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Abstract. The aim of this paper is to analyze a mixed formulation for the two dimensional
Stokes eigenvalue problem where the unknowns are the stress and the velocity, whereas the pressure
can be recovered with a simple postprocess of the stress. The stress tensor is written in terms of
the vorticity of the fluid, leading to an alternative mixed formulation that incorporates this physical
feature. We propose a mixed numerical method where the stress is approximated with suitable
Nédelec finite elements, whereas the velocity is approximated with piecewise polynomials of degree
k ≥ 0. With the aid of the compact operators theory we derive convergence of the method and
spectral correctness. Moreover, we propose a reliable and efficient a posteriori error estimator for
our spectral problem. We report numerical tests in different domains, computing the spectrum and
convergence orders, together with a computational analysis for the proposed estimator. In addition,
we use the corresponding error estimator to drive an adaptive scheme, and we report the results of
a numerical test, that allow us to assess the performance of this approach.
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1. Introduction. The Stokes problem is a system of equations that describes
the motion of a certain fluid. For an open domain Ω ⊂ R2 with Lipschitz boundary
∂Ω, we are interested in the Stokes eigenvalue problem

(1.1)

 −µ∆u+∇p = λu in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,

where µ > 0 is the kinematic viscosity, u is the velocity and p is the pressure.
In the nowadays there are a number of papers where different formulations, to-

gether with numerical methods, have been proposed in order to solve (1.1) [5, 21,
22, 26, 28, 27, 32, 33]. Each of these contributions are concerned in the analysis of
mathematical formulations and the development of robust numerical methods that,
with high accuracy, are capable to approximate the spectrum of (1.1), namely the
eigenvalues and its associated eigenfunctions. Not only the computation of the spec-
trum has been a subject of study, but also adaptivity strategies when the eigenvalues
are not smooth enough and hence, convergence orders of approximation are affected
by this lack of regularity.

The development of numerical methods to solve eigenvalue problems, particularly
(1.1), is a current subject of study in the community of numerical analysis, since the
knowledge of the physical eigenmodes of the spectral Stokes system are important in
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certain applications for the development and design of pipes, structures, containers,
dams, etc.. Moreover, not only the velocity and pressure are quantities of interest,
but also others as the stress, vorticity, stream functions, just to mention some of the
most relevant. It is this need that motivates the analysis of mixed formulations and,
hence, mixed numerical methods. These mixed methods have been plenty analyzed
for load problems [2, 4, 8, 9, 18, 20] where finite elements, virtual elements, discon-
tinuous methods, just to mention a few, have been considered. These methods and
formulations can be explored in order to solve the Stokes spectral problem with an
important accuracy.

On the other hand, adaptive mesh refinement strategies based on a posteriori
error indicators play a relevant role in the numerical solution of partial differential
equations in a general sense. Several approaches have been considered to design error
estimators based on the residual equations (see [1, 40] and the references therein). In
particular, for the load problem associated to the Stokes equations, we can mention
as recent developments [7, 30, 37], whereas for the Stokes spectral problems we refer
to [5, 23, 29, 39], and the references therein.

Now, following with our research program related to mixed formulations and their
discretizations for eigenvalue problems, the present work introduces a formulation that
is inspired in [18] for the load problem, where an augmented method is introduced
in order to approximate the velocity, pressure and stress. Despite the fact that this
formulation is more expensive since the pressure is directly computed with the method
instead of eliminate it, the augmented method is flexible on the choice of families of
finite elements. In our case, since we are interested in the spectral problem associated
to the Stokes problem, a more simple formulation is enough for this purpose, since the
computational costs are reduced, and hence, the computational solvers for eigenvalue
problems compute the solutions in less time without loss of accuracy. More precisely,
since the solution operator is defined for the velocity component only (cf. Section
2), our primary goal is to compute this unknown (and its associated eigenvalues) and
then derive the others quantities of interest in postprocessing. In fact, the pressure
and vorticity can be computed using a linear combination of stress and velocity.
This is a clear advantage compared with the recent work [28], where the pressure is
incorporated in the formulation and the proposed numerical methods, implying more
expensive mixed methods. However, the analysis presented in the present study can
be perfectly adapted to include the pressure in the preprocessing, with a consequent
increase in computational cost.

The contents of our papers are presented as follows: in Section 2 we present the
Stokes eigenvalue problem, introducing the stress which we write in terms of the vor-
ticity, leading to a variational formulation where the unknowns are the aforementioned
stress and the velocity field. We introduce the solution operator and recall some reg-
ularity properties for the eigenfunctions. In Section 3 we introduce the mixed finite
elements in which our method is based. Here, we present the finite element spaces,
approximation properties and hence, the discrete eigenvalue problem. The discrete
solution operator is also defined. In Section 4 we develop the convergence analysis
with the compact operators approach. Error estimates for the eigenvalues and eigen-
function are derived. Section 5 is dedicated to an a posteriori error analysis, where we
present a residual based a posteriori error analysis, together with the corresponding
reliability and efficiency for the proposed estimator. Finally, in Section 6 we report a
series of numerical tests to illustrate all our theoretical results. We start with a priori
results on different geometries, testing the robustness of our scheme in different orders
of approximation. This is followed by an adaptivity test, where we use a non-convex
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geometry to verify the performance of the proposed estimator.

1.1. Preliminaries and notations. Given any Hilbert space X, let X2 and X
denote, respectively, the space of vectors and tensors with entries in X. In particular,
I is the identity matrix of R2×2, and 0 denotes a generic null vector or tensor. Given
τ := (τij) and σ := (σij) ∈ R2×2, we define, as usual, the tensor inner product

τ : σ :=
∑2
i,j=1 τijσij .

