
LEAST-SQUARES FINITE ELEMENT METHOD

FOR ORDINARY DIFFERENTIAL EQUATIONS

MATTHIAS CHUNG, JUSTIN KRUEGER, AND HONGHU LIU

Abstract. We consider the least-squares finite element method (lsfem) for

systems of nonlinear ordinary differential equations, and establish an optimal
error estimate for this method when piecewise linear elements are used. The

main assumptions are that the vector field is sufficiently smooth and that the
local Lipschitz constant as well as the operator norm of the Jacobian ma-

trix associated with the nonlinearity are sufficiently small, when restricted to

a suitable neighborhood of the true solution for the considered initial value
problem. This theoretic optimality is further illustrated numerically, along

with evidence of possible extension to higher-order basis elements. Exam-

ples are also presented to show the advantages of lsfem compared with finite
difference methods in various scenarios. Suitable modifications for adaptive

time-stepping are discussed as well.

1. Introduction

In scientific fields ranging from systems biology and systems engineering to social
sciences, physical systems and finance, differential equations are omnipresent and
constitute an essential tool to simulate, analyze, predict, and to ultimately make
informed decisions. Due to the wide range of applications, the search for efficient,
flexible, and reliable numerical schemes is still a timely topic despite its long history.
Numerical solutions of ordinary differential equations (ODEs), in particular for
initial-value problems (IVPs), are predominantly obtained by a rich variety of finite
difference single/multistep schemes, which lead to both implicit and explicit solvers
that are now standard in many programming languages [1, 20, 21, 22, 27]. In
contrast, finite element methods for ODEs are much less investigated, despite the
works on continuous and discontinuous Galerkin methods (see [9, Section 2.2] for
a brief review) and collocation methods [14]. The same can be said for delay
differential equations (DDEs) as well [5].

Motivation. In this work, we initiate an effort to explore the least-squares finite
element method (lsfem) as a viable way to numerically solve ODEs and DDEs.
Before entering into details, we briefly illustrate the strength of the lsfem using
a simple-looking ODE, which turns out to be challenging for traditional finite dif-
ference methods (FDMs) to operate. The problem of concern here is the following
linear IVP

(1) y′ = y − 2e−t, y(0) = 1.

Note that the exact solution is given by y(t) = e−t. Remarkably, all Matlab built-
in numerical ODE solvers fail on this example when solution over a relatively long

Key words and phrases. Least-squares finite element method | initial value problem | conver-
gence of least-squares solutions | optimal error estimates | ordinary differential equations.
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time interval is computed. Whereas, the proposed lsfem tracks well the exact
solution. In Fig. 1, we present the numerical solutions (left panel) and the cor-
responding pointwise errors (right panel) on the interval t ∈ [0, 30] for all these
solvers. As can be seen in the left panel, sooner or later, the solutions from the
finite-difference schemes exhibit exponential growth, leading thus to exponentially
growing pointwise errors. In contrast, the maximum error for lsfem over the whole
interval remains below 2 · 10−6 (see black curve in the right panel of Fig. 1). It
is also worth noting that the setup of the experiment is actually in favor of the
built-in solvers, since we used a uniform mesh size for lsfem while allowing the
build-in Matlab solvers to exhibit smaller or equal step sizes compared with the
mesh size for lsfem; see the caption of Fig. 1 for further details.
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Figure 1. Failure of standard finite difference methods.
Left panel: Numerical solutions of y′ = y − 2e−t with y(0) = 1
using lsfem solver (black bold line) and various standard ODE
solvers from Matlab’s ODE solver library. The solution of the IVP
is denoted by y∗ while approximations are donoted by yh∗ . Right
panel: The point-wise error between the exact solution y(t) = e−t

and the numerical solutions obtained from the numerical solvers
used in the left panel. For all the Matlab’s built-in ODE solvers,
the relative and absolute tolerances are set to be RelTol = 10−8

and AbsTol = 10−8, respectively; and the largest allowed step size
is MaxStep = 0.1. For lsfem, we used cubic splines as the basis
functions defined on a uniform mesh of size δt = 0.1.

The failure of the FDMs for the above example is actually not surprising. It re-
sults from discretization errors which are amplified exponentially over time since the
equation has no stabilizing nonlinear terms to counterbalance the linear instability.
Indeed, assume that at a given time instant s > 0, the true solution y(s) = e−s is
perturbed by a small amount ε, that is ŷ(s) = e−s + ε. Then, by direct calculation
using the original equation, one sees that this deviation gets amplified to et−sε for
all t ≥ s. Since local discretization errors are intrinsic to any FDMs, such deviations
are unavoidable.

In contrast to the “localization” nature of FDMs, the aim of an lsfem is to find an
optimal approximate solution within a given subspace that minimizes an objective
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function over the whole time interval of integration (cf. Section 2.1), hence making
such methods much more robust to local discretization errors compared to FDMs.
The lsfem methods are also flexible in the sense that minor changes are needed
when considering different types of dynamical systems, either governed by ODEs or
DDEs and in the contexts of either IVPs or boundary value problems (BVPs), which
allows for a unified numerical implementation for all the cases. In fact, the setup
can also handle a broad class of differential algebraic equations (DAEs) as well,
with the associated optimization problems become now constrained optimizations.
Moreover, since the objective function directly controls the discretization error, it
can be used as a diagnostic tool for local mesh adaptivity consideration, a feature
crucial for problems involving abrupt local changes or stiffness.

Since their emergence in the early 1950s, finite element methods (FEMs) have
become one of the most versatile and powerful methodologies for the numerical
solution of partial differential equations (PDEs). Whereas, for ODEs and DDEs,
the usage of FEMs is much less pursued as mentioned above. Intuitively, this may
be related to the facts that the salient feature of geometrical flexibility of FEMs
is dormant in these cases, and that solutions for ODEs and DDEs are oftentimes
smooth, rendering the weak formulation of FEMs less attractive.

However, as already illustrated in Fig. 1 above, the lsfem can provide accurate
solutions in situations that traditional FDMs may fail drastically. This is further
supported by other examples in Section 4 that the superior performance of the
lsfem reported in Fig. 1 is not just an exception. These numerical results prompt
us to re-evaluate the aforementioned intuition about the usage of FEMs, at least
in the least-squares settings, for ODEs and DDEs.

These investigations are further driven by newly discovered connections between
ordinary differential equations and residual neural networks [19]. Within the field
of neural networks where stability is a major concern, recent works are starting to
investigate finite element type solvers [18].

The existing literature on lsfem is mainly devoted to PDEs; see e.g., [4, 6, 10, 25]
and references therein. On the theoretic side, for linear PDE problems, very satis-
factory theoretical understandings have already been gained that includes conver-
gence results and even optimal error estimates [6, 25]. Nevertheless, error estimates
in the case of nonlinear PDE problems remain largely open. In contrast, lsfem for
ODEs and DDEs has not received much attention yet, neither theoretically nor
computationally. In this article, we take a first step in establishing lsfem error
analysis for general nonlinear ODEs, deferring the treatments for DAEs and DDEs
to future works.

Main contributions. In that respect, we consider IVP of nonlinear ODEs for which
we establish under suitable conditions optimal error estimates for lsfem with piece-
wise linear elements; see Theorem 3.1 below. The optimality of the estimate is in
the sense that the error bound established in Theorem 3.1 is of the same order,
in terms of the mesh size h, as the finite element interpolation error recalled in
Lemma 3.2. Our main idea centers around an estimate given by Proposition 3.2
associated with an auxiliary system (23). Given an lsfem solution yh∗ in a finite
dimensional subspace Xh of the Sobolev (state) space X = H1(0, T ;Rd), this lat-
ter auxiliary system is obtained by replacing the original nonlinear vector field
F (y) + f(t) in (3) by F (yh∗ (t)) + f(t). Since the latter vector field consists simply
of a given time-dependent function for a given yh∗ , optimal error estimates between
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the true solution w∗ and the lsfem solution wh∗ of the auxiliary system (23) is well
known using the classical Aubin-Nitsche trick [3, 8, 28]; see Lemma 3.1 and the
estimate given by (25), in which the dependence on yh∗ are marked via w∗[y

h
∗ ] and

wh∗ [y
h
∗ ]. However, to establish a suitable control of the difference ‖yh∗ − wh∗ [y

h
∗ ]‖

between the lsfem solutions yh∗ (for the original nonlinear IVP (3)) and wh∗ [y
h
∗ ] (for

the auxiliary system (23)) as given in Proposition 3.2 requires a major effort.
Such an estimate for ‖yh∗ − wh∗ [yh∗ ]‖ is established through a series of lemmas

that exploit geometric properties revealed by the first-order optimality condition
associated with each minimizer yh∗ in the subspace Xh for the objective function
J given by (4). Indeed, from d

dτ J(yh∗ + τvh;F, f, g)
∣∣
τ=0

= 0 for all vh in Xh, after

some algebraic operations, we can actually link this necessary condition with w∗[yh∗ ]
through the following orthogonality property (cf. Lemma 3.3):

(2) 〈yh∗ − w∗[yh∗ ], vh − Γ(·; vh)〉X = 0, ∀ vh ∈ Xh,

where Γ is an integral involving the Jacobian matrix of F given by (29). It is this
simple, albeit not so obvious, geometric identity that opens the room for estimation,
once Γ is further split as the sum of its projection ΠhΓ onto Xh and its orthogonal
complement Π⊥h Γ; see Lemmas 3.4 and 3.5.

Although the error analysis presented in this article focuses on piecewise linear
elements, numerical evidence provided in Section 4 indicates that when a piecewise
spline basis of degree k is used to form Xh and F is Ck+1-smooth, then the error
bound scales like hk+1. Rigorous justification of such an error estimate will be
addressed in a future work.

