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Abstract

Application of nonlinearity continuation method to numerical solution of
steady-state groundwater flow in variably saturated conditions is presented.
In order to solve the system of nonlinear equations obtained by finite volume
discretization of steady-state Richards equation, a series of problems with
increasing nonlinearity are solved using the Newton method. This approach
is compared to pseudo-transient method on several test cases, including real
site problems and involving parallel computations.
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1. Introduction

Numerical modeling of groundwater flow in variably saturated soils is
an important part of solution of various hydrogeological problems involving
vadose zone. These problems arise in environmental sciences and include
safety assessment of radioactive waste repositories and landfills, water re-
sources management and fertilizers application optimization. Groundwater
flow in variably saturated conditions is governed by nonlinear partial dif-
ferential Richards equation [1, 2] with additional constitutive relationships
between water pressure head, water content and relative permeability of the
soil. Existing analytical and semi-analytical solutions [3] of Richards equa-
tion are valid for limited cases, and numerical solution is the common choice.
Nonlinearity of the equation makes numerical solution a challenging task
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with numerous approaches having been developed, an overview of which can
be found in [4].

In addition to transient problems, steady-state problems are also of inter-
est. Discretization of steady-state Richards equation leads to a system of non-
linear equations which then can be solved by an iterative method. Nonlinear
solvers such as Newton method can experience severe convergence problems
since obtaining a suitable initial guess is not trivial. Another approach is the
pseudo-transient method [5], which introduces time to the system and lets it
evolve until equilibrium is reached, leading to solution of transient Richards
equation. For stability reasons discretization in time usually employs fully
implicit scheme which again results in a system of nonlinear equations at each
time step, although now with ability to change time step size to improve con-
vergence. Nonlinear solvers (modified Picard [6] and Newton with techniques
such as primary variable switching [7]) within the pseudo-transient method
can still exhibit poor convergence in case of dry and heterogeneous soils or
highly nonlinear constitutive relationships, leading to a large number of time
steps and overall high computational complexity. Therefore, it is desirable
to have a solution approach which needs no time-stepping and works directly
with discretized steady-state Richards equation. As mentioned before, the
main problem is the lack of initial guess sufficiently close to solution. Tech-
niques like line search [5] and combined Picard-Newton approach [8] can
improve convergence, but still can fail for complex problems.

To overcome difficulties related to lack of suitable initial guess for Newton
method a nonlinearity continuation method can be applied. In methods of
this type a suitable initial guess for Newton method is obtained through
solution of a series of other problems with incrementally varying nonlinearity
[9]. This approach for steady-state Richards equation is implemented in
GeRa [10] hydrogeological modelling software, the authors being part of the
GeRa development team. The nonlinearity continuation method is compared
with the pseudo-transient method on several modeling cases.

The article is organized as follows. In the second section the mathe-
matical model of steady-state groundwater flow in unconfined conditions is
formulated. In the third section the numerical methods used to discretize the
problem and solve the arising nonlinear systems are stated, the algorithms
of Newton method with line search and nonlinearity continuation method
applied to the problem are presented. In the fourth section the proposed nu-
merical technique is tested on a couple of problems featuring heterogeneous
and anisotropic media properties with two types of finite volume discretiza-

2



tion in space. Conclusions are provided in the end.

2. Governing equations

Steady-state groundwater flow in variably saturated conditions is de-
scribed by steady-state Richards equation

−∇ · (Kr(h)K∇h) = Q, (1)

which is derived from Richards equation [1] for transient flow, which can
be formulated with additional storage term [2] as:

∂θ(h)

∂t
+ sstorS(h)

∂h

∂t
−∇ · (Kr(h)K∇h) = Q. (2)

Here the following variables are used:

• h – hydraulic head, related to capillary pressure head Ψ as h = Ψ + z;

• θ(h) – volumetric water content in medium;

• S(h) – water saturation in medium;

• sstor – specific storage coefficient;

• K – hydraulic conductivity tensor, a 3×3 s.p.d. matrix;

• Kr(h) – relative permeability for water in medium;

• Q – specific sink and source terms.

In this paper the main goal is to solve steady-state equation (1), although
transient equation (2) is considered within a pseudo-transient method.