Let Ω be a polygonal Lipschitz bounded domain of R2 with boundary ∂Ω. For
s ≥ 0, ‖·‖s,Ω stands indistinctly for the norm of the Hilbertian Sobolev spaces Hs(Ω),
Hs(Ω)2 or Hs(Ω) := Hs(Ω)2×2 for scalar, vectorial and tensorial fields, respectively,
with the convention H0(Ω) := L2(Ω), H0(Ω)2 = L2(Ω)2 and H0(Ω) := L2(Ω). We also
define for s ≥ 0 the Hilbert space H(curl; Ω) := {τ ∈ L2(Ω) : curl(τ ) ∈ L(Ω)2},
whose norm is given by ‖τ‖2curl,Ω := ‖τ‖20,Ω + ‖curl(τ )‖20,Ω. The relation a . b

indicates that a ≤ Cb, with a positive constant C which is independent of a, b and
the mesh size h, which will be introduced in Section 3.

Let us define the tensors

J :=

(
0 1
−1 0

)
and τ r := τ − 1

2
(τ : J)J ∀τ ∈ R2×2,

where the relation τ r : J = 0 holds.
Let ϕ = (ϕ1, ϕ2)t and τ = (τij) be vector- and tensor -valued fields, respectively,

we define

curl(ϕ) :=

−∂ϕ1

∂x2

∂ϕ1

∂x1

−∂ϕ2

∂x2

∂ϕ2

∂x1

 , and curl(τ ) :=

∂τ12

∂x1
− ∂τ11

∂x2
∂τ22

∂x1
− ∂τ21

∂x2

 .

Finally, through our paper, we denote by div and div the divergence operator when
is applied to vectorial and tensorial fields, respectively.

2. The model problem. Let Ω ⊂ R2 be an open bounded domain with Lip-
schitz boundary ∂Ω. Let us write the stress tensor σ in terms of the vorticity as
follows σ := µcurl(u) − pJ. From this relation, we observe that the vorticity of the
fluid can be recovered with the relation curl(u) = 1

µ (σ + pJ).

Since ∆u = curl(curl(u)) and curl(pJ) = ∇p, the first equation on system (1.1)
is rewritten as curl(σ) = −λu in Ω.

On the other hand, the identity div(u) = curl(u) : J holds, and hence, the second
equation on (1.1) is rewritten as curl(u) : J = 0 in Ω. With these relations at hand,
(1.1) now reads as follows: Find the stress σ, the velocity u and the pressure p such
that

(2.1)


σ − µcurl(u) + pJ = 0 in Ω,

curl(σ) = −λu in Ω,
curl(u) : J = 0 in Ω,

u = 0 on ∂Ω.

Algebraic manipulations reveal that the pressure satisfies p = −1/2(σ : J). Hence,
we can eliminate the pressure on (2.1) leading to the following equivalent system

(2.2)

 σr − µcurl(u) = 0 in Ω,
curl(σ) = −λu in Ω,

u = 0 on ∂Ω.
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Now, a variational formulation for (2.2) reads as follows: Find λ ∈ R and 0 6=
(σ,u) ∈ H(curl,Ω)× L2(Ω)2 such that

a(σ, τ ) + b(τ ,u) = 0 ∀τ ∈ H(curl,Ω),(2.3)

b(σ,v) = −λ(u,v)0,Ω ∀v ∈ L2(Ω)2.(2.4)

Let us define the spaces H := H(curl,Ω) and Q := L2(Ω)2. With these definitions
at hand, we introduce the bilinear bilinear forms a : H×H→ R and b : H×Q→ R
defined as follows

a(ξ, τ ) :=
1

µ

∫
Ω

ξr : τ r and b(ξ,v) :=

∫
Ω

v · curl(ξ) ∀ξ, τ ∈ H, ∀v ∈ Q.

For our analysis, let us consider the decomposition

(2.5) H(curl,Ω) = H0 ⊕ RJ,

where

H0 :=

{
τ ∈ H :

∫
Ω

τ : J = 0

}
.

The need of this space is motivated due the non-uniqueness of solution of (2.3)–(2.4).
To make matter precise, for any c ∈ R, the duo (cJ,0) is a solution of the homogeneous
problem associated to (2.3)–(2.4). Now, we write the following eigenvalue problem:
find λ ∈ R and 0 6= (σ,u) ∈ H0 ×Q such that

a(σ, τ ) + b(τ ,u) = 0 ∀τ ∈ H0,(2.6)

b(σ,v) = −λ(u,v)0,Ω ∀v ∈ Q.(2.7)

We recall some important results that allows us to establish the well posedness
of our mixed formulation. The following result is instrumental.

Lemma 2.1. There exists a constant C > 0, depending on Ω, such that for all
τ ∈ H0 there holds

C‖τ‖20,Ω ≤ ‖τ r‖20,Ω + ‖ curl(τ )‖20,Ω.

Proof. See [18, Lemma 2.3].

Let us introduce the the kernel of b(·, ·), defined as the following space

V := {τ ∈ H0 : b(τ ,v) = 0 ∀v ∈ L2(Ω)2} = {τ ∈ H0 : curl(τ ) = 0 in Ω},

in which, according to Lemma 2.1, a(·, ·) is coercive (see [18, Theorem 2.4]). Also, the
bilinear form b(·, ·) satisfies the following inf-sup condition (see [18, Theorem 2.2])

(2.8) sup
0 6=τ∈H0

∫
Ω

v · curl(τ )

‖τ‖curl,Ω
≥ β‖v‖0,Ω ∀v ∈ Q,

where β is a positive constant.
With these ingredients at hand, we are in position to introduce the solution

operator
T : Q→ Q, f 7→ Tf := û,
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where the pair (σ̂, û) ∈ H0 × Q is the solution of the following well posed source
problem

a(σ̂, τ ) + b(τ , û) = 0 ∀τ ∈ H0,(2.9)

b(σ̂,v) = −(f ,v)0,Ω ∀v ∈ Q,(2.10)

implying that T is well defined due to the Babuŝka-Brezzi theory. Moreover, we have
the following estimate

‖σ̂‖curl,Ω + ‖û‖0,Ω . ‖f‖0,Ω.

