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a b s t r a c t

This paper addresses how perturbations in the matrix A propagate along the solution of
the n-dimensional linear ordinary differential equation{

y′(t) = Ay(t), t ≥ 0,
y(0) = y0.

In other words, for fixed t ≥ 0 and y0 ∈ Rn, we study the conditioning of the problem

A ↦→ etAy0.

We also study the asymptotic behavior of the conditioning as t → +∞. The analysis is
carried out for a normal matrix A.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following linear Ordinary Differential Equation (ODE){
y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

(1)

where A ∈ Rn×n and y(t) = etAy0, t ≥ 0, is the solution. Let ∥ · ∥ be a norm on Rn and let ||| · ||| be a norm on Rn×n.
Suppose A ̸= 0 and A perturbed to Ã with relative error ϵ given by

ϵ =

⏐⏐⏐⏐⏐⏐̃A − A
⏐⏐⏐⏐⏐⏐

|||A|||
.

A perturbation in the matrix A results in a perturbation of the solution y of (1). The perturbed solution is ỹ(t) = etÃy0, t ≥

, with relative error

ξ (t) =

etÃy0 − etAy0
etAy0 , t ≥ 0.

The error ξ (t) is defined for y0 ̸= 0 and it is the error propagated along the solution by the perturbation in the matrix A.
e have ξ (0) = 0.
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Aim of this paper is to study how the error ξ (t) is related to the error ϵ. In other words, we study the (relative)
conditioning of the problem
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A ↦→ etAy0. (2)

There are several papers in literature (see [1–7], and [8]) dealing with the conditioning of the problem

A ↦→ etA, (3)

namely how a perturbation in A affects etA, not etAy0. In these papers, the role of the initial value y0 is not taken into
account and the relative error⏐⏐⏐⏐⏐⏐⏐⏐⏐etÃ − etA

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐etA⏐⏐⏐⏐⏐⏐ ,

ather then ξ (t), is considered.
The conditioning of the problem (2), the topic of the present paper, has received less attention in literature. At the best

f our knowledge there are only the two papers [9,10] on this topic. The paper [9], in order to analyze an algorithm for
omputing etAY0, where Y0 is a matrix, considered the condition number (relevant to Frobenius norms) of the problem
A, Y0) ↦→ f (tA)Y0, where f is matrix function, and obtained a bound for it. The paper [10] presented algorithms for the
omputation of the condition number of the problem (t, A, y0) ↦→ f (tA)y0. On the other hand, the present paper does not
onsider the computational aspects but it is more theoretical, since it is interested to a qualitative analysis of the condition
umber of the problem (2): it studies how this condition number depends on the parameters time t and initial value y0.
lso the asymptotic behavior as t → +∞ is considered. Moreover, we also consider a condition number with direction
f perturbation (which can be useful when one wants to analyze not the worst case but an average case, or when some
nformation about the perturbation is known) and a condition number independent of y0.

After the introduction of the condition numbers of the problem (2), defined for a general matrix A and general norms
· ∥ on Rn and ||| · ||| on Rn×n, their analysis is done for A normal, ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2. By assuming A normal,
e can take advantage of the orthogonality of the eigenspaces and then give explicit expressions for the condition numbers
hen ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2. Anyway, we remark that the class of the normal matrices includes the important

amilies of the symmetric matrices and the shifted skew-symmetric matrices.
A qualitative theoretical analysis of the conditioning of the problem y0 ↦→ etAy0, for A normal and ∥ · ∥ = ∥ · ∥2, was

ccomplished in [11].
Here is the plan of the paper. In Section 2, we introduce the condition numbers of the problem (2). For A normal,

· ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2, we analyze such condition numbers in Section 3 and we study their asymptotic behavior
s t → +∞ in Section 4. Finally, in Section 5 we present some numerical tests and conclusions are given in Section 6.

. The condition numbers

We specify the perturbed matrix as

Ã = A + ϵ|||A|||̂B,

here B̂ ∈ Rn×n with
⏐⏐⏐⏐⏐⏐̂B⏐⏐⏐⏐⏐⏐ = 1 is the direction of the perturbation.

We define

K (t, A, y0, B̂) := lim
ϵ→0

ξ (t)
ϵ

(4)

as the condition number with direction of perturbation B̂ of the problem (2).
The next Theorem gives an expression for such a condition number.

Theorem 2.1. We have

K
(
t, A, y0, B̂

)
=

L (t, A, B̂
)
ŷ0
 |||A|||etÂy0 , (5)

where

L
(
t, A, B̂

)
=

∫ t

0
e(t−s)ÂBesAds

and

ŷ0 :=
y0

∥y0∥
.
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Proof. We have

etÃy0 − etAy0 =
(
et(A+E)

− etA
)
y0,
where

E = ϵ|||A|||̂B.

Since (see [12])

et(A+E)
− etA = L (t, A, E) + O(|||E|||

2), E → 0,

where

E ↦→ L (t, A, E) =

∫ t

0
e(t−s)AEesAds, Rn×n

→ Rn×n,

is the Frechét derivative of the map A ↦→ etA, we obtain

ξ (t) =

L (t, A, B̂
)
y0
 |||A|||etAy0 ϵ + O

(
ϵ2) , ε → 0,

and (5) follows sinceL (t, A, B̂
)
y0
etAy0 =

L (t, A, B̂
)
ŷ0
etÂy0 . ■

We define

K (t, A, y0) := sup
B̂∈Rn×n

|||̂B|||=1

K
(
t, A, y0, B̂

)
(6)

as the condition number of the problem (2).
We have

K (t, A, y0) =
∥L(t, A, y0)∥|||A|||

∥etAy0∥
,

where L(t, A, y0) : Rn×n
→ Rn is the linear operator given by

L(t, A, y0)E = L(t, A, E)y0, E ∈ Rn×n,

and ∥L(t, A, y0)∥ is the operator norm relevant to the norms ||| · ||| on Rn×n and ∥ · ∥ on Rn. Observe that

L(t, A, E)y0 = (yT0 ⊗ In)vec(L(t, A, E)) = (yT0 ⊗ In)M(t, A)vec(E),

where ⊗ is the Kronecker product, the operator vec stacks the columns of a matrix in a column vector andM(t, A) ∈ Rn2×n2

is the matrix corresponding to the linear operator

Rn2
→ Rn2 , vec(E) ↦→ vec(L(t, A, E)).

