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1. Introduction

Consider the following linear Ordinary Differential Equation (ODE)

{y/(t) = Ay(t), t >0, m
¥(0) = yo,
where A € R™" and y(t) = eyg, t > 0, is the solution. Let || - || be a norm on R" and let || - || be a norm on R™™".
Suppose A # 0 and A perturbed to A with relative error € given by
Al
Al

A perturbation in the matrix A results in a perturbation of the solution y of (1). The perturbed solution is y(t) = etzyo, t >
0, with relative error

(A A
€Yo —¢€ }’OH

§(t) = , t>0.

[eo -
The error &(t) is defined for yy # 0 and it is the error propagated along the solution by the perturbation in the matrix A.
We have £(0) = 0.
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Aim of this paper is to study how the error £(t) is related to the error €. In other words, we study the (relative)
conditioning of the problem

A ey, (2)
There are several papers in literature (see [1-7], and [8]) dealing with the conditioning of the problem
A e, (3)

namely how a perturbation in A affects e, not e®y,. In these papers, the role of the initial value y, is not taken into
account and the relative error

e -]

fle*ll

rather then &(t), is considered.

The conditioning of the problem (2), the topic of the present paper, has received less attention in literature. At the best
of our knowledge there are only the two papers [9,10] on this topic. The paper [9], in order to analyze an algorithm for
computing e”Yy, where Y, is a matrix, considered the condition number (relevant to Frobenius norms) of the problem
(A, Yo) — f(tA)Yo, where f is matrix function, and obtained a bound for it. The paper [10] presented algorithms for the
computation of the condition number of the problem (t, A, yo) — f(tA)yo. On the other hand, the present paper does not
consider the computational aspects but it is more theoretical, since it is interested to a qualitative analysis of the condition
number of the problem (2): it studies how this condition number depends on the parameters time ¢t and initial value y.
Also the asymptotic behavior as t — 400 is considered. Moreover, we also consider a condition number with direction
of perturbation (which can be useful when one wants to analyze not the worst case but an average case, or when some
information about the perturbation is known) and a condition number independent of yg.

After the introduction of the condition numbers of the problem (2), defined for a general matrix A and general norms
I - |l onR™and || - || on R™", their analysis is done for Anormal, || - || = || - |l, and || - || = || - ||,. By assuming A normal,
we can take advantage of the orthogonality of the eigenspaces and then give explicit expressions for the condition numbers
when || - ||=| -l and || - || = || - ||l,- Anyway, we remark that the class of the normal matrices includes the important
families of the symmetric matrices and the shifted skew-symmetric matrices.

A qualitative theoretical analysis of the conditioning of the problem y, > ey, for Anormal and || - || = || - ||, was
accomplished in [11].

Here is the plan of the paper. In Section 2, we introduce the condition numbers of the problem (2). For A normal,
I-N=1-llzand || -l =1 - |l,, we analyze such condition numbers in Section 3 and we study their asymptotic behavior
as t — o0 in Section 4. Finally, in Section 5 we present some numerical tests and conclusions are given in Section 6.

2. The condition numbers

We specify the perturbed matrix as
A=A+ ellAlIB,
where B € R™" with ‘H§|H = 1 is the direction of the perturbation.
We define

K(t, A, yo, B) == lim 50 (4)

as the condition number with direction of perturbation B of the problem (2).
The next Theorem gives an expression for such a condition number.
Theorem 2.1. We have

|L (. A.B)Fo | 1Al
K (t,A, yo0,B) = o5 i

where

t
L(t,A,B) :/ et BesA (s
0

and
~ _ Yo

Yo = .
lyoll



Proof. We have
eﬁyo — ey, = (et(A+E) _ em) Yo,
where
E = e||AlIB.
Since (see [12])
e e — e = L (t,A,E) + O(IE|I*), E — 0,

where

t
Er L(t,AE) = / el = MEeAds, R — R,
0

is the Frechét derivative of the map A — e™, we obtain
L (e, 4. B) yo HAN
ey

and (5) follows since

|LAB)yl _ LAl

£(t) =

+0(€%), e >0,

ey €]
We define
K(t,A,yo):== sup K (t,A, o, B) (6)
Bernxn
lI3]]|=1

as the condition number of the problem (2).
We have

I1£(t, A, yo)lllAIl
lle®yoll
where £(t, A, yo) : R™" — R" is the linear operator given by

L(t, A, ¥o)E = L(t,A E)yy, E € R™",

K(t, A, yo) =

and ||£(t, A, yo)| is the operator norm relevant to the norms || - || on R™" and || - || on R". Observe that
L(t, A, E)yo = (g ® In)vec(L(t, A, E)) = (y5 ® I,)M(t, A)vec(E),

where ® is the Kronecker product, the operator vec stacks the columns of a matrix in a column vector and M(t, A) € R X
is the matrix corresponding to the linear operator

R R”z, vec(E) — vec(L(t, A, E)).

