG) distribution, the

p = −1/2 case, draws attention as the most useful case of the distribution owing to its better

probabilistic properties [6, 7] and superior fit to empirical financial data [8, 9]. The model-based

clustering with the GH mixtures has recently been proposed as a better alternative to Gaussian

mixtures to handle skewed and heavy-tailed data [10].

1In the literature, the GH distribution is equivalently parameterized by µ, α, β, δ, and p with the restriction
|β| < α.
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Despite the wide applications, the evaluation involving the GH distribution is not trivial.

For example, the cumulative distribution function (CDF) has no closed-form expression, and

thus must resort to the numerical integration of the density function [11], which is compu-

tationally costly. Regarding financial applications, efficient numerical procedures for pricing

European option are still at large. While a closed-form solution is known for a subset of the

NIG distribution [12], option pricing currently depends on the Quasi-Monte Carlo method [13].

This study proposes a novel and efficient method to approximate the GH distribution as

a finite normal variance–mean mixture. Therefore, an expectation under the GH distribution

is reduced to that under normal distribution for which analytic or numerical procedures are

broadly available. The CDF and vanilla option price under the GH distribution are computed as

a weighted sum of the normal CDFs and the Black-Scholes prices, respectively. The components

and weights of the finite mixture are obtained by constructing a new numerical quadrature for

the GIG distribution—the mixing distribution—by exploiting its relationship with the normal

distribution. While the Gauss–Hermite quadrature for the normal distribution exactly evaluates

positive moments only, the proposed quadrature exactly evaluates both positive and negative

moments. Additionally, the new quadrature can be used as an alternative method for sampling

random variates from the GH distribution (and the GIG distribution to some extent). Except

for the NIG distribution [14], the sampling of the GH distribution depends on the acceptance–

rejection methods for the GIG distribution [15, 16]. Compared to existing methods, our method

based on the quadrature is more straightforward to implement and there are no rejected random

numbers.

This paper is organized as follows. Section 2 discusses the numerical quadrature and its

benefits for mixture distributions. Section 3 derives the quadratures for the IG and GIG distri-

butions. Section 4 deals with numerical examples and Section 5 concludes the study.

2. Numerical quadrature for mixing distribution

The Gaussian quadrature with respect to the weight function w(x) on the interval (a, b) is the

abscissas, {xk}, and weights, {wk}, for k = 1, . . . , n, that best approximate the integral of a

given function g(x) as ∫ b

a
g(x)w(x)dx ≈

n∑
k=1

g(xk)wk.
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The points and weights are the most optimal in that they exactly evaluate the integral when

g(x) is a polynomial up to degree 2n− 1. When w(x) is a probability density, the weights have

the desired property:
∑n

k=1wk = 1 from g(x) = 1. It is known that {xk} are the roots of the

nth-order orthogonal polynomial, pn(x), with respect to w(x) and (a, b), and {wk} are given as

the integral of the Lagrange interpolation polynomial

wk =
1

p′n(xk)

∫ b

a

pn(x)

x− xk
w(x)dx.

The Gaussian quadratures have been found for several well-known probability densities w(x):

Gauss–Legendre quadrature for uniform distribution, Gauss–Jacobi for beta distribution, and

Gauss–Laguerre for exponential distribution. In particular, this study heavily depends on

the Gauss–Hermite quadrature for the normal distribution. In the rest of the paper, the

Gauss–Hermite quadrature is always defined with respect to the standard normal density,

w(x) = e−x
2/2/
√

2π, rather than w(x) = e−x
2
. Therefore, the orthogonal polynomials are the

probabilists’ Hermite polynomials denoted by Hen(x) in literature, not the physicists’ Hermite

polynomials denoted by Hn(x).

