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Abstract

The truncated Milstein method, which was initially proposed in (Guo,
Liu, Mao and Yue 2018), is extended to the non-autonomous stochastic
differential equations with the super-linear state variable and the Hölder
continuous time variable. The convergence rate is proved. Compared with
the initial work, the requirements on the step-size is also significantly re-
leased. In addition, the technique of the randomized step-size is employed
to raise the convergence rate of the truncated Milstein method.

Key words: non-autonomous stochastic differential equations, truncated
Milstein method, randomized step-size, super-linear state variable, Hölder
continuous time variable.

1 Introduction

Numerical methods for stochastic differential equations (SDEs) with super-linear
coefficients have been attracting lots of attention in recent years. Due to that
the classical Euler-Maruyama (EM) method fails to converge for those types of
SDEs [16], different new methods have been proposed.

Implicit methods are natural alternatives, since they have been successful in
handling the stiffness in ordinary differential equations (ODEs) [11]. The implicit
methods of the Euler’s type for SDEs were studied in [2, 15, 28, 34, 35]. The
Milstein-type implicit methods for SDEs were discussed in [13, 20, 31, 39]. The
multi-stage implicit methods were investigated in [1, 3, 5]. We just mention some
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of the works on implicit methods here and refer the readers to the references
therein.

Compared with implicit methods, explicit methods still have their advan-
tages, such as simple structures, easy to implement, cheap to simulate large num-
bers of paths [12]. Recently, many different explicit methods have been proposed
to approximate SDEs with super-linear coefficients. The tamed Euler method
was initially proposed in [17]. By using the idea of taming the coefficients, dif-
ferent types of tamed methods have been proposed [7, 8, 29, 32, 33, 36, 38]. The
truncated EM method is another modification of the classical EM, which was
initialized in [26, 27]. Afterwards, the truncating technique has been employed
to develop different kinds of truncated methods [6, 9, 18, 22, 23, 37].

Most of the works mentioned above dealt with autonomous SDEs, where the
time variable does not appear explicitly in the coefficients. Meanwhile, it is well-
known that the non-smoothness of the time variable in non-autonomous SDEs
leads to significant difference in the convergence rate of numerical methods for
both ODEs [4, 19] and SDEs [21, 24].

Motivated by all the issues mentioned above, we investigate the truncated
Milstein method for non-autonomous SDEs with the time variable satisfying
Hölder’s continuity and the state variable containing super-linear terms. The
finite time convergence of the proposed method is proved and the convergence
rate is discussed. This result could be regarded as an extension of [10], where
autonomous SDEs were considered. We also propose the randomized truncated
Milstein method to overcome the low convergence rate due to the Hölder contin-
uous time variable.

The main contribution of this paper are twofold.

• Compared with the existing work [10], our results cover the non-autonomous
case and release the requirements on the step-size significantly.

• The randomized truncated Milstein method is proposed. By using nu-
merical silumations, this new method is demonstrated to outperform the
truncated Milstein method for non-autonomous SDEs.

This paper is constructed in the following way. Notations, assumptions and
the structure of the numerical methods are presented in Section 2. Section 3
contains the main results and their proofs. The randomized truncated Milstein
method is proposed in Section 4. Numerical simulations are conducted in Section
5. Section 6 sees the conclusion and some discussions on the future research.
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2 Mathematical preliminary

Notations, assumptions and the truncated Milstein method for non-autonomous
SDEs are introduced in the section.

Through out this paper, unless otherwise specified, we let (Ω, F , P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual condition
(that is, it is right continuous and increasing while F0 contains all p-null sets).
Let B(t) be an one-dimensional Brownian motion defined in the probability space
and is Ft-adopted. And let |·| denote both the Euclidean norm in R

n and the trace
norm in R

n×m; Moreover, for two real numbers a and b, we use a∨ b = max(a, b)
and a ∧ b = min(a, b). For a given set G, its indicator function is denoted by IG,
namely IG(x) = 1 if x ∈ G and 0 otherwise.

We are concerned with the d-dimension SDEs

dy(t) = µ(t, y(t))dt+ σ(t, y(t))dB(t) (2.1)

on t ∈ [t0, T ] for any T > t0 with the initial value y(t0) = y0 ∈ R
d, where the drift

coefficient function µ : [t0, T ] × R
d → R

d and the diffusion coefficient function
σ : [t0, T ]× R

d → R
d, and y(t) = (y1(t), y2(t), ..., yd(t))T .

We define:

Lσ(t, y) =

d
∑

l=1

σl(t, y)
∂σ(t, y)

∂yl
,

where σ = (σ1, σ2, ..., σd)T , σl : Rd → R.
And define the derivative of vector σ(t, y) with respect to yl by

Gl(t, y) :=

(

∂σ1 (t, y)

∂yl
,
∂σ2 (t, y)

∂yl
, ...,

∂σd (t, y)

∂yl

)

.

Moreover, we assume that both σ and µ have a second-order derivative, and we
make the following assumptions.

Assumption 2.1. There exist constants C1 > 0 , β > 0 and α ∈ (0, 1] such that

|µ(t, x)−µ(t, y)|∨|σ(t, x)−σ(t, y)|∨|Lσ(t, x)−Lσ(t, y)| ≤ C1(1+|x|β+|y|β)|x−y|,

|µ(t1, y)− µ(t2, y)| ∨ |σ(t1, y)− σ(t2, y)| ≤ C4(1 + |y|β+1)|t1 − t2|
α,

for all x, y ∈ R
d, any t ∈ (t0, T ].

Assumption 2.2. There exist constants q ≥ 2 and C2 > 0 such that

〈x− y, µ(t, x)− µ(t, y)〉+ (q − 1)|σ(t, x)− σ(t, y)|2 ≤ C2|x− y|2,

for all x, y ∈ R
d, any t ∈ (t0, T ].
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Assumption 2.3. There exist constants p ≥ 2 and C3 > 0 such that

〈y, µ(t, y)〉+ (p− 1)|σ(t, y)|2 ≤ C3(1 + |y|2),

where C3 does not depend on t or y, for all t ∈ [t0, T ], any y ∈ R
d.