So, we get
(e, A, yo)ll = I(yy ® LIM(E, A)llo if |- [l=1-llyand | - Il =1 - [
and
1 T T
ﬁ”()’o ® I)M(t, A)ll2 < I1£(t, A, yo)ll < Vnll(yy ® L)M(t, A)ll2
g ® I)M(t, A)ll1 < 11£(t, A, yo)ll < nli(yg ® I)M(t, A)ll4
iffl-=1-lyandfl-NI=1- i (7

The condition number (6) corresponds to the standard definition of condition number of a problem (see [13]) and it is
the condition number considered in the papers [9,10]. It is an analog of the matrix exponential condition number in [5,
pag. 9], which is given for the problem (3). The paper [10] used (7) for estimating the condition number.

Finally, we define

K(t,A) := sup K(t, A, yo) (8)
Yo€ERM
Yo#0
as the condition number independent of y, of the problem (2).
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Fig. 1. Spectrum of A partitioned by decreasing real parts.

3. Analysis for A normal

From now on, we consider Anormal, || - || = || - [, and || - || = || - ||,- We write the condition numbers K( - ) defined
in the previous section as Ky( - ).

Let A4, ..., A, be the distinct eigenvalues of A. We partition the spectrum A := {A,...A,} of A (see Fig. 1) in the
subsets

A= A1 Mg Mh J=1..0.0,
where 0 = ip < iy < -+ < ig = p, by decreasing real parts: we have
Re(Aj_,+1) =Re(Aj_j42)=---=Re(Aj) =1, j=1,...,4q,
with

r>ry>- >

For A; € A, let P; be the orthogonal projection on the eigenspace of A;. Forj=1,..., ¢, let
Q=) P
Ai€Aj

3.1. The condition number K, (t, A, yo,ﬁ) with direction of perturbation

The next theorem provides an expression for K (t, A, yo,ﬁ).

_Eh o (e e )
VEL @ [ogoll,)’

and for the numerator in (9) we have
2
2)

t
Z <e(rJ e (/ e—sA’gesAds)y‘o
0

Z Z (t, Aiy Ak P,BPkyo , (10)

Theorem 3.1. We have

Kx (t, A, yo. B) 1Al 9)

Aj€A AgeA
where, for A; € A, withje {1,...,q}, and Ak € A,
t
C(t, Aiy M) == e(rf’”)f/ elk=ris g (11)
0



Proof. By recalling (5), we write

H et fot e~"BesAdsy, 0
2

K (¢, A, yo,B) = IAll, -

5ol

Since A is normal, we have, for u € R",

le%ull = | Y etPu|l = |3 (lett||Pul,)’ =

A€EA 2 AiE€EA
Thus
t N t R 2
erA/ e—sABesAdsj;O — Z (erjt Q_] (f e*SABeSAdS) 370 )
0 2 j=1 0 2
and

q

Hem?o Hz = Z (erjt ”QJ?O ”2)2

j=1

and then we obtain (9).
By the orthogonality of the projections Q;,j =1, ..., q, we get

q 2
3 <e<rfmr )
2

j=1

t
Q; / e~sABesAdsy,
0

q

t
= Ze(rf’”)tQj / e~"Be*Adsy,
0

j=1 2

Now, by decomposing the matrices e~ and e* as

p p
e =) e P and e =) P,
i=1 k=1

we obtain (10). M

The next proposition concerns the functions C(t, A;, 1) defined in (11).

Proposition 3.1. Letj,l e {1,...,q}, let }; € Aj and let A € A, Let
Ai=1+~v—=lw; and Ay =1+ —lwy

be the cartesian forms of the complex numbers A; and A, where /—1 denotes the imaginary unit.
Ifj <, then

IC(t, Mgy Ag)| < e(i=mte,
Ifj > 1, then
[C(t, Ag, Ag)] < e,
If Xi # Ay, then
e(1=rtev/ =Tt _ glrj—r)t
e — A

C(t, A, Ai) =

If &i = Ay, then
C(t, i, M) = eli—ri,

t
< / el ds
0

Proof. We have

t
/ Vs g
0




and then

t
(¢, Ay ha)| < e('f’”)‘/ el ds < (=Tt
0

forj <land

t
IC(t, Ai, A)| < e(rf_”)t/ e ds < e(ir)te(n=r)ty < ei=rnte,
0

forj> 1L
If A; # Ak, we have

t (A=At _
e 1
f eM—rids gg —
0

Ak — A
and then
(A=At _
ey € 1
Clt, Ay dg) = 7
Ak — A
1)t o/~ T (o —p)t
— elli—rkt e(n—n)t eV =Tt _
Ak — A
e(=rDt v/ =T(wg—wt _ plrj—r1)t
B A — A

If X; = Ay, we have

t
/ eMHilds = ¢
0

and then

Ct, A, Ap) = et

Remark 3.1. Letj,le{1,...,q}, let A; € Aj and let Ay € A;. The previous proposition shows that:
e if j > 1and [ > 1, then C(t, A;, A) vanishes as t — +o00;
e if j=1orl=1)and A; # A, then C(t, A;, Ax) is a bounded function of t > 0 and it does not vanish as t — +o0;
eif(j=1orl=1)and A; = Ay, i.e.j =1=1 and A; = A, then C(t, A;, Ax) = t.

3.2. The condition number Ky(t, A, yo)

The next theorem gives lower and upper bounds for K;(t, A, yo).