If an accurate quadrature, {xk} and {wk}, were known for the mixing distribution X in

Eq. (1), an expectation involving Y can be approximated as a finite mixture of normal distri-

butions with mean µ+ β xk and variance xk:

E
(
g(Y )

)
≈

n∑
k=1

wk E
(
g(µ+ βxk +

√
xkZ)

)
, (2)

for a function g(·) and standard normal variate Z. The approximated expectation can be

efficiently computed because analytic or numerical procedures are broadly available for normal

distribution. For example, the CDF of the GH variate, Y , can be approximated as the weighted

sum of those of the normal distribution

Fgh(y) = P(Y < y) ≈
n∑
k=1

wkN

(
y − µ
√
xk
− β
√
xk

)
, (3)

where N(·) is the standard normal CDF. This approximation is particularly well suited for a

CDF because the value monotonically increases from 0 to 1 since wk > 0 and
∑
wk = 1. If a

stock price follows the log-GH distribution, the price of the European call option struck at K

can be approximated as a weighted sum of the Black–Scholes formulas with varying spot prices
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and volatilities

Cgh(K) = E(max(eY −K, 0)) ≈
n∑
k=1

wk
(
FkN(dk +

√
xk)−KN(dk)

)
,

where Fk = eµ+(β+1/2)xk , dk =
log(Fk/K)
√
xk

−
√
xk
2
.

(4)

Even if the quantity of interest has no analytic expression under normal distribution, a com-

pound quadrature can be constructed for Y , whose points and weights, respectively, are

{µ+ βxk +
√
xk zl} and {wk hl} for k = 1, . . . , n, and l = 1, . . . ,m,

where {zl} and {hl} are the points and the weights, respectively, of the Gauss–Hermite quadra-

ture.

The quadrature for the mixing distribution also serves as a quick and simple way to generate

random variate of Y . The sampling of Y is approximated as

Y ≈ µ+ βxK +
√
xK Z, (5)

where K is the random index determined from a uniform random variate U independent from

Z,

K = inf{k : U ≤ w1 + · · ·+ wk, 1 ≤ k ≤ n}.

Here, the construction of K is to ensure that xK is a randomly selected point among {xk}

according to the probability {wk}: P(K = k) = P(xK = xk) = wk. Therefore, the expectation

of g(Y ) evaluated with the simulated values of Y is the same as that with the quadrature in

Eq. (2):

E
(
g(Y )

)
≈ E (g(µ+ βxK +

√
xK Z)) = E

(
E
(
g(µ+ βxK +

√
xK Z)

∣∣∣K))
=

n∑
k=1

wk E
(
g(µ+ βxk +

√
xk Z)

)
.

Note that xK can serve as a random variate for X, but the usage might be limited due to

discreteness. The random number Y sampled in Eq. (5), however, is continuous because xK is

mixed with Z. It is also possible to make antithetic variables by replacing U with 1 − U . We

will test the validity of the random number generation method with numerical experiments in
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Section 4.

3. IG and GIG Quadratures

With the change of variable, (γx − δ)2/x = z2, the exponent of fig(x | γ, δ) becomes that of

the standard normal density in z. This mapping plays an important role in understanding this

study as well as the previously known properties of the IG distribution. We define the mapping

appropriately and derive a key lemma.

Definition 1. Let φσ be a monotonically increasing one-to-one mapping from x ∈ (0,∞) to

z ∈ (−∞,∞), and φ−1
σ be the inverse mapping, respectively, defined as

z = φσ(x) = σ

(√
x− 1√

x

)
and x = φ−1

σ (z) = 1 +
z2

2σ2
+
z

σ

√
1 +

z2

4σ2
.

Lemma 1. The mapping, z = φσ(x), relates the IG density, fig(x |σ, σ), and the standard

normal density, n(z), as follows:

fig(x |σ, σ)
1 + x

2
dx = n(z) dz. (6)

Proof. The proof is trivial from the differentiation,

dz

dx
= φ′σ(x) = σ

1 + x

2
√
x3
.

�

With Lemma 1, two important results about the IG distribution can be obtained. Let x+ and

x− be x± = φ−1
σ (±z) for z ≥ 0. Then, x+x− = 1 and 0 < x− ≤ 1 ≤ x+. For standard normal

Z and X ∼ ig(σ, σ), the probability densities around the three variables, x+, x−, and z, satisfy

P(X ∈ dx+) + P(X ∈ dx−) =
2P(Z ∈ dz)

1 + x+
+

2P(Z ∈ d(−z))
1 + x−

= 2P(Z ∈ dz), (7)

where

P(X ∈ dx±) = fig(x± |σ, σ)dx± and P(Z ∈ dz) = n(z)dz.
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It follows that

P
(
φσ(X)2 < z2

)
= P (x− < X < x+) =

∫ 1

x−

P(X ∈ dx−) +

∫ x+

1
P(X ∈ dx+)

=

∫ z

0
2P(Z ∈ dz) = P(Z2 < z2).