Assumptions 2.1 and 2.2 guarantee a unique global solution of SDE (2.1).
In addition, we can derive the boundedness of the moment of the true solution
from Assumption 2.2 which is proved in [25], that is, there exists a constant M1,
which is dependent on t and q, such that

E|y(t)|q ≤ M1(1 + |y(0)|q). (2.2)

And it can be observed from Assumption 2.1 that for all y ∈ R
d and t ∈ [t0, T ]

|µ(t, y)| ∨ |σ(t, y)| ∨ |Lσ(t, y)| ≤ M2(1 + |y|β+1) (2.3)

where M2 depends on C1 and sup
t0≤t≤T

(|µ(t, 0)|+ |σ(t, 0)|) .

We further assume that there exists a positive constant M3 such that

|
∂µ(t, y)

∂y
| ∨ |

∂2µ(t, y)

∂y2
| ∨ |

∂σ(t, y)

∂y
| ∨ |

∂2σ(t, y)

∂y2
| ≤ M3(1 + |y|β+1), (2.4)

for all y ∈ R
d and t ∈ [t0, T ].

To make the paper self-contained, let us revisit the truncated Milstein method.
Firstly, we choose a strictly increasing function f : R+ → R+ which is the set of
all non-negative real numbers such that f(u) → ∞ as u → ∞ and

sup
t∈[t0,T ]

sup
|y|≤u

(

|µ(t, y)| ∨ |σ(t, y)| ∨ |Gl(t, y)|
)

≤ f(u), ∀u ≥ 1, l = 1, 2, ..., d. (2.5)

Then we use f−1 denote the inverse function of f . we can easily observe that f−1

is also a strictly increasing continuous function from [f(1),∞) to R+. We choose
a constant ĥ ≥ 1 ∨ f(1) and a strictly decreasing function h : (0, 1] → [f(1),∞)
such that

lim
∆→0

h(∆) = ∞ and ∆
1
4h(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (2.6)

For a given step-size ∆ ∈ (0, 1], any t ∈ [t0, T ] and all y ∈ R
d, define the truncated

functions by

σ∆(t, y) = σ

(

t,
(

|y| ∧ f−1 (h (∆))
) y

|y|

)

, (2.7)

µ∆(t, y) = µ

(

t,
(

|y| ∧ f−1 (h (∆))
) y

|y|

)

, (2.8)
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Gl
∆(t, y) = Gl

(

t,
(

|y| ∧ f−1 (h (∆))
) y

|y|

)

, l = 1, 2, ..., d, (2.9)

where we set y/|y| = 0 if y = 0.
It is clear that for all t ∈ [t0, T ], any y ∈ R

d and l = 1, 2, ..., d,

|σ∆(t, y)| ∨ |µ∆(t, y)| ∨ |Gl
∆(t, y)| ≤ f

(

f−1 (h (∆))
)

= h(∆). (2.10)

We can also obtain the fact that there exists a positive constant M such that

|
∂µ∆(t, y)

∂y
| ∨ |

∂2µ∆(t, y)

∂y2
| ∨ |

∂σ∆(t, y)

∂y
| ∨ |

∂2σ∆(t, y)

∂y2
| ≤ M, (2.11)

for any t ∈ [t0, T ] and y ∈ R
d.

Remark 2.4. Since the truncated functions, µ∆(t, y), σ∆(t, y) and Gl
∆, are not

differential at points, f−1(h(∆)) and -f−1(h(∆)), here we mean the derivatives of
the truncated functions at f−1(h(∆)) by their left derivatives and the derivatives
at −f−1(h(∆)) by their right derivatives.

The discrete-time truncated Milstein numerical solution Xi, to approximate
y(ti) for ti = i∆+ t0, are formed by setting X0 = y0 and computing

Xi+1 = Xi + µ∆(ti, Xi)∆ + σ∆(ti, Xi)∆Bi +
1

2

d
∑

l=1

σl
∆(ti, Xi)G

l
∆(ti, Xi)(∆Bi

2 −∆),

(2.12)

for i = 0, 1, ...N, where N is the integer part of T/∆ and let tN+1 = T while
∆Bi = B(ti+1)−B(ti).
To simplify the notation, we set

Lσ∆(t, Xi) :=
d
∑

l=1

σl
∆(t, Xi)G

l
∆(t, Xi),

for all t ∈ [t0, T ] and l ∈ {1, 2, ..., d}.
The continuous version of the truncated Milstein method is defined by

X∆(t) =X̄∆(t) +

∫ t

ti

µ∆

(

κ (s) , X̄∆ (s)
)

ds+

∫ t

ti

σ∆

(

κ (s) , X̄∆ (s)
)

dB(s)

+

∫ t

ti

Lσ∆

(

κ (s) , X̄∆ (s)
)

∆B(s)dB(s),

(2.13)
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where X̄∆(t) is a piecewise constant solution such that X̄∆(t) = X̄∆(ti) =
X∆(ti) = Xi, for ti ≤ t < ti+1 and we define X̄∆(T ) = X∆(T ), ∆B(s) =
∑N

i=0 I{ti≤s<ti+1}(B(s)− B(ti)) and κ(s) = tiI{ti≤s<ti+1}.

We need the following version of the Taylor expansion.

If a function φ : R+ × R
d → R

d is third-order continuous differentiable, by
the Taylor formula we have:

φ(κ(t), x)− φ(κ(t), x∗) = φ′ (κ(t), x)
∣

∣

∣

x=x∗

(x− x∗) +Rφ(t, x, x
∗), (2.14)

where Rφ(t, x, x
∗) =

∫ 1

0
(1− τ)φ′′ (κ(t), x)

∣

∣

x=x∗+τ(x−x∗)
(x− x∗, x− x∗)dτ , for any

fixed t ∈ [t0, T ].
For any y, j1, j2 ∈ R

d, the expressions of the derivatives are as follows:

φ′(κ(t), y)(j1) =

d
∑

i=1

∂φ

∂yi
ji1, φ′(κ(t), y)(j1, j2) =

d
∑

i,j=1

∂2φ

∂yi∂yj
ji1j

j
2,

where ∂φ
∂yi

=
(

∂φ1

∂yi
, ..., ∂φd

∂yi

)

and φ = (φ1, φ2, ...φd), for any fixed t ∈ [t0, T ].