So, we get

∥L(t, A, y0)∥ = ∥(yT0 ⊗ In)M(t, A)∥2 if ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥F

and
1

√
n
∥(yT0 ⊗ In)M(t, A)∥2 ≤ ∥L(t, A, y0)∥ ≤

√
n∥(yT0 ⊗ In)M(t, A)∥2

∥(yT0 ⊗ In)M(t, A)∥1 ≤ ∥L(t, A, y0)∥ ≤ n∥(yT0 ⊗ In)M(t, A)∥1

if ∥ · ∥ = ∥ · ∥1 and ||| · ||| = ∥ · ∥1. (7)

The condition number (6) corresponds to the standard definition of condition number of a problem (see [13]) and it is
the condition number considered in the papers [9,10]. It is an analog of the matrix exponential condition number in [5,
pag. 9], which is given for the problem (3). The paper [10] used (7) for estimating the condition number.

Finally, we define

K (t, A) := sup
y0∈Rn
y0 ̸=0

K (t, A, y0) (8)

as the condition number independent of y0 of the problem (2).

3
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Fig. 1. Spectrum of A partitioned by decreasing real parts.

3. Analysis for A normal

From now on, we consider A normal, ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2. We write the condition numbers K ( · ) defined
n the previous section as K2( · ).

Let λ1, . . . , λp be the distinct eigenvalues of A. We partition the spectrum Λ := {λ1, . . . λp} of A (see Fig. 1) in the
ubsets

Λj := {λij−1+1, λij−1+2, . . . , λij}, j = 1, . . . , q,

where 0 = i0 < i1 < · · · < iq = p, by decreasing real parts: we have

Re(λij−1+1) = Re(λij−1+2) = · · · = Re(λij ) = rj, j = 1, . . . , q,

with

r1 > r2 > · · · > rq.

For λi ∈ Λ, let Pi be the orthogonal projection on the eigenspace of λi. For j = 1, . . . , q, let

Qj =

∑
λi∈Λj

Pi.

3.1. The condition number K2
(
t, A, y0, B̂

)
with direction of perturbation

The next theorem provides an expression for K2
(
t, A, y0, B̂

)
.

Theorem 3.1. We have

K2
(
t, A, y0, B̂

)
=

√∑q
j=1

(
e(rj−r1)t

Qj

(∫ t
0 e−sÂBesAds

)
ŷ0

2

)2
√∑q

j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 (9)

and for the numerator in (9) we have√ q∑
j=1

(
e(rj−r1)t

Qj

(∫ t

0
e−sÂBesAds

)
ŷ0


2

)2

=


∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

, (10)

here, for λi ∈ Λj, with j ∈ {1, . . . , q}, and λk ∈ Λ,

C(t, λi, λk) := e(rj−r1)t
∫ t

0
e(λk−λi)sds. (11)
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Proof. By recalling (5), we write

( ) etA ∫ t e−sÂBesAdŝy0


T

a

a

N

w

K2 t, A, y0, B̂ =
0 2etÂy02 ∥A∥2 .

Since A is normal, we have, for u ∈ Rn,

∥etAu∥2 =


∑
λi∈Λ

eλitPiu


2

=

√∑
λi∈Λ

(
|eλit | ∥Piu∥2

)2
=

√ q∑
j=1

(
erjt
Qju


2

)2
.

hus etA ∫ t

0
e−sÂBesAdŝy0


2

=

√ q∑
j=1

(
erjt
Qj

(∫ t

0
e−sÂBesAds

)
ŷ0


2

)2

nd

etÂy02 =

√ q∑
j=1

(
erjt
Qĵy0


2

)2
nd then we obtain (9).
By the orthogonality of the projections Qj, j = 1, . . . , q, we get√ q∑

j=1

(
e(rj−r1)t

Qj

∫ t

0
e−sÂBesAdŝy0


2

)2

=


q∑

j=1

e(rj−r1)tQj

∫ t

0
e−sÂBesAdŝy0


2

.

ow, by decomposing the matrices e−sA and esA as

e−sA
=

p∑
i=1

e−λisPi and esA =

p∑
k=1

eλksPk,

e obtain (10). ■

The next proposition concerns the functions C(t, λi, λk) defined in (11).

Proposition 3.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl. Let

λi = rj +
√

−1ωi and λk = rl +
√

−1ωk

be the cartesian forms of the complex numbers λi and λk, where
√

−1 denotes the imaginary unit.
If j ≤ l, then

|C(t, λi, λk)| ≤ e(rj−r1)t t.

If j ≥ l, then

|C(t, λi, λk)| ≤ e(rl−r1)t t.

If λi ̸= λk, then

C(t, λi, λk) =
e(rl−r1)te

√
−1(ωk−ωi)t − e(rj−r1)t

λk − λi
.

If λi = λk, then

C(t, λi, λk) = e(rj−r1)t t.

Proof. We have⏐⏐⏐⏐∫ t

0
e(λk−λi)sds

⏐⏐⏐⏐ ≤

∫ t

0
e(rl−rj)sds

5
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and then

|C(t, λi, λk)| ≤ e(rj−r1)t
∫ t

e(rl−rj)sds ≤ e(rj−r1)t t

f

f

a

a

R

w

P

0

or j ≤ l and

|C(t, λi, λk)| ≤ e(rj−r1)t
∫ t

0
e(rl−rj)sds ≤ e(rj−r1)te(rl−rj)t t ≤ e(rl−r1)t t.

or j ≥ l.
If λi ̸= λk, we have∫ t

0
e(λk−λi)sds =

e(λk−λi)t − 1
λk − λi

nd then

C(t, λi, λk) = e(rj−r1)t
e(λk−λi)t − 1

λk − λi

= e(rj−r1)t
e(rl−rj)te

√
−1(ωk−ωi)t − 1

λk − λi

=
e(rl−r1)te

√
−1(ωk−ωi)t − e(rj−r1)t

λk − λi
.