Thus, φσ(X)2 = σ2(X − 1)2/X is distributed as the chi-squared distribution with 1 degree

of freedom [17]. Eq. (7) also implies that choosing between the two random values, X± =

φ−1
σ (±|Z|), with probabilities, p± = 1/(1 + X±) (p+ + p− = 1), respectively, is an exact

sampling method of ig(σ, σ) [14], which originally provided key insight for this study.

Lemma 2. Let {zk} and {hk} be the points and the weights, respectively, of the Gauss–Hermite

quadrature from the nth-order Hermite polynomial Hen(z). Then, the points {xk} transformed

by xk = φ−1
σ (zk) and the weights {hk} serve as a numerical quadrature with respect to w(x) =

fig(x |σ, σ) (1 + x)/2 over the domain (0,∞). The corresponding orthogonal functions are

Gn(x) = Hen ◦ φσ(x).

Proof. The following proof is a straightforward result from Lemma 1, which states that, for a

function g(x), ∫ ∞
0

g(x)fig(x |σ, σ)
1 + x

2
dx =

∫ ∞
−∞

g ◦ φ−1
σ (z)n(z) dz.

First, the functions Gn(x) are orthogonal because

∫ ∞
0

Gn(x)Gn′(x)fig(x |σ, σ)
1 + x

2
dx =

∫ ∞
−∞

Hen(z)Hen′(z)n(z) dz = n! δnn′ ,

where δnn′ is the Kronecker delta. Second, {xk} are the roots of Gn(x) = 0 since Gn(xk) =

Hen(zk) = 0. Finally, the weight hk is invariant under the mapping z = φσ(x):

φ′σ(xk)

G′n(xk)

∫ ∞
0

Gn(x)

φσ(x)− zk
fig(x |σ, σ)

1 + x

2
dx =

1

He′n(zk)

∫ ∞
−∞

Hen(z)

z − zk
n(z)dz = hk.

�

From Lemma 2, the expectation of g(X) under the IG distribution is evaluated with {xk} and

{hk} as follows:

∫ ∞
0

g(x)fig(x |σ, σ) dx =

∫ ∞
0

2g(x)

1 + x
fig(x |σ, σ)

1 + x

2
dx =

n∑
k=1

g(xk)
2hk

1 + xn
(8)

7



This observation leads us to the numerical quadrature with respect to the IG distribution.

Theorem 1 (IG Quadrature). Let {zk} and {hk} be the points and the weights, respectively,

of the Gauss–Hermite quadrature from the nth-order Hermite polynomial Hen(z). Then, the

points {xk} and the weights {wk}, defined by

xk =
δ

γ
φ−1
σ (zk) and wk =

2hk

1 + φ−1
σ (zk)

for σ =
√
γδ,

serve as a numerical quadrature with respect to w(x) = fig(x | γ, δ) over the domain (0,∞). The

quadrature exactly evaluates the rth-order moments for r = 1− n, . . . , n.

Proof. Thanks to the scaling property of the GIG random variate, it is sufficient to consider

the case γ = δ = σ. The construction of the new weights {wk} immediately follows from Eq. (8).

We need to prove the statement about the moments:

E(Xr) =

n∑
k=1

xrk wk.

The change in variable, y = 1/x yields fig(x |σ, σ)dx = −y fig(y |σ, σ)dy and E(Xr) = E(X1−r)

for X ∼ ig(σ, σ).2 Therefore, the left-hand side is expressed as

E(Xr) =
1

2
E(Xr +X1−r) = E

(
1 +X

2
θr(X)

)
= E

(
θr ◦ φ−1

σ (Z)
)
.

where θ1(x) = 1 and

θr(x) =
xr + x1−r

1 + x
= (−1)r−1 +

r−1∑
j=1

(−1)r−1−j
(
xj +

1

xj

)
for r ≥ 2.

The quadrature integration on the right-hand side also satisfies a similar property,
∑n

k=1 x
r
k wk =∑n

k=1 x
1−r
k wk, because of the symmetry of the quadrature points, 1/xk = φσ(−zk). Therefore,

the right-hand side is expressed as

n∑
k=1

xrk wk =

n∑
k=1

1 + xk
2

θr(xk)wk =

n∑
k=1

θr ◦ φ−1
σ (zk)hk.