If we replace x and x∗ by X∆(t) and X̄∆(t) respectively from (2.14), for any fixed
t ∈ [t0, T ], we have:

φ(κ(t), X∆(t))− φ(κ(t), X̄∆(t)) =φ′ (κ(t), x)
∣

∣

∣

x=X̄∆(t)

∫ t

ti

σ∆(κ(s), X̄∆(s))dB(s)

+ R̃φ(t, X∆(t), X̄∆(t)).

(2.15)

Here,

R̃φ(t, X∆(t), X̄∆(t)) =φ′ (κ(t), x)
∣

∣

∣

x=X̄∆(t)

(
∫ t

ti

µ∆(κ(s), X̄∆(s))ds

+

∫ t

ti

Lσ∆(κ(s), X̄∆(s))∆B(s)dB(s)

)

+Rφ(t, X∆(t), X̄∆(t)).

(2.16)

Thus, replacing φ by σ∆ from (2.15), we obtain

Rσ∆
(t, X∆(t), X̄∆(t)) = σ∆(κ(t), X∆(t))−σ∆(κ(t), X̄∆(t))−Lσ∆(κ(t), X̄∆(t))∆B(t),

(2.17)
where ∆B(t) = B(t)− B(ti), for ti ≤ t < ti+1.

3 Main results

This section is divided into three parts. The main theorems of this paper and
the comparison with the existing result are presented in Section 3.1. Important
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lemmas are proved in Section 3.2. The proofs of the main theorems are postponed
to Section 3.3.

3.1 Main theorem

Theorem 3.1. Let Assumptions 2.1, 2.2 and 2.3 hold and assume that p >
2(1 + β)q, then for any q̄ ∈ [2, q) and ∆ ∈ (0, 1], there exists a constant H such
that

sup
t0≤t≤T

E|y(t)−X∆(t)|
q̄ ≤ H

(

∆αq̄ +∆q̄
(

h(∆)
)2q̄

+
(

f−1
(

h(∆)
)

)(β+1)q̄−p)

To see the convergence rate more clearly, we strength the requirement As-
sumption 2.3 and obtained the following result.

Theorem 3.2. Let Assumptions 2.1 and 2.2 hold, and Assumption 2.3 hold for
any p > 2(β + 1)q. Then for any q̄ ∈ [2, q), ε ∈ (0, 1/4] and ∆ ∈ (0, 1], there
exists a constant H such that

sup
t0≤t≤T

E|y(t)−X∆(t)|
q̄ ≤ H

(

∆min(1−2ε,α)q̄
)

Proof. First we define f(u) = H4u
β+2, ∀u ≥ 1. It is easy to get

f−1(u) =

(

u

H4

)
1

β+2

Then, let
h(∆) = ∆−ε

for some ε ∈ (0, 1/4] and ĥ > (1 ∨ f(1)).
Applying Theorem 3.1, we can see that

sup
t0≤t≤T

E|y(t)−X∆(t)|
q̄ ≤ H

(

∆min( ε(p−(β+1)q̄)
β+2

,αq̄,(1−2ε)q̄)
)

.

We can get the desired assertions easily by choosing a sufficiently large p.

To explain the improvement of the main theorem of this paper, we recall
Theorem 3.7 in [10] as follows.

Theorem 3.3. Let Assumptions 2.1, 2.2 and (2.4) hold. Furthermore, assume
that for any given p ≥ 2, there exists a q ∈ (p,∞). In addition, if

h(∆) ≥ f

(

(

∆
p

2 (h(∆))p
)−1/(q− p

2
)
)

(3.1)

holds for all sufficiently small ∆ ∈ (0, 1], then for any fixed T ≥ t0

E|y(T )−XN+1|
p ≤ K∆p (h(∆))2p (3.2)

holds, where K is a positive constant independent of ∆.
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Remark 3.4. Let us demonstrate that compared with the main result in [10] our
result in this paper releases the constraint on the step-size.

Consider the scalar SDE

dy(t) =
(

y(t)− 2y5(t)
)

dt+ y2(t)dB(t), t ≥ t0, (3.3)

with t0 = 0 and the initial value y(t0) = 1.
Due to the fact that

sup
|x|≤u

(|µ(x)| ∨ |σ(x)| ∨ |Lσ(x)|) ≤ 3u5, ∀u ≥ 1,

so we choose f(u) = 3u5 and define h(u) = u−ε for ε ∈ (0, 1/4].

Choose ε = 1/4, then condition (3.1) is satisfied with p = 1, q = 12 and
∆ ≤ 10−21. By Theorem 3.3 (Theorem 3.7 in [10]), we can conclude that

E|y(T )−XN+1|
2p ≤ K∆p,

this is to say that the convergence rate is 1/2.

However, take ε to be 1/4 and choose p sufficiently large, it can be derived from
Theorem 3.2 that

E|y(T )−X∆(T )|
q̄ ≤ K∆

1
2
q̄,

which means that the convergence rate is 1/2. It should be noted that we do not
put the constraint ∆ ≤ 10−21 here.

Therefore, compared with the main theorem in [10], the strong requirement
on the step-size, ∆ ≤ 10−21, is not needed for our main result, which shows that
our result releases the requirement on the step-size.

Remark 3.5. Theorem 3.2 tells us that the order of convergence of the truncated
Milstein method is min(1−2ε, α). If α is close to 1, the convergence rate will not
very different from that of the traditional truncated Milstein method. Conversely,
if α is equal to 1/4 or more less than 1, then the order of convergence will worse
than the traditional sense. This shows that the Hölder-continuous time variable
does affect the order of convergence dramatically.

3.2 Important lemmas

The next lemma shows that the truncated coefficients inherit the same inequality
of the original coefficients.

Lemma 3.6. Assume that Assumption 2.3 holds, then for all ∆ ∈ (0, 1], there
exists a positive constant C5 such that

〈y, µ∆(t, y)〉+ (p− 1)|σ∆(t, y)|
2 ≤ C5(1 + |y|2), ∀y ∈ R

d.
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The proof of this lemma follows the same idea used in the proof of Lemma
2.5 in [14].

The following lemma shows the difference between the discrete and continu-
ous versions of the truncated Milstein method in the moment sense.

Lemma 3.7. For any ∆ ∈ (0, 1], t ∈ [t0, T ] and all p ≥ 2

E|X∆(t)− X̄∆(t)|
p ≤ C∆

p

2 (h(∆))p,

where C is a constant independent of ∆, consequently,

lim
∆→0

E|X∆(t)− X̄∆(t)|
p = 0, ∀t ∈ [t0, T ].