If λi = λk, we have∫ t

0
e(λk−λi)sds = t

nd then

C(t, λi, λk) = e(rj−r1)t t. ■

emark 3.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl. The previous proposition shows that:

• if j > 1 and l > 1, then C(t, λi, λk) vanishes as t → +∞;
• if (j = 1 or l = 1) and λi ̸= λk, then C(t, λi, λk) is a bounded function of t ≥ 0 and it does not vanish as t → +∞;
• if (j = 1 or l = 1) and λi = λk, i.e. j = l = 1 and λi = λk, then C(t, λi, λk) = t .

3.2. The condition number K2(t, A, y0)

The next theorem gives lower and upper bounds for K2(t, A, y0).

Theorem 3.2. We have the lower bounds

K2(t, A, y0) ≥ ∥A∥2 t (12)

and

K2(t, A, y0) ≥
maxλi,λk∈Λ |D (t, λi, λk)| ∥Pk̂y0∥2√∑q

j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 , (13)

here

D (t, λi, λk) :=

⎧⎨⎩
C (t, λi, λk) if λk is real
√
2
2

(
C(t, λi, λk) + C(t, λi, λk)

)
if λk is not real.

Here λk denotes the complex conjugate of λk.
Moreover, we have the upper bound

K2(t, A, y0) ≤

√∑
λi∈Λ

∑
λk∈Λ |C(t, λi, λk)|2 ∥Pk̂y0∥2√∑q

j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 . (14)

roof. The first lower bound (12) follows by putting B̂ = I in (5) or (9).

6
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Now, we prove the second lower bound (13). We show that∑ ∑ 
h

W
w

F

W

a

sup
B̂∈Rn×n

∥B̂∥2=1

λi∈Λ λk∈Λ

C(t, λi, λk)PîBPk̂y0
2

≥ max
λa,λb∈Λ

|D (t, λa, λb)| ∥Pb̂y0∥2 (15)

olds for (9)–(10). Fix λa, λb ∈ Λ with Pby0 ̸= 0. We consider the four cases:

A λa and λb are real;
B λa is not real and λb is real;
C λa is real and λb is not real;
D λa and λb are not real.

hen λa is not real, let λa, where a ∈ {1, . . . , p} \ {a}, be the eigenvalue which is the complex conjugate of λa. Similarly,
hen λb is not real, let λb, where b ∈ {1, . . . , p} \ {b}, be the eigenvalue which is the complex conjugate of λb.
In the case A, consider a unit vector v̂ ∈ Rn (i.e. ∥̂v∥2 = 1) such that Pâv = v̂ and consider the direction of perturbation

B̂ = v̂

(
Pb̂y0

∥Pb̂y0∥2

)H

.

or λk ∈ Λ, we have

B̂Pk̂y0 = v̂

(
Pb̂y0

∥Pb̂y0∥2

)H

Pk̂y0 =
1

∥Pb̂y0∥2

(
(Pb̂y0)H Pk̂y0

)
v̂

=

{
0 if k ̸= b
∥Pb̂y0∥2 v̂ if k = b.

Thus ∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0 = ∥Pb̂y0∥2

∑
λi∈Λ

C(t, λi, λb)Pîv

= ∥Pb̂y0∥2 C(t, λa, λb )̂v

and then
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

= ∥Pb̂y0∥2 |C(t, λa, λb)|

= ∥Pb̂y0∥2 |D(t, λa, λb)| .

In the case B, consider a unit vector v̂ ∈ Rn such that (Pa + Pa) v̂ = v̂ and consider the direction of perturbation

B̂ = v̂

(
Pb̂y0

∥Pb̂y0∥2

)H

.

e have∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0 = ∥Pb̂y0∥2

∑
λi∈Λ

C(t, λi, λb)Pîv

= ∥Pb̂y0∥2 (C(t, λa, λb)Pâv + C(t, λa, λb)Pâv)

nd then
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

= ∥Pb̂y0∥2 ∥C(t, λa, λb)Pâv + C(t, λa, λb)Pâv∥2

= ∥Pb̂y0∥2

√
|C(t, λa, λb)|2 ∥Pâv∥

2
2 + |C(t, λa, λb)|2 ∥Pâv∥

2
2

= ∥Pb̂y0∥2 |C(t, λa, λb)| = ∥Pb̂y0∥2 |D(t, λa, λb)| ,

where the second last = follows since C(t, λa, λb) and C(t, λa, λb) are complex conjugate.
In the case C, consider a unit vector v̂ ∈ Rn such that Pâv = v̂ and consider the direction of perturbation

B̂ = v̂

( (
Pb + Pb

)
ŷ0(Pb + Pb

)
ŷ0

2

)H

.

7
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For λk ∈ Λ, we have⎧⎪⎪⎪0 if k ̸= b and k ̸= b

w

B̂Pk̂y0 =

⎨⎪⎪⎪⎩
∥Pb̂y0∥22

∥(Pb+Pb)̂y0∥2
v̂ if k = b

∥Pb̂y0∥
2
2

∥(Pb+Pb)̂y0∥2
v̂ if k = b.

Since

∥Pb̂y0∥2
2 +

Pb̂y022 =
(Pb + Pb

)
ŷ0
2
2 and ∥Pb̂y0∥2 =

Pb̂y02 ,

e get

B̂Pk̂y0 =

{
0 if k ̸= b and k ̸= b
√
2
2 ∥Pb̂y0∥ v̂ if k = b or k = b.

Thus ∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0

=

√
2
2

∥Pb̂y0∥
∑
λi∈Λ

(
C(t, λi, λb) + C(t, λi, λb)

)
Pîv

=

√
2
2

∥Pb̂y0∥
(
C(t, λa, λb) + C(t, λa, λb)

)
v̂

and then
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

=

√
2
2

∥Pb̂y0∥
⏐⏐C(t, λa, λb) + C(t, λa, λb)

⏐⏐
= ∥Pb̂y0∥2 |D(t, λa, λb)| .

In the case D, consider a unit vector v̂ ∈ Rn such that (Pa + Pa) v̂ = v̂ and consider the direction of perturbation

B̂ = v̂

( (
Pb + Pb

)
ŷ0(Pb + Pb

)
ŷ0

2

)H

.