For the two sides to be equal, the Gauss–Hermite quadrature integration of θr ◦ φ−1
σ (z) should

2See Eq. (9) for the analytic expression of the moments (p = −1/2). The property, E(Xr) = E(X1−r), can be
directly proved with the symmetry, Kp(·) = K−p(·).
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be exact and this is the case if θr ◦ φ−1
σ (z) is a polynomial of z of degree 2n − 1 or below. It

can be shown using Chebyshev polynomials. If Tj(·) is the jth-order Chebyshev polynomials of

the first kind, then it has a property, Tj(cosh(y)) = cosh(jy). With the changes of variables,

x = ey and z = φσ(x), we can express

xj +
1

xj
= 2 cosh(jy) = 2Tj(cosh(y)) = 2Tj

(
z2

2σ2
− 1

)
.

Therefore, θr ◦ φ−1
σ (z) is a linear combination of Tj(z

2/(2σ2)− 1) for j = 0, . . . , r − 1, thereby

an order 2(r − 1) polynomial of z. It follows that the quadrature integration of the rth-order

moment is exact for r = 1, . . . , n. From the symmetry E(Xr) = E(X1−r), the same holds for

r = 1− n, . . . , 0. �

The following remarks can be made on the new quadrature. First, the orthogonal functions,

Gn(x), are not polynomials of x; therefore, the quadrature is not a Gaussian quadrature. Given

below are first a few orders of Gn(x) for ig(1, 1) obtained from Hen(z):

G0(x) = 1, He0(z) = 1

G1(x) =
x− 1√
x
, He1(z) = z

G2(x) =
x2 − 3x+ 1

x
, He2(z) = z2 − 1

G3(x) =
(x− 1)(x2 − 4x+ 1)

x
√
x

, He3(z) = z3 − 3z

Nevertheless, the quadrature is accurate for integrating both positive and negative moments.

Second, we name the quadrature as inverse Gaussian quadrature after the name of the dis-

tribution. Here, the term inverse additionally conveys the meaning that it is not a Gaussian

quadrature and can accurately evaluate the inverse moments. Third, the construction of the

quadrature is intuitively understood as the method described by Michael et al. [14] applied to

the discretized normal random variable, {zk} with probabilities {hk}, instead of the continuous

normal variate. Fourth, from Lemma 2, the error estimation of the IG quadrature is obtained

as a modification from that of the Gauss–Hermite quadrature [18, p. 890]:

∫ ∞
0

g(x)fig(x |σ, σ)dx−
∑
k=1

wk g(xk) =
n!

(2n)!
H(2n)(ξ) for some ξ ∈ (−∞,∞),

9



where the function H(z) is

H(z) =
2 g ◦ φ−1

σ (z)

1 + φ−1
σ (z)

.

Therefore, exponential convergence on n is expected if g(x) is an analytic function. Lastly, the

quadrature calculation is very fast since it is a mere transformation from the Gauss–Hermite

quadrature, which is available from standard numerical libraries or pre-computed values.

Since the density functions, fig(x | γ, δ) and fgig(x | γ, δ, p), are related by

fgig(x | γ, δ, p) = c(γ, δ, p)xp+
1/2fig(x | γ, δ) where c(γ, δ, p) =

√
π

2

γp

δp+1

e−γδ

Kp(γδ)
,

we can further generalize the quadrature to the GIG distribution.

Corollary 1 (GIG Quadrature). Let {xk} and {wk} be the IG quadrature with respect to

fig(x | γ, δ) defined in Theorem 1. Then, {xk} and {w̄k} defined by w̄k = c(γ, δ, p) x
p+1/2
k wk

serve as a quadrature with respect to fgig(x | γ, δ, p). The quadrature exactly evaluates the rth-

order moment for r = 1− n− α, . . . , n− α for α = p+ 1/2.