Theorem 3.2. We have the lower bounds

Ky(t, A, yo0) = llAll, t (12)
and
max;, D (t, Ai, M) IPye
Kz(t,A, yo) > Al,kkeA| ( i k)| “ k};O”z ||A||2 , (13)
VEL 0 agol,)
where

C (t, Aj, A) if A is real
D(t, ki, d) = B
L2 (C(t, Ay M) + CCE, Ay 7)) i A is not real.

Here Ay denotes the complex conjugate of Ay.
Moreover, we have the upper bound

Ve Doen 1 20 20 1P T
VI @ [ool,)?

Proof. The first lower bound (12) follows by putting§= Iin (5) or (9).

Ky(t, A, o) <

Al - (14)
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Now, we prove the second lower bound (13). We show that

C(t, A, \)PBPJo || > D(t, ha, 2| 1P 15
sup. > >t i, MOPBP = max D (¢ A o)l [Psollz (15)
||E||2:1 Ai€A AREA 2

holds for (9)-(10). Fix Aq, Ay € A with Pyyg # 0. We consider the four cases:

A A; and Ay are real;

B A4 is not real and A, is real;
C Aq is real and A, is not real;
D Aq and Ap are not real.

When A, is not real, let Az, where a € {1, ..., p} \ {a}, be the eigenvalue which is the complex conjugate of .. Similarly,
when A, is not real, let Ay, where b € {1,...,p} \ {b}, be the eigenvalue which is the complex conjugate of Aj.
In the case A, consider a unit vector v € R" (i.e. |[v], = 1) such that P,v = v and consider the direction of perturbation

~ _{ Py, \"
()
1Psyoll»

For Ay € A, we have

o~ ~ ij’\o i ~ 1 ~\Hp=~\~
BPyo = U( —= ) Piyo = ———— ((Pv¥o)” Pyo)v
IPyoll, ) " IPsYoll ( )
_foifk#b
= \IPsYoll, D if k = b.
Thus
>3t hi MOPBPFo = IPYoll Y, C(E, iv Ap)PD
Ai€A AEA rEA
= [IPsYoll, C(t, A, ApJU
and then
D>t A MPBPFo| = [Pl IC(t, Aa, 2p)]
Aj€A AkeA

2
= |IPYoll ID(t, A, Ap)l -

In the case B, consider a unit vector v € R" such that (P, + P;) v = v and consider the direction of perturbation

~ _{ Py, \"
B =Y ( lﬁ,o )
IPsYoll»

We have
Z Z C(t, A, M)PBPFo = [IPsYoll, Z C(t, Ai, Ap)PV
ri€A AgeA rEA
= [IPsYoll; (C(t, A, Ap)PaV + C(t, Ag, Ap)Pg0)
and then
Z Z C(t, i, Me)PBPYo
A€A AREA

2
= IPsYoll IC(t, Aa, Ap)Pa¥ + C(t, Ag, Ap)PaVll

= 1PFolla / 1C(t. s 2o )P IPGBIZ + C(t. A 2) 1P
= [IPsFoll; IC(t. Aa. 25)| = IPsFollz ID(E, Aa 1))

where the second last = follows since C(t, A4, Ap) and C(t, Ag, Ap) are complex conjugate.
In the case C, consider a unit vector v € R" such that P,u = v and consider the direction of perturbation

gzﬁ(wpﬁ%y,

[ (P> +P5) Yo ,




For A, € A, we have
Oifk#bandk #b

~ IPsYol  ~.op
BPJo = { Trrrpol, * 1K =D

~ 112
B L )
Il (Ps-+P5)ol

Since
~ 2 2 . .
IPsyol + [P5Jo]l, = [ (Po +P5)Fo[l; and 1IPsFoll, = | Ps¥ol,
we get
~ Oifk£bandk #b
BPkyOZ{ﬁ ;i . # _
= IPpyollvif k=bor k=b.
Thus
> >t i, mOPBPFo
Ai€A AkeA
Y2 b0l 37 (CCt ki hp) + CCE. A A7) PO
ri€EA
V2o R
=5 IPsYoll (C(t, Aas Ab) + C(t, Aq, 25)) D
and then

V2o
>3 (e, mi. MOPBPFo :7||Pbyo|||C(r,xa,xb)+ca,xu,xg)|

Aj€A AkeA
= |IPsYoll ID(t, Aq, Ap)l -

In the case D, consider a unit vector v € R" such that (P, + P;) v = v and consider the direction of perturbation

- A< (Py + P5) Fo )”
B=v| =
[ (s + P5) ol ,

We have
YY"t A A)PBPFo
Ai€A AEA
V2o _
= - IPeJollz Y (Lt 2 A) + L. 2. 25)) PD
AEA
f
= > IPsYoll,
((C(t, has Ap) + C(E, Xa, A5)) Pa¥ + (C(t, Ag, Ap) + C(t, Ag, Aj)) Pav)
and then
D> e, hi MOPBPFo
AE€EA AKEA
V2o
=5 IPvyoll,

2 ~ 2 ~
VIO Rar 2) + CCE, 2, 350 1PN + |CCt, A, 2) + CCE, 2, 35) 1PaDI2

V2o
= = IPolly |C(t, ha, Ap) + C(E, 2oy 25)
= [IPsYoll ID(t, Aa, Ab)I .

where the second last = follows since C(t, Aq, Ap) + C(t, Aq, Af) and C(t, Ag, Ap) + C(t, Ag, A7) are complex conjugate.
Now, (15) and then the lower bound (13) follow.



