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Abstract

In this paper, we study the low-tubal-rank tensor completion problem, i.e.,
the problem of recovering a third-order tensor by observing a subset of its
entries, when these entries are selected uniformly at random. We propose
a mathematical analysis of an extension of the Bürer-Monteiro factorisation
approach to this problem. We then illustrate the use of the Bürer-Monteiro
approach on a chalenging OCT reconstruction problem on both synthetic
and real world data, using an alternating minimisation algorithm.

Keywords: Tensor completion, t-SVD, Low rank estimation,
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1. Introduction1

Tensor completion has many applications in various fields of engineering2

and data science, such as Markov Field analysis, signal and image processing,3

etc [28], seismic data reconstruction [22], health data analytics [33], compres-4

sion of hyperspectral images [24], 3D image and video reconstruction from5

subsampled measurements [25], [17]. From the mathematical viewpoint, ten-6

sor completion is currently a very active research trend as well [21], [11], [32],7

etc. Tensor completion relies on the often encountered property that the8
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sought after tensor is low rank, which is the case in many different applica-9

tions; see [31], [1], [28], etc. Previous work on tensor completion based on10

partial sampling includes [14], [30], [3], [23], [13], [8], [35], [9], etc.11

One of the main ingredient of both theoretical analysis and practical12

implementations of tensor completion is the singular value decomposition13

(SVD), which has been recently extended from the matrix to the tensor14

setting in various directions depending on the properties one intends to pre-15

serve [12], [21], [28], [19], etc. One particular approach relies on expressing16

the original tensor as a sum of rank-1 tensors [21], a construct which looses17

the orthogonality property of the singular vectors as compared with the ma-18

trix SVD. Conversely, the multilinear SVD of [12] enforces this orthogonality19

property of singular vectors at the price of loosing the standard notion of20

scalar singular values and replacing it with the notion of core tensors. An-21

other trend is the recent tubal-SVD of [19], which extends the matrix notion22

of SVD to the higher dimensional setting by generalising matrix products23

from 2D arrays of scalars to 2D arrays of ”tubes” and which uses a specific24

”tubal” product. As for [12], the singular values are no longer scalars, but25

become higher dimensional ”tubal singular values”. As a consequence of the26

diversity of approaches to the construction of the tensor SVD, the notion of27

rank is very specific to the definition of the SVD used in the application of28

interest.29

On the computational side, the estimation of low rank tensors has been30

a topic of increasing interest, due to the high dimensionality of the prob-31

lem. The approach developed in [2] is an example of efficient algorithm with32

guaranteed complexity. Convex relaxations based on various extensions of33

the nuclear norm penalisation approach, originally devised in the matrix case34

in [29], have also been proposed lately in the tensor case; see e.g. [29], [8],35

[35], etc. Tighter relaxations have also been proposed and precisely studied36

in [30], [9]. Factorisation based methods form another group of methods37

which have been successfully employed in [27], however without clear math-38

ematical underpinnings. In the case of tubal SVD-based approaches, some39

recent work include [26], [34], [34] where iterative methods are implemented40

achieving high practical efficiency, while leaving the question of establishing41

the convergence rigorously to further investigation.42

The goal of the present paper is to study the factorisation based approach43

to the low tubal-rank tensor recovery problem. This approach, also known as44

the Bürer-Monteiro factorisation approach in the Semi-Definite Programming45

literature [5], [4], has proved very efficient in practice but also amenable to46
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thorough theoretical analysis [4], [15] in the matrix setting. The main contri-47

bution of the present paper is a proof that similar results also hold for the low48

tubal-rank tensor completion problem, after appropriately generalising some49

of the main ingredients from [15]. In particular, we prove that all the local50

minimisers of the least-squares cost function applied to the couple resulting51

from the factorisation, are in fact global minimisers. The main consequence52

of this analysis is that one can safely run a gradient-like or alternating op-53

timisation algorithm for the reconstruction of the low tubal-rank tensor of54

interest.We also illustrate our theoretical results with promising numerical55

experiments for a challenging OCT reconstruction problem.56

We now define more precisely the mathematical problem addressed in this57

paper.58

1.1. The Tensor Completion Problem59

All the notations and concepts about tensors are collected in 3.60

Tensor Completion is a generalisation of Matrix Completion, an exten-
sively studied problem in data science which went through a sudden surge
of interest triggered by the Netflix context [7]. The tensor completion prob-
lem is the one of recovering a tensor M? a small number of components
of which are observed uniformly at random. More precisely, given Ω ⊂
{1, . . . , n1} × {1, . . . , n2} to be a set of indices for the observed entries, we
define for any tensor M, the observed tensor MΩ by

[MΩ]ijk =


Mijk for all k ∈ {1, . . . , n3}, if

(
i, j
)
∈ Ω

0 otherwise.

The probability of selecting one entry will be denoted by p = 1/(n1 × n2).61

This recovery problem is hopeless in the general setting, but in many areas62

of engineering, social, biological etc sciences, the tensor to be recovered can be63

assumed to be low rank, where by rank, one refers to the appropriate notion64

among the ones that have been devised in the literature on the mathematics65

of tensors [21], [28].66

Under a low tensor rank assumption, one way of recovering the original
M? is to solve the following optimization problem

min
M∈Rn1×n2×n3

f(M) =
1

2p
‖M−M?‖2

Ω s.t. rank(M) = r (1)
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for some r ≥ 0, where ‖ · ‖Ω denotes the Frobenius norm restricted to the
components indexed by Ω. The main difficulty in addressing this optimisa-
tion problem resides in handling the rank constraint, even in the case of 2D
tensors, i.e. matrices. In the matrix case, one efficient method which has
gained a lot of interest lately is the Bürer-Monteiro factorisation approach
[5] which, in the symmetric case n1 = n2 = n, takes the following form

min
U∈Rn×r×n3

f(U) =
1

2p
‖U ∗ U> −M?‖2

Ω. (2)

Recent work by [15] showed that the Bürer Monteiro approach is able to
recover low rank matrices when the observation set up is of the Compressed
Sensing type. The work in [15] also showed that for matrix completion, a
penalisation term is required to be added to the least squares functional in
order to ensure successful recovery via the following optimisation problem:

min
U∈Rn×r×n3

1

2p
‖U ∗ U> −M?‖2

Ω +Q(U) (3)

where Q will be specified later.67

The goal of the present paper is to study an extension of the penalised68

Bürer-Monteiro least squares problem (3) in the setting of tensor recovery.69

As in [15] both the symmetric and non-symmetric settings will be studied.70

1.2. Plan of the paper71

This chapter is organized as follows. Section 2 introduces some nota-72

tions and preliminaries of optimality conditions. In Section 3 we define the73

background of several algebraic structures of third-order tensors. Section 474

presents the main recovery results. In Section 5 we demonstrate the effective-75

ness of low rank tensor reconstruction for the problem of Optical Coherence76

Tomography. In Section 7 we prove our main theoretical results.77

2. Preliminaries78

In this section we provide all the preliminary technical results and nota-79

tions which will be used in our analysis.80
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2.1. Notations81

In this paper, we focus on real valued third-order tensors in the space82

Rn1×n2×n3 . We use n1, n2, n3 for tensor dimensions, x for vectors and X ∈83

Rn1×n2 for matrices. Tensors are denoted by calligraphic letters, i.e A ∈84

Rn1×n2×n3 . For a vector x, ‖x‖2 denotes its `2 norm and for a matrix X we85

use ‖X‖F to denote its Frobenius norm. For a tensor A, we use ‖A‖F to86

denote its Frobenius norm which is the square root of the sum of its squared87

components; see 3 for further details. Throughout the paper, we use M? to88

denote the original low rank solution to be recovered and we denote by σ?189

its largest singular value, by σ?r its r-th singular value. The ratio κ? = σ?1/σ
?
r90

be called the condition number.91

Given a transformation H, we use the notations M : H : N to denote92

the quadratic form 〈M,H(N )〉.93

2.2. Optimality Conditions94

Suppose we are optimizing a function f(x) with no constraints on x. For95

a point x to be a local minimum, it must satisfy the first and second order96

necessary conditions, i.e. ∇f(x) = 0 ans ∇2f(x) � 0.97

If one of the two conditions is not verified, i.e, if we are not a local98

minimum, it is always possible to follow the gradient and reduce the value99

of the function. In this case, [16] defines a strict-saddle property, which is100

a quantitative version of the optimality conditions.101

Definition 1. We say f satisfies the
(
θ, γ, ζ

)
-strict saddle property if for102

any point x at least one of the following is true:103

1. ‖∇f(x)‖ ≥ θ.104

2. λmin

(
∇2f(x)

)
≤ −γ.105

3. x is ζ-close to X ? where X ? is the set of a local minima.106

This definition intuitively says that any point at which the gradient of f107

is small, is either close to a local minimiser, a local maximiser or a saddle108

point with at least one significantly negative eigenvalue.109
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3. Background on tensors and the tubal algebra110

3.1. Basic Notations for Third-order Tensor111

In this section, we recall the framework introduced by Kilmer and Martin112

[20] and [19] for a very special class of tensors which is particularly adapted113

to our setting.114

3.1.1. Slices and transposition115

A third-order tensor are represented as A and its
(
i, j, k

)
th entry is de-116

noted by Aijk.117

Definition 2. The kth- frontal slice of A is defined as

A

(
k
)

= A
(

:, :, k
)
.

The jth-transversal slice of A is defined as

~A

(
j
)

= A
(

:, j, :
)
.

A tubal scalar (t-scalar) is an element of R1×1×n3 and a tubal vector (t-vector)118

is an element of Rn1×1×n3
119

Definition 3. (Tensor transpose) The conjugate transpose of a tensor A ∈120

Rn1×n2×n3 tensor At obtained by conjugate transposing each of the frontal121

slice and then reversing the order of transposed frontal slices starting from122

the slide number 2 to the slice number n3 and then appending the conjugate123

transposed frontal slice A(1)>.124

Definition 4. (The ”dot” product) The dot product A·B between two tensors
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is the tensor C ∈ Rn1×n4×n3 whose slice
C(n) is the matrix product of the slice A(n) with the slice B(n):

C(k) := (A ·B)(k) := A(k) B(k), k = 1, . . . , n3. (4)

We will also need the canonical inner product.125

Definition 5. (Inner product of tensors) If A and B are third-order tensors
of same size n1×n2×n3, then the inner product between A and B is defined
as the following (notice the normalization constant of FFT),

〈A,B〉 =

n1∑
i=1

n2∑
j=1

n3∑
k=1

AijkBijk. (5)
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3.1.2. Convolution and Fourier transform126

Definition 6. (t-product for circular convolution) The t-product A ∗ B of
A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 is an n1 × n4 × n3 tensor whose

(
i, j
)
-th

tube is given by

C
(
i, j, :

)
=

n2∑
k=1

A
(
i, k, :

)
∗B
(
k, j, :

)
(6)

where ∗ denotes the circular convolution between two cubes of same size.127

Definition 7. (Identity tensor) The identity tensor J ∈ Rn1×n1×n3 is defined128

to be a tensor whose first frontal slice J1 is the n1 × n1 identity matrix and129

all other frontal slices J i, i = 2, . . . , n3 are zero.130

Definition 8. (Orthogonal tensor) A tensor Q ∈ Rn×n×n3 is orthogonal if it
satisfies

Q> ∗Q = Q ∗Q> = J. (7)

The tensor Â is a tensor which is obtained by taking the Fast Fourier
Transform (FFT) along the third dimension and we will use the following
convention for Fast Transform along the 3rd dimension

Â = fft
(
A, [ ], 3

)
.

The one-dimensional FFT along the 3th-dimension is given

Â(j1, j2, k3) =

n3∑
j3=1

A(j1, j2, j3) exp
(
− 2

iπj3k3

n3

)
,

for all j1, j2, 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2. Naturally, one can compute A from
Â via ifft

(
Â, [ ], 3

)
using the inverse FFT, which is defined as:

A(j1, j2, k3) =

n3∑
j3=1

Â(j1, j2, j3) exp
(

2
iπj3k3

n3

)
,

for all j1, j2, 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2.131

Definition 9. (Inverse of a tensor) The inverse of a tensor A∈ Rn×n×n3 is
written as A−1 satisfying

A−1 ∗ A = A ∗ A−1 = J (8)

where J is the identity tensor of size n× n× n3.132
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Remark 1. It is proved in [19] that for any tensor A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3, we have

A ∗B = C ⇔ Â · B̂ = Ĉ.