Proof. The modified weights {w̄k} are obtained from E(g(X̄)) = E
(
c(γ, δ, p)Xp+1/2g(X)

)
for

a function g(x), where X̄ ∼ gig(σ, σ, p) and X ∼ ig(γ, δ). The statement about the moments

is also a direct consequence of the relation, E(X̄r) = c(γ, δ, p)E(Xr+α). �

Note that if α is not an integer,
∑n

k=1 w̄k = 1 is not guaranteed; therefore, it is recommended

to scale {w̄k} by the factor of 1/
∑n

k=1 w̄k to ensure
∑n

k=1 w̄k = 1. However, the amount of the

adjustment is very small if |p| � n as shown in the next section.

4. Numerical examples

We test the IG and GIG quadratures numerically. The methods are implemented in R (Ver.

3.6.0, 64–bit) on a personal computer running the Windows 10 operating system with an Intel

core i7 1.9 GHz CPU and 16 GB RAM.

First, we evaluate the moments of the IG distribution. The rth-order moment of X̄ ∼

gig(γ, δ, p) has a closed-form expression

E(X̄r) =

(
δ

γ

)r Kr+p(γδ)

Kp(γδ)
, (9)

against which the error of the quadrature evaluation can be measured. Figure 1 shows the

relative error of E(Xr) for X ∼ ig(1, 1) when evaluated with n = 10 and 20 quadrature points.

10



Figure 1: The log10 of the relative error in the rth-order moment of X ∼ ig(1, 1) computed with the quadrature
size n = 10 (left) and 20 (right). The solid line (blue) denotes the positive error and the dashed line (red) denotes
the negative error. The negative moments are omitted owing to the symmetry E(X1−r) = E(Xr).
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As Theorem 1 predicts, the quadrature exactly evaluates the moments for integer r from 1− n

to n. The error for non-integer r is also reasonably small when 1 − n ≤ r ≤ n. The relative

error of E(Xr) can also be interpreted as the deviation of E(X̄0 = 1) =
∑n

k=1 w̄k from 1 for

X̄ ∼ gig(1, 1, r− 1/2); thus, the sum of the GIG quadrature weights is very close to 1 if |p| � n.

Second, we test the accuracy of the moment generating function (MGF) of the GIG dis-

tribution. The error of the quadrature approximation is easily measured since the MGF of

X̄ ∼ gig(γ, δ, p) is analytically given by

MX̄(t) =

(
γ2

γ2 − 2t

)p/2
Kp(δ

√
γ2 − 2t)

Kp(δγ)
. (10)

The MGF can be numerically evaluated with MX̄(t) ≈
∑n

k=1 w̄k exp(t xk) for the GIG quadra-

ture, {xk} and {w̄k}, from Corollary 1. We, however, find that the numerical approximation is

more accurate for negative p than for positive p because the probability density is more con-

centrated near X̄ = 0 when p < 0. Taking advantage of the symmetry, Kp(·) = K−p(·), we

evaluate the MGF in a modified way for p > 0:

MX̄(t) ≈
(

γ2

γ2 − 2t

)max(p,0) n∑
k=1

w̄k exp(t xk), (11)

where {xk} and {w̄k} are the GIG quadrature for X̄ ∼ gig(γ, δ,−|p|).

This is a good test example to observe the convergence behavior since the MGF contains all

powers of the random variable. Moreover, the MGF of the GH distributions is similarly given

by function composition, MY (t) = exp(µt) MX̄

(
βt+ t2/2

)
. Therefore, we can also infer the

accuracy of GH distribution’s MGF from the result of this test. Figure 2 shows the relative

11



Figure 2: The convergence of the GIG distribution’s MGF computed with Eq. (11) as functions of the quadrature
size n. The MGF is evaluated at t = 0.4σ2 (80% of the convergence radius) for X̄ ∼ gig(σ, σ, p) for varying σ
values with p = −0.5 (upper panel), p = 1 (middle panel), and p = 90 (lower panel). Exact MGF is available in
Eq. (10).
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error of the MGF for X̄ ∼ gig(σ, σ, p) for σ varying from 0.5 to 2. The error is measured at

t = 0.4σ2, which is at the 80% radius of the convergence radius |t| = 0.5σ2 when γ = δ = σ.