Organization. This article is organized as follows. We first recall in Section 2 the
basic setup of lsfem in the context of IVP for nonlinear ODE systems. Besides its
functional framework recalled in subsection 2.1, for later usage we also present in
subsection 2.2 a result concerning the convergence of lsfem solutions to the true
solution; see Theorem 2.1. While the treatment makes a direct usage of a general
convergence result on the approximation of abstract nonlinear equations (cf. [15,
Theorem 3.3, p.307] and [6, Theorem 8.1]) some detailed calculation is required to
recast the problem into the functional form dealt with in [15, Theorem 3.3, p.307]
and also to check the required assumptions therein. We provide thus a proof of
this convergence theorem in A for the sake of clarity. The associated optimal error
analysis reviewed above is then dealt with in Section 3. The algorithmic aspects
are then presented in Section 4 (cf. Algorithm 1) along with numerical results for
various concrete examples that confirm the error bounds obtained in Section 3
and also provide numerical evidence for possible extension to higher-order basis
elements. We also discuss within this section suitable modifications for adaptive
time stepping. Finally, Section 5 provides a brief conclusion and potential future
directions.

2. Preliminaries

As a preparation for later sections concerning the error estimates (Section 3) as
well as the numerical treatments (Section 4), we briefly summarize the basic setup
for lsfem of first-order ODEs and then recall a classical convergence result for the
lsfem solutions. For ease of reference, a table of the main symbols used in this
work is provided in Table 1.
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Table 1. List of main symbols

X The Sobolev space H1(0, T ;Rd) equipped with the inner product (7) and

the corresponding induced norm (8)

Xh A finite element subspace of X

Ih The interpolation operator from X to Xh

Πh The orthogonal projection from X to Xh

IdX The identity map on X

Π⊥h Orthogonal complement of Πh: Π⊥h = IdX −Πh

y∗ Solution to the variational formulation (5) of the IVP (3)

yh∗ lsfem approximation of y∗ in the subspace Xh; i.e., solution of (6)

w∗[yh∗ ] Solution of the auxiliary system (23)

wh
∗ [yh∗ ] lsfem approximation of w∗[yh∗ ] in the subspace Xh

u A generic element in X or the solution of (79) depending on the context

v A generic element in X

B The subset in Rd defined by (14), which contains both y∗(t) and

the lsfem solution yh∗ (t) for all t in [0, T ] and all sufficiently small h

C Embedding constant for the continuous embedding from X to C([0, T ];Rd)

C̃ Embedding constant for the continuous embedding from X to L2(0, T ;Rd)

〈·, ·〉 The standard dot product on Rd

‖ · ‖ The Euclidean norm on Rd

‖ · ‖op The operator norm for a d× d matrix, i.e., ‖M‖op = supz∈Rd,‖z‖=1 ‖Mz‖
L(Y, Z) The set of bounded linear maps from a Hilbert space Y to a Hilbert space Z

2.1. Formulation of lsfem. We provide in this subsection a brief account of the
lsfem for first-order (nonlinear) ODE systems; and refer to [25, Chap. 3] for more
details. Given a fixed T > 0, consider the following initial-value problem (IVP) in
Rd for some d ∈ N:

(3)
y′ = F (y) + f(t), t ∈ (0, T ],

y(0) = g,

where F : Rd → Rd is a given smooth and possibly nonlinear function, f is a
function in L2(0, T ;Rd), and g is a given vector in Rd. Precise smoothness on F
will be specified later on, and additional regularity on f will be added when optimal
error estimates are considered in Section 3.

Before proceeding, it is worth mentioning that all the results of both the current
section and Section 3 hold for more general systems of the form y′ = F (t, y) + f(t)
as well. Indeed, by introducing an auxiliary scalar equation p′ = 1 supplemented

with p(0) = 0, and considering the new variable z = (p, y)>, we get z′ = F̃ (z)+ f̃(t)

with F̃ (z) = [1, F (p, y)]> and f̃ = [0, f ]>. This latter system for z is an equivalent
formulation of the original problem and fits into the form given by (3).

Throughout the article, we denote the classical Sobolev space H1(0, T ;Rd) by
X, which consists of L2(0, T ;Rd) functions whose first-order weak derivative is also
in L2(0, T ;Rd). X will be equipped with a norm that is equivalent to the usual
H1-norm; see (8) below. Recall that a function y ∈ X is called a strong solution of
(3) if y(0) = g, and y′ = F (y) + f(t) for almost every t ∈ (0, T ).
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The lsfem for the IVP (3) relies on a variational reformulation of the ODE
system, which seeks for y∗ ∈ X that minimizes the following objective function

(4) J(y;F, f, g) := 1
2‖y
′ − F (y)− f‖2L2(0,T ;Rd) + 1

2‖y(0)− g‖2,

where ‖ · ‖ denotes the Euclidean norm on Rd. Note that if the IVP (3) admits a
unique strong solution in X, then this solution is also the unique solution of the
following unconstrained minimization problem:

(5) Find arg min
y∈X

J(y;F, f, g).

Given any finite element subspace Xh of X, with h denoting the maximal length
of the finite elements, the lsfem for the IVP (3) consists of solving the following
analogue of the unconstrained minimization problem (5) restricted to Xh:

(6) Find arg min
yh∈Xh

J(yh;F, f, g).

Let us introduce the following inner product on X, which is naturally related to
the objective function J defined in (4), i.e.,

(7) 〈u, v〉X =

∫ T

0

〈u′(t), v′(t)〉 dt+ 〈u(0), v(0)〉, ∀ u, v ∈ X,

where 〈·, ·〉 denotes the dot product in Rd. The norm on X induced by the above
inner product 〈·, ·〉X will be denoted by ‖ · ‖X , which is often referred to as the
energy norm in the literature, namely,

(8) ‖u‖X =
√
〈u, u〉X =

(∫ T

0

〈u′(t), u′(t)〉 dt+ 〈u(0), u(0)〉

)1/2

, u ∈ X.

One can check by using basic Sobolev inequalities that the ‖·‖X -norm is equivalent
to the usual Sobolev norm on H1(0, T ;Rd) defined by ‖u‖H1 =

(
‖u‖2L2(0,T ;Rd) +

‖u′‖2L2(0,T ;Rd)

)1/2
. Note, there exist positive constants c1 and c2 such that for all

u ∈ X it holds that c1‖u‖X ≤ ‖u‖H1 ≤ c2‖u‖X .
For later usage, let us also introduce two embedding constants. First note that

since H1(0, T ;Rd) is continuously embedded into C([0, T ];Rd), see e.g., [7, Theorem
8.8], then X equipped with the norm defined in (8) is also continuously embedded
into C([0, T ];Rd). Throughout this article, we denote by C the associated embed-
ding constant, where C is the smallest constant such that1

(9) max
t∈[0,T ]

‖u(t)‖ ≤ C‖u‖X , ∀u ∈ X.

We denote also by C̃ the embedding constant for the continuous embedding from
X to L2(0, T ;Rd), which is the smallest constant such that

(10) ‖u‖L2(0,T ;Rd) ≤ C̃‖u‖X , ∀u ∈ X.

1For each u ∈ X, we always consider its continuous representative in the corresponding equiv-
alent class. There exists a unique such representative for each u ∈ X; cf. [7, Theorem 8.2].
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2.2. Convergence of the lsfem solutions. To prepare for the error analysis
carried out in Section 3, we summarize in this subsection a convergence theorem
for the lsfem solutions as the dimension of the subspace Xh in (6) increases. The
treatment makes a direct use of a general result on approximation of abstract
nonlinear equations; cf. [15, Theorem 3.3, p.307] and [6, Theorem 8.1].

We work with a sequence of finite element subspaces {Xh ⊂ X}, with h denoting
the maximal length of the finite elements, such that

(11) lim
h→0
‖(IdX −Πh)v‖X = 0, ∀ v ∈ X,

where Πh : X → Xh denotes the orthogonal projection onto Xh under the inner
product 〈·, ·〉X defined in (7).

We denote by DF the Jacobian matrix of F , and by ‖ · ‖op the operator norm of
a bounded linear map from Rd onto itself.

Theorem 2.1. Consider the IVP (3). Assume that f ∈ L2(0, T ;Rd), F : Rd → Rd
is C3 smooth, and (3) has a unique strong solution y∗ in X. Assume also that
‖DF (y∗(t))‖op is sufficiently small for all t ∈ [0, T ]. Let O be any given open
neighborhood of y∗ in X, and {Xh ⊂ X} be a sequence of finite element subspaces
satisfying (11). Then problem (6) has a unique solution yh∗ in O for all sufficiently
small h, and yh∗ converges in X-norm to the solution y∗ of (5) as h is reduced to
zero,

(12) lim
h→0
‖y∗ − yh∗‖X = 0.

Since some detailed calculation is required to recast the problem into the func-
tional form dealt with in [15, Theorem 3.3, p.307] and also to check the required
assumptions therein, we provide a proof of the above theorem in A for the sake of
clarity.

With the above convergence result available, we are ready to address the associ-
ated error analysis. In particular, we show for the case of piecewise linear elements
that the lsfem achieve optimal rate of convergence, which is the rate dictated by
the interpolation error.

3. Optimal lsfem error estimates for nonlinear ODEs

In this section, we derive an optimal error estimates for the lsfem solutions for
first-order nonlinear ODE system of the form (3). The results are obtained for
piecewise linear finite elements. Under suitable assumptions, it is shown that the
error bound for lsfem solutions is proportional to the square of the mesh size, which
is of the same order as the interpolation error for piecewise linear finite elements.