Therefore, recalling that the continuous dependence result given above is equivalent
to the global inf-sup condition for the continuous formulation (2.9)–(2.10). i.e:

(2.11) ‖(τ,v)‖H0×Q . sup
(ξ,w)∈H0×Q

(ξ,w) 6=0

a(τ , ξ)+b(ξ,v)+b(τ ,w)

‖(ξ,w)‖H0×Q
.

Elementary computations reveal that T is selfadjoint respect to the L2 inner
product. We also observe that the triplet (λ, (σ,u)) ∈ R×H0 ×Q solves (2.6)–(2.7)
if and only if (κ,u) is an eigenpair of T , i.e. Tu = κu with κ := 1/λ.

From [17, 38] we have the following regularity result for the Stokes spectral prob-
lem.

Theorem 2.2. If (u, p, λ) ∈ H1
0(Ω)2 × L2

0(Ω)× R solves (1.1), there exists s > 0
such that u ∈ H1+s(Ω)2 and p ∈ Hs(Ω).

We observe that Theorem 2.2, together with the first and second equations of
(2.2) reveal that curl(σ) ∈ H1+s(Ω)2 and σ ∈ Hs(Ω), respectively. This additional
regularity for the stress tensor is a key ingredient for the numerical approximation.

Remark 2.3. Note that the estimate

‖σ̂‖s,Ω + ‖û‖1+s,Ω . ‖f‖0,Ω

holds. This allows us to conclude that T is compact, where its spectrum satisfies
sp(T ) = {0} ∪ {µk}k∈N, where {µk}k∈N ∈ (0, 1) is a sequence of real positive eigen-
values which converges to zero, repeated according their respective multiplicities.

3. The mixed finite element method. In this section we introduce and ana-
lyze the mixed finite element method to approximate the eigenvalues and eigenfunc-
tions of (2.6)–(2.7). With this goal in mind, we begin by introducing a regular family
of triangulations of Ω denoted by {Th}h>0. Let hT the diameter of a triangle T of the
triangulation and let us define h := max{hT : T ∈ Th}.

3.1. The finite element spaces. Let us introduce suitable spaces to approxi-
mate the stress, the velocity and pressure. For υ ≥ 0 and B ⊂ R2 being a subset of
the plane we denote by Pυ(B) the space of polynomials of degree at most υ defined

on B and by P̃υ(B) the subspace of homogeneous polynomials of degree υ.
We consider the local Nédelec space of the first type and order k ≥ 0,

NED(1)
k (T ) := Pk(T )2 ⊕ P̃k+1(T )2.

Hence, the global Nédelec space of the first type is defined by

NED(1)
k (Th) :=

{
τ ∈ H(curl,Ω) : τ |tT ∈ NED(1)

k (T ), ∀T ∈ Th
}
,
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where τ |tT must be understood as (τi1, τi2), for i = 1, 2.
Similarly, the local Nédelec space of the second type and order k + 1 is given by

NED(2)
k+1(T ) := Pk+1(T )2 with k ≥ 0,

whereas the corresponding global space is defined by

NED(2)
k+1(Th) :=

{
τ ∈ H(curl,Ω) : τ |tT ∈ NED(2)

k+1(T ), ∀T ∈ Th
}
.

We also consider the the space of piecewise polynomials of degree at most k,

Pk(Th) := {q ∈ L2(Ω) : q|T ∈ Pk(T ) ∀T ∈ Th}.

Remark 3.1. It is well known from the literature that RTk−1 ⊂ BDMk ⊂ RTk for

all k ≥ 1 (see [10, Section 2]). This is important to notice since NED(1)
k and NED(2)

k are
just rotated Raviart-Thomas and Brezzi-Douglas-Marini families, respectively. This
allows us to conclude that the number of degrees of freedom per edge is the same for

both finite elements. However, the number of internal degrees of freedom of NED(2)
k

elements is less than that of standard finite elements of the same order such as NED(1)
k .

A count of the internal degrees of freedom for in two dimensions gives

NED(2)
k : 2(k − 1)(k + 1) NED(1)

k : 2k(k + 1).

3.2. Approximation errors. In the following, some approximation results for
discrete spaces are presented. To make matters precise, since we consider two spaces
to approximate the stress tensor, we need to introduce suitable interpolators for the
Nédelec spaces defined above. We begin with the classical approximation property for
piecewise polynomials (see [10]). Let Rh : L2(Ω)2 → Pk(Th)2. The following estimate
holds

‖v −Rhv‖0,Ω . hmin{t,k+1}‖v‖t,Ω ∀v ∈ Ht(Ω)2 ∩ L2(Ω)2.

Let ΠNED(`)

h : H(Ω)t → NED(`)
`+k−1, with t > 1/2, be the tensorial Nédelec inter-

polation operator (see [34, Section 5.5]), where the superindex ` ∈ {1, 2} represents
any of the Nédelec families that we are considering.

The following commuting diagram property holds

(3.1) curl(ΠNED(`)

h (τ )) = Rh(curl(τ )).

Moreover, the following estimate holds (see [35, Theorem 2] and [36, Proposition 3])

(3.2) ‖τ −ΠNED(`)

h τ‖0,Ω . hmin{t,`+k}‖τ‖t,Ω ∀τ ∈ Ht(Ω), t ≥ 1− (`− 1)/2.

Also, thanks to (3.1), if curl(τ ) ∈ Ht(Ω)2 with t ≥ 0 we have the following result
(3.3)

‖curl(τ −ΠNED(`)

h τ )‖0,Ω = ‖curl(τ )−Rh(curl(τ ))‖0,Ω . hmin{t,k+1}‖curl(τ )‖t,Ω.