For p, we use the two important special cases, NIG distribution (p = −0.5) and hyperbolic

distribution (p = 1), and one extreme case (p = 90). The p = −0.5 case clearly shows the

exponential decay of the error as functions of the quadrature size n, regardless of σ values. In

the p = 1 case, however, the convergence becomes slower when σ is smaller. This seems to

be related to the fact that the orders of moments for which the GIG quadrature is exact are

non-integer values (r = ±0.5,±1.5, · · · ) and that the GIG distribution is more leptokurtic when

σ is smaller. In the p = 90 case, the error quickly converges to the machine epsilon around

n ≈ |p| after slow convergence in small n. The convergence pattern for p = −90 is very similar

because of the evaluation method, Eq. (11).

Table 1: Parameter sets of the GH distribution for numerical experiments and their statistical properties.

Parameter Set 1 Set 2 Set 3 Set 4

µ 0 0.00029 0.000666 0.000048

α =
√
β2 + γ2 1 138.78464 214.4 9
β 0 −4.90461 −6.17 2.73
δ 1 0.00646 0.0022 0.0161
p −0.5 −0.5 0.8357 −1.663

σ =
√
γδ 1 0.9466 0.6866 0.3716

β̃ = β
√
δ/γ 0 -0.0335 -0.0198 0.1183

mean 0 6.16E-5 4.00E-4 5.47E-4
variance 1 4.66E-5 4.33E-5 1.84E-4
skewness 0 −0.112 −0.110 0.655

ex-kurtosis 3 3.365 2.731 20.698

Third, we evaluate the CDF of the GH distribution using Eq. (3). We use the GeneralizedHyperbolic

R package [11] for a benchmark. The pghyp function in the package numerically integrates the

probability density by internally calling the general-purpose integrate function3, which uses

adaptive quadrature. The error of the pghyp function is controlled by the intTol parameter

which is, in turn, passed to the integrate function. We use the CDF values obtained with

intTol=1E -14 as exact values.

In Table 1, we show the four parameter sets to test and their summary statistics. Set 1 is the

3https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/integrate
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Figure 3: The convergence of the GH distribution CDF computed with the quadrature method, Eq. (3), as
functions of the quadrature size n. The error is measured as the maximum deviation on the 99 percentiles,
{yj = F−1

gh (j/100) : j = 1, · · · , 99}.
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standard NIG distribution, gh(0, 0, 1, 1,−1/2), for reference, while the rest are the parameters

estimated from empirical finance data in previous studies; Set 2 is from the EUR/USD foreign

exchange rate return [9], and Set 3 and 4 are from the returns of the NYSE composite index

and the BMW stock, respectively [5].

Figure 3 depicts the decay of the quadrature method error as the quadrature size n increases.

The error is defined as the maximum absolute deviation of the CDF values across all percentiles,

{yj = F−1
gh (j/100) : j = 1, · · · , 99}. Although the error tends to increase as σ becomes smaller,

it quickly converges to 10−8 or below around n = 100 for all test sets. In Figure 4, we additionally

investigate the accuracy as functions of the distribution parameters. We similarly measure

the CDF error for the normalized form, Y ∼ gh(0, β̃, σ, σ, p), when each of β̃, σ, and p are

varied from the values in Set 1 (β̃ = 0, σ = 1, and p = −1/2). Figure 4 shows that the

accuracy deteriorates as |β| becomes larger (upper panel) or σ becomes smaller (middle panel).

Therefore, the quadrature size n should be larger for such parameter ranges. This also explains

the convergence pattern observed in Figure 3; the convergence speed for the four sets is mainly

governed by σ since the values of β̃ are small for all cases. Whereas, the lower panel shows that

our quadrature method performs better as the GH distribution deviates away from the NIG

(p = −0.5) and hyperbolic (p = 1) distributions in terms of the p value. This is consistent with

the observation from Figure 2 (lower panel).

Table 2 compares the computation time of the quadrature method to that of the numerical

density integration. For fair comparison, we relax the error tolerance so that the pghyp function
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Figure 4: The error of the GH distribution CDF computed with the quadrature method, Eq. (3), as functions
of parameters for n = 60, 80, and 100. For Y ∼ gh(0, β̃, σ, σ, p), we vary β̃ (upper panel), σ (middle panel), and
p (lower panel) from Set 1 (β̃ = 0, σ = 1, and p = −1/2). The error is measured as the maximum deviation on
the 99 percentiles, {yj = F−1

gh (j/100) : j = 1, · · · , 99}. In the upper panel, the result for negative β̃ is omitted
owing to the symmetry.