Proof. Fix the step size ∆ ∈ (0, 1] arbitrarily, for any t ≥ t0, there exists a
constant i ≥ 0 such that ti ≤ t < ti+1. We derive from (2.13) that

E|X∆(t)− X̄∆(t)|
p ≤ CE

(
∣

∣

∣

∣

∫ t

ti

µ∆

(

κ(s), X̄∆(s)
)

ds

∣

∣

∣

∣

p

+

∣

∣

∣

∣

∫ t

ti

σ∆

(

κ(s), X̄∆(s)
)

dB(s)

∣

∣

∣

∣

p

+

∣

∣

∣

∣

∫ t

ti

Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)dB(s)

∣

∣

∣

∣

p)

,

where the elementary inequality |
∑m

i=1 ai|
p ≤ mp−1

∑m
i=1 |ai|

p has been used, and
C is a positive constant independent of ∆ that may change from line to line. We
derive from the elementary inequality, the Hölder inequality and the Burkholder-
Davis-Gundy inequality (Theorem 1.7.1 in [25]) that

E|X∆(t)− X̄∆(t)|
p ≤ C

(

∆p−1
E

∫ t

ti

∣

∣µ∆

(

κ(s), X̄∆(s)
)
∣

∣

p
ds+∆

p−2
2 E

∫ t

ti

∣

∣σ∆

(

κ(s), X̄∆(s)
)
∣

∣

p
ds

+∆
p−2
2 E

∫ t

ti

∣

∣Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)
∣

∣

p
ds

)

.

By using (2.10) and the inequality of E|∆B(s)|p ≤ C∆p/2 for s ∈ [ti, ti+1), we get

E|X∆(t)− X̄∆(t)|
p ≤ C

(

∆ph(∆)p +∆
p

2h(∆)p +∆ph(∆)2p
)

.

Applying (2.6), the desired assertion holds.

The next lemma shows the moment boundedness of the truncated Milstein
method.

Lemma 3.8. Let Assumption 2.3 holds. Then, for any ∆ ∈ (0, 1] and any T ≥ t0

sup
0<∆≤1

sup
t0≤t≤T

E|X∆(t)|
p ≤ K(1 + E|y0|

p), (3.4)

where K is a positive constant dependent on T but independent of ∆.
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Proof. For any real number R > X0, we define the stopping time

ρR := inf{t ≥ t0 : |X∆(t)| ≥ R}.

Applying the Itô formula, we derive from (2.13), for any t ∈ [t0, ρR ∧ T ]

E|X∆(t)|
p=E|X∆(t0)|

p + pE

∫ t

t0

|X∆(s)|
p−2〈X∆(s), µ∆(κ(s), X̄∆(s))〉ds

+
p(p− 1)

2
E

∫ t

t0

|X∆(s)|
p−2
∣

∣

∣
σ∆

(

κ(s), X̄∆(s)
)

+ Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)
∣

∣

∣

2

ds,

where the fact that

E

(
∫ t

t0

p|X∆(s)|
p−2
〈

X∆(s), σ∆(κ(s), X̄∆(s)) + Lσ∆(κ(s), X̄∆(s))∆B(s)
〉

dB(s)

)

= 0

is used. Since p|X∆(s)|
p−2
〈

X∆(s), σ∆

(

κ(s), X̄∆(s)
)

+Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)
〉

is Fs-measurable, by Theorem 3.2.1 in [30] we see the fact above is true.
We rewrite the inequality as

E|X∆(t)|
p ≤E|X∆(t0)|

p + pE

∫ t

t0

|X∆(s)|
p−2

(

〈

X̄∆(s), µ∆(κ(s), X̄∆(s))
〉

+ (p− 1)
∣

∣

∣
σ∆

(

κ(s), X̄∆(s)
)

∣

∣

∣

2
)

+ p(p− 1)E

∫ t

t0

|X∆(s)|
p−2
∣

∣

∣
Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)
∣

∣

∣

2

ds

+ pE

∫ t

t0

|X∆(s)|
p−2
〈

X∆(s)− X̄∆(s), µ∆(κ(s), X̄∆(s))
〉

ds.

By Lemma 3.6, (2.10) and Assumption 2.3, we get

E|X∆(t)|
p ≤E|y0|

p +KE

∫ t

t0

|X∆(s)|
p−2
(

1 + |X̄∆(s)|
2
)

ds+KE

∫ t

t0

|X∆(s)|
p−2|h(∆)|4∆ds

+ pE

∫ t

t0

|X∆(s)|
p−2
〈

X∆(s)− X̄∆(s), µ∆(κ(s), X̄∆(s))
〉

ds,

where K is a constant independent of ∆ that may change from line to line. By
using the Young inequality

ap−2b ≤
p− 2

p
ap +

2

p
b

p

2 ,

we have

E|X∆(t)|
p ≤E|y0|

p +KE

∫ t

t0

|X∆(s)|
pds+KE

∫ t

t0

|X̄∆(s)|
pds

+KE

∫ t

t0

|h(∆)|2p∆
p

2ds+KE

∫ t

t0

|X∆(s)− X̄∆(s)|
p

2 |µ∆(κ(s), X̄∆(s))|
p

2ds.

(3.5)
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By (2.6), (2.10) and Lemma 3.7, we obtain

E

∫ t

t0

|X∆(s)− X̄∆(s)|
p

2 |µ∆(κ(s), X̄∆(s))|
p

2ds ≤ C

∫ t

t0

(h(∆))p∆
p

4ds ≤ C(t− t0).

(3.6)
Substituting (3.6) into (3.5), by using (2.6) we see that

E|X∆(t)|
p ≤ E|y0|

p+K(t− t0)+KC(t− t0)+K

∫ t

t0

(

sup
t0≤u≤s

E|X∆(u ∧ ρR)|
p

)

ds.

Under the fact that the sum of the right-hand-side in the above inequality is a
increasing function of t, we obtain

sup
t0≤r≤t

E|X∆(r∧ρR)|
p ≤ E|y0|

p+K(t−t0)+KC(t−t0)+K

∫ t

t0

(

sup
t0≤u≤s

E|X∆(u ∧ ρR)|
p

)

ds.