Defining ΠNED(`)

h as ΠNED(`)

h : Ht(Ω)∩H(curl,Ω)→ NED(`)
k for all t ∈ (0, 1− (`−

1)/2], the following estimate holds (see [34, Theorem 5.41] and [36, Proposition 3])

(3.4) ‖τ −ΠNED(`)

h τ‖0,Ω . ht(‖τ‖t,Ω + ‖curl(τ )‖0,Ω) τ ∈ Ht(Ω) ∩H(curl,Ω).

For ` ∈ {1, 2}, we introduce the following spaces

H0,h :=

{
τ ∈ NED(`)

`+k−1 :

∫
Ω

τh : J = 0

}
, Qh := Pk(Th)2.
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3.3. Discrete eigenvalue problems. In what follows, we present the finite
element discretization of the spectral problem (2.6)–(2.7). With the finite element
spaces defined previously, we have the following discrete problem: Find λh and 0 6=
(σh,uh) ∈ H0,h ×Qh such that

a(σh, τh) + b(τh,uh) = 0 ∀τh ∈ H0,h,(3.5)

b(σh,vh) = −λh(uh,vh)0,Ω ∀vh ∈ Qh.(3.6)

Now our interest is to analyze the well posedness of (3.5)–(3.6). With this purpose,
we begin with the following discrete inf-sup for b(·, ·), whose proof is inspired by [20,
Lemma 3.2].

Lemma 3.2. There exists a positive constant β̂, independent of h, such that

(3.7) sup
0 6=τh∈H0,h

∫
Ω

vh · curl(τh)

‖τh‖curl,Ω
≥ β̂‖v‖0,Ω ∀vh ∈ Qh.

Proof. Since we already have the continuous inf-sup condition (2.8), it will be
enough to construct a Fortin operator to guarantee that b(·, ·) satisfies a discrete inf-

sup condition. Indeed, let Ω̃ be a convex polygonal domain such that Ω ⊆ Ω̃. Given
τ ∈ H0, let z ∈ H1

0(Ω̃)2 be the unique solution to the boundary value problem

(3.8) ∆z =

{
curl(τ ), in Ω

0, in Ω̃\Ω
, z = 0, in ∂Ω̃.

Standard elliptic regularity results, states that the solution of (3.8) is such that z ∈
H2(Ω)2 and the estimate

‖z‖2,Ω . ‖ curl(τ )‖0,Ω,

where the hidden constant depends on the domain, holds. Note that curl(z) ∈ H1(Ω)
and curl(curl(z)) = ∆z = curl(τ ) in Ω. Moreover, we have

(3.9) ‖curl(z)‖1,Ω ≤ ‖z‖2,Ω ≤ ‖ curl(τ )‖0,Ω.

Define the operator Fh : H0 → H0,h that maps τ ∈ H0 into its H0-component

of ΠNED(`)

h (curl(z)), which is determined by the decomposition (2.5). More precisely,
we have

Fhτ := ΠNED(`)

h (curl(z))−
(

1

2|Ω|

∫
Ω

ΠNED(`)

h (curl(z)) : J
)
J.

The above, together with (3.1), allows us to obtain

curl(Fhτ ) = curl(ΠNED(`)

h (curl(z))) = Rh(curl(curl(z)) = Rh curl(τ ).

Applying this equivalence, we deduce
(3.10)

b(Fhτ ,vh) =

∫
Ω

vh · curl(Fhτ ) =

∫
Ω

vh · Rh curl(τ ) =

∫
Ω

vh · curl(τ ) = b(τ ,vh),

for all τ ∈ H0 and for all vh ∈ Qh.
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On the other hand, from the stability of the decomposition (2.5), (3.2) and (3.9),
we have that

‖Fhτ‖2curl,Ω ≤ ‖Π
NED(`)

h curl(z)‖20,Ω + ‖ curl(ΠNED(`)

h curl(z))‖20,Ω
= ‖ΠNED(`)

h curl(z)‖20,Ω + ‖Rh curl(τ )‖20,Ω
≤ ‖curl(z)−ΠNED(`)

h curl(z)‖20,Ω + ‖curl(z)‖20,Ω + ‖ curl(τ )‖20,Ω
. ‖ curl(τ )‖20,Ω,

for all τ ∈ H0. Hence Fh is uniformly bounded. This, along with (3.10) imply that
Fh is a Fortin operator. This concludes the proof.

Let us introduce the discrete kernel of b(·, ·), defined by

Vh := {τh ∈ H0,h : b(τh,vh) = 0 ∀vh ∈ Qh} = {τh ∈ H0,h : curl(τh) = 0 in Ω}.

It is easy to check a(·, ·) is coercive in Vh. Indeed, given τh ∈ H0,h we have

a(τh, τh) =
1

µ
‖τ rh‖20,Ω ≥

C2

µ
‖τh‖2curl,Ω,

where C is the constant of Lemma 2.1. With these ingredients at hand, we are in
position to introduce the discrete solution operator associated to (3.5)–(3.6)

T h : Q→ Qh, f 7→ T hf := ûh,

where (σ̂h, ûh) ∈ H0,h×Qh is the solution of the following well posed source problem
(see [10])

a(σ̂h, τh) + b(τh, ûh) = 0 ∀τh ∈ H0,h,(3.11)

b(σ̂h,vh) = −(f ,vh) ∀vh ∈ Qh.(3.12)

4. Convergence and error estimates. For the convergence analysis we take
advantage of the compactness of the solution operator T in order to obtain the con-
vergence of T h to T in norm, as h goes to zero. To do this task, we resort to the well
established theory of [6] for compact operators.

We begin with the following approximation result

Lemma 4.1. Let f ∈ Q. Then, the following estimate holds

‖(T − T h)f‖0,Ω . ‖σ̂ −ΠNED(`)

h (σ̂)‖0,Ω + ‖û−Rhû‖0,Ω,

where the hidden constant are independent of h and ` ∈ {1, 2}.
Proof. Let f ∈ Q be such that Tf = û and T hf = ûh where û is the solution

of (2.9)–(2.10) and ûh is the solution of (3.11)–(3.12), we have

(4.1) ‖(T − T h)f‖0,Ω = ‖û− ûh‖0,Ω ≤ ‖û−Rhû‖0,Ω + ‖Rhû− ûh‖0,Ω.