0 1 2 3 4

−
14

−
10

−
6

|β~|

Lo
g 1

0(
|e

rr
or

|)

n= 60
n= 80
n=100

0.2 0.4 0.6 0.8 1.0

−
12

−
8

−
4

σ

Lo
g 1

0(
|e

rr
or

|)

n= 60
n= 80
n=100

−15 −10 −5 0 5 10 15

−
16

−
14

−
12

−
10

p

Lo
g 1

0(
|e

rr
or

|)

n= 60
n= 80
n=100

15



Table 2: Computation time for the GH distribution CDF from the GIG quadrature, Eq. (3), and the density
integration [11]. We measure time (in milliseconds) to compute the CDFs at the 99 percentiles.

Method Set 1 Set 2 Set 3 Set 4

Density integration Error 7.55E-08 3.45E-06 4.45E-06 2.56E-06
(intTol=2E-3) CPU Time (ms) 26.28 42.67 53.16 41.5

GIG quadrature Error 7.99E-11 4.68E-10 8.06E-08 1.24E-06
(n = 50) CPU Time (ms) 0.86 0.75 0.81 0.98

runs faster. Specifically, intTol=2E -3 is chosen so that the density integration is less accurate

across all parameter sets. Despite the setting, the result shows that the quadrature method

is faster than the density integration at least by an order of magnitude. The performance

is improved because the quadrature method avoids the expensive evaluations of the modified

Bessel function, Kp(·). Additionally, Table 3 reports the error in CDF at both tails. The

quadrature method accurately captures the tail events.

Table 3: The error of the GH distribution CDF computed with the quadrature method, Eq. (3), at several
extreme quantiles, y = F−1

gh (q). The quadrature size, n = 50, is used.

q Set 1 Set 2 Set 3 Set 4

10−9 2.1E-17 -1.4E-16 5.7E-17 4.6E-13
10−6 3.8E-13 8.8E-14 1.9E-13 1.5E-10
10−3 1.7E-10 -1.5E-10 1.0E-09 6.3E-07

1− 10−3 -1.7E-10 -4.8E-10 -2.9E-09 6.4E-06
1− 10−6 -3.8E-13 -6.8E-13 4.2E-13 -1.5E-09
1− 10−9 -2.1E-17 -2.0E-16 1.1E-16 3.1E-14

Last, we test the random number generation method, Eq. (5). With the generated GH

random variates, we evaluate the CDF values at several percentiles. In Table 4, we report the

bias4 and standard deviation of the CDF values measured in this manner. For a benchmark,

we use the GIGrvg R package [19] as an alternative way of generating the GIG random variate.

The rgig in the package implements the two acceptance–rejection algorithms of Dagpunar [15]

and Hörmann and Leydold [16], and optimally selects one based on the parameters. From the

numerical results in Table 4, we did not find evidence that the quadrature method is more

biased than the GIGrvg::rgig function. While it takes 98.1 milliseconds for GIGrvg package

to generate 106 GIG random numbers on average, it takes 57.4 milliseconds for the quadrature

4The bias is similarly measured from the GeneralizedHyperbolic::pghyp function with intTol=1E -14.
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Table 4: The bias and standard deviation of the GH distribution CDF values computed with the Monte-Carlo
method at several percentile points. The GIG random variates are generated from (a) the GIG quadrature
method, Eq. (5), with n = 50 and (b) the GIGrvg::rgig R function [19]. The CDF values are obtained from 106

random numbers and the statistics are obtained after repeating 1000 simulation sets. Antithetic method is not
applied. The reported values are in the unit of 10−6.