The upper bound (14) follows by observing that

Z Z C(t, M, M)PBP | = ZPiE Z C(t, Ais M )PiYo

Ai€A AkEA rEA AkeA

2 2
2 2
= | Y IPB| > ct.anmdPFo || = | DDt A AP0
rieA AkeA MEA [|AkeA
2 2
= >3 71Ct A P IPFl?.
Aj€A AkeA

Let j* be the minimum index j € {1, ..., q} such that Q;yo # 0. The next theorem gives neater bounds for Ky(t, A, yo).

Theorem 3.3. We have

~ —Ipx )t
Ko(t. A yo) = max D (t, ki, Aol IPFollz 1Al <)
i

4q :
)\ker:j* 4j

and
VA
Ka(t, A, y0) = 00 Al el
[ @0l
In the generic situation j* = 1 for y,, we have
A2 ¢ < Ka(t, A, yo) < |AA| Al t.
1Q1Yoll,

Proof. By the lower bound (13), we obtain
max  xea D (t, Ai, M)l [IPoll
’\kGU;I:j* A

I (@ ao],)?

—TIx )t s
= ) max 1D A 201 IOl 1AL
1
'AkEU}]:j* 4

I<2(t7 Aa J/O)

%

A1l

By the upper bound (14) and
[C(t, Ai, M) < tforall Aj, Ay € A (16)

(see Proposition 3.1), we obtain
VEes Toen € 1Pl

JEL (@ Jogol,)?

VIAl
= llAll €

JEL @ ogoll,)
V14|
o3l

For j* = 1 use the lower bound (12). =

I<2(t7 As yo)

IA

Al

A, e~ ¢

The previous theorem shows a linear growth in t of Ky(t, A, yo) for j* = 1 and an exponential growth in t of K(t, A, yo)
for j* > 1 (observe that

max  [D(t, Ai, 2| IIPYoll
eyt
Ang;':j* Aj

does not vanish as t — +oo: remind Remark 3.1).



Remark 3.2. In the situation j* > 1, Ky(t, A, yo) can be arbitrarily larger than the lower bound (12), due to the exponential
growth in t of the condition number. For q > 1, K5(t, A, yo) can be arbitrarily larger than the lower bound (12) also in the
situation j* = 1.
In fact, for g > 1, the lower bound (13) gives
max sea; D (t, A, M) IPYoll

AgEA\A]

JZL (@ Jool,)?

and the right-hand side of this inequality is a continuous function of ||QJo||,, whose value for ||Q{Jo ||z = O is not smaller
than

Ky(t, A, yo) =

All2

e 712" max |D (t, A, Av)| IPoll; 1A -
A

ApEeA\Aq
Hence, fixed t > 0, for any ¢ € (0, 1) we have

Ka(t, A, yo) > ce1 2" max ID(t, Ai, M| IIPYoll2 1Al

AgEA\A

for |Q1Yoll, sufficiently small.
This proves what follows. Consider y, with fixed projections Pyyg, Ay € A\ Aq. For any M > 1, there exists t > 0 such
that

folt A yo)
Al t
for ||Q¥oll, sufficiently small.

The next results concern the case ¢ = 1, namely the case of shifted skew-symmetric matrices.

Theorem 3.4. If q = 1, i.e. A is a shifted skew-symmetric matrix, then

K(t, A, yo) = [IAllp t.

Proof. For A shifted skew-symmetric, i.e. A = ol 4+ S for some @ € R and S € R™*" skew-symmetric, by (9) we get

t t
f e~ " Be"dsy, / e A Be*Ads
0 0
Now,

t t t
/ e "Beds = f e e~ BeeSds = / e~ BesSds
0 0 0
and then
t t
| emeras) < [ e, B, |5, ds =0
0 2 0

since e~ and e* are orthogonal matrices. Thus

Ky(t, A, yo, B) < ||All, t.

-~

I<2(t7 As Yo, B) =

lAll2 =
2

Al -
2

We conclude that
Ka(t, A, yo) < llAllp t.
The thesis follows by recalling the lower bound (12). ®
When yq stays in the rightmost eigenspace, we have the same situation of the case ¢ = 1, namely the condition number
is equal to ||A]|2t.
Theorem 3.5. If Q1Yo = Yo, then
K(t, A, yo) = lIAlly t.
Proof. Assume Q1Yo = Yo.