Let us first introduce the following assumption about the IVP (3):

(A1) f : [0, T ] → Rd is absolutely continuous, f ′ belongs to L2(0, T ;Rd), and
F : Rd → Rd is C3 smooth. The IVP (3) has a unique solution y∗ in X.

Except the strengthened smoothness and integrability requirements on f , the other
parts in Assumption (A1) are the same as those required in Theorem 2.1.

In Theorem 2.1, a smallness assumption is also made on, ‖DF (y∗(t))‖op, the
operator norm of the Jacobian matrix DF along the solution trajectory y∗. For
the derivation of error estimates, this technical assumption needs to be further
strengthened and augmented to require that both ‖DF‖op and the local Lipschitz
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constant of F are sufficiently small over a bounded set in Rd that contains the
solution y∗ as well as the lsfem solutions for all time t ∈ [0, T ].

We make precise these smallness assumptions on F below for the sake of clarity.
Let us first note that the smallness of ‖DF (y∗(t))‖op required in Theorem 2.1 is
made precise in its proof given by A. It suffices to require that (see (98))
(13)

sup
t∈[0,T ]

‖DF (y∗(t))‖op <
1√

2T 2 + T + C̃2 +

√
(2T 2 + T + C̃2)2 + 2T C̃2(1 + 2T )

,

where C̃ denotes the embedding constant for the continuous embedding from X to
L2(0, T ;Rd); cf. (10).

To present the needed augmentations of (13), we first establish some notations
which will be used throughout this section. We take the neighborhood O of y∗ in
Theorem 2.1 to be an open ball in X centered at y∗ with some radius r > 0, which
is denoted by B(y∗, r). Let h > 0 be chosen such that for each h ∈ (0, h), the
lsfem problem (6) has a unique solution yh∗ in B(y∗, r); the existence of such an h
is guaranteed by Theorem 2.1.

With the embedding constant C that ensures (9), we define then

(14) B =
⋃

t∈[0,T ]

{
p ∈ Rd : ‖p− y∗(t)‖ < C r

}
.

Since yh∗ stays in B(y∗, r) ⊂ X for all h ∈ (0, h), it holds that ‖yh∗ (t) − y∗(t)‖ ≤
C‖yh∗ − y∗‖X < C r, namely,

(15) yh∗ (t) ∈ B, ∀h ∈ (0, h), t ∈ [0, T ].

The aforementioned smallness assumptions on F are as follows:

(A2) Assume that (13) holds. Let r > 0 be arbitrarily given and h > 0 be chosen
so that the lsfem solution yh∗ ∈ Xh stays in the ball B(y∗, r) ⊂ X for all
h ∈ (0, h). Let B be the subset in Rd defined by (14) that contains both
y∗(t) and the lsfem solutions yh∗ (t) for all h ∈ (0, h) and all t ∈ [0, T ];
cf. (15). Assume that the local Lipschitz constant of F over B satisfies

(16)
Lip(F |B)T√

2
< 1,

and that its Jacobian matrix satisfies

(17) sup
z∈B
‖DF (z)‖op <

1

C̃
,

where ‖ · ‖op denotes the operator norm of a bounded linear map from Rd

onto itself, and C̃ is the same as given in (13).

Of course, all the three conditions (13), (16), and (17) in (A2) can be summa-
rized into one assumption of the form supz∈B ‖DF (z)‖op < C with C taken to be
the right-hand-side (RHS) of (13). However, we prefer to keep them separate in the
hope for future improvements since they are used in separate parts of the proof.

The main result of this section is summarized in the following theorem.

Theorem 3.1. Given a sequence of subspaces {Xh ⊂ X} satisfying (11) and
spanned by piecewise linear basis functions, let us consider for each Xh the least-
squares finite element approximation (6) of the nonlinear IVP (3). Assume the
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assumptions (A1) and (A2) hold. Let h be as given in (A2). Then, there exists a
constant C > 0 independent of h such that the lsfem solution yh∗ of (3) satisfies:

(18) ‖yh∗ − y∗‖L2(0,T ;Rd) ≤ Ch2, ∀ h ∈ (0, h).

We first recall a well known error estimate for the special case of the IVP (3), in
which F is identically zero. We consider for the moment

(19)
ỹ ′ = f(t), t ∈ (0, T ],

ỹ(0) = g.

In this case, its solution is obviously given by

(20) ỹ∗(t) = g +

∫ t

0

f(s) ds, t ∈ [0, T ].

For a given finite element subspace Xh, the corresponding lsfem approximation ỹh∗
is obtained by solving

(21) arg min
ỹh∈Xh

1
2‖(ỹ

h)′ − f‖2L2(0,T ;Rd) + 1
2‖ỹ

h(0)− g‖2.

Lemma 3.1. Consider the problem (19). Assume that f : [0, T ]→ Rd is absolutely
continuous and f ′ belongs to L2(0, T ;Rd). Assume also that Xh is spanned by
piecewise linear basis functions. Then, for each such Xh, there exists a unique
lsfem solution that solves (21), which is given by ỹh∗ = Πhỹ∗, where ỹ∗ is the
the solution of (19) and Πh denotes the orthogonal projection from X onto Xh.
Moreover, there exists a positive constant C independent of h such that

(22) ‖ỹ∗ − ỹh∗‖L2(0,T ;Rd) ≤ Ch2‖ỹ′′∗‖L2(0,T ;Rd).

Although the above results are classical, we provide in B some elements of the
proof for the sake of completeness.

Note that since the L2-error of piecewise linear interpolation for general function
in H2(0, T ;Rd) is of the order h2 (cf. Lemma 3.2 below), the above result shows
that the corresponding lsfem provides the optimal convergence rate for the special
case (19). However, the proof of Lemma 3.1 admits no straightforward extension
to the general nonlinear case.

To bridge the gap between the setting of Lemma 3.1 (dealing with F = 0)
and that of Theorem 3.1 (dealing with general nonlinear F ), we introduce now
an auxiliary system that will serve as a pivot in the estimates presented below.
We consider, for a given lsfem solution yh∗ of the IVP (3), the following auxiliary
system

(23)
w′ = F (yh∗ (t)) + f(t), t ∈ (0, T ],

w(0) = g.

First note that the IVP (23) fits into the form of (19) since F (yh∗ (t)) + f(t)
is known once yh∗ is given. Lemma 3.1 is thus applicable. It follows that (23)
always admits a unique lsfem solution wh∗ [y

h
∗ ] under the assumption of Lemma 3.1.

Moreover, denoting by w∗[y
h
∗ ] the solution of (23), it holds that

(24) wh∗ [y
h
∗ ] = Πhw∗[y

h
∗ ],

and that

(25) ‖w∗[yh∗ ]− wh∗ [yh∗ ]‖L2(0,T ;Rd) ≤ Ch2‖(w∗[yh∗ ])′′‖L2(0,T ;Rd).



10 M. CHUNG, J. KRUEGER, AND H. LIU

We aim to derive the following estimate of ‖yh∗ − wh∗ [yh∗ ]‖L2(0,T ;Rd).

Proposition 3.2. For each given Xh, the following estimate holds for the lsfem

solution yh∗ of the nonlinear problem (3) and the lsfem solution wh∗ [y
h
∗ ] of the

problem (23):

(26) ‖yh∗ − wh∗ [yh∗ ]‖X ≤
C‖(w∗[yh∗ ])′′‖L2(0,T ;Rd)

1− C̃ supz∈B ‖DF (z)‖op
h2,

where C > 0 denotes a universal constant independent of h, and C̃ denotes the
embedding constant between L2(0, T ;Rd) and X.

We present next a few lemmas that will be used in the proof of the above Propo-
sition.

Lemma 3.2. Let Xh be a subspace of X spanned by piecewise linear basis functions.
Given any f ∈ X, denote by Ihf the interpolant of f in Xh. Then, there exists
a positive constant C independent of h such that the following inequalities hold for
all f in the subspace H2(0, T ;Rd) ⊂ X:

‖f − Ihf‖L2(0,T ;Rd) ≤ Ch2‖f ′′‖L2(0,T ;Rd),(27a)

‖f ′ − (Ihf)′‖L2(0,T ;Rd) ≤ Ch‖f ′′‖L2(0,T ;Rd),(27b)

‖f −Πhf‖X ≤ Ch‖f ′′‖L2(0,T ;Rd).(27c)

The first two inequalities above are classical; see e.g., [25, Section 2.5] for a proof.
The estimate (27c) follows from (27b) by noting that

(28) ‖f −Πhf‖X ≤ ‖f − Ihf‖X = ‖f ′ − (Ihf)′‖L2(0,T ;Rd).

The first inequality in (28) holds because for any f ∈ X, its projection Πhf mini-
mizes the residual error ‖f−vh‖X among all vh ∈ Xh. Note also that since t = 0 is
an interpolation point of the piecewise linear finite element subspace Xh, it holds
that f(0)− Ihf(0) = 0. The second equality in (28) follows.

Lemma 3.3. Let yh∗ be the lsfem solution of the nonlinear problem (3) as specified
in Theorem 3.1. Let w∗[y

h
∗ ] be the solution of the auxiliary problem (23). We define

(29) Γ(t; vh) =

∫ t

0

DF (yh∗ (s))vh(s) ds, t ∈ [0, T ], vh ∈ Xh.

Then, the following identity holds

(30) 〈yh∗ − w∗[yh∗ ], vh − Γ( · ; vh)〉X = 0, ∀ vh ∈ Xh.