Now our task is to control each of the terms on the right hand side of (4.1). We
begin with the second term. Invoking the discrete inf-sup condition (3.7), and setting
vh := Rhû− û ∈ Qu

h , we obtain

‖Rhû− ûh‖0,Ω ≤
1

β
sup

0 6=τh∈H0,h

∫
Ω

curl(τh) · (Rhû− ûh)

‖τh‖curl,Ω
.
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Clearly curl(τh) ∈ Qh. Then, since Rh is the L2(Ω)-orthogonal projector, and
invoking (2.9) and (3.11), straightforward calculations reveal

b(τh,Rhû−ûh) = b(τh, û)−b(τh, ûh) = a(σ̂h, τh)−a(σ̂, τh) . ‖σ̂h−σ̂‖0,Ω‖τh‖0,Ω,

and

(4.2) ‖Rhû− ûh‖0,Ω . ‖σ̂h − σ̂‖0,Ω.

From the triangle inequality we have

(4.3) ‖σ̂ − σ̂h‖0,Ω ≤ ‖σ̂ −ΠNED(`)

h (σ̂)‖0,Ω + ‖ΠNED(`)

h (σ̂)− σ̂h‖0,Ω

Now, using that ΠNED(`)

h (σ̂)− σ̂h ∈ H0,h, the commuting diagram property (3.1), to-

gether with (2.10) and (3.12), we obtain curl(ΠNED(`)

h (σ̂)) =Rh(curl(σ̂))= Rh(−f)=

curl(σ̂h), implying directly that curl
(
ΠNED(`)

h (σ̂)− σ̂h
)
∈ Vh. Since a0(·, ·) is Vh-

elliptic, there exists α̂ > 0 such that

α̂‖ΠNED(`)

h (σ̂)− σ̂h‖20,Ω . ‖ΠNED(`)

h (σ̂)− σ̂‖0,Ω‖ΠNED(`)

h (σ̂)− σ̂h‖0,Ω.

These calculations imply that

(4.4) ‖ΠNED(`)

h (σ̂)− σ̂h‖0,Ω . ‖ΠNED(`)

h (σ̂)− σ̂‖0,Ω.

Then, from (4.1), (4.2), (4.3) and (4.4), we have

‖(T − T h)f‖0,Ω . ‖û−Rhû‖0,Ω + ‖ΠNED(`)

h (σ̂)− σ̂‖0,Ω.

where the hidden constant is independent of h. This concludes the proof.

It is important to remark that the previous result is valid for both NED(1)
k and

NED(2)
k+1 schemes, since the key ingredient to obtain the desire bound lies in the

commutative diagram property that both elements satisfy. Now, with this result at
hand, and following the proof of [28, Corollary 4.2] together with (3.2)–(3.4), for each
finite element scheme, we have the following approximation result for the solution
operators

(4.5) ‖(T − T h)f‖0,Ω . hs‖f‖0,Ω,

where the hidden constant is independent of h.
Finally, all the previous results, together with the application of the theory in

[25], state that our numerical methods are spurious free, as is stated in the following
result.

Theorem 4.2. Let V ⊂ C be an open set containing sp(T ). Then, there exists
h0 > 0 such that sp(T h) ⊂ V for all h < h0.

4.1. A priori error estimates. Now our aim is to obtain error estimates for the
eigenfunctions and eigenvalues. Let us remark that, according to (4.5), if κ ∈ (0, 1) is
an isolated eigenvalue of T with multiplicity m, and E its associated eigenspace, then,

there exist m eigenvalues κ
(1)
h , ..., κ

(m)
h of T h, repeated according to their respective
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multiplicities, which converge to κ. Let Eh be the direct sum of their correspond-
ing associated eigenspaces (see [25]) and let us define the gap δ̂ between two closed
subspaces X and Y of L2(Ω) by

δ̂(X ,Y) := max
{
δ(X ,Y), δ(Y,X )

}
, where δ(X ,Y) := sup

x∈X
‖x‖0,Ω=1

(
inf
y∈Y
‖x− y‖0,Ω

)
.

With these definitions and hand, we derive the following error estimates for eigenfunc-
tions and eigenvalues. Since the proof is direct from applying the results of [6, 11, 12],
we do not incorporate further details.

Theorem 4.3. For k ≥ 0, the following error estimates for the eigenfunctions
and eigenvalues hold

δ̂(E , Eh) . hmin{s,k+1} and |µ− µh(i)| . hmin{s,k+1},

where the hidden constants are independent of h.

Now we improve the error estimate of Theorem 4.3 for the eigenvalues, showing
that the order of convergence is in fact quadratic. This is contained in the following
result.

Theorem 4.4. For k ≥ 0, there exists a strictly positive constant h0 such that,
for h < h0 there holds

|λ− λh| . h2 min{s,k+1},

where the hidden constant is independent of h.

Proof. Let (λ,σ,u) be the solution of problem (2.9)–(2.10), where its finite ele-
ment approximation (λh,σh,uh) corresponds to the solution of problem (3.5)–(3.6)
with ‖uh‖0,Ω = ‖u‖0,Ω = 1. Proceeding as in [16, Lemma 4], we deduce the following
identity

λ− λh =
1

µ
‖σr − σrh‖20,Ω − λh‖u− uh‖20,Ω,

implying that
|λ− λh| . ‖σ − σh‖20,Ω + ‖u− uh‖20,Ω,

where the hidden constant is independent of h. The proof is complete using the same
arguments of [28, Theorem 4.6].

Since we have proved that our method does not introduce spurious eigenvalues,
it is possible to conclude that for h small enough, except for λh, the rest of the
eigenvalues of (3.5)–(3.6) are well separated from λ, as is stated in [13].