We have∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0

=

√
2
2

∥Pb̂y0∥2

∑
λi∈Λ

(
C(t, λi, λb) + C(t, λi, λb)

)
Pîv

=

√
2
2

∥Pb̂y0∥2((
C(t, λa, λb) + C(t, λa, λb)

)
Pâv +

(
C(t, λa, λb) + C(t, λa, λb)

)
Pâv
)

and then
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

=

√
2
2

∥Pb̂y0∥2

·

√⏐⏐C(t, λa, λb) + C(t, λa, λb)
⏐⏐2 ∥Pâv∥

2
2 +

⏐⏐C(t, λa, λb) + C(t, λa, λb)
⏐⏐2 ∥Pâv∥

2
2

=

√
2
2

∥Pb̂y0∥2

⏐⏐C(t, λa, λb) + C(t, λa, λb)
⏐⏐

= ∥Pb̂y0∥2 |D(t, λa, λb)| .

where the second last = follows since C(t, λa, λb) + C(t, λa, λb) and C(t, λa, λb) + C(t, λa, λb) are complex conjugate.
Now, (15) and then the lower bound (13) follow.

8
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The upper bound (14) follows by observing that∑ ∑  ∑ ⎛∑ ⎞

(

λi∈Λ λk∈Λ

C(t, λi, λk)PîBPk̂y0
2

= λi∈Λ

PîB⎝
λk∈Λ

C(t, λi, λk)Pk̂y0⎠
2

=

√∑
λi∈Λ

PîB
⎛⎝∑

λk∈Λ

C(t, λi, λk)Pk̂y0

⎞⎠
2

2

≤

√∑
λi∈Λ


∑
λk∈Λ

C(t, λi, λk)Pk̂y0


2

2

=

√∑
λi∈Λ

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pk̂y0∥2. ■

Let j∗ be the minimum index j ∈ {1, . . . , q} such that Qjy0 ̸= 0. The next theorem gives neater bounds for K2(t, A, y0).

Theorem 3.3. We have

K2(t, A, y0) ≥ max
λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2 ∥A∥2 e
(
r1−rj∗

)
t

and

K2(t, A, y0) ≤

√
|Λ|Qj∗ ŷ0

2

∥A∥2 e
(r1−rj∗ )t t.

In the generic situation j∗ = 1 for y0, we have

∥A∥2 t ≤ K2(t, A, y0) ≤

√
|Λ|

∥Q1̂y0∥2
∥A∥2 t.

Proof. By the lower bound (13), we obtain

K2(t, A, y0) ≥

max λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2√∑q
j=j∗

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2

≥ e
(
r1−rj∗

)
t max

λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2 ∥A∥2 .

By the upper bound (14) and

|C (t, λi, λk)| ≤ t for all λi, λk ∈ Λ (16)

see Proposition 3.1), we obtain

K2(t, A, y0) ≤

√∑
λi∈Λ

∑
λk∈Λ t2 ∥Pk̂y0∥2√∑q

j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2

=

√
|Λ|√∑q

j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 t

≤

√
|Λ|Qj∗ ŷ0

2

∥A∥2 e
(r1−rj∗ )t t.

For j∗ = 1 use the lower bound (12). ■

The previous theorem shows a linear growth in t of K2(t, A, y0) for j∗ = 1 and an exponential growth in t of K2(t, A, y0)
for j∗ > 1 (observe that

max
λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2

does not vanish as t → +∞: remind Remark 3.1).

9
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Remark 3.2. In the situation j∗ > 1, K2(t, A, y0) can be arbitrarily larger than the lower bound (12), due to the exponential
growth in t of the condition number. For q > 1, K2(t, A, y0) can be arbitrarily larger than the lower bound (12) also in the
situation j∗ = 1.

t

H

In fact, for q > 1, the lower bound (13) gives

K2(t, A, y0) ≥

max λi∈Λ1
λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pk̂y0∥2√∑q
j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2

and the right-hand side of this inequality is a continuous function of ∥Q1̂y0∥2, whose value for ∥Q1̂y0∥2 = 0 is not smaller
han

e(r1−r2)t max
λi∈Λ

λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pk̂y0∥2 ∥A∥2 .

ence, fixed t ≥ 0, for any c ∈ (0, 1) we have

K 2(t, A, y0) ≥ ce(r1−r2)t max
λi∈Λ

λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pk̂y0∥2 ∥A∥2

for ∥Q1̂y0∥2 sufficiently small.
This proves what follows. Consider y0 with fixed projections Pk̂y0, λk ∈ Λ \Λ1. For any M > 1, there exists t ≥ 0 such

that
K2(t, A, y0)

∥A∥2 t
≥ M

for ∥Q1̂y0∥2 sufficiently small.

The next results concern the case q = 1, namely the case of shifted skew-symmetric matrices.

Theorem 3.4. If q = 1, i.e. A is a shifted skew-symmetric matrix, then

K2(t, A, y0) = ∥A∥2 t.

Proof. For A shifted skew-symmetric, i.e. A = αI + S for some α ∈ R and S ∈ Rn×n skew-symmetric, by (9) we get

K2(t, A, y0, B̂) =

∫ t

0
e−sÂBesAdŝy0


2
∥A∥2 ≤

∫ t

0
e−sÂBesAds


2
∥A∥2 .

Now, ∫ t

0
e−sÂBesAds =

∫ t

0
e−sαe−sS B̂esαesSds =

∫ t

0
e−sS B̂esSds

and then∫ t

0
e−sÂBesAds


2

≤

∫ t

0

e−sS

2

̂B2 esS2 ds = t

since e−sA and esA are orthogonal matrices. Thus

K2(t, A, y0, B̂) ≤ ∥A∥2 t.

We conclude that

K2(t, A, y0) ≤ ∥A∥2 t.

The thesis follows by recalling the lower bound (12). ■

When y0 stays in the rightmost eigenspace, we have the same situation of the case q = 1, namely the condition number
is equal to ∥A∥2t .

Theorem 3.5. If Q1y0 = y0, then

K2(t, A, y0) = ∥A∥2 t.

Proof. Assume Q1y0 = y0.
In our discussion we are assuming that A is a normal real matrix, but (9)–(10) also holds when A is a normal complex

matrix.

