
ar
X

iv
:2

20
3.

14
08

9v
1

 [
m

at
h.

N
A

]
 2

6
M

ar
 2

02
2

An adaptive residual sub-sampling algorithm for kernel interpolation based

on maximum likelihood estimations

Roberto Cavorettoa,b, Alessandra De Rossia,b

aDepartment of Mathematics “Giuseppe Peano”, University of Turin, via Carlo Alberto 10, 10123 Turin, Italy
bMember of the INdAM Research group GNCS

Abstract

In this paper we propose an enhanced version of the residual sub-sampling method (RSM) in [9] for
adaptive interpolation by radial basis functions (RBFs). More precisely, we introduce in the context of
sub-sampling methods a maximum profile likelihood estimation (MPLE) criterion for the optimal selection
of the RBF shape parameter. This choice is completely automatic, provides highly reliable and accurate
results for any RBFs, and, unlike the original RSM, guarantees that the RBF interpolant exists uniquely.
The efficacy of this new method, called MPLE-RSM, is tested by numerical experiments on some 1D and
2D benchmark target functions.

Keywords: meshless interpolation, radial basis functions, adaptive algorithms, residual sub-sampling
methods, optimal shape parameters
2020 MSC: 65D05, 65D12, 65D15

1. Introduction

In [9] the residual sub-sampling method (RSM) is proposed. This adaptive scheme is based on radial
basis function (RBF) interpolation. It is used to approximate the unknown target function on uniformly
distributed points, and then the residual is evaluated at halfway points. The latter are added to the point
set when the residual is over a prescribed refinement threshold, whereas they are removed from that set
when it is under a predefined coarsening threshold. Further, the interpolating process is characterized by
a variable selection of the multiquadric RBF shape parameter. The user assigns an initial value of such
parameter, and then it is updated point-by-point based on node spacing. A similar strategy has also been
implemented in [22], though in both cases the change of the shape parameter at each point does not guarantee
the invertibility of the interpolation matrix. Indeed, as known in literature and observed in [9], the use of
node-dependent shape parameters breaks the symmetry of the interpolation matrix as well as the proof of
its nonsingularity.

While several adaptive schemes exist for solving boundary value problems or partial differential equations
(see e.g. [5, 6, 10, 17]), the problem of constructing adaptive algorithms in RBF interpolation has been
considered only in part (see [1, 2, 9, 14, 15, 22] and references therein). This fact motivates us to enhance
further the current state of the art on the topic.

In this paper we present a modification of the original RSM in [9], proposing an optimal selection
of the shape parameter via a maximum profile likelihood estimation (MPLE) criterion, which relies on a
solid stochastic framework (see [12, 19, 20]). This choice is totally automatic, i.e., user’s action is not
required, either initially, but a single (near-optimal) parameter is determined for every node. In this way,
the interpolation problem is well-posed and hence the RBF (or kernel) interpolant exists uniquely, naturally

Email addresses: roberto.cavoretto@unito.it (Roberto Cavoretto), alessandra.derossi@unito.it (Alessandra De
Rossi)

R. Cavoretto A. De Rossi

http://arxiv.org/abs/2203.14089v1

provided that the kernel matrix is positive definite (see e.g. [13]). Moreover, the use of MPLE technique
is particularly useful to take under control the ill-conditioning of the interpolation matrix when in the
iterative/adaptive method the number of interpolation points grows. Therefore, unlike the previous methods
discussed in [9, 22], this modification of the RSM, called MPLE-RSM, provides a twofold benefit. As a
matter of fact, it enables to solve the above mentioned issue of nonsingularity of the interpolation matrix,
and give “good” predictions of the shape parameter for any kernel avoiding user’s tuning each time. As
our numerical results show, application of the MPLE criterion generally results in an adaptive interpolation
scheme more efficient than the original RSM, also reducing the number of points needed for satisfying the
expected precision. The improved method is tested by taking some 1D and 2D benchmark target functions.

The paper is organized as follows. In Section 2 we introduce the kernel based interpolation. Section 3
presents the MPLE strategy to determine the optimal shape parameter in the improved RSM. In Section 4 we
describe the adaptive algorithm. In Section 5 we show some numerical results, illustrating the performance
of the MPLE-RSM and comparing the latter with the basic RSM discussed in [9]. Section 6 contains
conclusions.

2. Kernel based interpolation

Kernel based methods are powerful tools for data interpolation. In this section we introduce basic
notations and results for kernel based interpolation. For further theoretical background and other details,
we refer the reader to [3, 13, 21].