Proposition 4.5. Let us enumerate the eigenvalues of problems (3.5)–(3.6) and
(2.3)–(2.4) in increasing order as follows: 0 < λ1 ≤ · · ·λi ≤ · · · and 0 < λh,1 ≤
· · ·λh,i ≤ · · · . Let us assume that λJ is a simple eigenvalue of (3.5)–(3.6). Then,
there exists h0 > 0 such that

|λJ − λh,i| ≥
1

2
min
j 6=J
|λj − λJ | ∀i ≤ dimHh, i 6= J, ∀h < h0.

In what follows, we assume that λ is a simple eigenvalue and we normalize u so
that ‖u‖0,Ω = 1. Then, for all Th, there exists a solution (λh,σh,uh) be a solution
of problem (3.5)–(3.6) such that λh → λ as h goes to zero and ‖uh‖0,Ω = 1.

We conclude this section by presenting a summary of the approximation properties
for functions and eigenvalues for the lowest order.
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Remark 4.6. For k = 0, if (λ,σ,u) is the solution of Problem (2.6)–(2.7) with
‖u‖0,Ω = 1 and (λh,σh,uh) is the solution of problem (3.5)–(3.6) with ‖uh‖0,Ω = 1,
then

‖σ − σh‖0,Ω + ‖u− uh‖0,Ω . hs and |λ− λh| . ‖σ − σh‖20,Ω + ‖u− uh‖20,Ω,

where the hidden constant independent of h.

5. A posteriori error analysis. The aim of this section is to introduce and
analysis of an a posteriori error estimator for our single eigenpair of the mixed eigen-
value problem. The main difficulty in the a posteriori error analysis for eigenvalue
problems is to control the so called high order terms. To do this task, we adapt the
results of [24] in order to obtain a superconvergence result and hence, prove the desire
estimates for our estimator. The results presented in this section are limited to the
lower order case k = 0, for which the required postprocessing operator is well defined.

5.1. Properties of the mesh. For T ∈ Th, let E(T ) be the set of its edges, and
let Eh be the set of all the edges of the triangulation Th. With these definitions at
hand, we write Eh := Eh(Ω) ∪ Eh(∂Ω), where

Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(∂Ω) := {e ∈ Eh : e ⊆ ∂Ω}.

On the other hand, for each edge e ∈ Eh we fix a unit normal vector ne to e. Moreover,
given τ ∈ L2(Ω) and e ∈ Eh(Ω), we let Jτ K be the corresponding normal jump across e,
that is Jτ K := (τ |T − τ |T ′)

∣∣
e
ne, where T and T ′ are two elements of the triangulation

with common edge e.

5.2. Technical results. We introduce some definitions and technical results
that are necessary to perform the a posteriori analysis. We begin with the following
result that is an adaptation of those presented in [14, Lemma 9, Lemma 10, Lemma
11]. For briefty we skip the details.

Corollary 5.1. For the eigenfunction approximation uh of the eigenvalue prob-
lem (2.6)–(2.7), the following supercloseness result holds when the mesh size h is small
enough,

‖uh −Rhu‖0,Ω . hs(‖σ − σh‖0,Ω + ‖u− uh‖0,Ω),

where the hidden constant is independent of h.

Let us introduce the following space

Yh :=
{
v ∈ H1(Ω)2 : v ∈ P1(T )2, ∀T ∈ Th

}
.

Now, for each vertex z of the elements in Th, we define the patch ωz :=
⋃
z∈T∈Th T.

To perform the a posteriori error analysis of our spectral problem, we introduce the
so called the postprocessing operator (see [24] for instance) defined by Θh : Q→ Yh

where, for the defined patch ωz, we fit a piecewise linear function in the average sense,
for any v ∈ Q at the degrees of freedom of element integrations by

Θhv(z) :=
∑
T∈ωz

∫
T

v dx

|ωz|
.

Here, |ωz| denotes the measure of the patch. Moreover, Θh satisfies the following
properties (see [24, Lemma 3.2, Theorem 3.3]).
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Lemma 5.2 (Properties of the postprocessing operator). The operator Θh defined
above satisfies the following:

1. For u ∈ H1+s(Ω)2 with s as in Theorem 2.2 and T ∈ Th, there holds

‖Θhu− u‖0,Ω . h1+s
T ‖u‖1+s,Ω,

2. ΘhP0
hv = Θhv,

3. ‖Θhv‖0,Ω . ‖v‖0,Ω for all v ∈ Q,
where the hidden constants are positive and independent of h.

The following result, proved in [24, Theorem 3.3] states a superconvergence property
for Θh.

Lemma 5.3 (Superconvergence). For h small enough, there holds

‖Θhuh − u‖0,Ω . hs (‖ρ− ρh‖0,Ω + ‖u− uh‖0,Ω) + ‖Θhu− u‖0,Ω,

where the hidden constant is independent of h.

Let us introduice the bubble functions for two dimensional elements. Given T ∈
Th and e ∈ E(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble
functions, respectively (see [40, 41] for further details about these functions), which
satisfy the following properties

1. ψT ∈ P3(T ), supp(ψT ) ⊂ T , ψT = 0 on ∂T and 0 ≤ ψT ≤ 1 in T ;
2. ψe|T ∈ P2(T ), supp(ψe) ⊂ ωe := ∪{T ′ ∈ Th : e ∈ E(T ′)}, ψe = 0 on ∂T \ e

and 0 ≤ ψe ≤ 1 in ωe.
The following results establish standard estimates for the bubble functions which

will be essential for testing the efficiency of the residual estimator (see [40, Lemma
1.3]).