Expressions relating relative permeability Kr(h), water content θ(h) and
hydraulic head h are required in addition to equations (1) and (2). In
this paper piecewise linear dependencies proposed in [13] are considered.
These functions are designed for numerical solution with the finite volume
method and depend on spatial discretization, possibly varying from cell to
cell. Namely, the dependence of water content θE in a cell E on hydraulic
head hE in that cell is defined as follows

θE(hE) =


φ, hE > hE,max,

φ · hE−hE,min

hE,max−hE,min
, hE,r < hE ≤ hE,max,

φ · (αφ − αθ(hE,r − hE)), hE ≤ hE,r,

(3)
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where φ is the medium porosity, hE,max and hE,min are the maximal and
minimal vertical node coordinates of the cell E and hE,r is such that water
content calculated by the second linear part in (3) is equal to φ ·αφ, namely,

hE,r = hE,min + αφ(hE,max − hE,min). (4)

Therefore the model needs two parameters: αφ and αθ which should be small
enough.

Relative permeability for a cell E is assumed to be equal to the saturation:

Kr,E(hE) = S(hE) =
θE(hE)

φ
. (5)

Compared to commonly used functions proposed by van Genuchten [11]
and Mualem [12] that are constructed for pressure head rather than hydraulic
head, piecewise linear functions require smaller number of media parameters
(which are often hard to obtain for real-life problems) and tend to more sharp
water table boundary at the cost of ability to predict capillary effects.

3. Approaches to solution of nonlinear problems

The considered nonlinear system arises from finite volume discretization
of Richards equation on unstructured meshes. Two types of unstructured
meshes are used: the first consists mainly of triangular prisms with occurence
of tetrahedra or pyramids in cases like geological layer pinch-outs; the second
includes octree-based hexahedral grids with cut cells on domain boundary
[14]. Finite volume schemes used employ different flux approximations across
cell faces:

• conventional linear two-point flux approximation (TPFA);

• linear multipoint flux approximation (MPFA), O-scheme [15].

3.1. Solution of nonlinear systems

Due to nonlinearity in equation (1), its discretization results in a system
of nonlinear equations with respect to the grid unknowns of the form

F (h) = 0, (6)
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which is to be solved numerically. For this purpose iterative solvers such
as Newton, Picard or their combination [5][8] can be used. In this work the
Newton method is used, so that at (k + 1)-th iteration a linear system

J(hk)∆h = −F (hk), (7)

is created and solved, where J = [∂Fi/∂hj]ij is the Jacobian matrix and
∆h is the update vector; then the update procedure is performed:

hk+1 = hk + ∆h. (8)

After the update, a correction procedure described in [13] is performed
that takes into account use of expressions (3) and (5) and ensures mass-
conservative changes in hydraulic head; it was also noted to improve conver-
gence of nonlinear solvers for transient problems.

The iterations continue until for the residual rk = F (hk) its Euclidean
norm is sufficiently reduced compared to the initial residual norm or maximal
absolute value of its elements becomes small enough, that is, until one of the
following conditions is satisfied:

||rk||2 < εrel · ||r0||2, (9)

||rk||∞ < εabs. (10)

Sometimes it is useful to perform relaxation procedure [8], in which ob-
tained solution is replaced by a convex linear combination of it with the
solution from the previous iteration. A relaxation parameter Ω : 0 < Ω ≤ 1
is chosen and the update procedure is changed to this:

h∗ = hk + ∆h, (11)

hk+1 = Ωh∗ + (1− Ω)hk = hk + Ω∆h. (12)

It can be seen from (12) that relaxation is equivalent to rescaling the
update vector ∆h in the update procedure.

Relaxation can prevent the Newton method from oscillating between sev-
eral values [8], but it demolishes its quadratic convergence. Therefore, it is
reasonable to use relaxation during first iterations and at the end converge to
the solution quadratically. However, it is not clear how to choose that num-
ber of iterations and the relaxation parameter, and we turn to automatic
approach of choosing relaxation parameter, a simple version of line search
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(more sophisticated versions of which can be found in [5]) that is described
in algorithm 1.

Algorithm 1: Newton method with line search

Set initial hydraulic head values h0;
k = 0;
while k < maxiter do

if k = 0 then
Compute r0, ||r0||2, ||r0||∞;

end
Create and solve J(hk)∆h = −F (hk);
if k ≥ 5 then

Ω = 1;
while Ω > Ωmin do

Compute r = F (hk + Ω∆h);
if ||r||2 < ||rk||2 then

hk+1 = hk + Ω∆h;
break;

else
Ω = γ · Ω;

end

end
if didn’t find Ω then

failed;
stop;

end

else
hk+1 = hk + ∆h;

end
Perform correction of hk+1 (see [13]);
rk+1 = F (hk+1);
if ||rk+1||2 < εrel · ||r0||2 or ||rk+1||∞ < εabs then

converged;
stop;

end
k = k + 1;

end
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In this algorithm γ is the decreasing factor, which is chosen to be γ = 0.25.
Ωmin is chosen such that 7 iterations of Ω refinement can be done. Note
that line search is not applied for the first 5 iterations. This approach is
based on following observations: first, that finding suitable Ω at the first
iterations is often not possible; second, that Newton method without line
search can exhibit residual growth at several first iterations and then still
converge quadratically.