Given a compact domain Ω ⊂ R
d, we assume that the N distinct data points (or nodes) are defined by

the set X = {xi}Ni=1 ⊆ Ω. The data values associated with xi, i = 1, . . . , N , are given by yi = f(xi) ∈ R,
where the latter are obtained by sampling some function f : Ω → R. Thus, we want to find a function
sX : Ω → R satisfying the interpolation conditions

sX(xi) = yi, i = 1, . . . , N. (1)

We express the interpolant sX in terms of a kernel Φ : Ω× Ω → R, i.e.

sX(x) =

N
∑

j=1

cjΦ(x,xj), x ∈ Ω. (2)

If the kernel Φ is symmetric and strictly positive definite (SPD), the interpolation matrix A = (Aij)
with the entries Aij = Φ(xi,xj), i, j = 1, . . . , N , is positive definite for any set X . The coefficients cj in (2)
are uniquely determined by enforcing the interpolation conditions (1) and can be obtained by solving the
symmetric linear system

Ac = y, (3)

where c = (c1, . . . , cN)T and y = (y1, . . . , yN)T .
Associated with the kernel Φ in (2) we may define a SPD RBF φ : R+

0 → R such that

Φ(x,xj) = φε(||x− xj ||2) = φ(ε||x− xj||2), ∀x,xj ∈ Ω,

where ε > 0 is the so-called shape parameter, and || · ||2 denotes the Euclidean norm on R
d. Moreover, we

know that the choice of a “good” value of ε is generally a crucial task for kernel based interpolation, but
at the same time also a big issue (see e.g. [8, 16], or [13, Chapter 14]). Some examples of popular SPD
RBFs (or radial kernels) together with their smoothness degrees and abbreviations are listed as follows (see

2

[11, 21]):

φε(r) =

exp(−ε2r2), Gaussian C∞, GA

(1 + ε2r2)−1/2, Inverse MultiQuadric C∞, IMQ

exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6, M6

exp(−εr)(ε2r2 + 3εr + 3), Matérn C4, M4

exp(−εr)(εr + 1), Matérn C2, M2

When solving the linear system (3), the solution is often very sensitive to changes in the data. Moreover,
such sensitivity is influenced by the choice of the shape parameter ε. A criterion for measuring the numerical
stability of a kernel method is to compute the condition number of the interpolation matrix A. Hence, since
the kernel Φ is symmetric and SPD, the condition number of A is defined as follows:

κ(A) = ||A||2||A
−1||2 =

λmax

λmin
, (4)

where λmax and λmin are the largest and smallest eigenvalues of A.
Furthermore, for the kernel Φ there exists the so-called native space, which is a Hilbert space NΦ(Ω) with

inner product (·, ·)NΦ(Ω) in which the kernel Φ is reproducing, i.e., for any f ∈ NΦ(Ω) we have the identity
f(x) = (f,Φ(·,x))NΦ(Ω), with x ∈ Ω. Then, if we introduce a pre-Hilbert space HΦ(Ω) = span{Φ(·,x),
x ∈ Ω}, with reproducing kernel Φ and equipped with the bilinear form (·, ·)HΦ(Ω), the native space NΦ(Ω)

of Φ is its completion with respect to the norm || · ||HΦ(Ω) =
√

(·, ·)HΦ(Ω). In particular, for all f ∈ HΦ(Ω) we
have ||f ||NΦ(Ω) = ||f ||HΦ(Ω) (see [21]). Now, we can thus provide an error bound in terms of the well-known
power function PΦ,X (see e.g. [11, Theorem 14.2]):

Theorem 2.1. Let Ω ⊆ R
d, Φ ∈ C(Ω×Ω) be strictly positive definite on R

d, and suppose that X = {xi}Ni=1

has distinct points. Then, for all f ∈ NΦ(Ω), we have

|f(x)− sX(x)| ≤ PΦ,X(x)||f ||NΦ(Ω)
, x ∈ Ω.

The generic error estimate of Theorem 2.1 can further be refined as shown in [11, Theorem 14.5]:

Theorem 2.2. Let Ω ⊆ R
d be bounded and satisfy an interior cone condition. Suppose that Φ ∈ C2k(Ω×Ω)

is symmetric and strictly positive definite. Then, for all f ∈ NΦ(Ω), there exist constants h0, C > 0
(independent of x, f and Φ) such that

|f(x)− sX(x)| ≤ Chk
X,Ω

√

CΦ(x) ‖f‖NΦ(Ω) ,

provided hX,Ω ≤ h0. Here

CΦ(x) = max
|β|=2k,

max
w,z∈Ω∩B(x,c2hX,Ω)

∣

∣

∣
D

β
2 Φ(w, z)

∣

∣

∣

with B(x, c2hX,Ω) denoting the ball of radius c2hX,Ω centred at x, and hX,Ω being the fill distance

hX,Ω = sup
x∈Ω

min
xj∈X

||x− xj ||2.

Theorem 2.2 states that interpolation with a C2k smooth kernel Φ has approximation order k. Thus, we
deduce that: (i) for C∞ SPD kernels, the approximation order k is arbitrarily high; (ii) for SPD kernels with
limited smoothness, the approximation order is limited by the smoothness of the kernel. For more refined
error estimates, we refer the reader to the monograph [21].

3

3. MPLE criterion for near-optimal choice of the shape parameter

In Section 2 we compute the interpolant sX in (2) by solving the linear system (3), where the kernel
matrix A is symmetric and positive definite. However, by the uncertainty or trade-off principle [18] we know
that using a standard RBF one cannot have high accuracy and stability at the same time. In fact, when the
best level of accuracy is typically achieved, i.e., in the flat limit ε → 0, the interpolation matrix may be very
ill-conditioned. It is therefore important to study a criterion that enables us to make reliable ε-predictions.
In this work we discuss the MPLE, which we will apply in the residual sub-sampling interpolation method.