Proof. The equality (30) is just a reformulation of the first-order necessary condition
for yh∗ to be a solution of the minimization problem (6). Indeed, note that this latter
condition is given by
(31)∫ T

0

〈(yh∗ )′ − F (yh∗ )− f, (vh)′ −DF (yh∗ )vh〉 dt+ 〈yh∗ (0)− g, vh(0)〉 = 0, ∀ vh ∈ Xh,

see (88) in Appendix A. Note also that

w∗[y
h
∗ ] = g +

∫ t

0

F (yh∗ (s)) + f(s) ds.

Then, (30) follows from (31) by simply noting that (w∗[y
h
∗ ])′(t) = F (yh∗ (t)) + f(t),

Γ′(t; vh) = DF (yh∗ (t))vh(t), w∗[y
h
∗ ](0) = g, and Γ(0; vh) = 0. �
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The above identity (30) serves as the starting point of our estimates for the term
yh∗ − wh∗ [yh∗ ]. For this purpose, we split Γ defined by (29) as

(32) Γ(t; vh) = ΠhΓ(t; vh) + Π⊥h Γ(t; vh),

where Π⊥h = IdX −Πh.
To simplify the notations, we also denote

(33) γ = yh∗ − w∗[yh∗ ].

Using (32) and (33) in (30), we obtain
(34)
〈γ, vh −ΠhΓ( · ; vh)〉X = 〈γ,Π⊥h Γ( · ; vh)〉X = 〈Π⊥h γ,Π⊥h Γ( · ; vh)〉X , ∀ vh ∈ Xh.

The estimation of the RHS in the above identity will be considered in Lemma 3.4;
and the left-hand-side (LHS) will be considered in Lemma 3.5.

Lemma 3.4. Let Γ and γ be defined in (29) and (33), respectively. Let h be as
specified in Theorem 3.1. Then, there exists a constant C > 0 independent of h,
such that for any h ∈ (0, h), it holds that

(35) |〈Π⊥h γ,Π⊥h Γ( · ; vh)〉X | ≤ C‖(w∗[yh∗ ])′′‖L2(0,T ;Rd) ‖vh‖Xh2, ∀ vh ∈ Xh.

Proof. The result follows essentially from the estimate (27c) in Lemma 3.2. First
note that since γ = yh∗ − w∗[yh∗ ] and yh∗ ∈ Xh, we have Π⊥h γ = Π⊥h (yh∗ − w∗[yh∗ ]) =
−Π⊥hw∗[y

h
∗ ]. This together with (27c) implies that

(36) ‖Π⊥h γ‖X ≤ Ch‖(w∗[yh∗ ])′′‖L2(0,T ;Rd).

Again by (27c), we have also

(37) ‖Π⊥h Γ( · ; vh)‖X ≤ Ch‖Γ′′( · ; vh)‖L2(0,T ;Rd).

It remains to estimate ‖Γ′′( · ; vh)‖L2(0,T ;Rd).

Since Γ′(t; vh) = DF (yh∗ (t))vh(t), we get for almost every t in [0, T ] that

Γ′′(t; vh) = [D2F (yh∗ (t))(yh∗ (t))′]vh(t) + DF (yh∗ (t))(vh(t))′.

Then,
(38)

‖Γ′′( · ; vh)‖2L2(0,T ;Rd) =

∫ T

0

∥∥[D2F (yh∗ (t))(yh∗ (t))′]vh(t) + DF (yh∗ (t))(vh(t))′
∥∥2 dt.

Note that

(39)

∫ T

0

∥∥[D2F (yh∗ (t))(yh∗ (t))′]vh(t)
∥∥2 dt

≤
∫ T

0

‖D2F (yh∗ (t))(yh∗ (t))′‖2op‖vh(t)‖2 dt

≤
(

max
t∈[0,T ]

‖vh(t)‖2
)∫ T

0

‖D2F (yh∗ (t))(yh∗ (t))′‖2op dt,

where ‖ · ‖op is the operator norm of a matrix (cf. Table 1). To proceed further,
note that for any z ∈ Rd, the Hessian D2F (z) is a bounded linear map from Rd into
L(Rd,Rd). We denote by

∣∣∣∣∣∣D2F (z)
∣∣∣∣∣∣ the operator norm of D2F (z). Namely,

(40)
∣∣∣∣∣∣D2F (z)

∣∣∣∣∣∣ = sup
w∈Rd,‖w‖=1

‖D2F (z)w‖op.
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Since F is assumed to be C3,
∣∣∣∣∣∣D2F (z)

∣∣∣∣∣∣ is bounded for all z on any bounded set

of Rd. Let B be the subset in Rd defined by (14). We get then

(41)

∫ T

0

‖D2F (yh∗ (t))(yh∗ (t))′‖2op dt ≤ sup
z∈B

∣∣∣∣∣∣D2F (z)
∣∣∣∣∣∣2 ∫ T

0

‖(yh∗ (t))′‖2 dt

≤ sup
z∈B

∣∣∣∣∣∣D2F (z)
∣∣∣∣∣∣2‖yh∗‖2X

≤ sup
z∈B

∣∣∣∣∣∣D2F (z)
∣∣∣∣∣∣2(r + ‖y∗‖X)2,

where the last inequality follows since yh∗ ∈ B(y∗, r) for all h ∈ (0, h); cf. Assumption
(A2). Using (41) in (39) and noticing that maxt∈[0,T ] ‖vh(t)‖ ≤ C‖vh‖X (cf. (9)),
we get
(42)∫ T

0

∥∥[D2F (yh∗ (t))(yh∗ (t))′]vh(t)
∥∥2 dt ≤

(
C sup
z∈B

∣∣∣∣∣∣D2F (z)
∣∣∣∣∣∣(r + ‖y∗‖X)‖vh‖X

)2
.

Note also that

(43)

∫ T

0

∥∥DF (yh∗ (t))(vh(t))′
∥∥2 dt ≤

∫ T

0

‖DF (yh∗ (t))‖2op‖(vh(t))′‖2 dt

≤ sup
z∈B
‖DF (z)‖2op‖vh‖2X .

By using (42) and (43), we get from (38) that

(44) ‖Γ′′( · ; vh)‖L2(0,T ;Rd) ≤ C‖vh‖X ,

where the constant C > 0 depends on supz∈B ‖DF (z)‖op, supz∈B
∣∣∣∣∣∣D2F (z)

∣∣∣∣∣∣, ‖y∗‖X
and the embedding constant C, but is independent of h. The desired estimate (35)
follows now from (36), (37) and (44). �

The term 〈γ, vh − ΠhΓ( · ; vh)〉X on the LHS of Eq. (34) can be handled using
the following lemma.

Lemma 3.5. Let C̃ > 0 be the embedding constant between L2(0, T ;Rd) and X. If

(45) C̃ sup
z∈B
‖DF (z)‖op < 1,

then there exists a unique v̂h ∈ Xh satisfying

(46) v̂h −ΠhΓ( · ; v̂h) = yh∗ − wh∗ [yh∗ ].

Moreover, it holds that

(47) ‖v̂h‖X ≤
1

1− C̃ supz∈B ‖DF (z)‖op
‖yh∗ − wh∗ [yh∗ ]‖X .

Proof. Note that the map Ψ: vh → ΠhΓ( · ; vh) is a bounded linear map from Xh

onto itself. To guarantee the existence of a unique v̂h that satisfies (46), we only
need to show that IdXh −Ψ is invertible. By the definition of Γ in (29), we have

‖Ψ(vh)‖X = ‖ΠhΓ( · ; vh)‖X ≤ max
t∈[0,T ]

‖DF (yh∗ (t))‖op‖vh‖L2(0,T ;Rd)

≤ C̃ sup
z∈B
‖DF (z)‖op‖vh‖X , ∀ vh ∈ Xh.
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We get then

(48) ‖vh −Ψ(vh)‖X ≥ (1− C̃ sup
z∈B
‖DF (z)‖op)‖vh‖X , ∀ vh ∈ Xh.

Since C̃ supz∈B ‖DF (z)‖op < 1 by our assumption, it follows that the operator

norm of IdXh −Ψ is bounded below by 1− C̃ supz∈B ‖DF (z)‖op. It is thus indeed
invertible. The estimate (47) follows directly from (46) and (48). �

We are now in position to prove Proposition 3.2.

Proof of Proposition 3.2. With v̂h chosen so that (46) holds and recall the definition
of γ given by (33), we get

(49) 〈γ, v̂h −ΠhΓ( · ; v̂h)〉X = 〈yh∗ − w∗[yh∗ ], yh∗ − wh∗ [yh∗ ]〉X .
By rewriting yh∗ − w∗[y

h
∗ ] as yh∗ − w∗[y

h
∗ ] =

(
yh∗ − wh∗ [y

h
∗ ]
)

+
(
wh∗ [y

h
∗ ] − w∗[y

h
∗ ]
)
,

and recalling from (24) that wh∗ [y
h
∗ ]− w∗[yh∗ ] = −Π⊥hw∗[y

h
∗ ] lives in the orthogonal

complement of Xh, we obtain

〈yh∗ − w∗[yh∗ ], yh∗ − wh∗ [yh∗ ]〉X = 〈yh∗ − wh∗ [yh∗ ], yh∗ − wh∗ [yh∗ ]〉X = ‖yh∗ − wh∗ [yh∗ ]‖2X .
Using this identity in (49), we get

(50) 〈γ, v̂h −ΠhΓ( · ; v̂h)〉X = ‖yh∗ − wh∗ [yh∗ ]‖2X .
Note also that by taking vh = v̂h in (34), we have

(51) 〈γ, v̂h −ΠhΓ( · ; v̂h)〉X = 〈Π⊥h γ,Π⊥h Γ( · ; v̂h)〉X .
Now, it follows from (50), (51), and (35) that

(52) ‖yh∗ − wh∗ [yh∗ ]‖2X ≤ C‖(w∗[yh∗ ])′′‖L2(0,T ;Rd) ‖v̂h‖Xh2.
Recall also from Lemma 3.5 that

(53) ‖v̂h‖X ≤
1

1− C̃ supz∈B ‖DF (z)‖op
‖yh∗ − wh∗ [yh∗ ]‖X .