The main problem of the Newton method is the need for an initial es-
timate sufficiently close to the solution. In some rather simple cases, the
method can converge even with arbitrary constant hydraulic head distribu-
tion given as the initial estimate. However, for more difficult problems in-
cluding heterogeneous domains with complex geometry and contrasting and
anisotropic media, the task of choosing a good initial estimate is not trivial.

Since the Newton method for discretized equation (1) generally doesn’t
converge even with line search, another strategies are desired. Here two of
them are described: the pseudo-transient method [5][13], and a continuation
method based on varying nonlinearity of the equation (1). Application of
the pseudo-transient method to the steady-state Richards equation and its
comparison with other solvers can be also found in [5].

3.2. Pseudo-transient method

This method is based on solution of transient equation (2) until the so-
lution reaches steady state. More details on numerical solution of transient
problem in GeRa can be found in [13], including comparison of Picard and
Newton methods and brief mention of the pseudo-transient method.

Discretization in time is done using fully implicit scheme, which at each
time step results in a system of nonlinear equations, that is again solved
with the Newton method. Initial guess is the solution from the previous
time step, which means better convergence, since with sufficiently small time
step size that initial guess becomes good enough. Therefore, in transient
case convergence of the Newton method usually can be achieved without
sophisticated techniques such as line search. Similar results were reported
by other researchers [5].

After solution of the nonlinear system at a time step the residual of the
system (6) is evaluated and convergence check for the steady-state problem
is performed. Then the time step size ∆t, which may vary in user-specified
limits, is increased to ∆t = 1.5∆t if the number of nonlinear iterations at
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the time step did not exceed user-specified number numitinc, and in case of
failure of the Newton method the time step is decreased to ∆t = 0.5∆t.

The pseudo-transient method has the following drawbacks:

• the time which the system takes to achieve steady-state can be very
large and is not known, although it can be estimated by calculation on
a coarse grid;

• severe time step restrictions can be experienced in case of highly het-
erogenous and relatively dry soils;

• the method can be sensitive to initial hydraulic head distrubution.

3.3. Nonlinearity continuation method

The method proposed in this paper is based on continuation methodol-
ogy. Continuation methods, when applied for nonlinear systems obtained by
discretization partial differential equation in form (6), solve the systems by
incrementally approaching the solution through series of intermediate prob-
lems. Methods of this type have been successfully applied for numerical
solution of partial differential equations in computational fluid dynamics [9]
and nonlinear solid mechanics [16][17].

As described above, the main problem when trying to solve discretized
equation (1) with the Newton method is to provide a good initial guess. The
idea of our nonlinearity continuation method is to find such initial guess as
a solution of some ”simpler” problem or a sequence of such problems.

A continuation parameter q is introduced which controls ”degree of non-
linearity” of the problem. Namely, an equation is introduced:

−∇ · (K(h, q)K∇h) = Q, (13)

where K(h, q) is some function such that

K(h, 1) ≡ Kr(h), K(h, 0) ≡ 1. (14)

There are several possibilities to choose such function K(h, q) of which
two are tested:

Kpow(h, q) = (Kr(h))q (15)

and
Klin(h, q) = 1 + q · (Kr(h)− 1). (16)
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Combining properties (14) with equation (13) one can check that with
q = 1 equation (13) is the original equation (1) and with q = 0 it becomes a
simple linear equation, to solve which only a linear system has to be solved.
Now, with the solution of the linear problem obtained, an attempt may be
made to solve ”more nonlinear” problem with q > 0 with the Newton method
and solution of the linear problem taken as initial guess. The algorithm of
incremental increasing of the continuation parameter q to 1 is described in
algorithm 2.

Algorithm 2: Nonlinearity continuation method

q = 0;
Solve linear problem −∇ · (K∇h) = Q;
∆qlast = 1;
while q < 1 do

∆q = min(1− q , 2 ·∆qlast);
while ∆q > 10−4 do

Try to solve −∇ · (K(h, q + ∆q)K∇h) = Q with Newton;
if solved then

save h;
∆qlast = ∆q;
break;

else
∆q = ∆q/2;

end

end
if didn’t find ∆q then

failed;
stop;

end

end

3.4. Implementation details

GeRa is written in C++ with its MPI-parallel computational part based
on INMOST [18], a parallel computation platform that provides tools for
working with meshes consisting of arbitrary polyhedral cells, mesh parti-
tioners and linear solvers as well as some other useful features. Automatic
differentiation capabilities of INMOST are used to construct the Jacobian
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matrix. For solution of system (7) we use algorithms based on Bi-CGSTAB
[19]:

• ILU(3)-preconditioned solver from PETSc package [20];

• Inner MPTILUC, an internal INMOST solver based on second or-
der Crout-ILU with inverse-based condition estimation and maximum
product transversal reordering as preconditioner.