Lemma 5.4 (Bubble function properties). Given ` ∈ N ∪ {0}, and for each
T ∈ Th and e ∈ E(T ), there hold

‖ψT q‖20,T ≤ ‖q‖20,T . ‖ψ1/2
T q‖20,T ∀q ∈ P`(T ),

‖ψeL(p)‖20,e ≤ ‖p‖20,e . ‖ψ1/2
e p‖20,e ∀p ∈ P`(e),

and
he‖p‖20,e . ‖ψ1/2

e L(p)‖20,T . he‖p‖20,e ∀p ∈ P`(e),

where L : C(e)→ C(T ) with L(p) ∈ Pk(T ) and L(p)|e = p for all p ∈ Pk(e), and the
hidden constants depend on k and the shape regularity of the triangulation.

Also, we requiere the following technical result (see [15, Theorem 3.2.6]).

Lemma 5.5 (Inverse inequality). Let l,m ∈ N ∪ {0} such that l ≤ m. Then, for
each T ∈ Th there holds

|q|m,T . hl−mT |q|l,T ∀q ∈ Pk(T ),

where the hidden constant depends on k, l,m and the shape regularity of the triangu-
lations.

Finally, we will make use of the well known Clément interpolation operator Ih :
H1(Ω)→ CI , where CI := {v ∈ C(Ω̄) : v|T ∈ P1(T ) ∀T ∈ Th}.

The following auxiliary results, available in [19], are necessary in our forthcoming
analysis.
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Lemma 5.6. For all v ∈ H1(Ω) there holds

‖v − Ihv‖0,T . hT ‖v‖1,ωT
, ‖v − Ihv‖0,e . h1/2

e ‖v‖1,ωe
,

for all T ∈ Th and for all e ∈ Eh, where the hidden constants are independent of h,
the set ωT is defined by

ωT := {T ′ ∈ Th : T ′ and T share an edge},

and ωe := {T ′ ∈ Th : e ∈ ET ′}.

5.3. The local and global estimators. We are now in position to introduce
our local estimators for the spectral problem (3.5)–(3.6).

The proposed estimator is of residual type, and our goal is to prove that is reliable
and efficient. In what follows, let (λh,σh,uh) ∈ R × H0,h × Qh be the solution of
(3.5)–(3.6). Now, for each T ∈ Th we define the local error indicator ηT as follows

(5.1) η2
T := ‖Θhuh − uh‖20,T + h2

T

∥∥∥∥curl(uh)− 1

µ
σrh

∥∥∥∥2

0,T

+ h2
T

∥∥∥∥div

(
1

µ
σrh

)∥∥∥∥2

0,T

+
∑

e∈E(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ
σrh

{∥∥∥∥2

0,e

+
∑

e∈E(T )∩Eh(∂Ω)

he

∥∥∥∥ 1

µ
σrhne

∥∥∥∥2

0,e

,

and the respective global estimator is defined by

(5.2) η :=

{∑
T∈Th

η2
T

}1/2

.

5.4. Reliability. In this section we provide an upper bound for the proposed
estimator (5.2). We begin by proving the following technical estimate.

Lemma 5.7. Let (λ,σ,u) ∈ R × H0 × Q be the solution of (2.6)–(2.7) and let
(λh,σh,uh) ∈ R×H0,h×Qh be its finite element approximation, given as the solution
of (3.5)–(3.6). Then, for all τ ∈ H0, we have.

(5.3) ‖σ − σh‖curl,Ω + ‖u− uh‖0,Ω . sup
τ∈H0
τ 6=0

−a(σh, τ )− b(τ ,uh)

‖τ‖div,Ω

+ |λh − λ|+ ‖u−Θhuh‖0,Ω︸ ︷︷ ︸
h.o.t

+‖Θhuh − uh‖0,Ω,

where the hidden constant is independent of h.

Proof. Applying the inf-sup condition (2.11) on the errors σ−σh and u−uh we
have that that

‖(σ−σh,u−uh)‖H0×Q . sup
(τ ,v)∈H0×Q

(τ,v)6=0

a(σ−σh, τ )+b(τ ,u−uh)+b(σ−σh,v)

‖(τ ,v)‖H0×Q

. sup
τ∈H0
τ 6=0

−a(σh, τ )− b(τ ,uh)

‖τ‖curl,Ω
+ sup
v∈Q
v 6=0

b(σ − σh,v)

‖v‖0,Ω
,
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where we have used (2.6). Now, according to the definition of the bilinear oper-
ator b(·, ·), the equation (2.7) and that curl(σh) = −λhuh, and finally using the
Cauchy–Schwarz inequality, we obtain

sup
v∈Q
v 6=0

b(σ − σh,v)

‖v‖0,Ω
≤ ‖λhuh − λu‖0,Ω ≤ |λh − λ|‖uh‖0,Ω + |λ|‖u− uh‖0,Ω

≤ |λh − λ|‖uh‖0,Ω + |λ| (‖u−Θhuh‖0,Ω + ‖Θhuh − uh‖0,Ω) .

Then, using the above estimate and recalling that ‖uh‖0,Ω = 1 we have

‖σ − σh‖curl,Ω + ‖u− uh‖0,Ω . sup
τ∈H0
τ 6=0

−a(σh, τ )− b(τ ,uh)

‖τ‖curl,Ω

+ |λh − λ|+ ‖u−Θhuh‖0,Ω︸ ︷︷ ︸
h.o.t

+‖Θhuh − uh‖0,Ω.

This concludes the proof.

Remark 5.8. We note that, thanks to Lemmas 4.6, 5.2 and 5.3, the estimate for
the high order term

h.o.t ≤ Chs (‖σ − σh‖0,Ω + ‖u− uh‖0,Ω) + ‖u−Θhu‖0,Ω . h2s,

holds, where the constant C is uniform on h.

Our next goal is to bound the supremum in Lemma 5.7. To do this task, let
τ ∈ H0, we proceed as in the proof of Lemma 3.2, and let z ∈ H1

0(Ω̃)2 be the

unique weak solution of the boundary value problem (3.8), where Ω̃ is a bounded
convex polygonal domain containing Ω. Since curl(τ − curl(z)) = 0 in Ω, and Ω is
connected, there exists ϕ := (ϕ1, ϕ2) ∈ H1(Ω)2, with

∫
Ω
ϕ1 =

∫
Ω
ϕ2 = 0, such that

τ = ∇ϕ+ curl(z), and we have

(5.4) ‖z‖2,Ω + ‖ϕ‖1,Ω . ‖τ‖curl,Ω.