The desired estimate (26) follows from (52) and (53). �

In the proof of the main theorem given below, we require an upper bound of the
term ‖(w∗[yh∗ ])′′‖L2(0,T ;Rd) appearing on the RHS of (26). This bound should be

furthermore independent of the lsfem solution yh∗ . We derive now such a bound.
For this purpose, we make use of the solution to the IVP

(54)
w′ = F (y∗(t)) + f(t), t ∈ (0, T ],

w(0) = g.

Lemma 3.6. Let r, h, and B be as specified in Assumption (A2). Let w∗[y∗] be
the solution of (54). Then, for each h ∈ (0, h), the solution w∗[y

h
∗ ] of the problem

(23) can be estimated as:

(55) ‖(w∗[yh∗ ])′′‖L2(0,T ;Rd) ≤ ‖(w∗[y∗])′′‖L2(0,T ;Rd) + sup
z∈B
‖DF (z)‖op

(
r+ 2‖y∗‖X

)
.

Proof. Note that by using the triangle inequality,

(56) ‖(w∗[yh∗ ])′′‖L2(0,T ;Rd) ≤ ‖(w∗[yh∗ ]−w∗[y∗])′′‖L2(0,T ;Rd)+‖(w∗[y∗])′′‖L2(0,T ;Rd),

we only need to estimate the term ‖(w∗[yh∗ ]−w∗[y∗])′′‖L2(0,T ;Rd). Since w∗[y
h
∗ ] and

w∗[y∗] are respectively the solutions to the IVPs (23) and (54), we have

(57) (w∗[y
h
∗ ])′ − (w∗[y∗])

′ = F (yh∗ )− F (y∗).
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Then,

(58) (w∗[y
h
∗ ]− w∗[y∗])′′ = DF (yh∗ )(yh∗ )′ −DF (y∗)(y∗)

′,

which leads to

(59)

‖(w∗[yh∗ ]− w∗[y∗])′′‖L2(0,T ;Rd)

= ‖DF (yh∗ )(yh∗ )′ −DF (y∗)(y∗)
′‖L2(0,T ;Rd)

≤ ‖DF (yh∗ )(yh∗ − y∗)′‖L2(0,T ;Rd) + ‖(DF (yh∗ )−DF (y∗))(y∗)
′‖L2(0,T ;Rd)

≤ sup
z∈B
‖DF (z)‖op

(
‖(yh∗ − y∗)′‖L2(0,T ;Rd) + 2‖(y∗)′‖L2(0,T ;Rd)

)
≤ sup
z∈B
‖DF (z)‖op

(
‖yh∗ − y∗‖X + 2‖y∗‖X

)
≤ sup
z∈B
‖DF (z)‖op

(
r + 2‖y∗‖X

)
.

In deriving (59), we have used the facts that ‖yh∗ − y∗‖X < r since yh∗ ∈ B(y∗, r)
and that B contains both y∗(t) and yh∗ (t) for all t ∈ [0, T ]; see (14) and (15). The
desired result (55) follows from (59) and (56). �

We are now in position to prove the main theorem of this section.

Proof of Theorem 3.1. First note that by the triangle inequality, we get
(60)
‖y∗ − yh∗‖L2(0,T ;Rd) ≤ ‖y∗ − w∗[yh∗ ]‖L2(0,T ;Rd)

+ ‖w∗[yh∗ ]− wh∗ [yh∗ ]‖L2(0,T ;Rd) + ‖wh∗ [yh∗ ]− yh∗‖L2(0,T ;Rd).

To estimate the first term ‖y∗−w∗[yh∗ ]‖L2(0,T ;Rd) on the RHS of (60), we integrate
Eq. (3) and Eq. (23) to obtain
(61)

‖y∗(t)− w∗[yh∗ ](t)‖ ≤
∫ t

0

‖F (y∗(s))− F (yh∗ (s))‖ ds

≤ Lip(F |B)

∫ t

0

‖y∗(s)− yh∗ (s)‖ ds

≤ Lip(F |B)
√
t

(∫ t

0

‖y∗(s)− yh∗ (s)‖2 ds

)1/2

, t ∈ [0, T ],

where we applied Hölder’s inequality in the last step above. We get in turn that

(62) ‖y∗ − w∗[yh∗ ]‖L2(0,T ;Rd) ≤
Lip(F |B)T√

2
‖y∗ − yh∗‖L2(0,T ;Rd).

The second term ‖w∗[yh∗ ]−wh∗ [yh∗ ]‖L2(0,T ;Rd) in (60) can be estimated by using (25),

and the last term ‖wh∗ [yh∗ ]− yh∗‖L2(0,T ;Rd) can be estimated by using (26) together
with

(63) ‖wh∗ [yh∗ ]− yh∗‖L2(0,T ;Rd) ≤ C̃‖wh∗ [yh∗ ]− yh∗‖X ,

where C̃ denotes again the embedding constant between L2(0, T ;Rd) and X.
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Gathering the above estimates for the three terms on the RHS of (60), we get

(64)

‖y∗ − yh∗‖L2(0,T ;Rd) ≤
Lip(F |B)T√

2
‖y∗ − yh∗‖L2(0,T ;Rd)

+ C
(

1 +
1

1− C̃ supz∈B ‖DF (z)‖op

)
‖(w∗[yh∗ ])′′‖L2(0,T ;Rd)h

2,

where we have absorbed the factor C̃ on the RHS of (63) into the constant C when
applying the estimate (26).

In the above inequality, by using the estimate (55) for ‖(w∗[yh∗ ])′′‖L2(0,T ;Rd), we
get after rearranging terms that

(65)
(

1− Lip(F |B)T√
2

)
‖y∗ − yh∗‖L2(0,T ;Rd) ≤ C̃h2,

where

(66)

C̃ := C
(

1 +
1

1− C̃ supz∈B ‖DF (z)‖op

)(
‖(w∗[y∗])′′‖L2(0,T ;Rd)

+ sup
z∈B
‖DF (z)‖op

(
r + 2‖y∗‖X

))
,

with w∗[y∗] denoting the solution of (54). Since it is assumed that Lip(F |B)T√
2

<

1 (see (16)), the desired result (18) follows by taking C therein to be C̃/(1 −
Lip(F |B)T/

√
2). �

4. Numerics

In this section we focus on numerical aspects of lsfem by discussing algorithmic
details and confirming the analytical insight gained in previous Section 2 and 3
through numerical experiments. We discuss modifications such as adaptive time
stepping and constrained systems, i.e., differential algebraic equations. Our pro-
posed method is summarized in Algorithm 1.

Algorithm 1 (lsfem for IVPs)

1: function yh∗ = lsfem(G( · , · ), g, [t0, T ], Xh)
2: construct finite element basis for yh( · ; · ) and (yh)′( · ; · ) of Xh

3: choose discretization t of time interval
4: compute

x∗ ∈ arg min
x

J (x) = 1
2 ||(y

h)′(t;x)−G(t, yh(t;x))||2 + 1
2 ||y

h(0;x)− g||25: set yh∗ = yh( · ;x∗)
6: end function

A Matlab implementation of Algorithm 1 is available at github.com/matthiaschung/lsfem
and is intended for reproducibility and to develop an understanding of the perfor-
mance of lsfem method for ODEs. As inputs lsfem requires the RHS of the first
order ODE G, the interval of interest [t0, T ], and the initial condition y(t0) = g,

(67)
y′ = G(t, y), t ∈ (t0, T ],

y(t0) = g.

Additionally, one may select a desired finite element space Xh. Algorithm 1 return
the function y∗h = yh( · ;x∗) determined by the optimized finite element coefficients
x∗ with respect to the corresponding finite element basis.

https://github.com/matthiaschung/lsfem
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Various numerical choices need to be made in Algorithm 1. First, the approxi-
mation quality of our method depends greatly on the choice of the finite element
space Xh and its corresponding control points τ in line 2. Section 2 and 3 provides
convergence results for piecewise linear basis functions, however, we may choose
higher order basis functions. Common choices for the basis function include piece-
wise polynomials and polynomial splines [11, 31]. Other options are exponential
splines, which may better capture the exponential behavior manifested by certain
differential equations; see [29]. An interesting alternative are Hermite splines [26],
which are able to take advantage of derivative information provided naturally by
the differential equation and reducing computational costs. Note that, the choice
of the finite element basis may depend on the imposed smoothness of the under-
lying dynamical system, i.e., G. Equidistant control points may be selected if no
further information on y are available, however, one may also select control points
if knowledge on y (or its derivatives) are available.

To numerically evaluate and minimize J of equation (6), quadrature is required to
approximate the L2-norm. Hence, with respect to the quadrature rule we discretize
the interval [t0, T ] with t = [t0, t1, . . . , tn−1, T ]>, see line 3. Choosing a quadrature
rule (such as Gauss-Legendre and Gauss-Lobatto, [16]) which is consistent with the
finite element space Xh may provide computational advantages. The added benefit
of using such a quadrature rule is that the resulting `2-norm approximation J has
the potential to be exact in certain polynomial settings.

The main computational effort lies in line 4. Line 4 defines a common (regu-
larized) nonlinear least squares problem. Notice that, if G is sufficiently smooth,
gradient and Hessian based optimization methods can be utilized.