Now the Gronwall inequality yields that

sup
t0≤r≤T

E|X∆(r ∧ ρR)|
p ≤ K(1 + E|y0|

p).

Finally, the desired assertion follows by letting R → ∞.

Lemma 3.9. If Assumptions 2.1, 2.3 and (2.4) hold, and assume that p ≥ 2(1+
β)q, then for any q̄ ∈ [2, q)

sup
0<∆≤1

sup
t0≤t≤T

[

E|µ(t, X∆(t))|
2q̄ ∨ E|σ(t, X∆(t))|

2q̄ ∨ E
∣

∣µ′(t, x)|x=X∆(t)

∣

∣

2q̄
∨ E
∣

∣σ′(t, x)|x=X∆(t)

∣

∣

2q̄
]

< ∞.

we can derive it from (2.4) and Lemma 3.8.

Lemma 3.10. If Assumptions 2.1, 2.2, 2.3 and (2.4) hold and assume that
p ≥ 2(1 + β)q, then for any q̄ ∈ (2, q) and ∆ ∈ (0, 1],

E
∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
∨E
∣

∣R̃σ(t, X∆(t), X̄∆(t))
∣

∣

q̄
∨E
∣

∣R̃σ∆
(t, X∆(t), X̄∆(t))

∣

∣

q̄
≤ C∆q̄

(

h(∆)
)2q̄

,

where C is a positive constant independent of ∆.

Proof. Firstly, we give an estimate on
∣

∣Rµ(t, X∆(t), X̄∆(t))
∣

∣

q̄
, by Lemmas 3.7,

3.8 and (2.4), we obtain a constant C such that

E
∣

∣Rµ(t, X∆(t), X̄∆(t))
∣

∣

q̄

≤

∫ 1

0

(1− τ)q̄E
∣

∣

∣
µ′′ (κ(t), x) |x=X̄∆(t)+τ(X∆(t)−X̄∆(t))

(

X∆(t)− X̄∆(t), X∆(t)− X̄∆(t)
)

∣

∣

∣

q̄

dτ

≤

∫ 1

0

[

E

∣

∣

∣
µ′′ (κ(t), x) |x=X̄∆(t)+τ(X∆(t)−X̄∆(t))

∣

∣

∣

2q̄

E
∣

∣X∆(t)− X̄∆(t)
∣

∣

4q̄
]

1
2

dτ

≤C
(

1 + E
∣

∣X∆(t)
∣

∣

2(1+β)q̄
+ E

∣

∣X̄∆(t)
∣

∣

2(1+β)q̄
)

1
2
(

E
∣

∣X∆(t)− X̄∆(t)
∣

∣

4q̄
)

1
2

≤C∆q̄h(∆)2q̄

(3.7)
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where the Hölder inequality and the Jensen’s inequality are used.
Then we can observe from (2.16) and the Hölder inequality that

E
∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
≤C

[

∆q̄
E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
µ∆

(

κ(t), X̄∆(t)
)

∣

∣

∣

q̄

+
1

2
E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
Lσ∆

(

κ(t), X̄∆(t)
) (

∆B(t)2 −∆
)

∣

∣

∣

q̄

+ E
∣

∣Rµ(t, X∆(t), X̄∆(t))
∣

∣

q̄
]

≤C

[

∆q̄
E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
µ∆

(

κ(t), X̄∆(t)
)

∣

∣

∣

q̄

+
1

2

(

E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
Lσ∆

(

κ(t), X̄∆(t)
)

∣

∣

∣

2q̄

E
∣

∣∆B(t)2 −∆
∣

∣

2q̄
)

1
2

+E
∣

∣Rµ(t, X∆(t), X̄∆(t))
∣

∣

q̄
]

(3.8)
for ti ≤ t < ti+1.
We can derive from the Hölder inequality that

E
∣

∣∆B(t)2 −∆
∣

∣

2q̄
≤ 22q̄−1

(

E
∣

∣∆B(t)
∣

∣

4q̄
+∆2q̄

)

≤ 22q̄−1
(

∆2q̄ +∆2q̄
)

≤ 22q̄∆2q̄.

(3.9)
By using Lemma 3.9 and (2.10), we can see that for t0 ≤ t ≤ T ,

E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
µ∆

(

κ(t), X̄∆(t)
)

∣

∣

∣

q̄

≤ (h(∆))q̄ E
∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)

∣

∣

∣

q̄

≤ C
(

h(∆)
)q̄
,

(3.10)

E

∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)
Lσ∆

(

κ(t), X̄∆(t)
)

∣

∣

∣

2q̄

≤ (h(∆))4q̄ E
∣

∣

∣
µ′ (κ(t), x)

∣

∣

x=X̄∆(t)

∣

∣

∣

2q̄

≤ C
(

h(∆)
)4q̄

.
(3.11)

Substituting (3.7), (3.9), (3.10) and (3.11) into (3.8) and using the independence
between X̄(t) and ∆B(t), we have

E
∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
≤ C∆q̄

(

h(∆)
)2q̄

.

We obtain the desired result.
Similarly, we can show

E
∣

∣R̃σ(t, X∆(t), X̄∆(t))
∣

∣

q̄
∨ E
∣

∣R̃σ∆
(t, X∆(t), X̄∆(t))

∣

∣

q̄
≤ C∆q̄

(

h(∆)
)2q̄

.

The proof is complete.
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3.3 Proof of Theorem 3.1

Proof. Fix q̄ ∈ [2, q) and ∆ ∈ (0, 1] arbitrarily, let e(t) = y(t)−X(t) for t > t0,
we define the stopping time for each integer n > |X0|

θn = inf
{

t ≥ t0 :
∣

∣X(t)
∣

∣ ∨
∣

∣y(t)
∣

∣ ≥ n
}

.

We can derive from the Itô formula that for any t0 ≤ t ≤ T ,

E|e(t ∧ θn)|
q̄=q̄E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄−2
〈

y(s)−X∆(s), µ
(

s, y(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

ds

+ q̄E

∫ t∧θn

t0

q̄ − 1

2

∣

∣e(s)
∣

∣

q̄−2

∣

∣

∣

∣

σ
(

s, y(s)
)

− σ∆

(

κ(s), X̄∆(s)
)

− Lσ∆

(

κ(s), X̄∆(s)
)

∆B(s)

∣

∣

∣

∣

2

ds.