3.2. The t-SVD133

We finally arrive at the definition of the t-SVD.134

Definition 10. (f-diagonal tensor) Tensor A is called f-diagonal if each135

frontal slice A(i) is a diagonal matrix.136

Definition 11. (Tensor Singular Value Decomposition: t-SVD) For M ∈
Rn1×n2×n3, the t-SVD of M is given by

M = U ∗ S ∗ V > (9)

where U and V are orthogonal tensor of size n1 × n1 × n3 and n2 × n2 × n3

respectively. S is a rectangular f-diagonal tensor or size n1×n2×n3, and the
entries in S are called the singular values of M . This SVD can be obtained
using the Fourier transform as follows:

M̂ (i) = Û (i) · Ŝ(i) ·
(
V̂ (i)

)>
. (10)

This t-SVD is illustrated in Figure 1 below. Notice that the diagonal137

elements of S, i.e. S(i, i, :) are tubal scalars as introduced in Definition 2.138

They will also be called tubal eigenvalues.139

Definition 12. The spectrum σ(A) of the tensor A is the tubal vector given
by

σ(A)i = S(i, i, :) (11)

for i = 1, . . . ,min{n1, n2}.140

3.3. Some natural Tensor Norms141

Using the previous definitions, it is easy to define some generalisations of142

the usual matrix norms.143
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Figure 1: The t-SVD of a tensor

Definition 13. (Tensor Frobenius norm) The induced Frobenius norm from
the inner product defined above is given by,

‖A‖F = 〈A,A〉1/2 =
1
√
n3

‖Â‖F =

√√√√ n1∑
i=1

n2∑
j=1

n3∑
k=1

A2
ijk. (12)

Definition 14. (Tensor spectral norm) The tensor spectral norm ‖A‖∞ is
defined as follows:

‖A‖∞ = max
i
‖σ(A)i‖2 (13)

where ‖.‖2 is the l2-norm.144

Proposition 1. Let M be n1 × n2 × n3 tensor. Therefore

‖M‖∞ = ‖F(M)‖∞

where F corresponds to the Fast Fourier Transform.145

Definition 15. (Tubal nuclear norm) The tensor nuclear norm of a tensor
A denoted as ‖A‖~ is the sum of singular values of all the frontal slices of
A. Moreover,

‖A‖~ =

min{n1,n2}∑
i=1

√√√√ n3∑
j=1

S(i, i, j)2

=

min{n1,n2}∑
i=1

‖σ(A)i‖2. (14)
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Note that by Parseval’s equality√√√√ n3∑
j=1

S(i, i, j)2 =
1
√
n3

√√√√ n3∑
j=1

Ŝ(i, i, j)2. (15)

Therefore, it is equivalent to define the tubal-nuclear norm via in the146

Fourier domain. Recall moreover that the Ŝ(i, i, j) are all non-negative due147

to the fact that Û (k)Ŝ(k)V̂ (k)t is the SVD of the kth slice of A.148

Proposition 2. (Trace duality property) Let A, B be n1 × n2 × n3 tensor.
Therefore

|〈A,B〉| ≤ ‖A‖~‖B‖∞.

Proof. By Cauchy-Schwartz, we have

|〈A,B〉| = |〈F(A),F(B)〉|
= |〈F(U)F(S)F(V >),F(B)〉|

=

∣∣∣∣∣
n3∑
i=1

tr
(
Ŝ(i)V̂ (i)>F(B)(i)>Û (i)

)∣∣∣∣∣
=

∣∣∣∣∣∣
n3∑
i=1

min{n1,n2}∑
j=1

Ŝ
(i)
jj

(
V̂ (i)>F(B)(i)>Û (i)

)
jj

∣∣∣∣∣∣
≤

min{n1,n2}∑
j=1

(
‖Ŝjj‖2

)1/2(‖(V̂ >F(B)tÛ)jj‖2

)1/2

≤
min{n1,n2}∑

j=1

(
‖Ŝjj‖2

)1/2(‖F(B)jj‖2

)1/2

taking the maximum of ‖F(B)jj‖2 and the sum the slices of
(
‖Ŝjj‖2

)1/2
, and149

apply (15) and inverse of FFT, we obtain the result.150

Proposition 3. Given tensor A ∈ Rn1×n2×n3. We have

‖A‖~ ≤
√

rank(A)‖A‖F .
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Proof. Again by Cauchy-Schwartz, we have

‖A‖~ =

min{n1,n2}∑
j=1

‖S(j, j, :)‖2

=

rank(A)∑
j=1

‖S(j, j, :)‖2

≤
√

rank(A)
(min{n1,n2}∑

j=1

‖S(j, j, ; )‖2
2

)1/2

≤
√

rank(A)‖A‖F .

151

3.4. Rank, Range and Kernel152

The rank, the range and the kernel are extremely important notions for153

matrices. They will play a role in our analysis of the penalised least squares154

tensor recovery procedure as well.155

As noticed in [19], a tubal scalar may have all its entrees different from156

zero but still be non-invertible. According to the definition, a tubal scalar157

a ∈ R1×1×n3 is invertible if there exists a tubal scalar b such that a ∗ b =158

b ∗ a = e. Equivalently, the Fourier transform â of a has no coefficient equal159

to zero. We can define the tubal rank ρi of Si,i,: as the number of non-zero160

components of Ŝ(i, i, :). Then, the easiest way of defining the rank of a tensor161

is by means of the notion of multirank as follows.162

Definition 16. The multirank of a tensor is the vector (ρ1, . . . , ρr) where r163

is the number of nonzero tubal vectors S(i, i, :), i = 1, . . . ,min{n1, n2} where164

comes from the t-SVD of M and r is also called the rank of the tensor M .165

We now define the range of a tensor.166

Definition 17. Let j denote the number of invertible tubal eigenvalues and
let k denote the number of nonzero non-invertible tubal eigenvalues. The
range R(M) of a tensor M ∈ Rn1×n2×n3 is defined as

R(M) = {~U (1) ∗ c1 + · · ·+ ~U (j+k) ∗ cj+k | cl ∈ Range(sl ∗ ·),
l ∈ {j + 1, · · · , j + k}}.
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Definition 18. Let j denote the number of invertible tubal eigenvalues. The
kernel K(M) of a tensor M ∈ Rn1×n2×n3 is defined as

K(M) = {~V (j+1) ∗ c1 + · · ·+ ~V (n2) ∗ cn2 | sl ∗ cl = 0, l ∈ {j + 1, · · · , j + n2}}.

4. Main result167

In this section, we present our main contribution to the analysis of the
Bürer-Monteiro approach to the tensor completion problem. For this pur-
pose, letM? = U? ∗V?> denote the factorisation ofM∗, and for any variable
tensor M, we will use the similar factorisation M = U ∗ V>. We can now
define the following objective function ofM expressed as a function of (U ,V):

f
(
U ,V

)
= 2
(
M−M?

)
: H0 :

(
M−M?

)
+

1

2
‖U> ∗ U − V> ∗ V‖2

F

+Q0

(
U ,V

)
. (16)

The asymmetric problem can easily be reduced to a symmetric problem as
follows. SupposeM? is the optimal solution and its t-SVD is X ? ∗D? ∗ Y?> .

Let U? = X ? ∗
(
D?
) 1

2 , V? = Y? ∗
(
D?
) 1

2 andM = U ∗V> is the current point,
we reduce the problem into a symmetric case by using following notations.

W =

(
U
V

)
, W? =

(
U?
V?
)
, N =W ∗W>, N ? =W? ∗W?> . (17)

In the sequel, we define ∆ =W −W? ∗ R.168

We will also transform the Hessian operator to operate (n1 +n2)× r×n3

tensors. For this purpose, define the tensors H1 and G such that for all (U ,V)
we have:

N : H1 : N =M : H0 :M
N : G : N = ‖U> ∗ U − V> ∗ V‖2

F

where we recall that N is a function of (U ,V). Now, let Q
(
W
)

:= Q0

(
U ,V

)
and we can rewrite the objective function f

(
W
)

as

1

2

[(
N −N ?

)
: 4H1 :

(
N −N ?

)
+N : G : N

]
+Q

(
W
)
. (18)

The main result of this paper is the following theorem.169
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Theorem 4.1. Let d = max{n1, n2}. Assume that

p ≥ c1

µ4r6
(
κ?
)6

log(d)

min{n1, n2}
,

for some positive constant c1. Choose

α2
1 = Θ

(µrσ?1
n1

)
, α2

2 = Θ
(µrσ?1
n2

)
and

λ1 = Θ
( n1

µrκ?
)
, λ2 = Θ

( n2

µrκ?
)
.

Then with probability at least

1− 2n1n3 exp

{
−pn2

((
1 +

t

pn2

)
ln
(
1 +

t

pn2

)
− t

pn2

)}
,

for tensor completion objective (18) we have170

• All local minima satisfy U ∗ V> =M?;171

• the function is
(
ε, c1

(
σ?r
)
, C
(
ε
σ?
r

))
-strict saddle for polynomially small172

ε.173

for some positives constants C, c1.174

Proof. See 7.3.175

5. Numerical validation on medical images176

In this section, we present some numerical results validating our approach177

on medical images and volumes. Our experiments were performed on Optical178

Coherence Tomography (OCT) images, also called ”optical biopsies” used179

by clinicians to perform micrometric (at cellular level) characterization of180

biological tissues in both in situ and ex vivo settings. Application of OCT in181

different medical setups such as ophthalmology, dermatology, cardiovascular182

surgery, etc, is usually considered of high clinical value. However, in situ183

acquisition of high resolution and 3-dimensional optical biopsies is well known184

to be very challenging in practice. Some well known drawbacks of using185
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OCT for such medical applications are: long acquisition times (generating186

artefacts, e.g., under physiological disturbances) for full-resolution volume187

acquisition. Moreover, preprocessing/processing, transfer and storage of very188

large datasets (up to 10 Go for a full resolution OCT volume) is one of189

the main limitations for using OCT-based optical biopsies in some medical190

applications of interest. The subsampling approach together with the efficient191

factorisation-based optimisation method proposed in the present paper aim192

at circumventing these issues.

Figure 2: Photography of our OCT imaging system.

193

This section discusses different setups using progressive subsampling rate194

ranging from 20% to 80%. In Section 5.1, we present of our spectral domain195

OCT system (the most popular marketed OCT systems). In Section 5.2, we196

describe the different experimental scenarios. Our cmputational results are197

presented in Section 5.3198

5.1. OCT Imaging System199

As mentioned above, OCT is a well-established medical imaging technique200

(e.g., for optical biopsy-based diagnosis) that uses a light wave to capture 3-201

dimensional images of a light-diffusing material (e.g,, biological tissue) with202

a micrometer (1µm) resolution [18]. OCT is uses low coherence interfero-203

metric technique at near-infrared wavelength. Indeed, light absorption of204

imaged biological tissues is limited in near-infrared light wavelength range,205

which restricts penetration up to about 1mm. This technique is thus halfway206

between ultrasonic (resolution of 150µm, penetration of 10cm) and confocal207

microscopy (resolution of 0.5µm, penetration of 200µm).208
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The OCT imaging technique allows to retrieve three types of information.209

Firstly, each position of the light spot on the imaged tissue gives the reflec-210

tivity profile (z axis), called A-scan, which can contain information about211

the structure and spatial dimensions of the sample under study. Secondly, a212

2-dimensional slice (x− z axes scan) of the sample (transverse tomography),213

called B-scan, can be obtained by combining series of A-scan profiles. Fi-214

nally, combining successive B-scan cross-sections allows acquiring volumetric215

OCT data (x− y − z axes scan), called C-scan.216

x

y

x

z

B-scan 3D-scan

x

y

z

y

Probe

y

D
epth

Intensity

A-scan

(b)(a) (c)

Probe

Probe

Figure 3: Available acquisition modes in an OCT imaging system: (a) A-scan, (b) B-Scan,
and (c) C-scan.

The acquisition of the different types of OCT signals (i.e., A-scan, B-217

scan, and C-scan) is performed sequentially by moving the light spot on218

the imaged sample. In other words, it is possible to acquire each single219

data independently of the others. In particular, the 2 degrees-of-freedom220

galvanometer integrated in the OCT probe makes it possible to optimise221

the sampling using any prespecified geometrically constrained protocol. As222

a result, one of the great advantages of OCT is that it is ideally suited to223

geometric subsampling in the spirit of compressed sensing.224

5.2. Validation Scenarios225

The developed materials and methods were implemented in a MatLab226

framework without taking into account code optimization aspects nor time-227

computation. The numerical validation of the methods was achieved us-228

ing two optical biopsies acquired on biological samples: a piece of a grape229
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Figure 4: Examples of the OCT volumes of biological samples used to validate the proposed
method. (first row): the initial OCT volumes and (second row), B-scan images (100th

vertical slice) taken from the original volumes.

(Fig. 4(left)), a sample of fish eye retina (Fig. 4(right)) recorded from a230

commercial OCT device1. Both optical biopsies (considered as low-tubal-231

rank tensors) have equal size An1×n2×n3 = 281× 281× 281 voxels. Different232

scenarios were considered to assess the performance of our algorithm. The233

sampling rates used for these experiments ranged from 20% to 80% (with a234

step of 10%) and formed masks that were applied to the original volume (we235

randomly pick 20% to 80% pixels from the original tensors). Finally, we set236

the maximum iteration number to be imax = 10.237

5.3. Obtained Results238

Note that instead of illustrating the fully reconstructed OCT volume, we239

choose to show 2D images (the 100th xz slice of the reconstructed volumes)240

for a better visualization, with the naked eye, of the quality of the obtained241

results as can be shown in Fig. 6. Again it can be noticed that the sharpness242

1The Telesto-II from Thorlabs (https://www.thorlabs.com/thorproduct.cfm?partnumber=TELESTO-
II)
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of the boundary is will preserved. Furthermore, the recovered data can be243

improved such as using conventional filters based post-processing methods.244

Retina245

The retina is chosen because for its translucent characteristics offering246

very good conditions for acquiring high resolution OCT (optical biopsy) im-247

ages/volumes and interesting signal-to-noise ratio comparing to most OCT248

images. The reconstructed data from the subsampled volumes are depicted249

in Fig. 5

Figure 5: [sample: retina] - Reconstructed OCT images (only a 2D slice is shown in
this example). First row corresponds to the original slice, second row the subsampled data
(ranging from 20% to 80% with a step of 10%) to be reconstructed, and third row the
reconstructed slices.

250

Grape251

As mentioned above, the second OCT volume used to assess the perfor-252

mance of the algorithm is recorded by imaging a part of a grape. Even, the253

grape is also a translucent medium, the signal-to-noise ratio is less important254

than the one obtained by imaging the retina. The validation scenario is still255

the same as for the first test, i.e., different subsampling OCT volumes were256

built using 20% to 80% (with a step of 10%) of the original data. Again it257

can be noticed that the sharpness of the boundary is preserved. Furthermore,258

the recovered data can be improved such as using conventional filters based259

post-processing methods.260
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Figure 6: [sample: grape] - Reconstructed OCT images (only a 2D slice is shown in
this example). First row corresponds to the original slice, second row the subsampled data
(ranging from 20% to 80% with a step of 10%) to be reconstructed, and third row the
reconstructed slices.