Hence, gradient based methods and also Newton type methods are natural
choices (assuming sufficient smoothness of the system). However, ∇xJ and ∇2

xJ
need to be readily available or be obtained by algorithmic differentiation tech-
niques [17]. It is worth mentioning, that lsfem seeks for a global minimizer y∗h
of (6). However, for non-convex problems the proposed optimization methods may
not ensure convergence to the global minimizer. Strategies to prevent local mini-
mizer are required, e.g., multi-start or global optimization methods [23].

Rate of convergence for higher order finite elements. To illustrate and empirically
valid the convergence rates discussed in Section 2 and 3, we first consider the linear
initial value problem y′ = −y, with t ∈ [0, 1] and y(0) = 1. We use a B-spline
bases for Xh of degree k = 1, . . . , 5 with varying equidistant discretization of the
finite elements, i.e., h = 1/N with N = 1, . . . , 20 to compute the finite element
approximation yh∗ . Figure 2 depicts the errors ‖yh∗ − y‖ with respect to the varying
mesh sizes h in a log-log space. The slopes of each graph reveal the power of the
expected convergence rates of our method. For instance the slope using linear B-
splines is 1.9972 confirming the quadratic convergence rate (Theorem 3.1). The
other rates are 3.0066 (for k = 2), 3.9204 (for k = 3), 4.9456 (for k = 4) and 5.9409
(for k = 5), respectively. These results lead us to conjecture that the optimal
lsfem error bounds scale like O(hk+1) for finite element bases of degree k. By
inspecting the proofs in Section 3, we expect many of the ingredients presented there
to be extended naturally, although some aspects such as higher-order analogues of
Lemma 3.6 may require additional efforts. We plan to address such an extension
in a future work.
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Figure 2. Illustration of convergence rates of lsfem methods for
B-spline bases of degree k (k = 1, . . . , 5) in comparison to the mesh
sizes h for the ODE y′ = −y with t ∈ [0, 1] and y(0) = 1. The
numerically observed convergence rates are 1.9972 (for k = 1),
3.0066 (for k = 2), 3.9204 (for k = 3), 4.9456 (for k = 4) and
5.9409 (for k = 5).

To confirm the results for nonlinear ODEs we consider the simple logistic growth
y′ = y(1 − y) with y(0) = 1/10 and t ∈ [0, 10]. We compare our lsfem method
with B-spline bases of degree 1, 2, and 3 (lsfem1, lsfem2, and lsfem3) to Runge-
Kutta 3 (rk3) and Runge-Kutta 4 (rk4), see Figure 3. The numerically observed
convergence rates for this logistic growth model are 2.001, 3.4928, and 4.0470 for
the lsfem methods and 2.9731, 3.9820 for the Runge-Kutta methods, respectively.
The observed rates for lsfem confirm again the obtained theoretical estimate for
degree k = 1 case and corroborate the conjectured optimal bound O(hk+1) for
higher-degree bases (with lsfem2 providing actually better rate than conjectured
for this particular example). One can also compare lsfem3 with rk4, since both
methods show a convergence rate close to the theoretical rate r = 4. Figure 3
reveals that the constant C in the associated error bound Ch4 is smaller in the case
of lsfem3 than that of rk4 for the considered example.

Linear ODEs. In case of linear ODEs the lsfem’s main computational burden of
solving the optimization problem in line 4 of Algorithm 1 simplifies to a linear least-
squares problem whose solution can be obtained e.g., by solving the associated linear
normal equations.

More precisely, let us consider the n dimensional initial value problem

(68) y′(t) = A(t)y(t) + b(t) and y(t0) = g and t ∈ (t0, T ].
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Figure 3. Illustration of convergence rates of lsfem utilizing B-
spline bases of degree 1, 2, and 3 in comparison to Runge-Kutta 3
and 4 for the logistic equation y′ = y(1− y), with y(0) = 1/10 and
t ∈ [0, 10]. The numerically observed convergence rates are 2.001,
3.4928, and 4.0470 for the lsfem methods and 2.9731, 3.9820 for
the Runge-Kutta methods, respectively.

Assuming we choose the same finite element basis for each state

(69) φ(t) = [φ1(t), φ2(t), ..., φm(t)]>,

then the function of the finite element space are given by yh(t, x) = (φ(t)> ⊗ In)x
with some coefficients

(70) x =
[
x11, . . . , x

n
1 , x

1
2, . . . , x

n
2 , . . . , x

1
m, . . . , x

n
m

]>
where ⊗ denotes the Kronecker product and In the identity matrix. The least-
squares problem now reads

(71) min
x

1
2

∫ T

t0

r(t, x)>r(t, x) dt+ 1
2

∥∥yh(t0, x)− g
∥∥2
2

with r(t, x) = Z(t)x− b(t), where Z(t) = φ′(t)> ⊗ In −A(t)(φ(t)> ⊗ In). With the
further abbreviations

(72) Q =

∫ T

t0

Z(t)>Z(t) dt, p =

∫ T

t0

Z(t)>b(t) dt, and R = φ(t0)> ⊗ In.

The lsfem solution of (68) is obtained by the normal equations

(73) (Q+R>R)x∗ = p+R>g,

and yh∗ (t) = (φ(t)> ⊗ In)(Q+R>R)−1(p+R>g), assuming Q+R>R is invertible.
Hence standard linear algebra libraries may be utilized to solve a linear system of
differential equations efficiently.
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Figure 4. Solution of Eq. (74) for three different values of Km and
with y(0) = 1. By decreasing Km the rapid change of dynamics of
y become more prominent around t = 1.

Adaptive discretization of the finite elements. So far we have not discussed how to
select control points τ of our finite element space Xh and assumed they are pre-
selected, e.g., equidistant. Alternatively, control points may be selected adaptively
by (for simplicity) repeated evaluation of line 4 with refined control points τ . Notice,
lsfem naturally provides error estimates through the residuals r = (yh)′(t;x∗) −
G(t, yh(t;x∗)). In its simplest form new control points τi’s may be introduced by
selecting discretization points tj ’s at locations with large residuals rj .

We illustrate this procedure by considering the model

(74) y′ = − y

Km + y
,

with y(0) = 1, t ∈ [0, 3]. The solution is implicitly given by y + Km ln y = 1 − t.
Equation (74) is a simplified model frequently appearing in the field of enzyme
kinetics, [32, 12]. Here Km > 0 refers to the Michaelis-Menten constant determining
the reaction rate. For small Km, e.g., Km = 0.005, stiff ODE (74) exhibits a decay
with a sharp “kink” around t = 1, see Figure 4, resulting in difficulties for numerical
ODE solvers to preserve non-negative concentrations. Adaptive refinement of this
particular area is crucial. We initialize lsfem with four equidistant control points
(order 3 and 8 Gauss Legendre points) and refine the control points τ of our finite
element basis until each residual element reaches an absolute tolerance of 10−4.
The error of lsfem with respect to the true solution and in comparison of standard
Matlab is depicted in Figure 5 while Figure 6 show the number of discretization
points vs. the location of these points. We observe that lsfem adaptively adds
control points around 1 and maintains an absolute error below 5 · 10−5 throughout
the time interval while requiring 47 control points.

In comparison, stiff ODE solvers such as ode15s, ode23s, ode23t, and ode23tb

also adaptively refine around t = 1 and the total time steps used are similar to
the number of control points for lsfem except ode15s, with the latter taking more
time steps than the other stiff solvers as shown in Figure 6. Note also that the
curve for ode23s almost overlaps with ode23tb in Figure 6 and is thus not visible.
In terms of errors, the lsfem performs better over the interval [0, 1] in which the
dynamics is “non-trival”, and the stiff solvers perform better over the interval [1, 3]
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Figure 5. Absolute error between various ODE methods and the
true solution for Eq. (74) with Km = 0.005 and y(0) = 1. Our
lsfem method is highlighted in black bold, other standard Matlab
ODE solvers in default settings are illustrated as labelled in Fig-
ure 6.

0 0.5 1 1.5 2 2.5 3

100

200

t

in
d
ex

o
f
co
n
tr
o
l
p
o
in
t

lsfem

ode45

ode23

ode113

ode15s

ode23s

ode23t

ode23tb

Figure 6. Time location of the corresponding control point for
lsfem (black bold) in comparison with time location of the dis-
cretization index of FDMs, for Eq. (74) with Km = 0.005 and
y(0) = 1. Notice that all methods, especially lsfem and all the
stiff FDM solvers, select small step sizes around t = 1 where the
kink in the true solution occurs (cf. Figure 4). At the same time,
the three non-stiff solvers ode45, ode23, and ode113 also require a
fine discretization beyond t = 1 even though the solution dynamics
is “quiescent” there (see again Figure 4). Note also that the curve
for ode23s almost overlaps with ode23tb. All Matlab ODE solvers
are in default settings with default error controls.
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in which the dynamics is “quiescent”; see Figure 4 and Figure 5. Overall, lsfem
performs similar to stiff FDM solvers, while maintaining a slightly lower L2-error.
Meanwhile, non-stiff ODE solvers such as ode23, ode45, and ode113 refine less
around t = 1 but need a significantly more number of discretization points beyond
t > 1 to maintain numerical accuracy.

5. Conclusion and discussion

In this work, we considered the least-squares finite element method (lsfem) for
systems of nonlinear ordinary differential equations and established under suitable
conditions an optimal error estimate for this method when piecewise linear ele-
ments are used (Theorem 3.1). In contrast to the “localization” nature of finite
difference methods, the lsfem aims to find an optimal approximate solution within
a given subspace that minimizes an objective function over the whole time inter-
val of integration. The lsfem can thus be less prone to the accumulation of local
discretization errors compared to finite difference methods.