(3.12)
Substituting (2.17) into (3.12), we have

E|e(t ∧ θn)|
q̄ ≤q̄E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄−2
〈

y(s)−X∆(s), µ
(

s, y(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

ds

+ q̄E

∫ t∧θn

t0

q̄ − 1

2

∣

∣e(s)
∣

∣

q̄−2

∣

∣

∣

∣

σ
(

s, y(s)
)

− σ∆

(

κ(s), X∆(s)
)

+ R̃σ∆
(t, X∆(t), X̄∆(t))

∣

∣

∣

∣

2

ds.

By the Young inequality 2ab ≤ εa2 + b2/ε for any a, b ≥ 0 and ε arbitrarily, we
choose ε = q−q̄

q̄−1
here.

(q̄ − 1)
∣

∣

∣
σ
(

s, y(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2

=(q̄ − 1)
∣

∣

∣
σ
(

s, y(s)
)

− σ
(

s,X∆(s)
)

+ σ
(

s,X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2

≤(q̄ − 1)

[

(

1 +
q − q̄

q̄ − 1

)
∣

∣

∣
σ
(

s, y(s)
)

− σ
(

s,X∆(s)
)

∣

∣

∣

2

+
(

1 +
q̄ − 1

q − q̄

)
∣

∣

∣
σ
(

s,X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2
]

=(q − 1)
∣

∣

∣
σ
(

s, y(s)
)

− σ
(

s,X∆(s)
)

∣

∣

∣

2

+
(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

s,X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2

.

Then

E|e(t ∧ θn)|
q̄ = J1 + J2 + J3, (3.13)

where

J1 = E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

s, y(s)
)

−µ
(

s,X∆(s)
)

〉

+(q − 1)
∣

∣

∣
σ
(

s, y(s)
)

−σ
(

s,X∆(s)
)

∣

∣

∣

2
)

ds,
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J2 =E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

s,X∆(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

+
(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

s,X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds,

J3 ≤ E

∫ t∧θn

t0

q̄(q̄ − 1)
∣

∣e(s)
∣

∣

q̄−2∣
∣R̃σ∆

(t, X∆(t), X̄∆(t))
∣

∣

2
ds.

By Assumption 2.2, we have

J1 ≤ H1E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds. (3.14)

Rearranging J2, we get

J2 ≤E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

s,X∆(s)
)

− µ
(

κ(s), X∆(s)
)

〉

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

s,X∆(s)
)

− σ
(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds

+ E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

κ(s), X∆(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

κ(s), X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds

=:J21 + J22.

(3.15)

We estimate J21 first. Appling the Young inequality ap−2b2 ≤ (p−2)ap/p+2bp/p
for any a, b ≥ 0 and t0 ≤ t ∧ θn ≤ t ≤ T , we obtain

J21 ≤E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

1

2

∣

∣e(s)
∣

∣

2
+

1

2

∣

∣

∣
µ
(

s,X∆(s)
)

− µ
(

κ(s), X∆(s)
)

∣

∣

∣

2

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

s,X∆(s)
)

− σ
(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds

≤H2

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+ E

∫ t∧θn

t0

∣

∣

∣
µ
(

s,X∆(s)
)

− µ
(

κ(s), X∆(s)
)

∣

∣

∣

q̄

ds

+ E

∫ t∧θn

t0

∣

∣

∣
σ
(

s,X∆(s)
)

− σ
(

κ(s), X∆(s)
)

∣

∣

∣

q̄

ds

)

≤H2

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+ 2C4E

∫ T

t0

(

1 +
∣

∣X∆(s)
∣

∣

(1+β)q̄
)

∆αq̄ds

)

≤H2

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

(

1 + E
∣

∣X∆(s)
∣

∣

(1+β)q̄
)

∆αq̄ds

)

≤H2

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+∆αq̄

)

,

(3.16)
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where the Assumption 2.1 and Lemma 3.8 are used. Rearranging J22 shows that

J22=E

∫ t∧θn

t0

q̄|e(s)|q̄−2
〈

e(s), µ
(

κ(s), X∆(s)
)

− µ
(

κ(s), X̄∆(s)
)

〉

ds

+ E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

κ(s), X̄∆(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

κ(s), X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds

=I1 + I2,

(3.17)

where

I1 =E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
〈

e(s), µ
(

κ(s), X∆(s)
)

− µ
(

κ(s), X̄∆(s)
)

〉

ds,

I2 =E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
(

〈

e(s), µ
(

κ(s), X̄∆(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

〉

+
2(q̄ − 1)(q − 1)

q − q̄

∣

∣

∣
σ
(

κ(s), X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

2
)

ds.

We can derive from the Young inequality and (2.15) that

I1=E

∫ t∧θn

t0

q̄
∣

∣e(s)
∣

∣

q̄−2
〈

e(s), µ′(κ(s), x)
∣

∣

x=X̄∆(s)

∫ s

t0

σ∆

(

κ(s1), X̄∆(s1)
)

dB(s1) + R̃µ(t, X∆(t), X̄∆(t))
〉

ds

≤H21E

∫ t∧θn

t0

(

∣

∣e(s)
∣

∣

q̄
+
∣

∣

∣
e(s)Tµ′(κ(s), x)

∣

∣

x=X̄∆(s)

∫ s

t0

σ∆

(

κ(s1), X̄∆(s1)
)

dB(s1)
∣

∣

∣

q̄

2

+
∣

∣e(s)T R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄

2

)

ds

≤

(

H21E

∫ t∧θn

t0

(

∣

∣e(s)
∣

∣

q̄
+
∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
)

ds+I11

)

,

(3.18)
where

I11 := E

∫ t∧θn

t0

∣

∣

∣
e(s)Tµ′(κ(s), x)

∣

∣

x=X̄∆(s)

∫ s

t0

σ∆

(

κ(s1), X̄∆(s1)
)

dB(s1)
∣

∣

∣

q̄

2
ds.

Following a very similar approach used for (3.35) in [33], we get

I11 ≤ H21∆
q̄. (3.19)
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Combining (3.18), (3.19) and Lemma 3.10, we obtain

I1 ≤H21

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+ E

∫ T

t0

∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
ds+∆q̄

)

≤H21

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

E
∣

∣R̃µ(t, X∆(t), X̄∆(t))
∣

∣

q̄
ds+∆q̄

)

≤H21

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+∆q̄

(

h(∆)
)2q̄

+∆q̄

)

.