5.4. Evaluation Scores261

To quantitatively assess the numerical validation results, we implemented262

two images similarity scores extensively employed in the image processing263

community.264

• The Peak Signal Noise Ratio (PSNR) computed as follows

PSNR = 10 log10

( d2

MSE

)
(19)

where d is the maximal pixel value in the initial OCT image and the
MSE (mean-squared error) is obtained by

MSE =
n∑
i=1

m∑
j=1

(
Io(i, j)− Ir(i, j)

)2

(20)

with Io and Ir represent an initial 2D OCT slice (selected from the265

OCT volume) and the recovered one, respectively.266

• The Structural Similarity Index (SIMM) which allows measuring the
degree of similarity between two images. It is based on the computation
of three values namely the luminance l, the contrast c and the structural
aspect s. It is given by

SSIM =
(
s
(
Ir, Io)

)(
l
(
Ir, Io

)(
c
(
Ir, Io

))
(21)
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where,267

l =
2µIrµIo + C1

µ2
Ir

+ µ2
Io

+ C1

, (22)

c =
2σIrσIo + C2

σ2
Ir

+ σ2
Io

+ C2

, (23)

s =
2σIr,Io + C3

σIrσIo + C3

, (24)

with µIr , µIo , σIr , σIo , and µIr,Io are the local means, standard devia-268

tions, and cross-covariance for images Ir, Io. The variables C1, C2, C3269

are used to stabilize the division with weak denominator.270

Tables 1 summarizes the numerical values the PSNR and SSIM computed271

for each test. The obtained numerical results for both evaluation scores272

clearly demonstrate the relevance of the proposed approach for this type of273

images/volumes. As expected, increasing the number of samples significantly274

improves the quality scores, however, using only 20% sampled data gives275

unexpectedly good and exploitable recovery. In the range from 30% to 80%,276

the reconstructed data are faithful to the original ones.277

Table 1: Numerical values of the SSIM and PSNR scores.
sample 1: eye

subsampling rate 20% 30% 40% 50% 60% 70% 80%
PSNR 14.20 17.73 18.44 18.70 18.87 18.99 19.19
SSIM 00.13 00.29 00.34 00.36 00.38 00.38 00.39

sample 1: grape
subsampling rate 20% 30% 40% 50% 60% 70% 80%
PSNR 19.24 19.69 19.64 20.30 22.07 23.58 24.44
SSIM 00.20 00.25 00.30 00.38 00.37 00.43 00.46

5.5. Impact of the Initialization Parameters on the Quality of the Recon-278

struction279

Note that two initialization parameters have influence on the quality of280

the reconstruction. They concern the number of iteration ”i” and the tubal281

rank ”r”. First, in the numerical validation discussed above, both the number282

of iterations i and tubal rank r were, respectively, fixed to imax = 20 and283

r = 20.284
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5.5.1. Number of iterations i285

In this section, we varied the values of these parameters and for each286

pair (i, r), we computed both the PSNR and SSIM values. As can be seen287

in Fig. 7, the best reconstruction (for r = 20) was obtained using only few288

iterations i.e., i = 5.289

Figure 7: Representation of both the PSNR (right) and the SSIM (left) criteria in function
of the number of iterations i.

5.5.2. Choice of tubal rank r290

According to the above statement, we fixed the iterations number i = 5,291

and we varied the tubal rank r. As can be shown in Fig. 8, the best similarity292

scores (PSNR and SIMM) are obtained for a r = 80.293

Figure 8: Representation of both the PSNR (right) and the SSIM (left) criteria in function
of the tubal rank values r.

The choice of the tubal rank is crucial for efficient image reconstruction,294

and one needs easy-to-use criteria for swift selection. Many possible meth-295

ods are available in the literature such as the Bayesian Information Criterion296

(BIC). One of the main drawbacks of BIC is that only sum of squared errors297

are taken into account whereas the information about the errors is usually298

much richer than what is collected in sums of squared errors. In this section,299
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Figure 9: Histograms of the reconstructed error at the observed locations only. The plot in
green shows the histogram associated with the smallest MSE over the total tensor image,
corroborating the relevance of using histograms for accurate reconstruction.

we report an interesting observation about using histograms of the recon-300

struction errors at the observed locations as an appropriate proxy for model301

selection. Our results are given in Figure 10 where the histograms are plotted302

for various values of the rank. The MSE values are also reported in each fig-303

ure. We notice that there exists a strong correlation between the shape and304

support range of the histograms and the quality of the reconstruction as mea-305
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Figure 10: MSE over the whole reconstructed tensor image as a function of the rank

sure by the MSE. Notice in particular that the histogram corresponding to306

the best MSE is symmetric and has the second smallest support range. The307

histogram with the smallest support range gives a 4% larger MSE. Also, the308

shape of the histograms show an interesting structural change as the rank309

increases, passing from a smooth Gaussian-like behavior to a more spiky310

Laplacian-like behavior. We thus conclude that the histograms contain all311

necessary information for accurate results in the problem of low rang tubal312

tensor reconstruction.313
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6. Conclusion and Perspectives314

In this paper, we studied a low tubal-rank tensor completion problem315

using non convex optimisation, as initially proposed in [15]. A theoretical316

extension of the analysis in [16] was provided in order to address the impor-317

tant tubal tensor case. The theoretical results were validated numerically318

using real data, i.e., OCT volumes acquired in biological samples (a retina319

and a grape). The obtained results are encouraging and demonstrate the320

performance of the low tubal-rank tensor completion problem.321

Further work will consist in the validation of the method in a physical322

imaging device. In order to achieve this, it will be important to consider323

a GPU implementation of the algorithm in order to address the real-time324

processing inherent challenges. Additional research work can be undertaken325

in adapting the algorithm to an online setting where the hyperparameters326

can be learned using e.g. the approach of [10].327
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7. Proofs of our results434

7.1. Concentration Inequalities for matrix completion435

For matrix completion, we need different concentration inequalities for436

different kinds of matrices. The first type of matrix lies a tangent space and437

is proved in [6].438
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Lemma 1. [6] Let d = max{n1, n2}. Define the subspace

T = {M ∈ Rn1×n2 |M = U?X> + Y V ?> , for some X ∈ Rn1×r, Y ∈ Rn2×r}.

Then, for any δ > 0, as long as sample rate p ≥ Ω
(
µr
δ2d

log(d)
)
, we will have:

‖1

p
PT PΩPT − PT ‖ ≤ δ.

For arbitrary low rank matrix, we will need the following lemma.439

Lemma 2. Suppose that Ω ⊂ [n1] × [n2] is the set of edges of a random
bipartite graph with

(
n1, n2

)
nodes, where any pair nodes on different side

is connected with probability p. Let d = max{n1, n2}, then there exists two

universal constants c1, c2, for any δ > 0 such that for p ≥ c1
log
(
d
)

min{n1,n2} , then

with probability at least 1− d−4, we have for any x, y ∈ Rn:

1

p

∑(
i,j
)
∈Ω

xiyj ≤ ‖x‖1‖y‖1 + c2

√
d

p
‖x‖2‖y‖2.

This theorem implies following:440

Lemma 3. Let d = max{n1, n2}. There exists universal constant c1, c2, for

any δ > 0 so that if p ≥ c1
log
(
d
)

min{n1,n2} then with probability at least 1 − 1
2
d−4,

we have for any matrices X, Y ∈ Rd×r:

1

p
‖XY >‖2

Ω ≤ ‖X‖2
F‖Y ‖2

F + c2

√
d

p
‖X‖F‖Y ‖F . max

1≤i≤d
‖e>i X‖ . max

1≤j≤d
‖e>j Y ‖.

On the other hand, for all low rank matrices we also have the following441

which is tighter for incoherent matrices.442

Lemma 4. [15]Let d = max{n1, n2}, then with at least probability 1− eΩ
(
d
)

over random choice of Ω, we have for any rank 2r matrices A ∈ Rn1×n2:

∣∣∣1
p
‖PΩ

(
A
)
‖2

Ω − ‖A‖2
F

∣∣∣ ≤ C
(d r log

(
d
)

p
‖A‖2

∞ +

√
d r log

(
d
)

p
‖A‖F‖A‖∞

)
for some positive constant C.443
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Finally, for a matrix with each entry randomly sampled independently444

with small probability p, next theorem says with high probability, no row445

can have too many non-zero entries.446

Lemma 5. Let Ωi denote the support of Ω on the i-th row, let d = max{n1, n2}.
Assume pn2 ≥ log

(
2d
)
, then with probability at least

1− 2n1 exp

{
−pn2

((
1 +

t

pn2

)
ln
(

1 +
t

pn2

)
− t

pn2

)}
over random choice of Ω, we have for all i ∈ [n1] simultaneously:

|Ωi| ≤ C pn2,

for some positive constant C.447

7.2. The case of symmetric positive definite problems448

We start with the simple definition of tubal symmetry for tensors.449

Definition 19. [19] A ∈ Rn×n×n3 is a symmetric positive definite if Â(i)
450

are Hermitian positive definite for i = 1, . . . , n3 where Â is the Fast Fourier451

Transform (FFT) of tensor A.452

In the following, we assume that the tensorM? = U?∗
(
U?
)>

is symmetric
and positive semi-definite with U ∈ Rn×r×n3 . The goal is to find the unknown
tensor U? solution the following non-convex optimization problem

min
M∈Rn×n×n3

1

2

(
M−M?

)
: H :

(
M−M?

)
s.t. rank(M) = r (25)

where the rank of M is defined in Section 3.4. Using the factorization idea
of Burer and Monteiro [5], the corresponding unconstrained optimization
problem with regularization Q can be written as

min
U∈Rn×n×n3

1

2

(
U ∗ U> −M?

)
: H :

(
U ∗ U> −M?

)
+Q(U). (26)

We now present the concept of ”direction of improvement” which was intro-453

duced in [15].454
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Definition 20. (Direction of improvement) Let U ,U? ∈ Rn×r×n3, define

∆ = U − U? ∗ R

where R ∈ Rr×r×n3 is defined as

R = argmin
Z>∗Z=Z∗Z>=J

‖U − U? ∗ Z‖2
F .

The direction of improvement is clearly the best direction towards the455

ground truth solution and the first set to take if one wants to improve the456

objective value. The direction of improvement is intrumental for proving457

Lemma 6, which is key to our analysis. This lemma Our version is an adap-458

tation of [15, Lemma 7] to the case of low rank tubal tensor factorisation459

in the sense proposed by Kilmer. The main technical difficulty of adapting460

the proof of [15, Lemma 7] is to decouple the slices of the tensor in order461

to arrive at the same type of computations as in the original version of the462

result. This is achieved by taking the Fourier transform along the tubes.463

Lemma 6. (Main) Let ∆ be defined as in (20) and M = U ∗U>. Then, for
any U ∈ Rn×r×n3, we have

∆ : ∇2f(U) : ∆ = ∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?)
(27)

+ 4〈∇f(U),∆〉+ [∆ : ∇2Q(U) : ∆− 4〈∇Q(U),∆〉].

464

Proof. We have

f(U) =
1

2
(U ∗ U> −M?) : H : (U ∗ U> −M?) +Q(U)

=
1

2

〈
U ∗ U> −M?,H

(
U ∗ U> − U?

)〉
+Q(U)

and we therefore get

f(U) =
1

2
〈F(U ∗ U> −M?),F(H(U ∗ U> −M?))〉+Q(U)

=
1

2

〈
F(U) ∗ F(U>)−F(M?),F(H) ∗ F(U) ∗ F(U>)−F(H) ∗ F(M?)

〉
+Q(U)
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which gives

=
1

2

n3∑
k=1

〈
F
(
U
)(k)F

(
U>
)(k) −F

(
M?

)(k)
,F
(
H
)(k)F

(
U
)(k)F

(
U>
)(k)

−F
(
H
)(k)

F
(
M?

)(k)〉
+Q(U)

and thus

f(U) =
1

2

n3∑
k=1

〈
F(U)(k)F(U>)(k) −F(M?)(k),F(H)(k)

(
F(U)(k)F(U>)(k)

−F(M?)(k)
)〉

+Q(U)

=
1

2

n3∑
k=1


(
F
(
U
)(k)

F
(
U>
)(k)

−F
(
M?

)(k))
: F
(
H
)(k)

:(
F
(
U
)(k)

F
(
U>
)(k)

−F
(
M?

)(k))


︸ ︷︷ ︸
= G(U)

+Q(U).

Using the fact, with for any Z ∈ Rn×r×n3 , we have:

〈∇f(U),Z〉 = 〈∇G(U),Z〉+ 〈∇Q(U),Z〉

and

Z : ∇2f(U) : Z = Z : ∇2G(U) : Z + Z : ∇2Q(U) : Z.

So, we need to compute 〈∇G(U),Z〉 and Z : ∇2G(U) : Z. For this, by
expanding the fact, for any Z ∈ Rn×r×n3 , we know that:

G
(
U + Z

)
=G
(
U
)

+ 〈∇G
(
U
)
,Z〉+

1

2
Z : ∇2G

(
U
)

: Z +O
(
‖Z ∗ Z>‖2

)
.

We obtain,

〈∇G(U),Z〉 =

n3∑
k=1

{ [
F(U)(k)F(U>)(k) −F(M?)(k)

]
: F(H)(k) :[

F(U)(k)F(Z>)(k) + F(Z)(k)F(U>)(k)
]
}

=
(
F(M)−F(M?)

)
: F(H) :

(
F(U) ∗ F(Z>) + F(Z) ∗ F(U>)

)
=
(
M−M?