As reviewed in Section 1, a key ingredient in our derivation of the optimal esti-
mate is a geometric (orthogonality) property derived from the first-order optimality
condition associated with the minimizers of the underlying optimization problems;
see Eq. (2). Numerical results presented in Section 4 not only support our main
theoretical result presented in Theorem 3.1, but also provide strong indication that
error bound of the form O(hk+1) will hold if higher-order spline basis elements of
degree k (k ≥ 2) were used. In Section 4, we also discussed details related to the
associated algorithmic aspects (Algorithm 1) as well as suitable modifications for
adaptive mesh refinement to handle ODEs whose solutions may experience abrupt
local changes. It is also worth mentioning that residual neural networks appear to
be of such nature and we will dedicate future research towards such applications,
[19, 18].

Finally, we mention that the procedure presented in Algorithm 1 can be easily
adapted to handle a broad class of differential algebraic equations (DAEs) [2, 22, 24]
as well. One just needs to add the corresponding algebraic equations as constraints
to the associated optimization problems. The numerical setup can also be easily
extended to handle ODE boundary value problems and delay differential equations.
We plan to address these extensions in future communications.
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Appendix A. Proof Theorem 2.1

We start by rewriting the respective first-order optimality condition associated
with the minimization problems (5) and (6) into an abstract form u+T ◦G(u) = 0
for (5) and uh+ΠhT ◦G(uh) = 0 for (6), where T is a bounded linear operator and
G is a smooth nonlinear operator defined below, and Πh is the orthogonal projection
onto Xh appearing in (11). These equations are in the same functional forms dealt
with in [15, Theorem 3.3, p.307]. Once this reformulation is done, we just need to
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check that all conditions required in [15, Theorem 3.3, p.307] are satisfied and that
the solutions for uh + ΠhT ◦ G(uh) = 0 guaranteed by [15, Theorem 3.3, p.307] are
indeed minimizers of (6). The reformulation is dealt with in Lemma A.1, and the
remaining steps are carried out afterwards.

As a preparation, we define the linear operator T to be the solution operator
associated with the special case of (3) in which F is identically zero. That is,
(75)

T : L2(0, T ;Rd)× Rd → X, T (f, g) = `, with `(t) = g +

∫ t

0

f(s) ds, ∀ t ∈ [0, T ].

Note that T thus defined is obviously a bounded linear operator. It follows directly
from the Riesz representation theorem (see e.g., [13, Appendix D] and [30, Section
16.2]), that ` = T (f, g) defined above is the unique element in X satisfying

(76) 〈`, v〉X =

∫ T

0

〈f(t), v′(t)〉 dt+ 〈g, v(0)〉, ∀ v ∈ X.

Note also that this identity is the first-order necessary condition for ` to be a
solution of (5) when F is absent; cf. (82) below.

Assume that F is C1 smooth. For any (f, g) in L2(0, T ;Rd)×Rd, we define now
a nonlinear operator G as follows:

(77) G : X → L2(0, T ;Rd)× Rd, G(u) = (f̃(u), g̃(u)),

where for each u in X, (f̃(u), g̃(u)) is defined by
(78)

[f̃(u)](t) = −F (u(t))− f(t)−
∫ T

t

[DF (u(s))]>
(
u′ − F (u)− f(s)

)
ds, ∀ t ∈ [0, T ],

g̃(u) = −g −
∫ T

0

[DF (u(s))]>
(
u′ − F (u)− f(s)

)
ds.

To see that (f̃(u), g̃(u)) thus defined is indeed an element in L2(0, T ;Rd) × Rd,
note that since u ∈ X and F is assumed to be C1, we have w = u′ − F (u) −
f ∈ L2(0, T ;Rd) and DF (u) is continuous on [0, T ]. One can then show that∫ T
0

(DF (u))>w ds is finite and the function t 7→ ψ(t) :=
∫ T
t

(DF (u))>w ds is in

L2(0, T ;Rd). As a result, f̃ maps X into L2(0, T ;Rd) and g̃ maps X into Rd.
The rationale behind the definition of G will become apparent in the proof of the

following lemma.

Lemma A.1. Consider the IVP (3). Assume that f ∈ L2(0, T ;Rd) and F : Rd →
Rd is C1. Let T and G be defined by (75) and (77), respectively. Then, any strong
solution of (3) also satisfies the following nonlinear problem

(79) u+ T ◦ G(u) = 0.

Similarly, denoting by Πh : X → Xh the orthogonal projection onto Xh, any solu-
tion of (6) also satisfies

(80) uh + ΠhT ◦ G(uh) = 0.

Proof. We organize the proof into two steps. Step 1 deals with the original problem
(3); and Step 2 deals with its lsfem formulation.
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Step 1. Note that since y∗ solves (3), it is a minimizer of the objective function
J given by (4). As a result, y∗ satisfies the following first-order necessary condition:

(81)
d

dτ
J(y∗ + τv;F, f, g)

∣∣
τ=0

= 0, ∀ v ∈ X.

By using (4) in (81), we obtain the following integral equation to be satisfied by y∗:

(82)

∫ T

0

〈u′ − F (u)− f, v′ −DF (u)v〉dt+ 〈u(0)− g, v(0)〉 = 0, ∀ v ∈ X,

where DF denotes the Jacobian matrix of F .
In order to rewrite (82) into the form u+ T ◦ G(u) = 0, let us introduce:

(83) Q(u, v; f, g) =

∫ T

0

〈u′−F (u)−f,DF (u)v〉dt+
∫ T

0

〈F (u)+f, v′〉dt+ 〈g, v(0)〉,

which is defined for any u, v in X, f in L2(0, T ;Rd) and g in Rd. Note that, with
the above definition of Q and the definition of the inner product on X given by (7),
(82) can be rewritten as

(84) 〈u, v〉X −Q(u, v; f, g) = 0, ∀ v ∈ X.

To proceed further, we note that Q(u, v; f, g) defined in (83) satisfies

(85) Q(u, v; f, g) +

∫ T

0

〈f̃(u), v′〉dt+ 〈g̃(u), v(0)〉 = 0, ∀ u, v ∈ X,

where (f̃(u), g̃(u)) is an element in L2(0, T ;Rd)× Rd given by (78).
The above identity (85) can be derived from integrating by parts the first term

in the definition of Q(u, v; f, g) given in (83). Indeed, denoting w = u′ − F (u) −
f and by noting that 〈u′ − F (u) − f,DF (u)v〉 = 〈w,DF (u)v〉 = (DF (u)v)>w =
v>(DF (u))>w, we have
(86)∫ T

0

〈w,DF (u)v〉dt =

∫ T

0

v>(DF (u))>w dt

= −
∫ T

0

v> d
(∫ T

t

(DF (u))>w ds
)

=
〈∫ T

0

(DF (u))>w ds, v(0)
〉

+

∫ T

0

〈∫ T

t

(DF (u))>w ds, v′
〉

dt,

where we used integration by parts to obtain the last equality above. Now, replacing
the first term on the RHS of (83) with the RHS of (86) and using the definition of

(f̃(u), g̃(u)) given by (78), we obtain (85).
Thanks to the identity (85), an element u in X satisfies (84) if and only if

(87) 〈u, v〉X =

∫ T

0

〈−f̃(u), v′〉dt+ 〈−g̃(u), v(0)〉, ∀ v ∈ X.

Recalling the equivalent characterization given in (76) of the linear operator T
defined by (75), we get from (87) that

u = T (−f̃(u),−g̃(u)), or equivalently, u+ T (f̃(u), g̃(u)) = 0.
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At the same time, by the definition of G in (77), we have (f̃(u), g̃(u)) = G(u). Using

this relation in u+ T (f̃(u), g̃(u)) = 0, we obtain the desired form u+ T ◦ G(u) = 0
for the first-order optimality condition (82).

Step 2. Now, we consider the lsfem problem (6) which aims to approximate
the variational formulation (5) of (3). Note that any solution yh∗ of (6), if exists,
satisfies the analogue of (82) with v therein restricted to Xh. That is
(88)∫ T

0

〈(yh∗ )′ − F (yh∗ )− f, (vh)′ −DF (yh∗ )vh〉dt+ 〈yh∗ (0)− g, vh(0)〉 = 0, ∀ vh ∈ Xh.

We can then follow the same derivation of (79) from (82) to obtain that yh∗ is a
solution of the following nonlinear problem defined on Xh:

(89) uh + T h ◦ G(uh) = 0, uh ∈ Xh,

where G is the same as defined in (77), and T h : L2(0, T ;Rd)×Rd → Xh is defined
by

(90)

T h(f, g) = uh if and only if

〈uh, vh〉X =

∫ T

0

〈f, (vh)′〉dt+ 〈g, vh(0)〉, ∀ vh ∈ Xh.

Comparing (89) with (80), it remains to show that

(91) T h = ΠhT .
To see this, for any (f, g) ∈ L2(0, T ;Rd)× Rd, we get from (76) and (90) that

〈T (f, g)− T h(f, g), v〉X = 0, ∀ v ∈ Xh.

Namely, T (f, g) − T h(f, g) belongs to the orthogonal complement of Xh; that is
T h = ΠhT . The proof is complete. �

Thanks to Lemma A.1, we have thus reformulated the first-order optimality
condition associated with each of the minimization problems (5) and (6) into the
desired form given by (79) and (80), respectively.

Note that (79) and (80) fit into the abstract formulation of [15, Theorem 3.3,
p.307] (see also [6, Theorem 8.1]). For a given nonsingular solution y∗ of (79), [15,
Theorem 3.3, p.307] delineates conditions to ensure the existence of a solution for
(80) for all sufficiently small h that converges to y∗.