3.1. Gaussian random field and density function

The MPLE criterion is mainly based on a stochastic framework, and so the concept of Gaussian random
field (or Gaussian process) is introduced [13].

Definition 3.1. The random field Y = {Yx ∈ Ω} is called a Gaussian random field if, for any given choice
of finitely many distinct points X = {xi}Ni=1 ⊆ Ω, the vector of random variable Y = (Yx1 , . . . , YxN

)T has a
multivariate normal distribution with mean vector µ = E[Y] and covariance matrix σ2

A = (Cov(Yxi
, Yxj

))Ni,j=1,

where σ2 is the process variance.

In terms of notation we write Y ∼ N (µ, σ2
A) to denote that Y is a vector of Gaussian random variables,

or Y ∼ N (µ, σ2
A) to indicate that Y is a Gaussian random field.

The multivariate normal distribution has the density function

pY (y) =
1

√

(2πσ2)N detA
exp

[

−
1

2σ2
(y − µ)TA−1(y − µ)

]

. (5)

In the stochastic setting the process variance plays an important role, for instance, in the formulation of
the kriging variance and in parameter estimation. In fact, it does not affect the kernel interpolant (or kriging
predictor, as known in this context), but this influences its variance and as a consequence the maximum
likelihood estimation in the choice of the optimal value of ε.

Now, the parameters ε and σ2 might be viewed as draws from random variables E and Σ, respectively,
with unknown distributions. By studying the joint distribution (Σ, E ,Y), the kernel parametrization would
require to optimize for both σ2 and ε maximizing pΣ,E|Y (σ2, ε|Y = y), which we can suppose proportional
to the density function

pY |Σ,E(y|Σ = σ2, E = ε) =
1

√

(2πσ2)N detA
exp

[

−
1

2σ2
yT

A
−1y

]

. (6)

where though ε does not explicitly appear on the right hand side, it appears within A.
Note that the function (6) derives from (5) by using an appropriate notation and setting µ = 0. Thus,

if we assume that µ = 0, then the kernel based interpolant is defined by the linear system (3). In addition,
since Φ is a SPD kernel, the matrix A is positive definite, and so invertible.

3.2. Determination of the MPLE criterion for kernel interpolation

While the discussion given in Subsection 3.1 would result in a two-dimensional optimization problem, here
we use another technique known as profile likelihood in which we define σ2 as a function of ε, i.e., σ2 = σ2(ε).
Thus, our goal reduces to finding an optimal process variance σ2

opt by maximizing pΣ|E,Y (σ2|E = ε,Y =

y) ∝ pY |Σ,E(y|Σ = σ2, E = ε), see [13].
The concept of maximizing the likelihood function requires the maximization of pY |Σ,E(y|Σ = σ2, E = ε).

However, the optimal value of σ2 can be determined by minimizing the negative logarithm of (6) (multiplying
by 2), i.e.,

−2 log
(

pY |Σ,E(y|Σ = σ2, E = ε)
)

= N log 2π +N log σ2 + log detA+
1

σ2
yT

A
−1y. (7)

4

Differentiating (7) w.r.t. σ2 and equating to zero, we obtain the optimal profile variance

σ2
opt =

1

N
yT

A
−1y. (8)

Hence, by setting (8) in (7), the minimization process that involves the profile likelihood gives

−2 log
(

pY |Σ,E(y|Σ = σ2
opt, E = ε)

)

= N log
(

yT
A
−1y

)

+ log detA+N(1 + log 2π − logN).

Now, ignoring the constant term N(1+log 2π− logN), the cost function to minimize via the MPLE criterion
is

MPLE(ε) = N log
(

yT
A
−1y

)

+ log detA. (9)

Remark 3.1. The computation of the MPLE criterion (9) for a range of ε values is carried out by ap-
plying the Cholesky factorization to the matrix, i.e., A = LL

T . In practice, the use of such a factorization
simplifies the determinant computation, because in this case log(det(A)) = log(det(LLT)) = 2 log(det(L)) =

2
∑N

i=1 log(σ
L

i), where σL

i denotes the eigenvalues of L. Finally, in order to quickly find the optimal value of
ε, the minimum of the cost function (9) can be determined by the Matlab fminbnd function (or, in case,
any other minimization routine).

4. Adaptive algorithm based on refinement and coarsening processes

In this section we describe our adaptive algorithm, which is based on a computational procedure. The
latter enables us to refine and coarsen the distribution of interpolation points.

4.1. Residual sub-sampling procedure

First of all, we introduce a sequence of point sets X(0), X(1), · · · , such that X(k+1) is generated from

X(k) = {x
(k)
i }N

(k)

i=1 after applying some refinement and/or coarsening strategies. These updates depend
on residual evaluations, which lead to an adaptive residual sub-sampling method. Therefore, the resulting
process follows the common paradigm to solve, estimate and refine/coarsen till a criterion stop is satisfied.