In our discussion we are assuming that A is a normal real matrix, but (9)-(10) also holds when A is a normal complex
matrix.
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So, now, we consider the case where A is a normal complex matrix with a unique complex eigenvalue A; as rightmost
eigenvalue. Since QYo = P1yo = Yo, We have, for the numerator (10) in the right-hand side of (9),

Z Z C(t, M, M)PBP | = Z C(t, Ai» A1)PiBYo

A€EA AREA AEA

2 2

-~ 2 -~
= Z IC(t, A, M) | PiBYo |, < t[|BYo, < ¢
rieA
by recalling (16). Thus, since the denominator in the right-hand side of (9) is 1, we obtain

Ky(t, A, yo, B) < [IAll2 t. (17)

Now, we pass to consider the case where A is a normal real matrix. Fix a direction of perturbation B. For any ¢ > 0,
there exists a normal complex matrix A, such that A, has a unique complex eigenvalue XA; as rightmost eigenvalue,

|[Ka(t, A, yo0. B) — Ko(t, As, y0. B)| < &
and
1A = All, < e.
Thus
Ka(t, A, yo. B) = Ky(t, A, Yo, B) — Ka(t, Ac. Yo, B) + Ko(t, A;. Yo, B)

e+ [lAellt by (17)
e+ et + ||All2t.

=
=

Since ¢ is arbitrarily small, we obtain
Ka(t. A, yo. B) < |IAllot.
By using the lower bound (12), K(t, A, yo) = ||Al|2t follows. This is also true when A is a normal complex matrix. ®

Observe that now Theorem 3.4 becomes a corollary of Theorem 3.5.
3.3. The condition number K;(t, A) independent of yq
The next theorem gives lower and upper bounds for K;(t, A).

Theorem 3.6. We have the lower bound
Ko(t, A) = max D(t, 2, 2l 1Al e, (18)
»\kleAq

Moreover, we have the upper bound

Ka(t, A) < \/gklg D IC(t, 2y 1P A e (19)
rieA

Proof. First, we prove the lower bound. For any A, € Ag, consider yo 7# 0 such that Pyyo = yo. By (13) we have

maxyea [D (L, Aj, Ag) |

Ky(t, A) = Ky(t, A, yo) = o

Al -

Now, we prove the upper bound. For the numerator in (14), we have

o> et a M) IPFol* < [max Y " 1C(E, A, a)l
AKEA oy

Ai€A AEA

and for the denominator we have

q

> (e |ogl,) z . -

j=1

The previous theorem shows that K;(t, A) grows exponentially in t for ¢ > 1. Since (16) holds, the upper bound (19)
gives this other neater upper bound.
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Theorem 3.7. We have
Ky(t, A) < /IA] [|All, e ¢

4. Asymptotic analysis

In this section, we study the asymptotic behavior of the three condition numbers K;(t, A, yo,ﬁ), Ky(t, A, yo) and Ky(t, A),
as t — 4-o0.
We use the following notations.

e Let j* be the minimum index j € {1, ..., q} such that Q;yo # 0. This index has been already introduced in Section 3,
just before Theorem 3.3. .

e Let j** be the minimum index j € {1, ..., q} such that Q;BPyyo # O for some k € {1, ..., p}.

e For A; € Ajand A € A, where j,l € {1,...,q} withj <, let

Coo (Miy Ag) == .
oo(z k) )Li_)hk

e For A; € Ajand A € A, where j,l € {1,...,q} withj > [, let
e«/*](wk—wi)t
Coo (E, Aiy Ag) = —,
o0 ( i k) )»k — )\i

where w; and wy are the imaginary parts of A; and A, respectively, and 4/—1 is the imaginary unit.
e For A; € Ajand A, € A, where j,l € {1,...,q} withj <, let

Coo (M, Ag) if Ay is real
Deo (A, Ak) == o
2 (Cag (hir 1) + Coo (s 1)) if A is ot real.
o f(t)~ g(t), t — +oo, stands for
f(e)

m
t—+oo g(t)

o f(t) < g(t), t > +o0, stands for
f(t) < h(t), fort sufficiently large,
and
h(t) ~ g(t), t - +o0,
for some function h(t). Similarly, f(t) > g(t), t — +o0, stands for
f(t) = h(t), for t sufficiently large,
and
h(t) ~ g(t), t - +o0,
for some function h(t).
The next proposition, which is a trivial consequence of Proposition 3.1, describes the asymptotic behavior, as t — +o0,
of the functions C(t, ;, Ay) defined in (11).
Proposition 4.1. Letj,l e {1,...,q}, let A; € Aj and let Ay € A,
Ifj < I, then
C(t, Ay M) ~ eTTIC (A, Ag), t — o0
Ifj > I, then
C(t, Ay M) ~ eTTVEC (8, Ay Ag), t — +00.
Ifj =1land A; # Xk, then
C(t, his i) = e(ff—ﬁ)feﬁ::ka_], t>0.
Ifj = land A; = Ay, then
C(t, Ay A) = e £ > 0.
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4.1. Asymptotic analysis of the condition number Ky(t, A, yo, ) B) with direction of perturbation

The next theorem describes the asymptotic behavior of Ky(t, A,yo,E), as t — 4o0.
Theorem 4.1. If j** < j*, then

H ZkieAj** Z?:j* 2 i Coo (hiy 1) P;BPYo H
|3l

+o(e™ )t — +o0.

K (t, A, yo, B) = 2 ||A|| el T

If j** = j*, then

H ZA,-EAJ-* P;B\P,-j/‘o H
[[URZ] B

Ky(t, A, yo, B) = 2 |Ally t + o(t), t — +o0.