)
: H :

(
U ∗ Z> + Z ∗ U>

)
(28)
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and

Z : ∇2G(U) : Z =

n3∑
k=1

{ [
F(U)(k)F(Z>)(k) + F(Z)(k)F(U>)(k)

]
: F(H)(k) :[

F(U)(k)F(Z>)(k) + F(Z)(k)F(U>)(k)
]
}

+ 2
[
F(U)(k)F(U>)(k) −F(M?)(k)

]
: F(H)(k) :

[
F(Z)(k)F(Z>)(k)

]
=
(
F(U) ∗ F(Z>) + F(Z) ∗ F(U>)

)
: F(H) :

(
F(U) ∗ F(Z>) + F(Z) ∗ F(U>)

)
+ 2
(
F(M)−F(M?)

)
: F(H) : F(Z) ∗ F(Z>)

=
(
U ∗ Z> + Z ∗ U>

)
: H :

(
U ∗ Z> + Z ∗ U>

)
+ 2
(
M−M?

)
: H : Z ∗ Z>.

(29)

In the last equality of (28) and (29), we use the linearity of Fourier transform
and the inverse of FFT. Let Z = ∆ = U −U? ∗R andM−M? + ∆ ∗∆> =
U ∗∆> + ∆ ∗ U>. Indeed,

U ∗∆> + ∆ ∗ U> = U ∗ U> − U ∗ R> ∗ U?> + U ∗ U> − U? ∗ R ∗ U>

and using that R ∗R> = J , where J is a identity tensor, we have

M−M? + ∆ ∗∆> = U ∗ U> − U? ∗ U?> +
(
U − U? ∗ R

)
∗
(
U − U? ∗ R

)>
= U ∗ U> − U ∗ R> ∗ U?> + U ∗ U> − U? ∗ R ∗ U>.

Using(
M−M?

)
: H :

(
M−M? + ∆ ∗∆>

)
= 〈∇f(U),∆〉 − 〈∇Q(U),∆〉,

we have

∆ : ∇2f(U) : ∆ =
(
U ∗∆> + ∆ ∗ U>

)
: H :

(
U ∗∆> + ∆ ∗ U>

)
+2
(
M−M?

)
: H : ∆ ∗∆> + ∆ : ∇2Q(U) : ∆

=
(
M−M? + ∆ ∗∆>

)
: H :

(
M−M? + ∆ ∗∆>

)
+2
(
M−M?

)
: H : ∆ ∗∆> + ∆ : ∇2Q(U) : ∆

=∆ ∗∆> : H : ∆ ∗∆> +
(
M−M?

)
: H :

(
M−M?

)
+4
(
M−M?

)
: H : ∆ ∗∆> + ∆ : ∇2Q(UM) : ∆

=∆ ∗∆> : H : ∆ ∗∆> − 3
(
M−M?

)
: H :

(
M−M?

)
+4
(
M−M?

)
: H :

(
M−M? + ∆ ∗∆>

)
+ ∆ : ∇2Q(U) : ∆

=∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?)

+4〈∇f(U),∆〉+ [∆ : ∇2Q(U) : ∆− 4〈∇Q(U),∆〉].
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465

Using the previous lemma, we are now able to prove the following result.466

Lemma 7. Given tensors U ,U? ∈ Rn×r×n3. LetM = U∗U>,M? = U?∗U?>,
and ∆ be defined as in (20), then we have

‖∆ ∗∆>‖2
F ≤ 2‖M−M?‖2

F and σ?r‖∆‖2
F ≤

1

2
(√

2− 1
)‖M−M?‖2

F .

467

Proof. We begin to show that

U> ∗ U? ∗ RU is a symmetric PSD tensor. (30)

where RU = arg min
R∗R>=R>∗R=J

‖U − U? ∗ R‖2
F . By developping the Frobenius

norm and letting the t-SVD of U?> ∗ U be A ∗ D ∗ B>, we have:

‖U − U? ∗ R‖2
F = ‖U ∗ U>‖2

F − 2〈U ,U? ∗ R〉+ ‖U? ∗ U?>‖2
F .

Hence,

arg min
R∗R>=R>∗R=J

‖U − U? ∗ R‖2
F = arg min

R∗R>=R>∗R=J
− 〈U ,U? ∗R〉

= arg min
R∗R>=R>∗R=J

− 〈F(U),F(U?) ∗ F(R)〉

= arg min
R∗R>=R>∗R=J

−
n3∑
k=1

〈F(U)(k),F(U?)(k)F(R)(k)〉

= arg min
R∗R>=R>∗R=J

−
n3∑
k=1

trace
(
F(U)(k)>F(U?)(k)F(R)(k)

)
= arg min
R∗R>=R>∗R=J

−
n3∑
k=1

trace
(
F
(
D
)(k)F

(
A>
)(k)F(R)(k)F

(
B
)(k)
)
.

Since A, R and B are orthogonal tensors, then F
(
A>
)(k)

, F(R)(k) and
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F
(
B
)(k)

are orthogonal matrices. For any orthogonal tensor T , we have

trace
(
D ∗ T

)
= 〈D, T 〉 = 〈F(D),F(T )〉

=

n3∑
k=1

trace
(
F(D)(k)F(T )(k)

)
=

n3∑
k=1

r∑
i=1

F(D)
(k)
ii F(T )

(k)
ii

≤
n3∑
k=1

r∑
i=1

F(D)
(k)
ii

where the last inequality uses the fact that F(D)
(k)
ii is a positive singular

values and T is an orthogonal tensor thus F(T )
(k)
ii ≤ 1. This implies that

the maximum of F(D)
(k)
ii F(T )

(k)
ii is attained at T = J . In other words, the

minimum is attained when

−
n3∑
k=1

trace
(
F
(
D
)(k)F

(
A>
)(k)F(R)(k)F

(
B
)(k))

is attained when

R = A ∗ B>.

Finally, since

U> ∗ U? ∗ RU = B ∗ D ∗ A> ∗ RU = B ∗ D ∗ B>

we get that U>∗U?∗RU is a symmetric PSD tensor and the proof is completed.468

469

The following technical result follows the lines of the analysis provided in470

[15] and shows how one can control the factorisation of differences using the471

differences of factorisations.472

Lemma 8. Let U and Y be two n× n× n3 tensors. Let U> ∗ Y = Y> ∗ U be
a PSD tensor. Then,

‖
(
U − Y

)
∗
(
U − Y

)>‖2
F ≤ ‖U ∗ U> − Y ∗ Y>‖2

F .

473
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Proof. Let ∆ = U − Y , and we have

‖U ∗ U> − Y ∗ Y>‖2
F =‖U ∗∆> + ∆ ∗ U> −∆ ∗∆>‖2

F

=trace
(

∆ ∗ U> ∗ U ∗∆> + ∆ ∗ U> ∗∆ ∗ U>

−∆ ∗ U> ∗∆ ∗∆> + U ∗∆> ∗ U ∗∆>
)

+trace
(
U ∗∆> ∗∆ ∗ U> − U ∗∆> ∗∆ ∗∆>

−∆ ∗∆> ∗ U ∗∆> −∆ ∗∆> ∗∆ ∗ U>
)

+trace
(
∆ ∗∆> ∗∆ ∗∆>

)
.

On the other hand,

trace
(
∆ ∗ U> ∗ U ∗∆>

)
= 〈F

(
∆
)
· F
(
U>
)
,F
(
∆
)
· F
(
U>
)
〉

=

n3∑
k=1

trace
(
F
(
∆
)(k)F

(
U>
)(k)F

(
U
)(k)F

(
∆>
)(k))

=

n3∑
k=1

trace
(
F
(
U>
)(k)F

(
U
)(k)F

(
∆>
)(k)F

(
∆
)(k))

= trace
(
U> ∗ U ∗∆> ∗∆

)
trace

(
∆ ∗ U> ∗∆ ∗∆>

)
= 〈F

(
∆
)
· F
(
U>
)
,F
(
∆>
)
· F
(
∆
)
〉

=

n3∑
k=1

trace
(
F
(
∆
)(k)F

(
U>
)(k)F

(
∆
)(k)F

(
∆>
)(k))

=

n3∑
k=1

trace
(
F
(
U>
)(k)F

(
∆
)(k)F

(
∆>
)(k)F

(
∆
)(k))

= trace
(
U> ∗∆ ∗∆> ∗∆

)
.

In a similar manner, we get474

• trace
(
∆ ∗ U> ∗∆ ∗∆>

)
= trace

(
U ∗∆> ∗∆ ∗∆>

)
= trace

(
∆ ∗∆> ∗475

U ∗∆>
)

= trace
(
∆ ∗∆> ∗∆ ∗ U>

)
476

• trace
(
∆ ∗ U> ∗ U ∗∆>

)
= trace

(
U ∗∆> ∗∆ ∗ U>

)
477

• trace
(
∆ ∗ U> ∗∆ ∗ U>

)
= trace

(
U ∗∆> ∗ U ∗∆>

)
.478
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Therefore using that U> ∗ Y = Y> ∗ U , we have

‖U ∗ U> − Y ∗ Y>‖2
F

=trace
(
2U> ∗ U ∗∆> ∗∆ + ∆> ∗∆ ∗∆> ∗∆ + U> ∗∆ ∗ U> ∗∆− 4U> ∗∆ ∗∆> ∗∆

)
=trace

(
2U> ∗ U ∗∆> ∗∆ + 2

(
U> ∗∆

)2
+
(
∆> ∗∆

)2 − 4U> ∗∆ ∗∆> ∗∆
)

=trace
(
2U> ∗

(
U −∆

)
∗∆> ∗∆ +

( 1
√

2
∆> ∗∆−

√
2U> ∗∆

)2
+

1

2

(
∆> ∗∆

)2)
≥trace

(
2U> ∗ Y ∗∆> ∗∆ +

1

2

(
∆> ∗∆

)2)
≥

1

2
‖∆ ∗∆>‖2

F

where the last inequality is a consequence of the fact that U> ∗ Y is a479

positive semi-definite tensor.480

The next lemma will also be key.481

Lemma 9. Let U and Y be two n× n× n3 tensors. Let U> ∗ Y = Y> ∗ U be
a PSD tensor. Then,

σmin

(
U> ∗ U

)
‖U − Y‖2

F ≤ ‖
(
U − Y

)
∗ U>‖2

F

≤
1

2
(√

2− 1
) ‖U ∗ U> − Y ∗ Y>‖2

F .

482

Proof. Let ∆ = U − Y , and we have

‖U ∗ U − Y ∗ Y>‖2
F = ‖U ∗∆> + ∆ ∗ U> −∆ ∗∆>‖2

F

= trace
(
2U> ∗ U ∗∆> ∗∆ + 2

(
U> ∗∆

)2
+
(
∆> ∗∆

)2 − 4U> ∗∆ ∗∆> ∗∆
)

≥ trace
((

4− 2
√

2
)
U> ∗ Y ∗∆> ∗∆ + 2

(√
2− 1

)
U> ∗ U ∗∆> ∗∆

)
≥ 2
(√

2− 1
)
‖U ∗∆>‖2

F .

where the last inequality uses the positive semidefiniteness of U> ∗ Y .483

Combining 8 and 9, it now within reach to obtain Lemma 7, after replac-484

ing U by U? ∗ RU and Y by U .485

Let us now turn to clarifying the interaction between the Hessian and486

the regulariser. The necessity of using a penalisation (regularisation) comes487
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from the deficiency of the Hessian operator H in preserving the norm of all488

low rank tubal tensors. A standard approach to making the Bürer Monteiro489

successful is to impose some incoherence on the matrix to be reconstructed490

such as proposed in the following definition.491

Definition 21. [36] Let M ∈ Rn1×n2×n3 and its t-SVD of the form M =
X ∗ D ∗ Y>. Let r = rank(M). Then, M is said to satisfy the tensor
incoherence property with parameter µ > 0, if

max
i=1,...,n1

‖e>i ∗ X‖F ≤

√
µr

n1

max
j=1,...,n2

‖e>j ∗ Y‖F ≤

√
µr

n2

where ei is the n1×1×n3 column basis with ei11 = 1 and ej is the n2×1×n3492

column basis with ej11 = 1.493

In the following, we will assume that our unknown low rank tensor M?
494

is µ-incoherent.495

In the non-convex problem, we try to make sure that the decomposition
U ∗ U> is also incoherent by adding a regularizer of [15], that penalize the

function objective when some row of F
(
U
)(k)

, k = 1 . . . , n3 is too large.

Q
(
U
)

= λ

n3∑
k=1

n∑
i=1

(
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)4

+

.

Here λ, α are parameters that we choose later, (x)+ = max{x, 0}. By adding
this regularizer, we can transform the objective function to the unconstrained
form

min
U∈Rn×r×n3

1

2p
‖U ∗ U> −M?‖2

Ω +Q(U). (31)

Using this fact we begin to show that the regularizer ensures that all rows of496

F(U)(k), k = 1 . . . , n3 are small.497

We now study the properties of the gradient and Hessian of the regularizer498

Q:499
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Lemma 10. The gradient and the Hessian of the regularizer

Q
(
U
)

= λ

n3∑
k=1

n∑
i=1

(
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)4

+

is:

〈∇Q(U),Z〉 = 4λ

n3∑
k=1

n∑
i=1

((
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)3

+

×
F
(
e>i
)(k)F

(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k)

‖F
(
e>i
)(k)F

(
U
)(k)‖2

)
. (32)

Z : ∇2Q(U) : Z =

12λ

n3∑
k=1

n∑
i=1

((
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)2

+

(F(e>i )(k)F
(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k)

‖F
(
e>i
)(k)F

(
U
)(k)‖2

)2)
+ 4λ

n3∑
k=1

n∑
i=1

((
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)3

+
(33)

×
‖F
(
e>i
)(k)F

(
U
)(k)‖2

2 ‖F
(
e>i
)(k)F

(
Z
)(k)‖2

2 −
(
F
(
e>i
)(k)F

(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k))2

‖F
(
e>i
)(k)F

(
U
)(k)‖3

2

)
.