Now, defining a check or test set T (k) = {t
(k)
i }

N
T(k)

i=1 ⊂ Ω, for k ≥ 0, we can evaluate the residual

ξ(t
(k)
i) =

∣

∣

∣
sX(k)(t

(k)
i)− f(t

(k)
i)

∣

∣

∣
, t

(k)
i ∈ T (k), (10)

where sX(k) is the interpolating function defined on the set X(k), N (k) being the number of points in T (k).
The residual error defined in (10) measures the deviation between the approximate solution and the

function value at the point t
(k)
i . Thus, when t

(k)
i lies in a smooth region, the absolute error ξ(t

(k)
i) is

expected to be small, whereas in the region of less regularity for f , or around discontinuities, the residual

error ξ(t
(k)
i) is expected to be large. Notice that for k = 0 the check set T (0) is defined by starting from

X(0), while for k ≥ 1 the check set T (k) is dependent from X(k) and X(k−1).

Thus, the residual ξ(t
(k)
i) in (10) is used as a criterion to define a refinement set X

(k)

refine
and a coarsening

set X
(k)
coarse. In doing so, we need to introduce two tolerances (or thresholds) θrefine and θcoarse, such that

0 < θcoarse < θrefine. When the value of (10) is larger than θrefine, we add the point t
(k)
i in the refinement

set X
(k)

refine
, and so at next step the set X(k) needs to be replaced by X(k) ∪ X

(k)

refine
. Instead, whenever

the error ξ(t
(k)
i) is smaller than θcoarse, we move a point from the active node set X(k) into the coarsening

set X
(k)
coarse, and so X(k) is then updated with X(k)\X

(k)
coarse. As a consequence, at (k + 1)-step of our

adaptive process the set X(k) is updated by adding the refinement set X
(k)

refine
and deleting the coarsening

set X
(k)
coarse, that is X

(k+1) =
{

X(k) ∪X
(k)

refine

}

\X
(k)
coarse. The iterative method concludes once the process

of addition and/or removal was completed, returning the final set X(k∗), where k∗ denotes the last iteration.
A pseudo-code of this adaptive process is sketched in Algorithm 1.

5

Algorithm 1: Adaptive procedure

Step 1 Consider the set X0 ≡ X of interpolation points

Step 2 Fix two positive tolerances (or thresholds) θrefine and θcoarse,

such that 0 < θrefine < θcoarse

Step 3 For k = 0, 1, . . . compute the kth approximate solution sX(k)

Step 4 Define a set T (k) of test points

Step 5 Evaluate the residual error ξ(t
(k)
i) in (10)

Step 6 If the error indicator

i) ξ(t
(k)
i) > θrefine, add the test point t

(k)
i among the interpolation points

ii) ξ(t
(k)
i) < θcoarse, remove the interpolation node x

(k)
i from X(k)

and put it in the set X
(k)
coarse

So define the sets

X
(k)

refine
= {t

(k)
i ∈ T (k) : ξ(t

(k)
i) > θrefine, i = 1, . . . , NT (k)}

X
(k)
coarse = {x

(k)
i ∈ X(k) : ξ(t

(k)
i) < θcoarse, i = 1, . . . , NT (k)}

and construct the set

X(k+1) =
{

X(k) ∪X
(k)

refine

}

\X
(k)
coarse

Step 7 Stop when X
(k)

refine
∪X

(k)
coarse = ∅

Remark 4.1. This adaptive process is based on the computation of the residual (10). It is therefore evident
that at each iteration the method requires to create an interpolant and to make some extra evaluations of
the target function at the test points. This fact may not be a positive feature when the function evaluation
is costly or possibly not available. However, in such a case one might use an alternative approach, which
consists in generating for instance a local approximation around the test point, then considering the latter
(instead of function value) in (10). Similar strategies have already been studied in e.g. [4, 22].

4.2. Connection between interpolation and check points

In this subsection we outline the strategy employed for the definition of the sets X(k) and T (k) above.
Here we take k fixed, meaning that k is a generic iteration of our adaptive scheme.

In the sequel we describe the connection between the interpolation node set X(k) and the corresponding
check point set T (k). By doing that, we focus more in detail on two specific situations that refer to one-
dimensional and two-dimensional interpolation.

In 1D case, we start by generating a set X(0) = X of equally spaced points in the domain Ω = [a, b],
a, b ∈ R. Then, for k ≥ 0, we define the set T (k) of test nodes that are the middle points taken from (sorted)

interpolation nodes, i.e. T (k) = {t
(k)
i = 0.5(x

(k)
i + x

(k)
i+1), i = 1, . . . , N (k) − 1}.

In 2D case, we follow the procedure described in [9, 22]. So we start from a set X(0) = X of equally
spaced points in the square domain Ω = [a, b]2, a, b ∈ R, and then we update the node set X(k) by applying
the adaptive sub-sampling procedure. Now, for k ≥ 0, we compute the halfway points of T (k) (red dots), as
shown in Figure 1, where the blue points represent a portion of the set X(k) of interpolation nodes.

6

-1 -0.5 0 0.5 1

x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

Figure 1: Example of interpolation nodes (blue) vs check points (red) that refer to a portion of the domain
Ω = [−1, 1]2.

5. Numerical results and discussion

In this section we illustrate the effectiveness of our adaptive algorithms, which are implemented in
Matlab for kernel interpolation in one and two dimensions. All programs are run on a laptop with an
Intel(R) Core(TM) i7-6500U CPU 2.50 GHz processor with 8GB RAM.