Of these solvers the latter is more robust and is used when PETSc solver
fails to converge, such behavior was noted for some complex problems, espe-
cially when using MPFA scheme.

4. Numerical experiments

This section includes a number of tests comparing approaches described
above on model and real-life problems.

4.1. Problems setup

Numerical experiments were performed for 3 different problems, of which
the first is a two-dimensional model problem describing groundwater flow
through a dam and the remaining two problems are real-life problems de-
scribing groundwater flow in sites that will be further denoted as site A and
site B.

The first test, a model problem taken from [21], describes two-dimensional
groundwater flow through a dam. The dam is a 10 m× 10 m square composed
of homogeneous material with isotropic hydraulic conductivity K = 0.864
m/day. The left boundary has prescribed hydraulic head value h = 10 m,
while the right boundary has prescribed hydraulic head value h = 2 m up to
the point where z = 2 m, above that point a seepage boundary condition is
imposed. Top and bottom boundaries have zero-flux boundary conditions.
Some aspects of numerical solution of the dam problem are described in [13].
The problem was considered as a quasi-two-dimensional: a third dimension
was added, along which only one layer of cell was present, and zero-flux
boundary conditions were imposed on boundaries orthogonal to the added
dimension axis.

Real-life site A is a domain of approximately 64 km2 with 3 geologi-
cal layers, 7 different media and presence of lakes and rivers. All media
have diagonal anisotropic hydraulic conductivity tensor of the form K =
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Tcomp, s # of steps # of Newton iterations
Pseudo-transient 2.65 8 49

Continuation 0.85 1 8

Table 1: Comparison of pseudo-transient and continuation methods for the dam test, mesh
with 1600 cells, TPFA

Tcomp, s # of steps # of Newton iterations
Pseudo-transient 18.9 8 63

Continuation 6.2 1 13

Table 2: Comparison of pseudo-transient and continuation methods for the dam test, mesh
with 10000 cells, TPFA

diag{K,K, 0.1K} with K varying from 0.011 to 4.76 m/day. This problem
was also mentioned in [13].

Real-life site B is a domain of approximately 100 km2 with 4 geologi-
cal layers, 4 different media and presence of lakes and rivers. All media
have diagonal anisotropic hydraulic conductivity tensor of the form K =
diag{K,K, 0.1K} with K varying from 0.14 to 16 m/day.

4.2. Comparison of pseudo-transient and nonlinearity continuation methods
on the dam problem

Computations were carried out on two cubic grids with 1600 cells (cell
size 0.25 m) and 10000 cells (cell size 0.1 m). Discretization scheme was
TPFA with upwind approximation of Kr. The following parameters were
used: εrel = 10−5, εabs = 10−5, maxit = 25 and (in pseudo-transient method)
numitinc = 15.

Computation time, number of steps (time steps for pseudo-transient method
and continuation steps for continuation method) and total number of Newton
iterations are presented in tables 1 and 2; saturation profiles are presented
in figure 1. Experiments showed that on both meshes continuation method
took only 1 step to converge and much smaller number of Newton itera-
tions compared to pseudo-transient method, leading to significantly faster
calculations.
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Figure 1: Saturation profiles for the dam test on cubic grids

Tcomp, s # of successful (failed) steps # of Newton iterations
Pseudo-transient, TPFA 868.4 65(10) 377

Continuation, TPFA 124.4 1(0) 10
Continuation, MPFA 444.3 1(0) 13

Table 3: Comparison of pseudo-transient and continuation methods for site A, mesh with
171450 cells

4.3. Comparison of pseudo-transient and nonlinearity continuation methods
on the site A

Computations were carried out on triangular prismatic mesh of 171450
cells. The following parameters were used: εrel = 10−5, εabs = 10−6, maxit =
25 and (in pseudo-transient method) numitinc = 15.

To compare pseudo-transient and continuation methods the problem was
solved using TPFA scheme; additional calculation was performed with con-
tinuation method and MPFA scheme to show that with continuation method
it is possible to solve problem with more accurate and complex MPFA scheme
still faster than with pseudo-transient method and simple TPFA. All calcu-
lations employed central approximation of Kr.