Ifj** > j*, then

H Zf:j** ineAj Zkkmﬁ Coo (t, Mis M) PBPJo ”

1Q+Yoll2
4o(1), t —> +o0. (20)

Ka(t. A, yo.B) = 21112
Proof. We write (9)-(10) as
H Z_?:j** Z)\iGAj Z?:j* ZMEAI C(t7 )‘-h )‘-k)PfEPkTy\O H
_ —~ | \2
VZL (€ ool

Consider the numerator in (21). If j** < j* then, by Proposition 4.1, the major contributory terms C(t, A;, 1) as
t — 400 are obtained for j = j** and then

Z > Z > C(t, 2, A)PBPFo

J=* A€ A; I=* AeA

= el | 3 Z Y Coo (4, 1) PBPo

Ai€Apex I=j* e

Ka(t, A, yo, B) = 2 Al - (21)

+o(el** 7)), t — 400.

If j** = j*, then the major contributory terms C(t, A;, A¢) as t — +o0 are obtained for j = [ = j* and A; = A, and then

Z Z Z Z (t, }\17)\I<)P13Pky0

J=i** AeA] I=* AgeA

= el ¢ Z P,-ﬁP,»j/\o +o0 (e(ri* _rl)[t) , t —> +o0.
Aie/\j* 2

If j** > j*, the major contributory terms C(t, A;, Ax) as t — +oo are obtained for [ = j* and then

Z Z Z Z (t, }\17)\I<)P13Pky0

J=i** EA] I=* Aged

= ellr 1t Z Z Z Coo (£, Aty Ax) PBPJ0 +o(e“* nty

J=I** M€ Aj A€ Ajx
t — +o0.

13



Consider the denominator in (21). The major contributory term as t — +oo is €/~ Q3o |, and then
q
(e Qo l,)” ~ € T Qo] £ oo,
=

Now, the theorem follows. [ |

Remark 4.1. Observe that the generic situation for the initial value yy and the direction of the perturbation Bis =1,
7 =1and

> PBPY, #0,

Ai€Aq

where we have

|
Ky(t, A, yo, B) ~ W All, t, t = 4o0.
1 2

In the non-generic situation j* > 1 or j** > 1, the previous theorem shows that:
o if j** < j* and
q —~
Z Z Z Coo (Ai, M) PiBPYo # O,
A€ A I=j* Age

then Ky(t, A, y0,§) grows exponentially in t as t — +o0:

-~ H Zkie/\j** ?:j* Zxke/\, C ()"iv Ak) PiBPk?O H2

Ky(t, A, yo, B) ~ [050] [|A]l, =Tt
ol

t - +o0;

e if j** = j* and

Z PBPJ, # 0,

A€

then Kz(t,A,yo,§) grows linearly in t as t — 4o0:

”ZkieAj* PBPJo H
|3l ,

-~

e if j** > j* then Ky(t, A, yo, B) oscillates (due to the terms Coo(t, Ai, Ag) in (20)), but it remains bounded as t — +oc.

Kz(f,A,J’O,E) ~ 2 Al t, t — 4o0;

4.2. Asymptotic analysis of the condition number Ky(t, A, yo)
The next theorem describes the asymptotic behavior of K5(t, A, yo), as t — +oo.

Theorem 4.2. Ifj* = 1, we have
Ky(t, A, yo) ~ [IAllp t, t — +oo. (22)
If j* > 1, we have the asymptotic lower bound
max wed; Do (Ai, )| IPYoll2

»\keUJ‘?:j* 4
lQTol,
t > 400 (23)
and the asymptotic upper bound

\/Z;I:j* Z)LkeAl (ZME/\] |Coo ()"iv )\k)|2) ”ij?O”2

|Qol,
t — 4o0. (24)

14
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Proof. We write the right-hand side of the upper bound (14) as
VI Y e Loen [CE 2 2P IPGo P
L o~ 2
VL @ ool

Suppose j* = 1. The major contributory terms C(t, A;, Ax) as t — 4o¢ in the numerator of (25) are obtained for
j=1=1and A; = A, and then

q q
SN jete a0 1Pl

J=1 A€ I=* AeA
~tlQiyolly, t — +oo.

ALl - (25)

The major contributory term in the denominator of (25) is [|Q;Yoll, and then

q
3 (e |Q,)” ~ 1QiToll; .t — +oc.
j=1

Thus
Ky(t, A, y0) S lAlx t, t — +oo.

Now, (22) follows by the lower bound (12).
Suppose j* > 1. The major contributory terms C(t, A;, Ax) as t — +o0 in the numerator of (25) are obtained for j = 1
and then

q q
3NN jete a0 1Pl

J=1 AjeAj I=j* AeA

Z DD G AP ) 1Pl ¢ — oo

I=j* rpeA] \rieAq

The major contributory term in the numerator of (refeqrefeqref) is e """ | Q3o |, and then

q
> Qgo]l,)” ~ e T QT £ oo
j=1

Now, the asymptotic upper bound (24) follows.
Finally, we prove the asymptotic lower bound (23). By the lower bound (13), we have

max wea  |D(t, A, M) IPJoll,
UL 4
Ka(t. A, yo) = = 1Al -

JEL (e o)

By Proposition 4.1, we obtain

max (D (t, Ai, Al IPYoll, ~ max IDoo (A M| IPYoll2 £ — 400.
)‘keu *Aj )‘kEU *A]

Thus

max yea  [D(t, A, M) 1Pl
AkGU}Lj* Aj

JEL @ [og,)?
max xea;  [Doo (Ais M| 1Pl

*\kGUL* 4]
~ Al , t = o0,

e ) o]

and the asymptotic lower bound follows. W

Al

15



Remark 4.2. The generic situation for the initial value y, is j* = 1, where we have the asymptotic behavior (22).