Proof. Let

ϕ
(
U
)

=

n3∑
k=1

n∑
i=1

hi
(
F
(
U
)(k)

+ tF
(
Z
)(k))− hi(U)

where

hi(M) =
(
‖F
(
e>i
)(k)F

(
M
)(k)‖2 − α

)4

+
.

We will have to determine the directional derivative of ϕ in the direction of
F(Z)(k) for k = 1, . . . , n3. Suppose that ‖e>i ∗U‖F ≥ α, so for all sufficiently
small t and for any k = 1, . . . , n3, we have(

‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)4

+

=

(
‖F
(
e>i
)(k)F

(
U
)(k)‖ − α

)4

.
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Hence, we have

hi(U) = g(fi(U)) with g : x 7→ x4

as well as

fi(U) = ‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α.

∂hi(U) = ∂g(fi(U)) · ∂fi(U)

and

∂2hi(U) = ∂2(g(fi(U))) · ∂fi(U) + ∂g(fi(U)) · ∂2fi(U)

with

∂g(fi(U)) = 4
(
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)3
,

∂fi
(
U
)

=
F
(
e>i
)(k)F

(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k)

‖F
(
e>i
)(k)F

(
U
)(k)‖2

and

∂2(g(fi(U))) = 12
(
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)2F
(
e>i
)(k)F

(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k)

‖F
(
e>i
)(k)F

(
U
)(k)‖2

and thus,

∂2fi(U) =

‖F
(
e>i
)(k)F

(
U
)(k)‖2

2‖F
(
e>i
)(k)F

(
Z
)(k)‖2

2 −
(
F
(
e>i
)(k)F

(
U
)(k)F

(
Z
)(k)>F

(
ei
)(k))2

‖F
(
e>i
)(k)F

(
U
)(k)‖3

2

With this result in hand, the remainder of the proof follows in a straight-500

forward manner.501

Lemma 11. There exists an absolute constant c, such that when the proba-
bility p satisfies

p > c1
µr log(n)

n
, α2 = Θ

(µrσ?1
n

)
and λ = Θ

( n

µrκ?
)
,
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we have for any U with ‖∇f(U)‖F ≤ ε for any polynomial small ε, with
probability at least

1− 2nn3 exp

{
−pn

((
1 +

t

pn

)
ln
(
1 +

t

pn

)
− t

pn

)}
,

max
1≤i≤n

‖e>i ∗ U‖2
F = max

1≤i≤n
‖F(e>i ) · F(U)‖2

F

= max
1≤i≤n

n3∑
k=1

‖F
(
e>i
)(k)F

(
U
)(k)‖2

2 ≤ C n3
(µr)1.5κ?σ?1

n

for some constant positive C.502

Proof. We first show that the regulariser forces the tensor U to have small
rows, i.e, prove the Lemma 11. By Lemma 10, we know that:

∇Q(U) = 4λ

n3∑
k=1

n∑
i=1

((
‖F
(
e>i
)(k)F

(
U
)(k)‖2 − α

)3

+
(34)

×
F
(
ei
)(k)F

(
e>i
)(k)F

(
U
)(k)

‖F
(
e>i
)(k)F

(
U
)(k)‖2

)
.

Using this formula, we have

∇f
(
U
)

=
2

p

(
M −M?

)
Ω
∗ U +∇Q(U) (35)

=
2

p

n3∑
k=1

(
F
(
M
)(k) −F

(
M?

)(k))
Ω
F
(
U
)(k)

+∇Q(U).

Let us study the potential consequence of having ‖e>i? ∗ U‖F ≥ 2α. Consider
the gradient along ei? ∗ e>i? ∗ U direction. Since ‖∇f(U)‖F ≤ ε, we have

〈∇f(U), ei? ∗ e>i? ∗ U〉 = 〈e>i? ∗ ∇f(U), e>i? ∗ U〉 ≤ ε‖e>i? ∗ U‖F .

Therefore, with probability larger than

1− 2nn3 exp

{
−pn

((
1 +

t

pn

)
ln
(
1 +

t

pn

)
− t

pn

)}
,
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using equalities (34) and (35) the followings holds:

ε‖e>i? ∗ U‖F = ε‖F
(
e>i?
)
· F
(
U
)
‖F = ε

n3∑
k=1

‖F
(
e>i?
)(k)F

(
U
)(k)‖2.

Now, for any k = 1, . . . , n3, we have

ε‖F
(
e>i?
)(k)F

(
U
)(k)‖2

#

≥ 4λ
(
‖F(e>i?)(k)F(U)(k)‖2 − α

)3

+
‖F(e>i?)(k)F(U)(k)‖2

− 2

p
〈F
(
e>i?
)(k)(F(M?)(k)

)
Ω
,F
(
e>i?
)(k)(F(U)(k)F(U>)(k)

)
Ω
〉

##

≥ λ

2
‖F(e>i?)(k)F(U)(k)‖4

2

− 2 · 1
√
p
‖F(e>i?)(k)

(
F(M?)(k)

)
Ω
‖2 ·

1
√
p
‖F(e>i?)(k)

(
F(U)(k)F(U>)(k)

)
Ω
‖2

###
=

λ

2
‖F(e>i?)(k)F(U)(k)‖4

2

− 2
√
p

√√√√ n3∑
k=1

∥∥∥F(e>i?)(k)
(F
(
M?

)(k)
)Ω

∥∥∥2

2
× 1
√
p

√√√√ n3∑
k=1

‖F
(
e>i?
)(k)(F(U)(k)F

(
U>
)(k))

Ω
‖2

2

####

≥ λ

2
‖F(e>i?)(k)F(U)(k)‖4

2

− 2

n3∑
k=1

√
1 + 0.01‖F

(
e>i?
)(k)F

(
M?

)(k)‖2 · C
√
n

n3∑
k=1

‖F
(
U
)(k)F

(
U>
)(k)‖∞

#####

≥ λ

2
‖F(e>i?)(k)F(U)(k)‖4

2 − C
√
µrσ?1

n3∑
k=1

‖F
(
e>i?
)(k)F

(
U
)(k)‖2

2

where we used the relation

〈F
(
e>i?
)(k)(F(U)(k)F

(
U>
)(k))

Ω
F
(
U
)(k)

,F
(
e>i?
)(k)F

(
U
)(k)〉

= ‖F
(
e>i?
)(k)(F(U)(k)F

(
U>
)(k))

Ω
‖2

2 ≥ 0

in (#); the Cauchy-Schwartz inequality in (##); the isometry of the FFT in
(###); (1) and (5) in (####) and the µ-incoherence ofM? in (#####).
Therefore, we obtain:

‖e>i? ∗ U‖3
F ≤ Cn3

√
µr σ?1
λ
‖e>i? ∗ U‖F +

2ε

λ
.
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By choosing ε sufficiently small we can impose
(
ε/λ
) 2

3 ≤
√
µr σ?1
λ

and obtain

max
1≤i≤n

‖e>i ∗ U‖2
F ≤ cmax

{
α2, n3

√
µr σ?1
λ

}
.

Finally, substituting our choice of α2 and λ, the proof is completed.503

We now show that the Hessian operator satisfies that when U and U?504

are not close to each other, the terms involving the Hessian operator H in505

Equation (27) are significantly negative.506

Lemma 12. When the probability p ≥ c1

(µ3r4(κ?)4 logn

n

)
, by choosing α2 =

Θ
(µrσ?

1

n

)
and λ = Θ

(
n

µrκ?

)
with probability at least

1− 2nn3 exp

{
−pn

((
1 +

t

pn

)
ln
(
1 +

t

pn

)
− t

pn

)}
,

for all U with ‖∇f(U)‖F ≤ ε for polynomially small ε, we have

∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?)

≤ −0.3

n3∑
k=1

σ?r‖F
(
∆
)(k)‖2

F .

Proof. Introduce

∆ = U − U?.

Note that when ∆ is not incoherent, the Hessian will still preserve norm for507

frontal faces like F(∆)(k)F(U>)(k), but but it will not necessarily preserve508

the norm of frontal faces such as F(∆)(k)F(∆>)(k). Hence, we use different509

concentration lemmas in different cases.510

First with the choice of α, λ and using Lemma 11 we know that with
probability larger than

1− 2n exp

{
−pn

((
1 +

t

pn

)
ln
(
1 +

t

pn

)
− t

pn

)}
,
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the maximum the Euclidean norm of any row of F
(
U
)(k)

for k = 1, . . . , n3 is
small as well:

max
1≤i≤n

‖F
(
e>i
)(k)F

(
U
)(k)‖2

2 ≤ C
(µr)1.5κ?σ?1

n
.

Let us now split the analysis into two cases.511

Case 1: ‖F(∆)(k)‖2
F ≤ σ?r/4, for any k = 1, . . . , n3.512

In this case, ∆ is small and ∆ ∗∆> is small too but H not preserve norm

very well for frontal slides F
(
∆
)(k)F

(
∆>
)(k)

. Using the choice of p and by
Lemma 1, we have

1

p
‖U? ∗∆>‖2

Ω ≥
(
1− δ

)
‖U? ∗∆>‖2

F ≥
(
1− δ

)
σ?r‖∆‖2

F .

On the other hand,

1

p
‖∆ ∗∆>‖2

Ω =

n3∑
k=1

1

p
‖F(∆)(k)F(∆>)(k)‖2

Ω.

Using Lemma 3, for any k = 1, . . . , n3, we have for some positive constant
C:

1

p
‖F(∆)(k)F(∆>)(k)‖2

Ω ≤ ‖F(∆)(k)‖4
F + C

√
n

p
· (µr)1.5κ?σ?1

n
‖F(∆)(k)‖2

F

≤ ‖F(∆)(k)‖4
F +

σ?r
4
‖F(∆)(k)‖2

F

≤ σ?r
2
‖F(∆)(k)‖2

F .
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Using these facts, we obtain

∆ ∗∆ : H : ∆ ∗∆> − 3
(
M−M?

)
: H :

(
M−M?

)
=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

−3
(
F(M)(k) −F(M?)(k)

)
: F(H)(k) :

(
F(M)(k) −F(M?)(k)

)
=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

−3
(
F(U?)(k)F(∆>)(k) + F(∆)(k)F(U?>)(k) + F(∆)(k)F(∆>)(k)

)
: F(H)(k) :(

F(U?)(k)F(∆>)(k) + F(∆)(k)F(U?>)(k) + F(∆)(k)F(∆>)(k)
)

≤
n3∑
k=1

−12 F(U?)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

−12 F(U?)(k)F(∆>)(k) : F(H)(k) : F(U?)(k)F(∆>)(k)

≤
n3∑
k=1

−
12

p

(
‖F(U?)(k)F(∆>)(k)‖2

Ω − ‖F(U?)(k)F(∆>)(k)‖Ω‖F(∆)(k)F(∆>)(k)‖Ω

)
≤

n3∑
k=1

−12
√

1− δ
(√

1− δ −
√

2/3
)
σ?r‖F(∆)(k)‖2

F

where we use the fact

1

p
‖F(∆)(k)F(∆>)(k)‖2

Ω ≤
σ?r
2
‖F(∆)(k)‖2

F

and

−
1

p
‖F(U?)(k)F(∆)(k)>‖2

Ω ≤ −
(
1− δ

)
σ?r ‖F(∆)(k)‖2

F .

Thus, taking p ≥ c1
µ3r4
(
κ?
)4

logn

n
, we get

∆ ∗∆ : H : ∆ ∗∆> − 3
(
M−M?

)
: H :

(
M−M?

)
≤

n3∑
k=1

−1.2σ?r‖F(∆)(k)‖2
F .

Case 2: ‖F(∆)(k)‖2
F ≥

σ?
r

4
, for any k = 1, . . . , n3.513
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Using Lemma (4) with high probability and with the choice of p that we
have just made, we have

1

p
‖∆ ∗∆>‖2

Ω =

n3∑
k=1

1

p
‖F(∆)(k)F(∆>)(k)‖2

Ω

≤
n3∑
k=1

‖F(∆)(k)F(∆>)(k)‖2
F

+ C
(nr log(n)

p
‖F(∆)(k)F(∆>)(k)‖2

∞

+

√
nr log(n)

p
‖F(∆)(k)F(∆>)(k)‖F‖F(∆)(k)F(∆>)(k)‖∞

)
≤

n3∑
k=1

‖F(∆)(k)F(∆>)(k)‖2
F

+ C
(nr log(n)

p
·
(
µr
)3(

κ?σ?1
)2

n2
+

√
nr log(n)

p
·
(
µr
)3(

κ?σ?1
)2

n2
‖F(∆)(k)‖2

F

)
≤

n3∑
k=1

‖F
(
∆
)(k)F(∆>)(k)‖2

F +

(
σ?r
)2

80
+
σ?r
20
‖F(∆)(k)‖2

F

≤
n3∑
k=1

‖F(∆)(k)F(∆>)(k)‖2
F + 0.1σ?r‖F(∆)(k)‖2

F .