2

A solution y∗ to (79) is called nonsingular if the linear operator IdX + T ◦
DG(y∗) : X → X is invertible with bounded inverse; namely,

(92) (IdX + T ◦DG(y∗))
−1 ∈ L(X,X),

where IdX denotes the identity map on X, and L(X,X) the set of all bounded
linear operators on X. As will be shown below that, for the problem at hand, the
condition (92) is ensured by the smallness assumption on the operator norm of the
Jacobian matrix DF (y∗(t)) for all t in [0, T ].

Proof of Theorem 2.1. From what precedes, to prove Theorem 2.1, it remains
to check that

2The formulation of [15, Theorem 3.3, p.307] concerns actually a parameterized family of (79)

in which the nonlinearity G depends on an additional scalar parameter λ. Since there is no such a
parameter in our setting, it can be viewed as a special case for which λ is taken to be a constant

here.
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(i) all the conditions required in [15, Theorem 3.3, p.307] are satisfied, ensuring
thus the existence of a solution yh∗ of (80) for all sufficiently small h; and
that

(ii) the solution yh∗ of the first-order optimality condition (80) obtained from
(i) is indeed a minimizer of (6).

We proceed in two steps below.

Step 1. Introducing the space Y := L2(0, T ;Rd) × Rd, the conditions required in
[15, Theorem 3.3, p.307] are:

(C1) y∗ is a nonsingular solution to (79) in the sense that (92) holds.
(C2) G : X → Y is C2 smooth, and D2G is bounded on all bounded subsets of

X.
(C3) There exists a subspace Z of Y , with continuous embedding, such that

DG(u) ∈ L(X,Z), ∀ u ∈ X.
(C4) limh→0 ‖(T − T h)(f, g)‖X = 0, ∀ (f, g) ∈ Y .
(C5) limh→0 ‖T − T h‖L(Z,X) = 0.

Verification of (C1). To guarantee (92), it suffices to show that

(93) ‖T ◦DG(y∗)‖L(X,X) < 1.

To this end, for any given v in X, let us denote w = T ◦ DG(y∗) v. By a direct
calculation using the definition of T and G given respectively in (75) and (77), we
get

w(t) = −
∫ t

0

DF (y∗(s))v(s) ds

−
∫ t

0

∫ T

s

[DF (y∗(τ))]>
(
v′(τ)−DF (y∗(τ))v(τ)

)
dτ ds

−
∫ T

0

[DF (y∗(s))]
>
(
v′(s)−DF (y∗(s))v(s)

)
ds, t ∈ [0, T ].

Introducing

(94) M := sup
s∈[0,T ]

‖DF (y∗(s))‖2op,

we obtain by a direct estimation based on the Hölder’s inequality that

(95)
〈w(0), w(0)〉 ≤ 2TM

(
‖v′‖2L2(0,T ;Rd) +M‖v‖2L2(0,T ;Rd)

)
≤ 2TM

(
1 + C̃2M

)
‖v‖2X ,

and that

(96)

∫ T

0

〈w′(t), w′(t)〉dt ≤M(2C̃2 + 4T 2 + 4T 2C̃2M)‖v‖2X .

Recalling that w = T ◦DG(y∗) v, we get from (95) and (96) that

(97) ‖T ◦DG(y∗) v‖2X ≤ 2M(2T 2 + T + C̃2 + T C̃2(1 + 2T )M)‖v‖2X .

Since T is fixed, we get ‖T ◦DG(y∗) v‖X < ‖v‖2X for all v in X when M satisfies

2M(2T 2 + T + C̃2 + T C̃2(1 + 2T )M) < 1.
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That is

(98)

M = sup
s∈[0,T ]

‖DF (y∗(s))‖2op

<
1

2T 2 + T + C̃2 +

√
(2T 2 + T + C̃2)2 + 2T C̃2(1 + 2T )

.

We have thus verified (93) when sups∈[0,T ] ‖DF (y∗(s))‖op is small such that (98)

holds. Consequently, Condition (C1) holds under this smallness assumption on
DF .

Verification of (C2). This condition can be checked by a long but straightforward
calculation using the explicit form of G given by (77)–(78) and the assumption that
F is C3 smooth.

Verification of (C3). We take Z := H1(0, T ;Rd)×Rd. Note that Z is compactly
embedded into Y . Condition (C3) follows then from a direct but lengthy calcula-
tion based again on the explicit form of G given by (77)–(78). It suffices to assume
F to be C2 smooth to check this condition.

Verification of (C4). Recall from (91) that T h = ΠhT . Condition (C4) follows
immediately because ‖(IdX − Πh)u‖X converges to zero as h goes to zero for all
u ∈ X as a property of the finite element subspaces Xh.

Verification of (C5). As pointed out in [15, Theorem 3.3, p.307], Condition (C5)
is a consequence of Condition (C4) (and the uniform boundedness theorem) when
Z is compactly embedded into Y , which is the case here for Z = H1(0, T ;Rd)×Rd.
See also [6, Lemma 8.7].

All the conditions in [15, Theorem 3.3, p.307] are thus verified. It follows then
from this theorem that for any given neighborhood O of y∗, the problem (6) has a
unique solution yh∗ in O for all sufficiently small h; and the convergence result (12)
holds.

Step 2. It remains to show that yh∗ obtained from Step 1 above is indeed a mini-
mizer of (6). For this purpose, it suffices to show that

(99)
d2

dτ2
J(yh∗ + τv;F, f, g)|τ=0 > 0, ∀ v ∈ Xh\{0}.

Note that

d2

dτ2
J(yh∗ + τv;F, f, g)

∣∣
τ=0

=

∫ T

0

〈−D2F (yh∗ (t))(v(t), v(t)), (yh∗ )′(t)− F (yh∗ (t))− f(t)〉dt

+

∫ T

0

〈v′(t)−DF (yh∗ (t))v(t), v′(t)−DF (yh∗ (t))v(t)〉dt+ 〈v(0), v(0)〉,

where D2F (yh∗ (t)) denotes the Hessian of F evaluated at yh∗ (t), which is a bilinear
function mapping Rd × Rd to Rd.
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A straightforward estimation leads then to

(100)

d2

dτ2
J(yh∗ + τv;F, f, g)

∣∣
τ=0
≥ ‖v‖2X

(
1− 2C̃ sup

t∈[0,T ]

‖DF (yh∗ (t))‖op

− CC̃
(

sup
t∈[0,T ]

∣∣∣∣∣∣D2F (yh∗ (t))
∣∣∣∣∣∣)‖(yh∗ )′ − F (yh∗ )− f‖L2(0,T ;Rd)

)
,

where
∣∣∣∣∣∣D2F (y∗(t))

∣∣∣∣∣∣ denotes the operator norm of the bilinear map D2F (y∗(t)), C

and C̃ are the embedding constants defined at the end of Section 2.1.
Since it has been shown in Step 1 that yh∗ converges in X-norm to y∗ (cf. (12))

and X is continuously embedded into C([0, T ];Rd), we get

(101) lim
h→0

max
t∈[0,T ]

‖y∗(t)− yh∗ (t)‖ = 0.

It follows that

(102) lim
h→0

sup
t∈[0,T ]

‖DF (yh∗ (t))‖op = sup
t∈[0,T ]

‖DF (y∗(t))‖op.

The convergence results (12) and (101) together with the smoothness of F also
imply that

(103) lim
h→0
‖(yh∗ )′ − F (yh∗ )− f‖L2(0,T ;Rd) = ‖(y∗)′ − F (y∗)− f‖L2(0,T ;Rd) = 0,

where the second equality holds since y∗ is a strong solution of the IVP (3).
Thanks also to (101), we know that supt∈[0,T ]

∣∣∣∣∣∣D2F (yh∗ (t))
∣∣∣∣∣∣ is uniformly bounded

with respect to h. This uniform boundedness together with (102) and (103) implies
that for all nonzero v in Xh, the right-hand side of (100) is positive when h is
sufficiently small provided that

(104) sup
t∈[0,T ]

‖DF (y∗(t))‖op <
1

2C̃
.

We have thus verified (99) under the condition (104) by taking h sufficiently small.
The proof is now complete. �

Appendix B. Proofs of Lemma 3.1

Note that (21) always has a solution since Xh is finite dimensional and the
objective function is bounded below by zero. The fact ỹh∗ = Πhỹ∗ is the unique
solution to (21) follows directly by inspecting the associated first-order optimality
condition. This condition can be obtained from (82) by setting F to zero and
restricting v to Xh, and it reads as follows

(105)

∫ T

0

〈(ỹh∗ )′ − f, (vh)′〉dt+ 〈ỹh∗ (0)− g, vh(0)〉 = 0, ∀ vh ∈ Xh.

Using the expression of the solution ỹ∗ given by (20) and the definition of the inner
product 〈·, ·〉X given by (7), we can rewrite the above condition as

(106) 〈ỹh∗ − ỹ∗, vh〉X = 0, ∀ vh ∈ Xh.

Hence, ỹh∗ − ỹ∗ lives in the orthogonal complement of Xh. We get thus, ỹh∗ = Πhỹ∗.
For the error estimate (22), see e.g., [25, Section 2.7.3] for a proof that relies on

the classical Aubin-Nitsche trick. The proof presented therein deals with the special
case g = 0 and for state space dimension d = 1. For d > 1, since the vector field
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is independent of the unknown variable, we can carry out the estimate component
by component, which reduces the problem to the case d = 1. The general case of
g 6= 0 can be handled by considering z = ỹ − g. �
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