It is interesting to observe that, for the problem (3), the condition number relevant to the norm || - || = || - ||, on R™"
is ||All, t in case of a normal matrix A (see [4]). So, asymptotically as t — +oo, the condition numbers of the problems
(2) and (3) are equal for a normal matrix in the generic situation j* = 1 for yj.

Remark 4.3. In the non-generic situation j* > 1 for yq, the previous theorem says that

Ky(t, A, yo) = 0 (e(”’rf*>‘> , = 400
_ =0 <e7(r17rf*)t> , t = +oo0.
K (t, A, yo)

We also have

log Kx(t, A, yo) ~ (r1 — 1) £, t > ~+o0.
4.3. Asymptotic analysis of the condition number K;(t, A) independent of yq
The next theorem describes the asymptotic behavior of Ky(t, A), as t — +o0.

Theorem 4.3. We have the asymptotic lower bound
Ko(t, A) 2 max |Dac(hi, 2)] 1411, €17, ¢ — o0,
AkEAq
and the asymptotic upper bound
Ky(t, A) < |IA]l, et £ — 400,

Proof. By the lower bound (18), we have
Ko(t, A) = max |D(t, i, 1)l 1Al (1770
»\kaq
~ max |Doo(i, )] Al e 710)", £ — oo,
i€41

AgE€Aq

By the upper bound (19), we have

K(t,A) < [max Z |C(t, A, )Lk)|2 1Al elr—rq)t
AKEA oy

~ |IAll, €M7t —> 400. W

Remark 4.4. The previous theorem says that

Ko(t,A)=0 (e(rl‘rq)tt) , t— +00
1
Ky(t, A)
We also have

=0 (e*(”*rq)f) .t — +oo.

log Kx(t, A) ~ (r1 —rg) t, t — +o0.
5. Numerical tests

The numerical tests involve the condition number K;(t, A, yo). We consider skew symmetric matrices in Example 5.1,
with the aim to confirm Theorem 3.4, and symmetric matrices in Example 5.2, with the aim to confirm Theorem 4.2.

Example 5.1. Consider the following two cases of a skew symmetric matrix A in (1):
e the 2 x 2 matrix
0 3
=[5

which has the pair of pure imaginary eigenvalues +3+/—1;

16



e the 4 x 4 matrix

0 2 -1 3
-2 0 -4 1
A=1 1 4 o0 2
-3 -1 =2 0

which has the two pairs of pure imaginary eigenvalues +5.79134/—1 and +1.2087/—1.

In Fig. 2, for both the skew symmetric matrices and for any ¢t in a uniform mesh over the interval [0, 50], we plot the
maximum of the values
$9° Ky(t, A y0.B)

= +o(1), e = 0, (26)
Al ¢ Al ¢

over 10000 random selections of the matrix B. We consider the initial values Yo = (1,2) for the 2 x 2 matrix and
yo = (1,2, 3, 4) for the 4 x 4 matrix. We take ¢ = 1074,

For both matrices, as t varies, the maximum of the values (26) is always close to 1, confirming Theorem 3.4.

For the matrix 2 x 2, we observe a slight deviation from 1 as t increases. This is due to the error o(1), as € — 0, in
(26).

The maximum values for the 2 x 2 matrix are closer to 1 than the maximum values for the matrix 4 x 4. This is due
to the fact that much more than 10 000 random selections of the matrix B are necessary for having maximum values very
close to 1, in case of the matrix 4 x 4.

Example 5.2. Consider the following two cases of a symmetric matrix A in (1):

e the 2 x 2 matrix

-2 1
=)

which has the eigenvalues —1 and —3;
e the 4 x 4 matrix

-1 2 1 0
2 -1 0 -1
1 0o -1 =2}’
0o -1 -2 -1

A=1/2

which has the eigenvalues 1, 0, —1 and —2.

In Fig. 3, for both the symmetric matrices and for any t in a uniform mesh over the interval [0, 15], we plot the
maximum of the values (26) over 10 000 random selections of matrix B. We consider the initial values y, = (1, 2) for the
2 x 2 matrix and yo = (1, 2, 3, 4) for the 4 x 4 matrix. For such initial values we have j* = 1 (the index j* is defined at
the beginning of Section 4). We take ¢ = 1074

For both matrices, as t varies, the maximum of the values (26) tends asymptotically to 1, after an initial hump. This
confirms Theorem 4.2, case j* = 1. About the initial hump, see Remark 3.2.