(a)
Percentile Set 1 Set 2 Set 3 Set 4

1st 1 ± 100 1 ± 98 1 ± 99 3 ± 99
10th 0 ± 300 -2 ± 299 -6 ± 298 -3 ± 300
30th -8 ± 449 -4 ± 447 -3 ± 444 -5 ± 444
50th -16 ± 513 -14 ± 514 -16 ± 511 -11 ± 512
70th -19 ± 463 -21 ± 458 -13 ± 458 -17 ± 456
90th -10 ± 294 -13 ± 295 -2 ± 298 -4 ± 298
99th 1 ± 100 1 ± 99 -2 ± 99 0 ± 98

(b)
Percentile Set 1 Set 2 Set 3 Set 4

1st -1 ± 101 -4 ± 101 -1 ± 97 1 ± 103
10th 6 ± 296 5 ± 291 -13 ± 306 -2 ± 288
30th 1 ± 459 6 ± 454 -24 ± 455 -20 ± 452
50th -12 ± 505 -19 ± 485 -46 ± 512 -37 ± 499
70th 13 ± 473 2 ± 454 -24 ± 459 -24 ± 459
90th -21 ± 299 2 ± 295 -19 ± 301 -15 ± 297
99th -4 ± 99 4 ± 99 -6 ± 103 -2 ± 99
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method.

5. Conclusion

The GH distribution is widely used in applications, but the expectation involving the distri-

bution has been numerically challenging. This study shows that the GH distribution can be

approximated as a finite normal mixture, and that the expectation is reduced to that of the

normal distribution. For the finite mixture components, we construct novel numerical quadra-

tures for the GIG distributions, the mixing distribution of the GH distribution. The new GIG

quadrature is derived from the Gauss–Hermite quadrature. We demonstrate the accuracy and

effectiveness of the method with numerical examples.

Acknowledgments

We thank two anonymous reviewers for their helpful comments.

References

[1] J. L. Folks, R. S. Chhikara, The Inverse Gaussian Distribution and Its Statistical
Application–A Review, Journal of the Royal Statistical Society. Series B (Methodolog-
ical) 40 (1978) 263–289. URL: https://www.jstor.org/stable/2984691.

[2] A. E. Koudou, C. Ley, Characterizations of GIG laws: A survey, Probability Surveys 11
(2014) 161–176. doi:10.1214/13-PS227.

[3] O. E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle
size, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
353 (1977) 401–419. doi:10.1098/rspa.1977.0041.

[4] E. Eberlein, U. Keller, Hyperbolic Distributions in Finance, Bernoulli 1 (1995) 281–299.
doi:10.2307/3318481.

[5] K. Prause, The Generalized Hyperbolic Model: Estimation, Financial Derivatives and
Risk Measures, Ph.D. thesis, University of Freiburg, 1999. URL: https://d-nb.info/

961152192/34.

[6] O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance and Stochas-
tics 2 (1997) 41–68. doi:10.1007/s007800050032.

[7] O. E. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility
modelling, Scandinavian Journal of Statistics 24 (1997) 1–13. doi:10.1111/1467-9469.
00045.

[8] A. Kalemanova, B. Schmid, R. Werner, et al., The normal inverse Gaussian distribution
for synthetic CDO pricing, Journal of Derivatives 14 (2007) 80. doi:10.3905/jod.2007.
681815.

18

https://www.jstor.org/stable/2984691
http://dx.doi.org/10.1214/13-PS227
http://dx.doi.org/10.1098/rspa.1977.0041
http://dx.doi.org/10.2307/3318481
https://d-nb.info/961152192/34
https://d-nb.info/961152192/34
http://dx.doi.org/10.1007/s007800050032
http://dx.doi.org/10.1111/1467-9469.00045
http://dx.doi.org/10.1111/1467-9469.00045
http://dx.doi.org/10.3905/jod.2007.681815
http://dx.doi.org/10.3905/jod.2007.681815


[9] C. G. Corlu, A. Corlu, Modelling exchange rate returns: Which flexible distribution to
use?, Quantitative Finance 15 (2015) 1851–1864. doi:10.1080/14697688.2014.942231.

[10] R. P. Browne, P. D. McNicholas, A mixture of generalized hyperbolic distributions, Cana-
dian Journal of Statistics 43 (2015) 176–198. doi:10.1002/cjs.11246.

[11] D. Scott, GeneralizedHyperbolic: The Generalized Hyperbolic Distribution (R
package version 0.8-4), 2018. URL: https://cran.r-project.org/package=

GeneralizedHyperbolic.

[12] R. V. Ivanov, Closed form pricing of European options for a family of normal-inverse
Gaussian processes, Stochastic Models 29 (2013) 435–450. doi:10.1080/15326349.2013.
838509.

[13] J. Imai, K. S. Tan, An Accelerating Quasi-Monte Carlo Method for Option Pricing Under
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