10
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So, now, we consider the case where A is a normal complex matrix with a unique complex eigenvalue λ1 as rightmost
eigenvalue. Since Q1y0 = P1y0 = y0, we have, for the numerator (10) in the right-hand side of (9),   

b

P

a


∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PîBPk̂y0


2

=


∑
λi∈Λ

C(t, λi, λ1)PîB̂y0


2

=

√∑
λi∈Λ

|C(t, λi, λ1)|2
PîB̂y022 ≤ t

̂B̂y02 ≤ t

y recalling (16). Thus, since the denominator in the right-hand side of (9) is 1, we obtain

K2(t, A, y0, B̂) ≤ ∥A∥2 t. (17)

Now, we pass to consider the case where A is a normal real matrix. Fix a direction of perturbation B̂. For any ε > 0,
there exists a normal complex matrix Aε such that Aε has a unique complex eigenvalue λ1 as rightmost eigenvalue,⏐⏐K2(t, A, y0, B̂) − K2(t, Aε, y0, B̂)

⏐⏐ ≤ ε

and

∥A − Aε∥2 ≤ ε.

Thus

K2(t, A, y0, B̂) = K2(t, A, y0, B̂) − K2(t, Aε, y0, B̂) + K2(t, Aε, y0, B̂)
≤ ε + ∥Aε∥2t by (17)
≤ ε + εt + ∥A∥2t.

Since ε is arbitrarily small, we obtain

K2(t, A, y0, B̂) ≤ ∥A∥2t.

By using the lower bound (12), K2(t, A, y0) = ∥A∥2t follows. This is also true when A is a normal complex matrix. ■

Observe that now Theorem 3.4 becomes a corollary of Theorem 3.5.

3.3. The condition number K2(t, A) independent of y0

The next theorem gives lower and upper bounds for K2(t, A).

Theorem 3.6. We have the lower bound

K2(t, A) ≥ max
λi∈Λ

λk∈Λq

|D(t, λi, λk)| ∥A∥2 e(
r1−rq)t . (18)

Moreover, we have the upper bound

K2(t, A) ≤

√
max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2 ∥A∥2 e
(r1−rq)t . (19)

roof. First, we prove the lower bound. For any λk ∈ Λq, consider y0 ̸= 0 such that Pky0 = y0. By (13) we have

K2(t, A) ≥ K2(t, A, y0) ≥
maxλi∈Λ |D (t, λi, λk) |

e(rq−r1)t
∥A∥2 .

Now, we prove the upper bound. For the numerator in (14), we have√∑
λi∈Λ

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pk̂y0∥2
≤

√
max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2

nd for the denominator we have√ q∑
j=1

(
e(rj−r1)t

Qĵy0

2

)2
≥ e(rq−r1)t . ■

The previous theorem shows that K2(t, A) grows exponentially in t for q > 1. Since (16) holds, the upper bound (19)
gives this other neater upper bound.

11
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Theorem 3.7. We have

K2(t, A) ≤

√
|Λ| ∥A∥2 e

(rq−r1)t t.

o

P

4. Asymptotic analysis

In this section, we study the asymptotic behavior of the three condition numbers K2(t, A, y0, B̂), K2(t, A, y0) and K2(t, A),
as t → +∞.

We use the following notations.

• Let j∗ be the minimum index j ∈ {1, . . . , q} such that Qjy0 ̸= 0. This index has been already introduced in Section 3,
just before Theorem 3.3.

• Let j∗∗ be the minimum index j ∈ {1, . . . , q} such that QĵBPky0 ̸= 0 for some k ∈ {1, . . . , p}.
• For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j < l, let

C∞ (λi, λk) :=
1

λi − λk
.

• For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j > l, let

C∞ (t, λi, λk) :=
e
√

−1(ωk−ωi)t

λk − λi
,

where ωi and ωk are the imaginary parts of λi and λk, respectively, and
√

−1 is the imaginary unit.
• For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j < l, let

D∞ (λi, λk) :=

⎧⎨⎩
C∞ (λi, λk) if λk is real
√
2
2

(
C∞ (λi, λk) + C∞

(
λi, λk

))
if λk is not real.

• f (t) ∼ g(t), t → +∞, stands for

lim
t→+∞

f (t)
g(t)

= 1.

• f (t) ≲ g(t), t → +∞, stands for

f (t) ≤ h(t), for t sufficiently large,

and

h(t) ∼ g(t), t → +∞,

for some function h(t). Similarly, f (t) ≳ g(t), t → +∞, stands for

f (t) ≥ h(t), for t sufficiently large,

and

h(t) ∼ g(t), t → +∞,

for some function h(t).

The next proposition, which is a trivial consequence of Proposition 3.1, describes the asymptotic behavior, as t → +∞,
f the functions C(t, λi, λk) defined in (11).

roposition 4.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl.
If j < l, then

C(t, λi, λk) ∼ e(rj−r1)tC∞(λi, λk), t → +∞.

If j > l, then

C(t, λi, λk) ∼ e(rl−r1)tC∞(t, λi, λk), t → +∞.

If j = l and λi ̸= λk, then

C(t, λi, λk) = e(rj−r1)t e
√

−1(ωk−ωi)t − 1
λk − λi

, t ≥ 0.

If j = l and λi = λk, then

C(t, λi, λk) = e(rj−r1)t t, t ≥ 0.

12
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4.1. Asymptotic analysis of the condition number K2(t, A, y0, B̂) with direction of perturbation

T

P

The next theorem describes the asymptotic behavior of K2(t, A, y0, B̂), as t → +∞.

heorem 4.1. If j∗∗ < j∗, then

K2(t, A, y0, B̂) =

∑λi∈Λj∗∗

∑q
l=j∗

∑
λk∈Λl

C∞ (λi, λk) PîBPk̂y0

2Qj∗ ŷ0


2

∥A∥2 e
(rj∗∗−rj∗ )t

+o(e(rj∗∗−rj∗ )t ), t → +∞.

If j∗∗
= j∗, then

K2(t, A, y0, B̂) =

∑λi∈Λj∗
PîBPîy0


2Qj∗ ŷ0


2

∥A∥2 t + o(t), t → +∞.