In Fig. 4, for the 2 x 2 matrix and for any ¢ in a uniform mesh over the interval [0, 15], we plot the maximum of the
values (26) over 10 000 random selections of matrix B, when the initial values are yq = (1, 1), which is eigenvector of the
rightmost eigenvalue —1, and yo = (1, —1), which is eigenvector of the other eigenvalue —3. We take ¢ = 1074,

For the initial value yo = (1, 1), as t varies, the maximum of the values (26) is always close to 1. Since yq stays in the
rightmost eigenspace, we have the same situation of the case ¢ = 1, namely the condition number is equal to ||A||»t (see
Theorem 3.5).

For the initial value yo = (1, —1), as t varies, the maximum of the values (26) does not tend asymptotically to 1, but
it grows indefinitely, by confirming Theorem 4.2, case j* > 1.

In Fig. 5, for the 4 x 4 matrix and for t in a uniform mesh over the interval [0, 15], we plot the maximum of the values

108% _ log Ky(t, A, yo, B)
(r — )t (r — )t

+0(1), e - 0, (27)

over 10000 random selections of matrix B. We consider the initial values Yo = (1,1, —1, 1), which is eigenvector of
the eigenvalue 0, yo = (—1, 1, —1, —1), which is eigenvector of the eigenvalue —1, and yg = (1, —1, —1, —1), which is
eigenvector of the eigenvalue —2. For these three initial values, we have j* = 2, 3, 4, respectively.

For all initial values, as t varies, the maximum of the values (27) tends asymptotically to 1, by confirming Remark 4.3.
In the lower part, the final red points at the right are numerical artifacts.
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Fig. 2. For the skew symmetric matrices of Example 5.1, maximum value of HAEth over 10000 random selections the matrix §, for any t varying

from 0 to 50 with step 0.5. The maximum values are the red points. The blue line is the constant value 1. Upper part: 2 x 2 matrix. Lower part:
4 x 4 matrix.

We conclude this section by illustrating the procedure of the random selection of the matrix E namely the random
selection of the direction of perturbation.
Fixed the order n of the matrix, we construct the Singular Value Decomposition

B=UTV
of the matrix B, where U and V are n x n randomly selected orthonormal matrices and T is a n x n diagonal matrix with

diagonal (0, 09, ..., 0,), where oy = 1and o3, ..., o, € [0, 1] are randomly selected. Our computations are implemented
in MATLAB and, for the random selections of U, V and T, we use:

U = orth(rand(n))
V = orth(rand(n))
T = diag([1, rand(1, n — 1)]),

18
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Fig. 3. For the symmetric matrices of Example 5.2, maximum value of —— over 10000 random selections of the matrix B, for any t varying from
lIAlI2

0 to 15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: 2 x 2 matrix. Lower part: 4 x 4
matrix.

where the MATLAB function orth(C) computes a matrix whose columns are an orthonormal basis of the range of C, and
the MATLAB function rand(p, q) computes a p x q matrix of uniformly distributed elements in [0, 1].

A~

By constructing the matrix B as

B

B=——),
1Bl

where B is obtained in MATLAB by
B = rand(n, n),

does not give good results, since this procedure misses some directions of perturbation.
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Fig. 4. For the 2 x 2 symmetric matrix of Example 5.2, maximum value of HAEth over 10000 random selections the matrix B, for any t varying

from 0 to 15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: yo = (1, 1). Lower part:
Yo =(1,-1).

6. Conclusion

In this paper, we have studied the conditioning of the problem
A ey,

namely how a perturbation in the matrix A € R™" propagates to e®y,. We have considered the case of a normal matrix
A, perturbed to a possibly non-normal matrix, and three condition numbers have been analyzed:

e the condition number Ky(t, A, yo,ﬁ) with direction of perturbation defined in (4);
e the condition number K5(t, A, yo) defined in (6);
e the condition number Ky(t, A) independent of y, defined in (8).
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Fig. 5. For the 4 x 4 matrix of Example 5.2, maximum value of (log < over 10000 random selections the matrix B, for any t varying from 0 to

=T )
15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: yo = (1, 1, —1, 1) and j* = 2. Middle
part: yo =(—1,1,—1, —1) and j* = 3. Lower part: yo = (1, —1, —1, —1) and j* = 4.

The spectrum of the normal matrix A has been partitioned by decreasing real parts in the subsets A, ..., Aq, where
the eigenvalues in Aj,j=1,..., g, have real part rj, and r; > - - - > r4 holds. We have denoted by j* the minimum index
in {1, ..., q} such that y, has a non-zero component on the sum of the eigenspaces relevant to the eigenvalues in A;. The
generic situation for yq is j* = 1.

Regarding the condition number K5(t, A, yo), we have obtained the following results:

o if A is shifted skew-symmetric, then Ky(t, A, yo) equals ||A||»t.

e If A is not shifted skew-symmetric and j* = 1, then K;(t, A, yo) asymptotically, as t — +o0, equals ||A||,t.

e If A is not shifted skew symmetric and j* > 1, then Ky(t, A, yo) grows exponentially in t and logK;(t, A, yo)
asymptotically, as t — +o0, equals (rq — rj)t.
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Regarding the condition number K;(t, A) independent of yy, we have obtained the following result:

e K,(t, A) grows exponentially in t and log K;(t, A) asymptotically, as t — 400, equals (r; — rg)t.
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