In the numerical experiments we test our interpolation scheme in order to analyze primarily the behavior
of the algorithms in terms of both accuracy and computational efficiency. Then, we also emphasize on some
important details for an adaptive method, that is, the number of iterations (# iter), the final number of
points needed for achieving the algorithm convergence (Nfin) and the conditioning of the interpolation
matrix (κ(A)). Furthermore, we compare our results with those of the adaptive algorithms in [9]. In our
examples, in order to show how the new algorithms work, we consider various types of radial kernels thus
involving both infinity and finite regularity RBFs like IMQ, M6, M4 and M2. In our MPLE-RSM we select
the shape parameter ε as discussed in Section 3. In particular, as suggested in Remark 3.1, the ε-choice
via MPLE is determined by the use of Matlab fminbnd minimization. Instead, as regards the comparison
of our method with the RSM, we remind that the variable shape parameter selection concerning the RSM
derives from the original paper [9].

In order to measure the accuracy of our adaptive method, we compute the ∞-norm error or maximum
absolute error (MAE) given by

MAE = ||f − sX ||∞ = max
1≤i≤Ne

|f(ξi)− sX(ξi)|,

where the ξi forms a suitable set of Ne equally-spaced or gridded evaluation points. Further, by making use
of the Matlab cond command we provide an estimate of the condition number (4), while the efficiency of
the adaptive algorithms is assessed by computing the execution (or CPU) time expressed in seconds.

5.1. Experiments for 1D adaptive interpolation

In this subsection we focus on one-dimensional interpolation. All these tests have been carried by starting
from an initial point set X(0) ≡ X , which consists of N (0) = 13 equally-spaced points in the interval [−1, 1].
The threshold values are usually selected to be θrefine = 10−5, 10−6 and θcoarse = 10−8, 10−9. However,
in our comparison between the residual sub-sampling algorithms, the refinement threshold θrefine is often
modified by keeping θcoarse fixed.

7

In order to validate in depth our adaptive algorithms, we consider the following three benchmark target
(or test) functions:

f1(x) =
1

1 + 25x2
, f2(x) = tanh(60x− 0.01), f3(x) =

3

8

[

cos
(

(x+ 1)
2 − 3

)]4

,

where f1 is the well-known Runge function, f2 represents the hyperbolic tan function, and f3 denotes a
univariate restriction of the so-called valley function (see [7, 9, 22]).

In Figure 2 we show some final point distributions obtained by adaptive interpolation. These results
are three examples of possible application of MPLE-RSM, which considers different choices of kernel for f1,
f2 and f3. For the Runge function f1 (top-left) we observe that the points cluster close to the boundaries
where approximation turns out to be more challenging due to the one-side nature of the information, and at
the origin in which the target function changes more rapidly. In case of hyperbolic tan function (top-right)
we observe as the points distribute around the steepest part of f2. A similar behavior also occurs for f3,
since the nodes tends to gather near the boundaries and the steepest areas of this function (bottom).

-1 -0.5 0 0.5 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
y

-1 -0.5 0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y

Figure 2: Final point distribution using MPLE-RSM. 1D adaptive interpolation for f1 with M4 (top-left),
f2 with IMQ (top-right) and f3 with M6 (bottom). The chosen parameters are given in Tables 1, 2 and 3,
respectively.

In Tables 1, 2 and 3, we present the results obtained by applying the adaptive MPLE-RSM. From these
tables we have some information about the number of iterations and the final number of points required for
convergence. In particular, we note that the MAE is always very close to the prescribed value of θrefine.

8

This fact suggests that our method is working well. Moreover, the automatic selection of the optimal shape
parameter also permits to control the condition number (in all cases < 10+15, even for C∞ kernels), at the
same time guaranteeing a high level of accuracy of the numerical method. Indeed, in the various situations,
conditioning and CPU times assume quite similar values. It is, however, important to notice that the steep
variation in the middle of f2 leads to a remarkable increase in the final number of points, which the adaptive
process needs to achieve the θrefine threshold. In the latter case, in fact, for any choice of the kernel Nfin

assumes a value larger than 100, while for f1 and f3 the value of Nfin is always smaller than 100.

kernel # iter Nfin MAE κ(A) time

IMQ 4 51 2.1e-07 3.0e+12 0.6

M6 10 50 6.7e-07 1.5e+11 0.8

M4 12 54 8.9e-07 8.4e+09 1.1

M2 6 99 9.3e-07 4.4e+08 0.7

Table 1: Results obtained by applying the MPLE-RSM with θrefine = 10−6 and θcoarse = 10−8 for f1.

kernel # iter Nfin MAE κ(A) time

IMQ 6 194 3.5e-06 5.1e+13 0.7

M6 14 108 8.9e-06 1.0e+11 1.7

M4 11 146 9.8e-06 1.0e+09 1.0

M2 8 154 9.8e-06 1.9e+08 0.7

Table 2: Results obtained by applying the MPLE-RSM with θrefine = 10−5 and θcoarse = 10−8 for f2.

kernel # iter Nfin MAE κ(A) time

IMQ 4 29 2.3e-06 2.3e+14 0.6

M6 4 40 5.6e-06 6.9e+11 0.4

M4 5 43 1.0e-05 1.8e+10 0.6

M2 7 56 9.2e-06 1.1e+10 0.6

Table 3: Results obtained by applying the MPLE-RSM with θrefine = 10−5 and θcoarse = 10−8 for f3.