If j∗∗ > j∗, then

K2(t, A, y0, B̂) =

∑q
j=j∗∗

∑
λi∈Λj

∑
λk∈Λj∗

C∞ (t, λi, λk) PîBPk̂y0

2

∥Qj∗ ŷ0∥2
∥A∥2

+o(1), t → +∞. (20)

roof. We write (9)–(10) as

K2(t, A, y0, B) =

∑q
j=j∗∗

∑
λi∈Λj

∑q
l=j∗

∑
λk∈Λl

C(t, λi, λk)PîBPk̂y0

2√∑q

j=j∗
(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 . (21)

Consider the numerator in (21). If j∗∗ < j∗, then, by Proposition 4.1, the major contributory terms C(t, λi, λk) as
t → +∞ are obtained for j = j∗∗ and then

q∑
j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PîBPk̂y0


2

= e(rj∗∗−r1)t


∑

λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk) PîBPk̂y0


2

+o(e(rj∗∗−rj∗ )t ), t → +∞.

If j∗∗
= j∗, then the major contributory terms C(t, λi, λk) as t → +∞ are obtained for j = l = j∗ and λi = λk and then

q∑
j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PîBPk̂y0


2

= e(rj∗−r1)t t


∑

λi∈Λj∗

PîBPîy0


2

+ o
(
e(rj∗−r1)t t

)
, t → +∞.

If j∗∗ > j∗, the major contributory terms C(t, λi, λk) as t → +∞ are obtained for l = j∗ and then
q∑

j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PîBPk̂y0


2

= e(rj∗−r1)t


q∑

j=j∗∗

∑
λi∈Λj

∑
λk∈Λj∗

C∞ (t, λi, λk) PîBPk̂y0


2

+ o
(
e(rj∗−r1)t

)
t → +∞.

13
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Consider the denominator in (21). The major contributory term as t → +∞ is e(rj∗−r1)t
Qj∗ ŷ0


2 and then q∑(   )  

I

√
j=j∗

e(rj−r1)t Qĵy02 2
∼ e(rj∗−r1)t Qj∗ ŷ02 , t → +∞.

Now, the theorem follows. ■

Remark 4.1. Observe that the generic situation for the initial value y0 and the direction of the perturbation B̂ is j∗ = 1,
j∗∗

= 1 and∑
λi∈Λ1

PîBPîy0 ̸= 0,

where we have

K2(t, A, y0, B̂) ∼

∑λi∈Λ1
PîBPîy0


2

∥Q1̂y0∥2
∥A∥2 t, t → +∞.

n the non-generic situation j∗ > 1 or j∗∗ > 1, the previous theorem shows that:

• if j∗∗ < j∗ and∑
λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk) PîBPk̂y0 ̸= 0,

then K2(t, A, y0, B̂) grows exponentially in t as t → +∞:

K2(t, A, y0, B̂) ∼

∑λi∈Λj∗∗

∑q
l=j∗

∑
λk∈Λl

C∞ (λi, λk) PîBPk̂y0

2Qj∗ ŷ0


2

∥A∥2 e
(rj∗∗−rj∗ )t

t → +∞;

• if j∗∗
= j∗ and∑
λi∈Λj∗

PîBPîy0 ̸= 0,

then K2(t, A, y0, B̂) grows linearly in t as t → +∞:

K2(t, A, y0, B̂) ∼

∑λi∈Λj∗
PîBPîy0


2Qj∗ ŷ0


2

∥A∥2 t, t → +∞;

• if j∗∗ > j∗, then K2(t, A, y0, B̂) oscillates (due to the terms C∞(t, λi, λk) in (20)), but it remains bounded as t → +∞.

4.2. Asymptotic analysis of the condition number K2(t, A, y0)

The next theorem describes the asymptotic behavior of K2(t, A, y0), as t → +∞.

Theorem 4.2. If j∗ = 1, we have

K2(t, A, y0) ∼ ∥A∥2 t, t → +∞. (22)

If j∗ > 1, we have the asymptotic lower bound

K2(t, A, y0) ≳

max λi∈Λ1
λk∈

⋃q
j=j∗ Λj

|D∞ (λi, λk)| ∥Pky0∥2Qj∗ ŷ0

2

∥A∥2 e
(
r1−rj∗

)
t

t → +∞ (23)

and the asymptotic upper bound

K2(t, A, y0) ≲

√∑q
l=j∗

∑
λk∈Λl

(∑
λi∈Λ1

|C∞ (λi, λk)|
2
)

∥Pk̂y0∥2Qj∗ ŷ0

2

∥A∥2 e
(
r1−rj∗

)
t

t → +∞. (24)
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Proof. We write the right-hand side of the upper bound (14) as√∑q
j=1
∑

λ ∈Λ

∑q
l=j∗

∑
λ ∈Λ |C(t, λi, λk)|2 ∥Pk̂y0∥2

T

i j k√∑q
j=j∗

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 . (25)

Suppose j∗ = 1. The major contributory terms C(t, λi, λk) as t → +∞ in the numerator of (25) are obtained for
j = l = 1 and λi = λk and then√ q∑

j=1

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

|C(t, λi, λk)|2 ∥Pk̂y0∥2
2

∼ t ∥Q1̂y0∥2 , t → +∞.

The major contributory term in the denominator of (25) is ∥Q1̂y0∥2 and then√ q∑
j=1

(
e(rj−r1)t

Qĵy0

2

)2
∼ ∥Q1̂y0∥2 , t → +∞.

Thus

K2(t, A, y0) ≲ ∥A∥2 t, t → +∞.

Now, (22) follows by the lower bound (12).
Suppose j∗ > 1. The major contributory terms C(t, λi, λk) as t → +∞ in the numerator of (25) are obtained for j = 1

and then√ q∑
j=1

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

|C(t, λi, λk)|2 ∥Pk̂y0∥2
2

∼

√ q∑
l=j∗

∑
λk∈Λl

⎛⎝∑
λi∈Λ1

|C∞(λi, λk)|2

⎞⎠ ∥Pk̂y0∥2, t → +∞.

he major contributory term in the numerator of (refeqrefeqref) is e(rj∗−r1)t
Qj∗ ŷ0


2 and then√ q∑

j=1

(
e(rj−r1)t

Qĵy0

2

)2
∼ e(rj∗−r1)t

Qj∗ ŷ0

2 , t → +∞.