In the second inequality, we used

‖F(∆)(k)F(∆>)(k)‖2
∞ ≤ C

(
µr
)3(

κ?σ?1
)2

n2

for some positive constant C. In the third inequality, we use for some positive
constant c1

p ≥ c1

µ3r4
(
κ?
)4

log n

n
and κ = σ?1/σ

?
r .
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Again, using Lemma 4, we have that, with high probability,

1

p
‖M−M?‖2

Ω =

n3∑
k=1

1

p
‖F(M)(k) −F(M?)(k)‖2

Ω

≥
n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F

+ C
(nr log(n)

p
‖F(M)(k) −F(M?)(k)‖2

∞

+

√
nr log(n)

p
‖F(M)(k) −F(M?)(k)‖F‖F(M)(k) −F(M?)(k)‖∞

)
≥

n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F

+ C
(nr log(n)

p
·
(
µr
)3(

κ?σ?1
)2

n2

+

√
nr log(n)

p
·
(
µr
)3(

κ?σ?1
)2

n2
‖F(M)(k) −F(M?)(k)‖F

)
≥

n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F −

(
σ?r
)2

80
−
σ?r
20
‖F(M)(k) −F(M?)(k)‖F

≥
n3∑
k=1

0.95 ‖F(M)(k) −F(M?)(k)‖2
F − 0.1 σ?r‖F(∆)(k)‖2

F .

The third inequality, again we use p ≥ c1

(µ3r4(κ?)4 logn

n

)
and κ = σ?1/σ

?
r . This
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facts implies

∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?)

=

n3∑
k=1

1

p

(
‖F(∆)(k)F(∆>)(k)‖2

Ω − 3 ‖F(M)(k) −F(M?)(k)‖2
Ω

)
≤

n3∑
k=1

‖F(∆)(k)F(∆>)(k)‖2
F + 0.1σ?r‖F(∆)(k)‖2

F

− 3
(
0.95‖F(M)(k) −F(M?)(k)‖2

F − 0.1σ?r‖F(∆)(k)‖2
F

)
≤

n3∑
k=1

−0.85‖F(M)(k) −F(M?)(k)‖2
F + 0.4σ?r‖F(∆)(k)‖2

F

≤
n3∑
k=1

−0.3σ?r‖F(∆)(k)‖2
F .

The two last inequalities, we use the two bounds of 7.514

Now, we need to bound the terms with the regularizer in (27).515

Lemma 13. By choosing α2 = Θ
(µrσ?1

n

)
and λα2 ≤ C σ?r for some positive

constant C, we have:

1

4

[
∆ : ∇2Q

(
U
)

: ∆− 4〈∇Q
(
U
)
,∆〉

]
≤ 0.1σ?r

n3∑
k=1

‖F
(
∆
)(k)‖2

F .

Proof. We know that:

〈∇Q(U),Z〉 = 4λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3

+

F(e>i )(k)F(U)(k)F(Z>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

Z : ∇2Q(U) : Z = 12λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2

+

(F(e>i )(k)F(U)(k)F(Z>)(k)

‖F(e>i )(k)F(U)(k)‖2

)2

+ 4λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3

+

×
‖F(e>i )(k)F(U)(k)‖2

2‖F(e>i )(k)F(Z)(k)‖2
2 −

(
F(e>i )(k)F(U)(k)F(Z>)(k)F(ei)

(k)
)2

‖F(e>i )(k)F(U)(k)‖3
2

.
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Using this facts with Z = ∆ = U − U? ∗ R, we have:

1

4

[
∆ : ∇2Q

(
U
)

: ∆− 4〈∇Q
(
U
)
,∆〉

]
= λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3

+

×
‖F(e>i )(k)F(U)(k)‖22‖F(e>i )(k)F(∆)(k)‖22−

(
F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)

(k)
)2

‖F(e>i )(k)F(U)(k)‖32︸ ︷︷ ︸
=A1

+ 3λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2

+

(F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

)2

︸ ︷︷ ︸
=A2

− 4λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3

+

F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(ei)(k)F(U)(k)‖2︸ ︷︷ ︸ .
=A3

Furthermore, using the incoherence property of M?, we have for any
k = 1, . . . , n3

‖F(e>i )(k)F(U)(k) −F(e>i )(k)F(∆)(k)‖2 =‖F(e>i )(k)F(U?)(k)F(R)(k)‖2

=‖F(e>i )F(U?)(k)‖2

≤

√
µrσ?1
n

.

By choosing α > C1

√
µrσ?1
n

for some large constant C1 and when ‖F(e>i )F(U)(k)‖2−
α > 0, we have for any k = 1, . . . , n3

F
(
e>i
)(k)F(U)(k)F(∆>)(k)F(ei)

(k)

=F(e>i )(k)F(U)(k)F(U>)(k)F(ei)
(k) −F(e>i )(k)F(U)(k)F(R>)(k)F(U?>)(k)F(ei)

(k)

≥‖F(e>i )(k)F(U)(k)‖2
2 − ‖F(e>i )(k)F(U)(k)‖2‖F(e>i )(k)F(U?)(k)‖2

≥
(
1−

1

C1

)
‖F(e>i )(k)F(U)(k)‖2

2.

The last inequality, we use the fact

‖F(e>i )(k)F(U?)(k)‖2 <
α

C1
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and

α < ‖F(e>i )(k)F(U)(k)‖2 ⇒ ‖F(e>i )(k)F(U?)(k)‖2 <
1

C1

‖F(e>i )(k)F(U)(k)‖2.

Further, we have

‖F(e>i )(k)F(U)(k)‖2‖F(e>i )(k)F(∆)(k)‖2

≤‖F(e>i )(k)F(U)(k)‖2

(
‖F(e>i )(k)F(U)(k)‖2 + ‖F(e>i )(k)F(U?)(k)‖2

)
≤
(
1 +

1

C1

)
‖F(e>i )(k)F(U)(k)‖2

2.

Now, we need to bound the summation A1 + A2 + A3 as follows to get a
bound A1 + 0.1A3 and A2 + 0.9A3. Thus,

A1 + 0.1A3 = λ

n3∑
k=1

n∑
i=1

(
(
‖F(e>i )(k)F(U)(k)‖2 − α

)3

×
‖F(e>i )(k)F(U)(k)‖2

2‖F(e>i )(k)F(∆)(k)‖2
2

−
(
F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)

(k)
)2

‖F(e>i )(k)F(U)(k)‖3
2

)

− 0.4λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖

≤ λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3‖F(e>i )(k)F(U)(k)‖2

×

[(
1 +

1

C1

)2 −
(
1−

1

C1

)2 − 0.4
(
1−

1

C1

)]
< 0.

Moreover,

A2 + 0.9A3

= 3λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2(F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

)2

− 3.6λ

n3∑
k=1

n∑
i=1

(
‖F(e>i )(k)F(U)(k)‖2 − α

)3F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2
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Denote i-the summand of the frontal faces of A2 + 0.9A3 as A2 + 0.9A3 =516 ∑n3

k=1

∑n
i=1B

k
i , with Bi = A

(i)
2 + 0.9A

(i)
3 .517

Case 1: for i such that ‖F
(
e>i
)(k)F

(
U
)(k)‖2 ≥ 9α and C1 ≥ 100, we

have:

Bk
i = 3λ

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

×
[F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)

(k)

‖F(e>i )(k)F(U)(k)‖2

− 1.2
(
‖F(e>i )(k)F(U)(k)‖2 − α

)]
≤ 3λ

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

×
[(

1 +
1

C1

)
‖F(e>i )(k)F(U)(k)‖2 − 1.2

(
‖F(e>i )(k)F(U)(k)‖2 − α

)]
≤ 0.

Because:518

•
(
‖F(e>i )(k)F(U)(k)‖2 − α

)2
> 0519

•
F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)

(k)

‖F(e>i )(k)F(U)(k)‖2

≤
(
1 +

1

C1

)
‖F(e>i )(k)F(U)(k)‖2 ≥ 0520

•

[(
1 +

1

C1

)
‖F(e>i )(k)F(U)(k)‖2 − 1.2

(
‖F(e>i )(k)F(U)(k)‖2 − α

)]
≤ 0521

Case 2: for i such that α < ‖F(e>i )(k)F(U)(k)‖2 < 9α, we call this set
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I = {i|α < ‖F(e>i )(k)F
(
U
)(k)‖2 < 9α} and we have for each frontal face:

∑
i∈I

B
(k)
i ≤ 3λ

∑
i∈I

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2

+

F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

×

[(
1 +

1

C1

)
‖F(e>i )(k)F(U)(k)‖2 − 1.2

(
‖F(e>i )(k)F(U)(k)‖2 − α

)
+

]

≤ 3λ
∑
i∈I

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2

+

F(e>i )(k)F(U)(k)F(∆>)(k)F(ei)
(k)

‖F(e>i )(k)F(U)(k)‖2

×
(
1 +

1

C1

)
‖F(e>i )(k)F(U)(k)‖2

≤ 3λ
∑
i∈I

(
‖F(e>i )(k)F(U)(k)‖2 − α

)2

+

(
1 +

1

C1

)2‖F(e>i )(k)F(U)(k)‖2
2

≤ 3λ |I| 64 α2.
(
1 +

1

C1

)2
81 α2

≤ 3 104 |I| λ α4.

In sum, we obtain:

1

4

[
∆ : ∇2Q

(
U
)

: ∆− 4〈∇Q
(
U
)
,∆〉

]
≤ c2 λ |I|α4

for some large constant c2. Finally, remains to determine with the property
of the set I on each front face:

σ?r‖F(∆)(k)‖2
F =σ?r‖F

(
U
)(k) −F

(
U?
)(k)F

(
R
)(k)‖2

F

= σ?r
(
‖F
(
U
)(k)‖2

F + ‖F
(
U?
)(k)F

(
R
)(k)‖2

F

− 2〈F
(
U
)(k)

,F
(
U?
)(k)F

(
R
)(k)〉

)
≥ σ?r‖F

(
U
)(k)‖2

F

= σ?r
∑
i∈I

‖F
(
e>i
)(k)F

(
U
)(k)‖2

2

≥ σ?rα
2|I|.

Therefore, as long as λα2 ≤ σ?r/C2 for some large constant C2 (which is
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satisfied by our choice of λ) we obtain:

1

4

[
∆ : ∇2Q

(
U
)

: ∆− 4〈∇Q
(
U
)
,∆〉

]
≤ 0.1

n3∑
k=1

σ?r‖F(∆)(k)‖2
F .

522

Combing these lemmas, we are now ready to prove the main theorem for523

symmetric tensor completion.524

Theorem 7.1. Take the sample rate p such that

p ≥ c1

µ3r4
(
κ?
)4

log(n)

n
,

for some positive constant and choose

α2 = Θ
(µrσ?1

n

)
and λ = Θ

( n

µrκ?
)
.

Then with probability at least

1− 2nn3 exp

{
−pn

((
1 +

t

pn

)
ln
(
1 +

t

pn

)
− t

pn

)}
,

we have525

• All local minima of (31) satisfy U ∗ U> =M?;526

• the function is
(
ε,Ω
(
σ?r
)
, O
(
ε
σ?
r

))
-strict saddle for polynomially small ε.527

Proof. We know by 12:

∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?) ≤ −0.3

n3∑
k=1

σ?r‖F(∆)(k)‖2
F .

Further, by 13, we have:

1

4

[
∆ : ∇2Q

(
U
)

: ∆− 4〈∇Q
(
U
)
,∆〉

]
≤ 0.1σ?r

n3∑
k=1

‖F(∆)(k)‖2
F .
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Using this facts, for any U with small gradient satisfying ‖∇f
(
U
)
‖F ≤ ε, we

have

∆ : ∇2f
(
U
)

: ∆ ≤ −0.2

n3∑
k=1

σ?r‖F(∆)(k)‖2
F + 4 ε‖∆‖F .

That is, if U is not close to U?, that is, ‖∆‖F ≥
40ε

σ?r
, we have

∆ : ∇2f
(
U
)

: ∆ ≤ −0.2

n3∑
k=1

σ?r‖F(∆)(k)‖2
F + 0.1σ?r‖∆‖F

≤ −0.2

n3∑
k=1

σ?r‖F(∆)(k)‖2
F + 0.1σ?r

√√√√ n3∑
k=1

‖F(∆)(k)‖2
F

≤ −0.1

n3∑
k=1

σ?r‖F(∆)(k)‖2
F .

This proves
(
ε, 0.1σ?r ,

40ε
σ?
r

)
-strict saddle property. By taking ε = 0, then all528

stationary points with ‖∆‖F 6= 0 are saddle points. This means all local529

minima are global minima (satisfying U ∗ U> = M?), which finishes the530

proof.531

7.3. Proof of Theorem 4.1532

The proof is split into two steps.533

7.3.1. Study of the Hessian534

Furthermore, we have Q
(
W
)

= Q1

(
U
)

+Q2

(
V
)
.535

Lemma 14. Let ∆, N , N ? be defined as in Definition ??. Then, for any
W ∈ R(n1+n2)×r×n3, the Hessian of the objective (18) satisfies:

∆ : ∇2f(W) : ∆ ≤ ∆ ∗∆> : H : ∆ ∗∆> − 3(N −N ?) : H : (N −N ?)

+4〈∇f(W),∆〉+ [∆ : ∇2Q(W) : ∆− 4〈∇Q(W),∆〉]
(36)

where

H = 4H1 + G.
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Further, if H0 satisfies

M : H0 :M∈
(
1± δ

)
‖M‖2

F

for some tensor M = U ∗ V>, let W and N be defined as in (17), then

N : H : N ∈
(
1± 2δ

)
‖N‖2

F .

Proof. We know that the objective function with N =W ∗W> is:

f
(
W
)

=
1

2

[(
N −N ?

)
: 4H1 :

(
N −N ?

)
+N : G : N

]
+Q

(
W
)

=
1

2

n3∑
k=1

{ (
F
(
W
)(k)F

(
W>

)(k) −F
(
N ?
)(k))

: 4F
(
H1

)(k)
:(

F
(
W
)(k)F

(
W>

)(k) −F
(
N ?
)(k))

}

+ F
(
W
)(k)F

(
W>

)(k)
: F
(
G
)(k)

: F
(
W
)(k)F

(
W>

)(k)
+Q

(
W
)
.