Finally, in Tables 4, 5 and 6 we compare our adaptive MPLE-RSM with the RSM proposed in [9]. Thus,
we report the results obtained by varying the refinement threshold θrefine for the M6 kernel. This analysis
enables us to make some general observations. When the value of θrefine is “small” the MPLE-RSM achieves
convergence much faster than RSM. Furthermore, while for “large” values of θrefine the number of points
is pretty similar for the two methods, the MPLE-RSM usually needs much less points than RSM. These
remarks are true for each of the target functions. However, from these experiments we can note that for the
RSM [9] is not always possible to get any result, and so in the tables we denote this issue with the symbol
–. Another drawback of the RSM is then due to severe difficulties in tuning the variable shape parameters.
Unlike the MPLE-RSM, where the shape parameter choice is automatic for any radial kernel, the RSM

9

needs user’s action case-by-case thus making the ε-selections quite hard. This fact is particularly evident,
either when the target function (and, as a consequence, the approximation problem) is quite complex, or
the interpolation problem requires to be solved by kernels that have different degrees of smoothness.

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-04 25 0.2 25 0.2

1e-05 97 0.6 35 0.2

1e-06 224 3.1 49 0.3

1e-07 – – 67 0.4

Table 4: Comparison between RSM [9] and MPLE-RSM obtained by using the M6 kernel with θcoarse =
10−9 for f1.

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-03 73 0.7 82 0.5

1e-04 477 3.0 112 0.8

1e-05 407 4.3 108 1.7

1e-06 – – 129 4.5

Table 5: Comparison between RSM [9] and MPLE-RSM obtained by using the M6 kernel with θcoarse =
10−8 for f2.

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-03 20 0.3 20 0.3

1e-04 92 0.7 30 0.6

1e-05 184 1.9 40 0.4

1e-06 – – 40 0.7

Table 6: Comparison between RSM [9] and MPLE-RSM obtained by using the M6 kernel with θcoarse =
10−8 for f3.

5.2. Experiments for 2D adaptive interpolation

In this subsection we consider the two-dimensional adaptive interpolation algorithm. These experiments
have been run by taking an initial point set X(0) ≡ X , containing N (0) = 320 uniformly distributed
points on [−1, 1]2. In order to test the node refinement process, as refinement thresholds we choose some

10

values of θrefine ∈ [10−6, 10−3], while the coarsening tolerance is assumed to be fixed, i.e., θcoarse = 10−8.
Furthermore, as in the 1D case above, we compare the numerical results obtained by using the classical RSM
in [9] with the new MPLE-RSM. In doing that, we analyze the behavior of the two algorithms by varying
the refinement threshold.

In our tests we analyze the performance of our algorithms taking the data values by three test functions.
The former is known as a Franke-type function [22], and its analytic expression is

f4(x, y) = exp
[

−0.1
(

x2 + y2
)]

+ exp
[

−5
(

(x− 0.5)2 + (y − 0.5)2
)]

+ exp
[

−15((x+ 0.2)2 + (y + 0.4)2)
]

+ exp
[

−9
(

(x+ 0.8)2 + (y − 0.8)2
)]

.

The latter is a hyperbolic tan function [9] of the form

f5(x, y) = −0.4 tanh(20xy) + 0.6,

while the last one is an exponential function [22] given by

f6(x, y) = exp
[

−60((x− 0.35)2 + (y − 0.25)2)
]

+ 0.2.

In Figure 3 we give some graphical representations of the final point distribution, which are obtained
by applying our adaptive MPLE-RSM algorithm. On the left, we report the graphs of the interpolating
functions for f4 (top), f5 (center) and f6 (bottom), also showing on the xy-plane at level z = 0 the final
nodes deriving from the adaptive interpolation. On the right, instead, we explicitly show the 2D view of the
point distributions. To give a generic idea about the flexibility of this kernel based interpolation approach,
we depict the results with radial kernels of various regularity; as an example, in our work, we report the
results attained in the following cases: M4 for f4, IMQ for f5 and M6 for f6. More specifically, we can
observe that for the Franke-type function f4 the MPLE-RSM locates points in regions of rapid variation.
The adaptive algorithm behaves in a similar way also when we consider the hyperbolic tan function f5 and
the exponential one f6. In both cases the residual sub-sampling scheme puts more points in the domain
where the functions change quickly or are picked.

In Tables 7, 8 and 9, we illustrate the numerical results to see how the adaptive MPLE-RSM works when
it is applied to solve some relevant approximation problems. As already shown in 1D interpolation above, in
the tables we provide a detailed summary concerning the execution of the adaptive algorithm. In particular,
we report the number of iterations needed to achieve convergence and the corresponding final number of
points. Also in these 2D tests, we can observe that the MAE assumes values that are close – and however
always lower – to the prefixed refinement threshold θrefine. Such data point out that the MPLE-RSM is
able to make accurate predictions. In addition, we note that the near-optimal determination of the shape
parameter via the MPLE technique enables us to control the kernel matrix conditioning. Indeed, in all
reported results the condition number is smaller than 10+16, even for C∞ RBFs like IMQ. As regards the
CPU times we highlight that in this adaptive context the selected kernel can influence the execution time of
the MPLE-RSM, which is subjected to an automatic addition or removal of points. Moreover, although the
quality of results depends on the choice of the refinement threshold θrefine and the complexity of the target
function to be approximated, it is important to note as the number of refinement nodes remains relatively
low. This fact is better explained in the following, where we compare the MPLE-RSM with the original
RSM [9].