Computation time, number of steps (time steps for pseudo-transient method
and continuation steps for continuation method) and total number of Newton
iterations are presented in table 3.

4.4. Effect of line search and comparison of linear and power functions in
continuation method

Line search in Newton method is a useful tool which often allows to
increase continuation parameter q from 0 to 1 in a single step, as can be
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Tcomp, s # of successful (failed) steps # of Newton iterations
Power, TPFA 325.8 2(1) 32
Power, MPFA 1069.3 2(1) 32
Linear, TPFA 347.5 2(1) 34
Linear, MPFA 1445.1 3(2) 51

Table 4: Comparison of power and linear continuation functions, site A, mesh with 171450
cells, Newton method without line search

seen in tables 1, 2 and 3. In these cases, there is no difference between using
power (15) and linear (16) functions as continuation functions. To show the
difference, either line search should be omitted or more complex problems
should be regarded.

Computations for site A on the same mesh were performed with no line
search in the Newton method and maximal iterations number decreased to
maxit = 15. Computation time, number of steps and total number of Newton
iterations are presented in table 4. Effect of line search on Newton perfor-
mance in contiuation method is shown in figure 2; a single iteration needed
application of line search, but that drastically changed overall convergence.
When using TPFA, there is little difference between computational effort
with linear and power functions; however, when using MPFA, linear function
leads to one more failed continuation step and subsequently slows down the
computation.

To further investigate difference between linear and power functions, an-
other tests were performed on a fine mesh with 12 million cells and MPFA
discretization. The computations were carried out using 140 cores of the
INM RAS cluster [22]. The results are shown in table 5, the hydraulic head
and saturation distributions are presented in the figure 3. Example of con-
vergence behavior of the Newton method with line search is shown in figure
4. In case of such fine mesh resolution nonlinearity continuation required
more than one step even with line search in the Newton method. Unlike
in the case of coarse grid, the power function in the continuation method
lead to smaller number of steps in the continuation method and smaller total
number of Newton iterations, but solution time was comparable to that of
the linear function.

Site B turned out to be harder problem in the sense that even with
line search in Newton method continuation method takes several steps even
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Figure 2: Effect of line search for site A. A single iteration with line search (Ω = 0.25
at iteration 7) allows Newton method then to converge quadratically, otherwise Newton
doesn’t converge

Tcomp, s # of successful (failed) steps # of Newton iterations
Linear 8776 3(2) 55
Power 8374 2(1) 30

Table 5: Results of parallel computations for site A, mesh with 12 million cells, MPFA
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Figure 3: Hydraulic head and saturation, site A, mesh with 12 million cells, MPFA
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Figure 4: Example of convergence behavior of the Newton method with line search. On
the left is linear continuation function, increasing q from 0.75 to 1, on the right is power
continuation function, increasing q from 0.5 to 1. Site A, mesh with 12 million cells, MPFA

Tcomp, s # of successful (failed) steps # of Newton iterations
Power, TPFA 171.1 10(9) 133
Power, MPFA 732.3 7(8) 117
Linear, TPFA 163.9 5(4) 104
Linear, MPFA 393.6 5(4) 61

Table 6: Comparison of power and linear continuation functions, site B, mesh with 56820
cells, Newton method with line search

on relatively coarse grids. The following parameters: εrel = 10−6, εabs =
10−6, maxit = 25, central approximation of Kr and a trinagular prismatic
mesh of 56820 cells were used. Computation time, number of steps and
total number of Newton iterations are presented in table 6. When using
TPFA, there is again little difference in computational time with linear and
power functions, although power functions takes twice more steps; when using
MPFA, linear function performs better leading to less continuation steps and
Newton iterations.

5. Conclusion

A nonlinearity continuation method for solution of nonlinear systems
arising from discretization of steady-state Richards equation for modeling
groundwater flow in variably saturated conditions is proposed. Through so-
lution of a series of problems with increasing nonlinearity the method gets a
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Figure 5: Hydraulic head and saturation distributions for site B, mesh with 56820 cells,
MPFA

17



suitable initial estimate required by the Newton method. The continuation
procedure is implemented in the GeRa software package.

Combined with line search for improved convergence of Newton method,
the continuation method allows for solution of complex problems with MPFA
discretization scheme consuming less time than previously used pseudo-transient
method does with simpler TPFA discretization scheme.

Two continuation functions, linear and power, were compared on two real-
life problems; however, the tests didn’t show that any of the two is superior
than the other, with their performance in the continuation method depending
on the problem, discretization scheme and mesh size.
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