Determine the gradient and the Hessian of f .

f
(
W
)

= G
(
W
)

+Q
(
W
)

with

G
(
W
)

=
1

2

n3∑
k=1

{ (
F
(
W
)(k)F

(
W>

)(k) −F
(
N ?
)(k))

: 4F
(
H1

)(k)
:(

F
(
W
)(k)F

(
W>

)(k) −F
(
N ?
)(k))

}

+ F
(
W
)(k)F

(
W>

)(k)
: F
(
G
)(k)

: F
(
W
)(k)F

(
W>

)(k)
.

Using that, for any Z ∈ R(n1+n2)×r×n3

〈∇f(W),Z〉 = 〈∇G(W),Z〉+ 〈∇Q(W),Z〉
Z : ∇2f(W) : Z = Z : ∇2G(W) : Z + Z : ∇2Q(W ) : Z.

We now need to compute 〈∇G(W),Z〉 and Z : ∇2G(W) : Z. For this

purpose, using the fact, for any Z ∈ R
(
n1+n2

)
×r×n3 , we obtain that:

G
(
W + Z

)
= G

(
W
)

+ 〈∇G
(
W
)
,Z〉+

1

2
Z : ∇2G

(
W
)

: Z +O
(
‖Z ∗ Z>‖2

)
.
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we obtain:

〈∇G(W),Z〉 =

n3∑
k=1

{ (
F(W)(k)F(W>)(k) −F(N ?)(k)

)
: 4F(H1)(k) :(

F(W)(k)F(Z>)(k) + F(Z)(k)F(W>)(k)
)
}

+

n3∑
k=1

F
(
W
)(k)F

(
W>

)(k)
: F
(
G
)(k)

:
(
F(W)(k)F(Z>)(k) + F(Z)(k)F(W>)(k)

)
=
(
N −N ?

)
: 4H1 :

(
W ∗ Z> + Z ∗W>

)
+N : G :

(
W ∗ Z> + Z ∗W>

)
and

Z : ∇2G(W) : Z =

n3∑
k=1

{ (
F(W)(k)F(Z>)(k) + F(Z)(k)F(W>)(k)

)
:
(
4F(H1)(k) + F

(
G
)(k))

:(
F(W)(k)F(Z>)(k) + F(Z)(k)F(W>)(k)

)
}

+

n3∑
k=1

{ 2
(
F(N )(k) −F(N ?)(k)

)
: 4F(H1)(k) :
F(Z)(k)F(Z>)(k)

}

+

n3∑
k=1

2 F(N )(k) : F(G)(k) : F(Z)(k)F(Z>)(k)

=
(
W ∗ Z> + Z ∗W>

)
:
(
4H1 + G

)
:
(
W ∗ Z> + Z ∗W>

)
+ 2

(
N −N ?

)
: 4H1 : Z ∗ Z> + 2N : G : Z ∗ Z>.

Let Z = ∆ = W −W? ∗ R and H = 4H1 + G. By noting that: N −N ? +
∆ ∗∆> =W ∗∆> + ∆ ∗W>, we have

〈∇f(W),∆〉 =
(
N −N ?

)
: 4H1 :

(
W ∗∆> + ∆ ∗W>

)
+N : G :

(
W ∗∆> + ∆ ∗W>

)
+ 〈∇Q(W),∆〉
=
(
N −N ?

)
: H :

(
W ∗∆> + ∆ ∗W>

)
−
(
N −N ?

)
: G :

(
W ∗∆> + ∆ ∗W>

)
+ N : G :

(
W ∗∆> + ∆ ∗W>

)
+ 〈∇Q(W),∆〉

=
(
N −N ?

)
: H :

(
W ∗∆> + ∆ ∗W>

)
+N ? : G :

(
N −N ? + ∆ ∗∆>

)
+ 〈∇Q(W),∆〉
=
(
N −N ?

)
: H :

(
W ∗∆> + ∆ ∗W>

)
+ 2N ? : G : N + 〈∇Q(W),∆〉.

The last equality, we expand N −N ? + ∆ ∗∆> and we use that

N ? : G : N ? = N ? : G :W? ∗W> = 0
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due to fact
U?> ∗ U? = V?> ∗ V?.

Now, the Hessian along the direction ∆ is:

∆ : ∇2f(W) : ∆ =
(
W ∗∆> + ∆ ∗W>

)
: H :

(
W ∗∆> + ∆ ∗W>

)
+ 2
(
N −N ?

)
: 4H1 : ∆ ∗∆> (37)

+ 2N : G : ∆ ∗∆> + ∆ : ∇2Q(W) : ∆.

We are interested in the first term of (37) with

N −N ? + ∆ ∗∆> =W ∗∆> + ∆ ∗W>,

we have:(
W ∗∆> + ∆ ∗W>

)
: H :

(
W ∗∆> + ∆ ∗W>

)
=

n3∑
k=1

{ (
F(W)(k)F(∆>)(k) + F(∆)(k)F(W>)(k)

)
: F(H)(k) :(

F(W)(k)F(∆>)(k) + F(∆)(k)F(W>)(k)
)
}

=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

+ 2
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(W)(k)F(∆>)(k) + F(∆)(k)F(W>)(k)

)
−
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N )(k) −F(N ?)(k)

)
=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

−
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N )(k) −F(N ?)(k)

)
− 4F(N ?)(k) : F(G)(k) : F(N )(k) + 2〈∇f(W),∆〉 − 2〈∇Q(W),∆〉.
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For the sum of second and third terms of (37), we have:

2
(
N −N ?

)
: 4H1 : ∆ ∗∆> + 2N : G : ∆ ∗∆>

=

n3∑
k=1

2
(
F(N )(k) −F(N ?)(k)

)
: 4F(H1)(k) : F(∆)(k)F(∆>)(k)

+ 2F(N )(k) : F(G)(k) : F(∆)(k)F(∆>)(k)

=

n3∑
k=1

2
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) : F(∆)(k)F(∆>)(k)

+ 2F(N ?)(k) : F(G)(k) : F(∆)(k)F(∆>)(k)

=

n3∑
k=1

−2
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N )(k) −F(N ?)(k)

)
+ 2
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(W)(k)F(∆>)(k) + F(∆)(k)F(W>)(k)

)
+ 2F(N ?)(k) : F(G)(k) : F(∆)(k)F(∆>)(k)

=

n3∑
k=1

−2
(
F(N)(k) −F(N?)(k)

)
: F(H)(k) :

(
F(N)(k) −F(N?)(k)

)
− 2F(N?)(k) : F(G)(k) : F(N)(k) + 2〈∇f(W),∆〉 − 2〈∇Q(W),∆〉.

To sum up, we have

∆ : ∇2f(W) : ∆

=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

− 3
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N )(k) −F(N ?)(k)

)
− 6F(N ?)(k) : F(G)(k) : F(N )(k)

+ 4〈∇f(W),∆〉+
[
∆ : ∇2Q(W) : ∆− 4〈∇Q(W),∆〉

]
≤

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆)(k)>

− 3
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N )(k) −F(N ?)(k)

)
+ 4〈∇f(W),∆〉+

[
∆ : ∇2Q(W) : ∆− 4〈∇Q(W),∆〉

]
.
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The rest of the proof follows from the following lemma 2.536

Lemma 15. Let for any k = 1, . . . , n3

F(N )(k) :=

[
F(U)(k) · F(U>)(k) F(U)(k) · F(V>)(k)

F(V)(k) · F(U>)(k) F(V)(k) · F(V>)(k)

]
∈ R(n1+n2)×(n1+n2).

(38)

If F(H0)(k) satisfies:

(
1− δ

)
‖F(U)(k) · F(V>)(k)‖2

F ≤

{ F(U)(k) · F(V>)(k)

: F(H0)(k) :
F(U)(k) · F(V>)(k)

}
≤
(
1 + δ

)
‖F(U)(k) · F(V>)(k)‖2

F .

(39)

Then, we have(
1− 2δ

)
‖F(N )(k)‖2

F ≤ F(N )(k) : F(H)(k) : F(N )(k) ≤
(
1 + 2δ

)
‖F(N )(k)‖2

F .

Proof. Knowing that H0 preserves the norm M, which is the off-diagonal
of N and G the norm of the diagonal components of N , we have, for any
k = 1, . . . , n3

F(N )(k) : F(H)(k) : F(N )(k)

= F(N )(k) : 4F(H1)(k) : F(N )(k) + F(N )(k) : F(G)(k) : F(N )(k)

= 4F(U)(k) · F(V>)(k) : F(H0)(k) : F(U)(k) · F(V>)(k)

+
(
‖F(U)(k) · F(U>)(k)‖2

F + ‖F(V)(k) · F(V>)(k)‖2
F

− 2〈F(U)(k) · F(U>)(k),F(V)(k) · F(V>)(k)〉
)

= 4F(U)(k) · F(V>)(k) : F(H0)(k) : F(U)(k) · F(V>)(k)

+
(
‖F(U)(k) · F(U>)(k)‖2

F + ‖F(V)(k) · F(V>)(k)‖2
F

− 2‖F(U)(k) · F(V>)(k)‖2
F

)
.

Using (39), we obtain by calculating:(
1− 2δ

)
‖F(N )(k)‖2

F ≤ F(N )(k) : F(H)(k) : F(N )(k) ≤
(
1 + 2δ

)
‖F(N )(k)‖2

F .

537

2Lemma 19 in [15] is false as stated
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7.3.2. End of the proof538

We first prove that the regularisation enforces that the rows of F
(
U
)(k)

,539

F
(
V
)(k)

, for k = 1 . . . n3, cannot be too large.540

Lemma 16. Let d = max{n1, n2}, there exists an absolute constant c1, when
sample rate

p > c1
µr

min{n1, n2}
log(d),

α2
1 = Θ

(µrσ?
1

n1

)
, α2

2 = Θ
(µrσ?

1

n2

)
and λ1 = Θ

(
n1

µrκ?

)
, λ2 = Θ

(
n2

µrκ?

)
, we have for

any W with ‖∇f(W)‖F ≤ ε for any polynomially small ε, with probability at
least

1− 2n1n3 exp

{
−pn2

((
1 +

t

pn2

)
ln
(
1 +

t

pn2

)
− t

pn2

)}

max
1≤i≤n1

‖e>i ∗ U‖2
F ≤ C n3

µ2r2.5(κ?)2σ?1
n1

,

max
1≤j≤n2

‖e>j ∗ V‖2
F ≤ C n3

µ2r2.5(κ?)2σ?1
n2

for some constant positive C.541

Proof. In this proof, by symmetry, without loss of generality, we can assume
that for any k = 1, . . . , n3

√
n1 max

1≤i≤n1

‖F
(
e>i
)(k)F

(
U
)(k)‖2 ≥

√
n2 max

1≤j≤n2

‖F
(
e>j
)(k)F

(
V
)(k)‖2.

By calculating the gradient, we can write the gradient as:

∇f(W) =
4

p

((
M−M?

)
Ω
∗ V(

M−M?
)

Ω
∗ U

)
+

(
U ∗

(
U> ∗ U − V> ∗ V

)
V ∗

(
V> ∗ V − U> ∗ U

))+∇Q(W)
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where

∇Q(W) = 4λ1

n3∑
k=1

n1∑
i=1

(
‖F
(
e>i
)(k)F

(
W
)(k)‖2 − α1

)3

+

×
F
(
ei
)(k)F

(
e>i
)(k)F

(
W
)(k)

‖F
(
ei
)(k)F

(
W
)(k)‖2

2

+ 4λ2

n3∑
k=1

n2∑
i=n1+1

(
‖F
(
e>i
)(k)F

(
W
)(k)‖2 − α2

)3

+

×
F
(
ei
)(k)F

(
e>i
)(k)F

(
W
)(k)

‖F
(
ei
)(k)F

(
W
)(k)‖2

2

.

Using the fact 〈∇Q(W),W〉 ≥ 0, thus, for any point W with gradient
‖∇f(W)‖F ≤ ε, we have:

ε‖W‖F ≥ 〈∇f(W),W〉

= ‖U> ∗ U − V> ∗ V‖2
F +

4

p

〈(
M−M?

)
Ω
,M

〉
+
〈
∇Q(W),W

〉
≥ ‖U> ∗ U − V> ∗ V‖2

F −
4

p

〈(
M?

)
Ω
,
(
M
)

Ω

〉
≥ ‖U> ∗ U − V> ∗ V‖2

F − 4 · 1
√
p
‖M?‖Ω ·

1
√
p
‖M‖Ω

= ‖U> ∗ U − V> ∗ V‖2
F − 4 · 1

√
p

√√√√ n3∑
k=1

‖F
(
M?

)(k)‖2
Ω ·

1
√
p

√√√√ n3∑
k=1

‖F
(
M
)(k)‖2

Ω

≥ ‖U> ∗ U − V> ∗ V‖2
F − C

√
n1n2

n3∑
k=1

‖F
(
M?

)(k)‖F ·
n3∑
k=1

‖F
(
M
)(k)‖∞

where in the last inequality, we use Lemma 1 and Lemma 5. Let

i? = arg max
1≤i≤n1

‖e>i ∗ U‖F (40)

and

j? = arg max
1≤j≤n2

‖e>j ∗ V‖F . (41)

Using these facts and recalling that, by assumption,542
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• √n1‖F(e>i?)(k)F(U)(k)‖2 ≥
√
n2‖F(e>j?)(k)F(V)(k)‖2543

• ‖M?‖F = ‖F(M?)‖F =

√√√√ n3∑
k=1

‖F(M?)(k)‖2
F ≤ n3σ

?
1

√
r544

• ‖M‖∞ = ‖F(M)‖∞ ≤
n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2‖F(e>j?)(k)F(V)(k)‖2545

we have, for some positive constant C:

‖U> ∗ U − V> ∗ V‖2
F ≤ C n1n3σ

?
1

√
r

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2
2 (42)

+ C εd‖e>i? ∗ U‖F ,

where in the second term of (42), we use:

‖W‖F ≤ ‖U‖F + ‖V‖F

≤
n3∑
k=1

‖F(U)k‖F + ‖F(V)k‖F

≤
n3∑
k=1

√
n1 max

i
‖F(e>i )(k)F(U)(k)‖2 +

√
n2 max

j
‖F(e>j )(k)F(V)(k)‖2

≤ 2

n3∑
k=1

√
n1 ‖F(e>i?)(k)F(U)(k)‖2

≤ d

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2 where d = max{n1, n2}

= d‖e>i? ∗ U‖F .