Now, the asymptotic upper bound (24) follows.
Finally, we prove the asymptotic lower bound (23). By the lower bound (13), we have

K2(t, A, y0) ≥

max λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2√∑q
j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2 .

By Proposition 4.1, we obtain

max
λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2 ∼ max
λi∈Λ1

λk∈
⋃q

j=j∗ Λj

|D∞ (λi, λk)| ∥Pk̂y0∥2 , t → +∞.

Thus
max λi∈Λ

λk∈
⋃q

j=j∗ Λj

|D (t, λi, λk)| ∥Pk̂y0∥2√∑q
j=1

(
e(rj−r1)t

Qĵy0

2

)2 ∥A∥2

∼

max λi∈Λ1
λk∈

⋃q
j=j∗ Λj

|D∞ (λi, λk)| ∥Pk̂y0∥2

e
(
rj∗−r1

)
t Qj∗ ŷ0


2

∥A∥2 , t → +∞,

and the asymptotic lower bound follows. ■
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Remark 4.2. The generic situation for the initial value y0 is j∗ = 1, where we have the asymptotic behavior (22).
It is interesting to observe that, for the problem (3), the condition number relevant to the norm ||| · ||| = ∥ · ∥2 on Rn×n

is ∥A∥ t in case of a normal matrix A (see [4]). So, asymptotically as t → +∞, the condition numbers of the problems

W

5

2
(2) and (3) are equal for a normal matrix in the generic situation j∗ = 1 for y0.

Remark 4.3. In the non-generic situation j∗ > 1 for y0, the previous theorem says that

K2(t, A, y0) = O
(
e
(
r1−rj∗

)
t
)

, t → +∞

1
K2(t, A, y0)

= O
(
e−

(
r1−rj∗

)
t
)

, t → +∞.

e also have

log K2(t, A, y0) ∼
(
r1 − rj∗

)
t, t → +∞.

4.3. Asymptotic analysis of the condition number K2(t, A) independent of y0

The next theorem describes the asymptotic behavior of K2(t, A), as t → +∞.

Theorem 4.3. We have the asymptotic lower bound

K2(t, A) ≳ max
λi∈Λ1
λk∈Λq

|D∞(λi, λk)| ∥A∥2 e(
r1−rq)t , t → +∞,

and the asymptotic upper bound

K2(t, A) ≲ ∥A∥2 e(
r1−rq)t t, t → +∞.

Proof. By the lower bound (18), we have

K2(t, A) ≥ max
λi∈Λ

λk∈Λq

|D(t, λi, λk)| ∥A∥2 e(
r1−rq)t

∼ max
λi∈Λ1
λk∈Λq

|D∞(λi, λk)| ∥A∥2 e(
r1−rq)t , t → +∞.

By the upper bound (19), we have

K2(t, A) ≤

√
max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2 ∥A∥2 e
(r1−rq)t

∼ ∥A∥2 e
(r1−rq)t t, t → +∞. ■

Remark 4.4. The previous theorem says that

K2(t, A) = O
(
e(r1−rq)t t

)
, t → +∞

1
K2(t, A)

= O
(
e−(r1−rq)t

)
, t → +∞.

We also have

log K2(t, A) ∼
(
r1 − rq

)
t, t → +∞.

. Numerical tests

The numerical tests involve the condition number K2(t, A, y0). We consider skew symmetric matrices in Example 5.1,
with the aim to confirm Theorem 3.4, and symmetric matrices in Example 5.2, with the aim to confirm Theorem 4.2.

Example 5.1. Consider the following two cases of a skew symmetric matrix A in (1):

• the 2 × 2 matrix

A =

[
0 3

−3 0

]
,

which has the pair of pure imaginary eigenvalues ±3
√

−1;

16
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• the 4 × 4 matrix⎡
0 2 −1 3

⎤

m

o
y

m
2

v

r

o
t
e

I

A =
⎢⎣−2 0 −4 1

1 4 0 2
−3 −1 −2 0

⎥⎦
which has the two pairs of pure imaginary eigenvalues ±5.7913

√
−1 and ±1.2087

√
−1.

In Fig. 2, for both the skew symmetric matrices and for any t in a uniform mesh over the interval [0, 50], we plot the
aximum of the values

ξ (t)
ϵ

∥A∥2 t
=

K2(t, A, y0, B̂)
∥A∥2 t

+ o(1), ϵ → 0, (26)

ver 10 000 random selections of the matrix B̂. We consider the initial values y0 = (1, 2) for the 2 × 2 matrix and
0 = (1, 2, 3, 4) for the 4 × 4 matrix. We take ϵ = 10−4.
For both matrices, as t varies, the maximum of the values (26) is always close to 1, confirming Theorem 3.4.
For the matrix 2 × 2, we observe a slight deviation from 1 as t increases. This is due to the error o(1), as ϵ → 0, in

(26).
The maximum values for the 2 × 2 matrix are closer to 1 than the maximum values for the matrix 4 × 4. This is due

to the fact that much more than 10 000 random selections of the matrix B̂ are necessary for having maximum values very
close to 1, in case of the matrix 4 × 4.

Example 5.2. Consider the following two cases of a symmetric matrix A in (1):

• the 2 × 2 matrix

A =

[
−2 1
1 −2

]
,

which has the eigenvalues −1 and −3;
• the 4 × 4 matrix

A = 1/2

⎡⎢⎣−1 2 1 0
2 −1 0 −1
1 0 −1 −2
0 −1 −2 −1

⎤⎥⎦ ,

which has the eigenvalues 1, 0, −1 and −2.