Therefore, in order to point out the benefit deriving from the use of the new adaptive algorithm, we
conclude this numerical section by making a comparison between MPLE-RSM and RSM [9]. In Tables 10,
11 and 12 we report the results obtained for various choices of the refinement parameter θrefine. In this
study we also diversify the type of radial kernel and in particular, for the sake of brevity, we show the
algorithm behavior by employing the IMQ for f4, the M2 for f5 and the M6 for f6. From these tables,
in which we report the final number of interpolation nodes required to meet both tolerances and the CPU
times, it turns out to be undeniable the improvement provided by the novel adaptive MPLE-RSM. As a
matter of fact, for any value of θrefine, the MPLE-RSM is much faster than the RSM. This good result in
terms of computational efficiency is due to a better ability of our new approach in the selection of the shape

11

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Figure 3: Final point distribution using MPLE-RSM. 2D adaptive interpolation for f4 with M4 (top), f5 with
IMQ (center) and f6 with M6 (bottom). The chosen parameters are given in Tables 7, 8 and 9, respectively.

parameter via a MPLE based strategy. Consequently, the numerical method achieves convergence earlier
and, at the same time, a smaller number of points is required. Furthermore, we can also note a growing
enhancement in the performance of the MPLE-RSM (compared to the RSM), when the value of θrefine
becomes more demanding, i.e., the latter is assumed to be smaller and smaller. In some specific cases, then,

12

kernel # iter Nfin MAE κ(A) time

IMQ 1 318 5.3e-05 9.6e+13 0.6

M6 3 398 5.7e-05 1.6e+12 1.9

M4 3 491 7.1e-05 1.6e+11 0.8

Table 7: Results obtained by applying the MPLE-RSM with θrefine = 10−4 and θcoarse = 10−8 for f4.

kernel # iter Nfin MAE κ(A) time

IMQ 4 1522 5.8e-04 6.0e+10 7.6

M6 3 1442 7.2e-04 8.1e+08 9.9

M4 3 1300 8.4e-04 2.7e+08 4.0

Table 8: Results obtained by applying the MPLE-RSM with θrefine = 10−3 and θcoarse = 10−8 for f5.

kernel # iter Nfin MAE κ(A) time

IMQ 2 1259 3.4e-06 5.7e+15 3.1

M6 4 1368 6.1e-06 2.3e+12 18.1

M4 4 1428 9.3e-06 9.3e+10 8.6

Table 9: Results obtained by applying the MPLE-RSM with θrefine = 10−5 and θcoarse = 10−8 for f6.

it is even possible that the RSM does not converge (see the last row of Table 10). In conclusion, from
these numerical experiments for 2D adaptive interpolation, we have once more put in evidence a concrete
difficulty in the initialization of shape parameters for the RSM. From several tests it is evident how this
(nonautomatic) choice can modify the performance of the algorithm, but the need of a preliminary user
action makes the entire scheme highly unstable. However, to perform the comparisons discussed in this
work, for the RSM we set as starting values of the shape parameter ε = 3 in Tables 10 and 11, and ε = 4 in
Table 12.

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-04 612 1.4 318 0.4

5e-05 927 2.3 321 0.8

1e-05 2430 30.2 328 1.3

5e-06 3850 146.4 286 2.3

1e-06 – – 303 5.0

Table 10: Comparison between RSM [9] and MPLE-RSM obtained by using the IMQ kernel with θcoarse =
10−8 for f4.

13

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-03 1280 7.4 950 3.0

8e-04 1476 6.6 1038 4.3

6e-04 1750 9.4 1172 4.4

4e-04 2120 14.8 1390 8.9

2e-04 3178 117.7 1952 19.5

1e-04 4732 289.0 2406 41.1

Table 11: Comparison between RSM [9] and MPLE-RSM obtained by using the M2 kernel with θcoarse =
10−8 for f5.

θrefine

RSM MPLE-RSM

Nfin time Nfin time

1e-03 566 3.0 550 1.4

5e-04 643 4.3 658 1.8

1e-04 978 7.5 1215 4.6

5e-05 1186 16.2 1272 10.5

1e-05 2933 65.1 1368 18.1

Table 12: Comparison between RSM [9] and MPLE-RSM obtained by using the M6 kernel with θcoarse =
10−8 for f6.

6. Conclusions and future work

In this paper we solved two open problems in [9]. In fact, though the original method provides an
effective adaptive scheme, it does not guarantee the invertibility of the interpolation matrix. This issue is
essentially due to the variable shape parameter selection in the RSM, since the latter is characterized by
a different choice of the shape parameter at every node. On the contrary, the new approach based on the
MPLE criterion enables us on the one hand to make an optimal choice of the shape parameter associated
with the kernel, and on the other one to guarantee existence and uniqueness of the RBF interpolation.
Furthermore, the MPLE-RSM is thus automatically applicable to any kind of kernel, while the basic RSM
needs a quite hard action of the user for the shape parameter selection.