In the case ‖e>i? ∗ U‖2 ≥ 2α1, consider 〈e>i? ∗ ∇f(U), e>i? ∗ U〉 as:546
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ε‖e>i? ∗ U‖F
≥ 〈e>i? ∗ ∇f(U), e>i? ∗ U〉

=

〈
e>i? ∗

(4

p

(
M−M?

)
Ω
∗ V + U ∗

(
U> ∗ U − V> ∗ V

)
+∇Q1(U)

)
, e>i? ∗ U

〉
≥ λ1

2

(
‖e>i? ∗ U‖F − α1

)3

+
‖e>i? ∗ U‖F −

4

p
〈e>i? ∗ (M?)Ω, e

>
i? ∗

(
M
)

Ω
〉

− ‖U> ∗ U − V> ∗ V‖F‖e>i? ∗ U‖2
F

≥ λ1

2
‖e>i? ∗ U‖4

F − 4
1
√
p
‖e>i? ∗ (M?)Ω‖ ·

1
√
p
‖e>i? ∗

(
M
)

Ω
‖ − ‖U> ∗ U − V> ∗ V‖F · ‖e>i? ∗ U‖2

F

≥ λ1

2
‖e>i? ∗ U‖4

F − ‖U> ∗ U − V> ∗ V‖F · ‖e>i? ∗ U‖2
F

− 4
√

1 + 0.01

n3∑
k=1

‖F(e>i?)(k)F(M?)(k)‖2 · C
√
n2

n3∑
k=1

‖F(M)(k)‖∞

≥ λ1

2
‖e>i? ∗ U‖4

F − ‖U> ∗ U − V> ∗ V‖F · ‖e>i? ∗ U‖2
F

− C √µrσ?1
n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2
2

where in the last inequality, we use (1) and (5). Further, using (42), we have:

λ1

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖3
2 ≤ 2ε+ C

√
µrσ?1

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2

+ C
√
n1n3σ?1r

1
4

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖2
2

+ C
√
εd

n3∑
k=1

‖F(e>i?)(k)F(U)(k)‖
3
2
2 .

By choosing ε to be polynomially small, we have:√
n1

n2

max
1≤j≤n2

‖e>j? ∗ V‖F ≤ max
1≤i≤n1

‖e>i? ∗ U‖2
F

≤ cmax
{
α2

1,

√
µr.σ?1
λ1

,
n1n3σ

?
1

√
r

λ2
1

}
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for some positive constant c. Finally, substituting the choice of α2 and λ1,547

we finished the proof.548

Now, we prove, that the Hessian H terms in (36) is negative when W 6=549

W?.550

Lemma 17. Let d = max{n1, n2}, when sample rate p ≥ Ω
(µ4r6(κ?)6 log d

min{n1,n2}

)
, by

choosing α2
1 = Θ

(µrσ?
1

n1

)
, α2

2 = Θ
(µrσ?

1

n2

)
and λ1 = Θ

(
n1

µrκ?

)
, λ2 = Θ

(
n2

µrκ?

)
with

probability at least

1− 2n1n3 exp

{
−pn2

((
1 +

t

pn2

)
ln
(
1 +

t

pn2

)
− t

pn2

)}
for all W with ‖∇f(W)‖F ≤ ε and for polynomially small ε, we have

∆ ∗∆> : H : ∆ ∗∆> − 3(M−M?) : H : (M−M?) ≤ −0.3

n3∑
k=1

σ?r‖F
(
∆
)(k)‖2

F .

Proof. As the symmetric case, we are interested in studying the two cases on
the norm of ∆ and we use the different inequalities of concentrations. Using
the choices of α and λ and (16), we know when ε is polynomially small with
high probability:

max
1≤i≤n1

‖e>i ∗ U‖2
F ≤ C n3

µ2r2.5(κ?)2σ?1
n1

,

and

max
1≤j≤n2

‖e>j ∗ V‖2
F ≤ C n3

µ2r2.5(κ?)2σ?1
n2

.

In the following, we denote for any k = 1, . . . , n3,

F(∆)(k) =
(
F(∆>U )(k),F(∆>V )(k)

)>
and we have

‖F(∆U)(k)‖F ≤ ‖F(∆)(k)‖F

and

‖F(∆V)(k)‖F ≤ ‖F(∆)(k)‖F .
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We now split the analysis into two cases.551

Case 1: ‖F(∆)(k)‖2
F ≤

σ?
r

40
, for any k = 1, . . . , n3. By (1) and (15), we

have:

1

p
‖W? ∗∆>‖2

Ω ≥
(
1− 2δ

)
‖W? ∗∆>‖2

F ≥
(
1− 2δ

)
σ?r‖∆‖2

F .

Furthermore, we know:

1

p
‖∆U ∗∆>V ‖2

Ω =
1

p

n3∑
k=1

‖F(∆U)(k)F(∆>V )(k)‖2
Ω.

By (3) and with the choice of p, for any k = 1, . . . , n3, we have:

1

p
‖F(∆U)(k)F(∆>V )(k)‖2

Ω ≤
(
1 + δ

)
‖F(∆U)(k)‖2

F‖F(∆>V )(k)‖2
F

+ C

√
d

p
· µ

2r2.5(κ?)2σ?1√
n1n2

‖F(∆U)(k)‖F‖F(∆V)(k)‖F

≤
(
1 + δ

)
‖F(∆)(k)‖4

F +
σ?r
4
‖F(∆)(k)‖2

F

≤ σ?r
20
‖F(∆)(k)‖2

F .

So, using that for k = 1, . . . , n3,

‖F(∆U)(k)‖2
F ≤ ‖F(∆)(k)‖2

F ≤
σ?r
40

and

‖F(∆V)(k)‖2
F ≤ ‖F(∆)(k)‖2

F ≤
σ?r
40

we obtain:

∆ ∗∆> : H : ∆ ∗∆>

=
4

p
‖∆U ∗∆>V ‖2

Ω +
(
‖∆U ∗∆>U ‖2

F + ‖∆V ∗∆>V ‖2
F − 2‖∆U ∗∆>V ‖2

F

)
≤

n3∑
k=1

1

4
σ?r‖F

(
∆
)(k)‖2

F .
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Using this facts, we obtain

∆ ∗∆> : H : ∆ ∗∆> − 3
(
N −N ?

)
: H :

(
N −N ?

)
=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

− 3
(
F(N )(k) −F(N ?)(k)

)
: F(H)(k) :

(
F(N)(k) −F(N ?)(k)

)
=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

−

{ 3
(
F(W?)(k)F(∆>)(k) + F(∆)(k)F(W?>)(k) + F(∆)(k)F(∆>)(k)

)
: F(H)(k) :(

F(W?)(k)F(∆>)(k) + F(∆)(k)F(W?>)(k) + F(∆)(k)F(∆>)(k)
)
}

≤
n3∑
k=1

−12
(
F(W?)(k)F(∆>)(k) : F(H)(k) : F(∆)(k)F(∆>)(k)

+ F(W?)(k)F(∆>)(k) : F(H)(k) : F(W?)(k)F(∆>)(k)
)

≤
n3∑
k=1

−
12

p

(
‖F(W?)(k)F(∆>)(k)‖2

Ω − ‖F(W?)(k)F(∆>)(k)‖Ω‖F(∆)(k)F(∆>)(k)‖Ω

)
=

n3∑
k=1

−
12

p
‖F(W?)(k)F(∆>)(k)‖Ω

(
‖F(W?)(k)F(∆>)(k)‖Ω − ‖F(∆)(k)F(∆>)(k)‖Ω

)
≤

n3∑
k=1

−12
√

1− 2δ
(√

1− 2δ −
√

1/4
)
σ?r‖F(∆)(k)‖2

F

≤ −1.2

n3∑
k=1

σ?r‖F(∆)(k)‖2
F .

Case 2: ‖F(∆)(k)‖2
F ≥

σ?
r

40
, for any k = 1, . . . , n3. By Lemma 4 with high

64



probability with the choice of p, we have:

1

p
‖∆U ∗∆>V ‖2

Ω =

n3∑
k=1

1

p
‖F(∆U)(k)F(∆>V )(k)‖2

Ω

≤
n3∑
k=1

‖F(∆U)(k)F(∆>V )(k)‖2
F

+ C
(dr log(d)

p
‖F(∆U)(k)F(∆>V )(k)‖2

∞

+

√
dr log(d)

p
‖F(∆U)(k)F(∆>V )(k) ‖F ‖F(∆U)(k)F(∆>V )(k)‖∞

)
≤

n3∑
k=1

‖F(∆U)(k)F(∆>V )(k)‖2
F

+ C
(dr log(d)

p
·
µ4r5(κ?)4(σ?1)2

n1n2

+

√
dr log(d)

p
·
µ4r5(κ?)4(σ?1)2

n1n2

‖F(∆)(k)‖2
F

)
≤

n3∑
k=1

‖F(∆U)(k)F(∆>V )(k)‖2
F +

(
σ?r
)2

1000
+

σ?r
1000

‖F(∆)(k)‖2
F

≤
n3∑
k=1

‖F(∆U)(k)F(∆>V )(k)‖2
F + 0.01σ?r ‖F(∆)(k)‖2

F .
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Again using Lemma 4 with high probability, we have

1

p
‖M−M?‖2

Ω =

n3∑
k=1

1

p
‖F(M)(k) −F(M?)(k)‖2

Ω

≥
n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F

+ C
(d r log(d)

p
‖F(M)(k) −F(M?)(k)‖2

∞

+

√
d r log(d)

p
‖F(M)(k) −F(M?)(k)‖F × ‖F(M)(k) −F(M?)(k)‖∞

)
≥

n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F

+ C
(d r log(d)

p
·
µ4r5(κ?)4(σ?1)2

n1n2

+

√
d r log(d)

p
·
µ4r5(κ?)4(σ?1)2

n1n2

‖F(M)(k) −F(M?)(k)‖F
)

≥
n3∑
k=1

‖F(M)(k) −F(M?)(k)‖2
F −

(
σ?r
)2

1000

−
σ?r

1000
‖F(M)(k) −F(M?)(k)‖F

≥
n3∑
k=1

0.95‖F(M)(k) −F(M?)(k)‖2
F − 0.01σ?r‖F(∆)(k)‖2

F .
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Thus, we get:

∆ ∗∆> : H : ∆ ∗∆> − 3(N −N ?) : H : (N −N ?)

=

n3∑
k=1

F(∆)(k)F(∆>)(k) : F(H) : F(∆)(k)F(∆>)(k)

− 3
(
F(N )(k) −F(N ?)(k)

)
: F(H) :

(
F(N )(k) −F(N ?)(k)

)
≤

n3∑
k=1

‖F(∆)(k)F(∆>)(k)‖2
F + 0.04σ?r‖F(∆)(k)‖2

F

−
(
0.98‖F(N )(k) −F(N ?)(k)‖2

F − 0.04σ?r‖F(∆)(k)‖2
F

)
≤

n3∑
k=1

0.94‖F(N )(k) −F(N ?)(k)‖2
F + 0.12σ?r‖F(∆)(k)‖2

F

≤
n3∑
k=1

−0.3σ?r‖F(∆)(k)‖2
F

and the proof is completed.552

Now, it remains to bound the regularizer the terms of the (36).553

Lemma 18. By choosing α2
1 = Θ

(µrσ?1
n1

)
, α2

2 = Θ
(µrσ?1
n2

)
and

λ1 α
2
1 ≤ C2 σ

?
r , λ2 α

2
2 ≤ C2 σ

?
r ,

for some positive constant C2, we have:

1

4

[
∆ : ∇2Q

(
W
)

: ∆− 4〈∇Q
(
W
)
,∆〉

]
≤ 0.1σ?r

n3∑
k=1

‖F
(
∆
)(k)‖2

F .

Proof. Define

Q1

(
U
)

= λ1

n3∑
k=1

n1∑
i=1

(
‖F
(
e>i
)(k)F

(
U
)(k)‖ − α1

)4

+

and

Q2

(
V
)

= λ2

n3∑
k=1

n2∑
j=1

(
‖F
(
e>j
)(k)F

(
V
)(k)‖ − α2

)4

+
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and

Q
(
W
)

= Q1

(
U
)

+Q2

(
V
)
.

Proceeding as in the proof of Lemma (13) of the symmetric case, we obtain:

1

4

[
∆U : ∇2Q1

(
U
)

: ∆U − 4〈∇Q1

(
U
)
,∆U〉

]
≤ 0.1

n3∑
k=1

σ?r‖F(∆U)(k)‖2
F

1

4

[
∆V : ∇2Q2

(
V
)

: ∆V − 4〈∇Q2

(
V
)
,∆V〉

]
≤ 0.1

n3∑
k=1

σ?r‖F(∆V)(k)‖2
F

Then, using

‖F(∆U)(k)‖2
F ≤ ‖F(∆)(k)‖2

F

and

‖F(∆V)(k)‖2
F ≤ ‖F(∆)(k)‖2

F ,

we have:

1

4

[
∆ : ∇2Q

(
W
)

: ∆− 4〈∇Q
(
W
)
,∆〉

]
≤ 0.1σ?r

n3∑
k=1

‖F(∆)(k)‖2
F .

554
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