(3.20)

And applying the Young inequality and Assumption 2.1, we can show that

I2 ≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+ E

∫ t∧θn

t0

(

∣

∣

∣
µ
(

κ(s), X̄∆(s)
)

− µ∆

(

κ(s), X̄∆(s)
)

∣

∣

∣

q̄

+
∣

∣

∣
σ
(

κ(s), X∆(s)
)

− σ∆

(

κ(s), X∆(s)
)

∣

∣

∣

q̄
)

ds

)

≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+ E

∫ t∧θn

t0

(

1 +
∣

∣

∣
X̄∆(s)

∣

∣

∣

βq̄

+
∣

∣

∣

∣

∣X̄∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

∣

∣

∣

βq̄
)

×
∣

∣

∣
X̄∆(s)−

(

∣

∣X̄∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

) X̄∆(s)

|X̄∆(s)|

∣

∣

∣

q̄

ds+ E

∫ t∧θn

t0

(

1 +
∣

∣

∣
X∆(s)

∣

∣

∣

βq̄

+
∣

∣

∣

∣

∣X∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

∣

∣

∣

βq̄
)

∣

∣

∣
X∆(s)−

(

∣

∣X∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

) X∆(s)

|X∆(s)|

∣

∣

∣

q̄

ds

)

≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

(

E

[

1 +
∣

∣X̄∆(s)
∣

∣

p
+
∣

∣

∣

∣

∣X̄∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

∣

∣

∣

p
]

)
βq̄

p

×

[

E

∣

∣

∣
X̄∆(s)−

(

∣

∣X̄∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

) X̄∆(s)

|X̄∆(s)|

∣

∣

∣

pq̄

p−βq̄

]
p−βq̄

p

ds+

∫ T

t0

(

E

[

1 +
∣

∣X∆(s)
∣

∣

p

+
∣

∣

∣

∣

∣X∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

∣

∣

∣

p
]

)
βq̄

p [

E

∣

∣

∣
X∆(s)−

∣

∣X∆(s)
∣

∣ ∧ f−1
(

h(∆)
)

∣

∣

∣

pq̄

p−βq̄

]
p−βq̄

p

ds

)

≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

(

E

∣

∣

∣
I
{
∣

∣X̄∆(s)
∣

∣ > f−1
(

h(∆)
)}
∣

∣X̄∆(s)
∣

∣

pq̄

p−βq̄

∣

∣

∣

)
p−βq̄

p

ds

+

∫ T

t0

(

E

∣

∣

∣
I
{
∣

∣X∆(s)
∣

∣ > f−1
(

h(∆)
)}
∣

∣X∆(s)
∣

∣

pq̄

p−βq̄

∣

∣

∣

)
p−βq̄

p

ds

)

,
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where the Hölder inequality and Lemma 3.8 are used above, and using the Cheby-
shev inequality yields

I2 ≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

(

[

P
{

∣

∣X̄∆(s)
∣

∣ > f−1
(

h(∆)
)

}]
p−βq̄−q̄

p−βq̄
[

E
∣

∣X̄∆(s)
∣

∣

p
]

q̄

p−βq̄

)
p−βq̄

p

ds

+

∫ T

t0

([

P
{

∣

∣X∆(s)
∣

∣ > f−1
(

h(∆)
)

}

]
p−βq̄−q̄

p−βq̄ [

E
∣

∣X∆(s)
∣

∣

p
]

q̄

p−βq̄

)
p−βq̄

p

ds

)

≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

(

E
∣

∣X̄∆(s)
∣

∣

p

∣

∣f−1
(

h(∆)
)
∣

∣

p

)
p−βq̄−q̄

p

ds+

∫ T

t0

(

E
∣

∣X∆(s)
∣

∣

p

∣

∣f−1
(

h(∆)
)
∣

∣

p

)
p−βq̄−q̄

p

ds

)

≤H22

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

(

f−1
(

h(∆)
)

)(β+1)q̄−p
)

.

(3.21)
Substituting (3.20) and (3.21) into (3.17) gives

J22 ≤ H2

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

(

f−1
(

h(∆)
)

)(β+1)q̄−p

+∆q
(

h(∆)
)2q̄

+∆q̄

)

. (3.22)

Due to the Young inequality and Lemma 3.10, we derive that

J3 ≤H3E

∫ t∧θn

t0

(

∣

∣e(s)
∣

∣

q̄
+
∣

∣R̃σ∆
(t, X∆(t), X̄∆(t))

∣

∣

q̄
)

ds

≤H3

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+

∫ T

t0

E|R̃σ∆
(t, X∆(t), X̄∆(t))

∣

∣

q̄
ds

)

≤H3

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+∆q̄

(

h(∆)
)2q̄
)

,

(3.23)

where H21, H22, H3 and the following H are generic constants independent of ∆
that may change from line to line.
Combining (3.13), (3.14), (3.15), (3.16), (3.22) and (3.23) together, we can see
that

E|e(t ∧ θn)|
q̄ ≤H

(

E

∫ t∧θn

t0

∣

∣e(s)
∣

∣

q̄
ds+∆αq̄ +∆q̄

(

h(∆)
)2q̄

+∆q̄ +
(

f−1
(

h(∆)
)

)(β+1)q̄−p
)

≤H

(
∫ t

t0

sup
t0≤u≤s

E
∣

∣e(u ∧ θn)
∣

∣

q̄
ds+∆αq̄ +∆q̄

(

h(∆)
)2q̄

+∆q̄ +
(

f−1
(

h(∆)
)

)(β+1)q̄−p
)

.

An application of the Gronwall inequality yields that

sup
t0≤r≤T

E|e(r ∧ θn)|
q̄ ≤ H

(

∆αq̄ +∆q̄
(

h(∆)
)2q̄

+
(

f−1
(

h(∆)
)

)(β+1)q̄−p)

.