In Fig. 3, for both the symmetric matrices and for any t in a uniform mesh over the interval [0, 15], we plot the
aximum of the values (26) over 10 000 random selections of matrix B̂. We consider the initial values y0 = (1, 2) for the
× 2 matrix and y0 = (1, 2, 3, 4) for the 4 × 4 matrix. For such initial values we have j∗ = 1 (the index j∗ is defined at

the beginning of Section 4). We take ϵ = 10−4.
For both matrices, as t varies, the maximum of the values (26) tends asymptotically to 1, after an initial hump. This

confirms Theorem 4.2, case j∗ = 1. About the initial hump, see Remark 3.2.
In Fig. 4, for the 2 × 2 matrix and for any t in a uniform mesh over the interval [0, 15], we plot the maximum of the

alues (26) over 10 000 random selections of matrix B̂, when the initial values are y0 = (1, 1), which is eigenvector of the
rightmost eigenvalue −1, and y0 = (1, −1), which is eigenvector of the other eigenvalue −3. We take ϵ = 10−4.

For the initial value y0 = (1, 1), as t varies, the maximum of the values (26) is always close to 1. Since y0 stays in the
ightmost eigenspace, we have the same situation of the case q = 1, namely the condition number is equal to ∥A∥2t (see
Theorem 3.5).

For the initial value y0 = (1, −1), as t varies, the maximum of the values (26) does not tend asymptotically to 1, but
it grows indefinitely, by confirming Theorem 4.2, case j∗ > 1.

In Fig. 5, for the 4 × 4 matrix and for t in a uniform mesh over the interval [0, 15], we plot the maximum of the values

log ξ (t)
ε

(r1 − rj∗ )t
=

log K2(t, A, y0, B̂)
(r1 − rj∗ )t

+ o(1), ϵ → 0, (27)

ver 10 000 random selections of matrix B̂. We consider the initial values y0 = (1, 1, −1, 1), which is eigenvector of
he eigenvalue 0, y0 = (−1, 1, −1, −1), which is eigenvector of the eigenvalue −1, and y0 = (1, −1, −1, −1), which is
igenvector of the eigenvalue −2. For these three initial values, we have j∗ = 2, 3, 4, respectively.
For all initial values, as t varies, the maximum of the values (27) tends asymptotically to 1, by confirming Remark 4.3.

n the lower part, the final red points at the right are numerical artifacts.
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f
4

s

o
d
i

Fig. 2. For the skew symmetric matrices of Example 5.1, maximum value of
ξ (t)
ϵ

∥A∥2 t
over 10 000 random selections the matrix B̂, for any t varying

rom 0 to 50 with step 0.5. The maximum values are the red points. The blue line is the constant value 1. Upper part: 2 × 2 matrix. Lower part:
× 4 matrix.

We conclude this section by illustrating the procedure of the random selection of the matrix B̂, namely the random
election of the direction of perturbation.
Fixed the order n of the matrix, we construct the Singular Value Decomposition

B̂ = UTV

f the matrix B̂, where U and V are n× n randomly selected orthonormal matrices and T is a n× n diagonal matrix with
iagonal (σ1, σ2, . . . , σn), where σ1 = 1 and σ2, . . . , σn ∈ [0, 1] are randomly selected. Our computations are implemented
n MATLAB and, for the random selections of U , V and T , we use:

U = orth(rand(n))
V = orth(rand(n))
T = diag([1, rand(1, n − 1)]),

18
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0
m

w
t

d

Fig. 3. For the symmetric matrices of Example 5.2, maximum value of
ξ (t)
ϵ

∥A∥2 t
over 10 000 random selections of the matrix B̂, for any t varying from

to 15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: 2 × 2 matrix. Lower part: 4 × 4
atrix.

here the MATLAB function orth(C) computes a matrix whose columns are an orthonormal basis of the range of C , and
he MATLAB function rand(p, q) computes a p × q matrix of uniformly distributed elements in [0, 1].

By constructing the matrix B̂ as

B̂ =
B

∥B∥2
,

where B is obtained in MATLAB by

B = rand(n, n),

oes not give good results, since this procedure misses some directions of perturbation.
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f
y

6

n
A

Fig. 4. For the 2 × 2 symmetric matrix of Example 5.2, maximum value of
ξ (t)
ϵ

∥A∥2 t
over 10 000 random selections the matrix B̂, for any t varying

rom 0 to 15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: y0 = (1, 1). Lower part:
0 = (1, −1).

. Conclusion

In this paper, we have studied the conditioning of the problem

A ↦→ etAy0,

amely how a perturbation in the matrix A ∈ Rn×n propagates to etAy0. We have considered the case of a normal matrix
, perturbed to a possibly non-normal matrix, and three condition numbers have been analyzed:

• the condition number K2(t, A, y0, B̂) with direction of perturbation defined in (4);
• the condition number K2(t, A, y0) defined in (6);
• the condition number K2(t, A) independent of y0 defined in (8).
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p

t

Fig. 5. For the 4 × 4 matrix of Example 5.2, maximum value of log ξ (t)
ϵ

(rj−rj∗ )t over 10 000 random selections the matrix B̂, for any t varying from 0 to
15 with step 0.15. The maximum values are the red points. The blue line is the constant value 1. Upper part: y0 = (1, 1, −1, 1) and j∗ = 2. Middle
art: y0 = (−1, 1, −1, −1) and j∗ = 3. Lower part: y0 = (1, −1, −1, −1) and j∗ = 4.

The spectrum of the normal matrix A has been partitioned by decreasing real parts in the subsets Λ1, . . . , Λq, where
he eigenvalues in Λj, j = 1, . . . , q, have real part rj, and r1 > · · · > rq holds. We have denoted by j∗ the minimum index
in {1, . . . , q} such that y0 has a non-zero component on the sum of the eigenspaces relevant to the eigenvalues in Λj. The
generic situation for y0 is j∗ = 1.

Regarding the condition number K2(t, A, y0), we have obtained the following results:

• if A is shifted skew-symmetric, then K2(t, A, y0) equals ∥A∥2t .
• If A is not shifted skew-symmetric and j∗ = 1, then K2(t, A, y0) asymptotically, as t → +∞, equals ∥A∥2t .
• If A is not shifted skew symmetric and j∗ > 1, then K2(t, A, y0) grows exponentially in t and log K2(t, A, y0)

asymptotically, as t → +∞, equals (r1 − rj∗ )t .
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Regarding the condition number K2(t, A) independent of y0, we have obtained the following result:

• K2(t, A) grows exponentially in t and log K2(t, A) asymptotically, as t → +∞, equals (r1 − rq)t .
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