As a future work we aim to improve the method proposed in this work, also for the solution of boundary
value problems and partial differential equations.

Acknowledgments

This work was partially supported by the INdAM-GNCS 2020 research project “Multivariate approxi-
mation and functional equations for numerical modeling” and by the 2020 projects “Models and numerical
methods in approximation, in applied sciences and in life sciences”and “Mathematical methods in compu-
tational sciences” funded by the Department of Mathematics “Giuseppe Peano” of the University of Turin.

14

This research has been accomplished within the RITA “Research ITalian network on Approximation” and
the UMI Group TAA “Approximation Theory and Applications”.

References

[1] J. Behrens, A. Iske, Grid-free adaptive semi-Lagrangian advection using radial basis functions, Comput. Math. Appl. 43
(2002) 319–327.

[2] M. Bozzini, L. Lenarduzzi, R. Schaback, Adaptive interpolation by scaled multiquadrics, Adv. Comput. Math. 16 (2002)
375–387.

[3] M.D. Buhmann, Radial Basis Functions: Theory and Implementation, Cambridge Monogr. Appl. Comput. Math., vol. 12,
Cambridge Univ. Press, Cambridge, 2003.

[4] R. Cavoretto, A. De Rossi, A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs, Comput.
Math. Appl. 79 (2020) 3206–3222.

[5] R. Cavoretto, A. De Rossi, An adaptive LOOCV-based refinement scheme for RBF collocation methods over irregular
domains, Appl. Math. Lett. 103 (2020) 106178.

[6] R. Cavoretto, A. De Rossi, Error indicators and refinement strategies for solving Poisson problems through a RBF partition
of unity collocation scheme, Appl. Math. Comput. 369 (2020) 124824.

[7] R. Cavoretto, Adaptive radial basis function partition of unity interpolation: A bivariate algorithm for unstructured data,
J. Sci. Comput. 87 (2021) 41.

[8] R. Cavoretto, A. De Rossi, A. Sommariva, M. Vianello, RBFCUB: A numerical package for near-optimal meshless cubature
on general polygons, Appl. Math. Lett. 125 (2022), 107704.

[9] T.A. Driscoll, A.R.H. Heryudono, Adaptive residual subsampling methods for radial basis function interpolation and
collocation problems, Comput. Math. Appl. 53 (2007) 927–939.

[10] M. Esmaeilbeigi, M.M. Hosseini, Dynamic node adaptive strategy for nearly singular problemson large domains, Eng.
Anal. Bound. Elem. 36 (2012) 1311–1321.

[11] G.E. Fasshauer, Meshfree Approximation Methods with Matlab, Interdisciplinary Mathematical Sciences, vol. 6, World
Scientific Publishing Co., Singapore, 2007.

[12] G.E. Fasshauer, Positive definite kernels: Past, present and future, Dolomites Res. Notes Approx. 4 (2011) 21–63.
[13] G.E. Fasshauer, M.J. McCourt, Kernel-based Approximation Methods using Matlab, Interdisciplinary Mathematical

Sciences, Vol. 19, World Scientific Publishing Co., Singapore, 2015.
[14] K. Gao, G. Mei, S. Cuomo, F. Piccialli, N. Xu, ARBF: adaptive radial basis function interpolation algorithm for irregularly

scattered point sets, Soft Computing 24 (2020) 17693–17704.
[15] K. Gao, G. Mei, S. Cuomo, F. Piccialli, N. Xu, Adaptive RBF interpolation for estimating missing values in geographical

data, in: Y. Sergeyev, D. Kvasov (eds.), Numerical Computations: Theory and Algorithms – NUMTA 2019, LNCS 11973,
pp. 122–130.

[16] A. Golbabai, E. Mohebianfar, H. Rabiei, On the new variable shape parameter strategies for radial basis functions,
Comput. Appl. Math. 34 (2015) 691–704.

[17] B. Qiao, Z. Pan, W. Huang, C. Cao, An adaptive finite-difference method for accurate simulation of first-arrival traveltimes
in heterogeneous media, Appl. Math. Comput. 394 (2021) 125792.

[18] R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math. 3 (1995)
251–264.

[19] M. Scheuerer, An alternative procedure for selecting a good value for the parameter c in RBF-interpolation, Adv. Comput.
Math. 34 (2011) 105–126.

[20] M. Scheuerer, R. Schaback, M. Schlather, Interpolation of spatial data – A stochastic or a deterministic problem? European
J. Appl. Math. 24 (2013) 601–629.

[21] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge Univ. Press,
Cambridge, 2005.

[22] Q. Zhang, Y. Zhao, J. Levesley, Adaptive radial basis function interpolation using an error indicator, Numer. Algorithms
76 (2017) 441–471.

15

	1 Introduction
	2 Kernel based interpolation
	3 MPLE criterion for near-optimal choice of the shape parameter
	3.1 Gaussian random field and density function
	3.2 Determination of the MPLE criterion for kernel interpolation

	4 Adaptive algorithm based on refinement and coarsening processes
	4.1 Residual sub-sampling procedure
	4.2 Connection between interpolation and check points

	5 Numerical results and discussion
	5.1 Experiments for 1D adaptive interpolation
	5.2 Experiments for 2D adaptive interpolation

	6 Conclusions and future work