Due to the existence and uniqueness of the global solution to SDE (2.1) in [t0, T ],
we have T ∧ θn → T as n → ∞ (see, for example, the proof of Lemma 2.3.2
in [25], where the similar argument was used). Using Fatou Lemma and letting
n → ∞, the desired assertion is obtained.
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4 Randomized Truncated Milstein method

To define the randomized truncated Milstein method, let (τj)j∈N be a i.i.d family
of U(0, 1)-distributed random variables on a filtered probabilty space (ωτ ,F

τ , (F τ
j )j∈N,Pτ ),

the space is generated by {τ1, ..., τj}. Besides we define U(0, 1) as a unique distri-
bution on the interval (0, 1). Furthermore, (τj)j∈N is assumed to be independent
of the randomness in SDE (2.1).

As already observed in Remark 3.5, the convergence rate of the truncated
Milstein method is dominated by the Hölder index α. The purpose of this section
is to propose some new method to improve the convergence rate.

Inspired by [21], we embed the randomized time step into (2.12) and propose
the following randomized truncated Milstein method.

Given a step-size ∆ ∈ (0, 1), the randomized truncated Milstein numerical
solution Xi+1 to approximate of SDE (2.1) for ti = i∆ is given by the recursion

Xτ
i+1 = Xi + τi∆µ∆(ti, Xi) + σ∆(ti, Xi)

(

B(ti + τi∆)−B(ti)
)

,

Xi+1 = Xi+∆µ∆(ti+τi∆, Xτ
i+1)+σ∆(ti, Xi)∆Bi+

1

2

d
∑

l=1

σl
∆(ti, Xi)G

l
∆(ti, Xi)(∆B2

i−∆),

where X0 = y0, tN+1 = T for N is the integer part of T/∆ and ∆Bi = B(ti+1 −
B(ti)) for i ∈ {0, 1, ..., N}.

Based on [21], we have the following conjecture on the convergence rate.
Briefly speaking, with the employment of the randomized technique the conver-
gence is improved from min(1− 2ε, α) to min(1− 2ε, α+ 1/2).

Since we have still been working on the proof of it, we will demonstrate this
conjecture by using numerical simulation in the next section.

Conjecture 4.1. Suppose Assumptions 2.1, 2.2 and 2.3 hold for any p > 2, then
for any q̄ > 0, ε ∈ (0, 1/4) and ∆ ∈ (0, 1],

sup
t0≤t≤T

E|y(t)−X∆(t)|
q̄ ≤ H

(

∆min(1−2ε,α+ 1
2
)q̄
)

,

where H is a constant independent from ∆.

5 Numerical examples

The purpose of the example discussed in this section is twofold. On one side, it
is used to illustrate Theorem 3.2. On the other side, it demonstrates that the
convergence rate in Conjecture 4.1 is promising.
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Example 5.1. Consider the scaler SDE

{

dX(t) =
(

[t (1− t)]
1
4 X2(t)−X5(t)

)

dt+ [t (1− t)]
3
4 X(t)dB(t),

X(t0) = 2,
(5.1)

where t0 = 0, T = 1 and B(t) is a scalar Brownian motion.

For any q > 2, t ∈ [0, 1] we can see that

(x− y) (µ (t, x)− µ (t, y)) + (q − 1) |σ (t, x)− σ (t, y)|2

=(x− y)2
(

[t (1− t)]
1
4 (x+ y)−

(

x4 + x3y + x2y2 + xy3 + y4
)

+ (q − 1) [t (1− t)]
3
2

)

.

But

−(x3y + xy3) = −xy(x2 + y2) ≤ 0.5(x2 + y2)2 = 0.5(x4 + y4) + x2y2.

Hence

(x− y)T (µ (t, x)− µ (t, y)) + (q − 1) |σ (t, x)− σ (t, y)|2

≤(x− y)2
(

[t (1− t)]
1
4 (x+ y)− 0.5

(

x4 + y4
)

+ (q − 1) [t (1− t)]
3
2

)

≤C(x− y)2.

Under the fact that polynomials with negative coefficient for the highest order
term can always be bounded, we can obtain the assertion above. It means that
Assumption 2.2 is satisfied.

Similarly, for any p > 2 and any t ∈ [0, 1], we have

xTµ(t, x)+(p−1)|σ(t, x)|2 = [t (1− t)]
1
4 x3−x6+(p−1) [t (1− t)]

3
2 x2 ≤ C

(

1 + |x|2
)

,

which shows that Assumption 2.3 holds.

Appling the mean value theorem for the temporal variable, Assumption 2.1
are satisfied with α = 1/4 and β = 4. Due to the fact that

sup
0<t≤1

sup
|x|≤u

(|µ(t, x)| ∨ |σ(t, x)| ∨ |Lσ(t, x)|) ≤ 2u5, ∀u ≥ 1,

Let f(u) = 2u5 and h(∆) = ∆−ε, for any ε ∈ (0, 1/4). Choose ǫ sufficiently small,
we can derive from Theorem 3.2 that

sup
0≤t≤1

E|y(t)−X∆(t)|
q̄ ≤ H∆

1
4
q̄,
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Figure 1: Convergence rate of truncated Milstein method in Example

This shows that the convergence rate of truncated Milstein method for the
SDE (5.1) is 1/4. To approximate the mean square error, we run M = 1000
independent trajectories for 5 different step sizes. And we regard the numerical
solution as the step-size 10−7 as the true solution for the SDE. By numerical
simulation we can see in Figure 1 that the slope of the error against the step sizes
is about 0.2562.

Let us turn to the discussion on the randomized truncated Milstein method.
We would expect

sup
0≤t≤1

E|y(t)−X∆(t)|
q̄ ≤ H∆

3
4
q̄,
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Figure 2: Convergence rate of randomized truncated Milstein method

In numerical simulations, we use the step-size 10−6 to approximate the true
solution. In Figure 2, we run M=1000 independent paths with step-sizes 10−4, 10−3, 10−2, 10−1.

It is clearly to see from Figure 2 that the convergence rate of the randomized
truncated Milstein method is indeed improved to be 0.7548. This shows that
Conjecture 4.1 is reasonable.

6 Conclusion and future research

This paper revisited the truncated Milstein method and proved the strong con-
vergence of the method for non-autonomous SDEs, which extended and improved
the existing result.

With the observation that the convergence rate could be very low due to
the Hölder continuous time variable, the randomized truncated Milstein method
was proposed. The conjecture on the improvement of the convergence rate is
reported. Numerical simulations demonstrate the conjecture is promising.

One of the main future works is to prove the conjecture. In addition, we are
working on the stability of the truncated Milstein method and the randomized
truncated Milstein method in different senses.
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