Now, we let ϕh := (Ih(ϕ1), Ih(ϕ2)) and define τh ∈ Hh as

τh := ∇ϕh + ΠNED(`)

h (curl(z))− dhJ,

where ΠNED(`)

h is the Nédelec interpolation operator that satisfies properties (3.1)-
(3.4). The constant dh is chosen in the following way

dh :=
1

2|Ω|

∫
Ω

τh : J =
1

2|Ω|

∫
Ω

(
∇ϕh + ΠNED(`)

h (curl(z))
)

: J,

in order to admit that τh ∈ Hh,0. Notice that we have used the fact that τ ∈ H0 and
its Helmoltz decomposition.

As a first step to bound the supremum appearing on the right hand side of (5.3),
we note that for all ξh ∈ H0,h and (3.5), we have

a(σh, ξh) + b(ξh,uh) = 0.

On the other hand, let ξ ∈ H be such that

ξ := τ − τh = ∇ϕ−∇ϕh + curl(z)−ΠNED(`)

h (curl(z)) + dhJ.
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Since curl(∇ϕ − ∇ϕh) = curl(dhJ) = 0, and invoking the commutative diagram
property (3.1), identity above is written as follows

curl(ξ) = curl(curl(z)−ΠNED(`)

h (curl(z))) = curl(curl(z))−Rh(curl(curl(z))).

Now, sinceRh is the L2(Ω)-orthogonal projector, we have that b(ξ,uh) = 0. Therefore,
from the fact that σh ∈ H0,h we obtain the following identity

− [a(σh, τ ) + b(τ ,uh)] = − [a(σh, ξ) + b(ξ,uh)] = −a(σh, ξ).

Now, invoking the definition of ξ and that a(σh, dhJ) = dha(σh, J) = 0 we obtain
(5.5)

−[a(σh, τ ) + b(τ ,uh)] = −a(σh,∇(ϕ−ϕh))︸ ︷︷ ︸
T1

+−a(σh, curl(z)−ΠNED(`)

h (curl(z)))︸ ︷︷ ︸
T2

,

where the terms T1 and T2 must be bounded. We begin with T1.

Lemma 5.9. There exists certain constant independent of h, such that

|T1| .

{∑
T∈Th

η2
T

}1/2

‖τ‖curl,Ω.

Proof. First, we note that

T1 = −
∫

Ω

1

µ
σrh : (∇(ϕ−ϕh))r = −

∫
Ω

1

µ
σrh : ∇(ϕ−ϕh).

Now, integrating by parts on each T ∈ Th, we obtain that

T1 =

∫
Ω

− 1

µ
σrh : ∇(ϕ−ϕh) =

∑
T∈Th

∫
T

− 1

µ
σrh : ∇(ϕ−ϕh)

=
∑
T∈Th

∫
T

div

(
1

µ
σrh

)
· (ϕ−ϕh) +

∑
e∈Eh(Ω)

∫
e

s
1

µ
σrh

{
· (ϕ−ϕh)

+
∑

e∈Eh(∂Ω)

∫
e

1

µ
σrhne · (ϕ−ϕh).

Applying Cauchy-Schwarz inequality, recalling that ϕh := (Ih(ϕ1), Ih(ϕ2)), and in-
voking the approximation properties presented in Lemma 5.6 and estimate (5.4), we
have

|T1| ≤
∑
T∈Th

hT

∥∥∥∥div

(
1

µ
σrh

)∥∥∥∥
0,T

‖ϕ‖1,ωT
+

∑
e∈E(T )∩Eh(Ω)

he

∥∥∥∥s 1

µ
σrh

{∥∥∥∥
0,e

‖ϕ‖1,ωe

+
∑

e∈E(T )∩Eh(∂Ω)

he

∥∥∥∥ 1

µ
σrhne

∥∥∥∥
0,e

‖ϕ‖1,ωe .

{∑
T∈Th

η2
T

}1/2

‖τ‖curl,Ω,

where the hidden constant is independent of h and the discrete solution. This con-
cludes the proof.

The bound for T2 is contained in the following lemma.
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Lemma 5.10. There exists certain constant, independent of h, such that

|T2| .

{∑
T∈Th

η2
T

}1/2

‖τ‖curl,Ω.

Proof. Using again that uh ∈ P0(T )2, for all T ∈ Th, we obtain∫
Ω

curl(uh) :
(
curl(z)−ΠNED(`)

h (curl(z))
)

= 0.

Then, we obtain that

T2 = −
∑
T∈Th

[∫
T

(
curl(uh)− 1

µ
σrh

)
:
(
curl(z)−ΠNED(`)

h (curl(z))
)]

≤
∑
T∈Th

∥∥∥∥curl(uh)− 1

µ
σrh

∥∥∥∥
0,T

‖curl(z)−ΠNED(`)

h (curl(z)) ‖0,T

.

{∑
T∈Th

h2
T

∥∥∥∥curl(uh)− 1

µ
σrh

∥∥∥∥2

0,T

}1/2

‖z‖2,Ω .

{∑
T∈Th

η2
T

}1/2

‖τ‖curl,Ω,

where we have used Cauchy-Schwarz inequality and the approximation properties
(3.3) and (5.4). This concludes the proof.

As a consequence of Lemma 4.6, Lemma 5.7, Remark 5.8, estimate (5.5), Lemmas
5.9 and 5.10, and the definition of the local estimator ηT , we have the following result

Lemma 5.11. Let (λ,σ,u) ∈ R × H0 ×Q be the solution of (2.6)–(2.7) and let
(λh,σh,uh) ∈ R×H0,h×Qh be its finite element approximation, given as the solution
of (3.5)–(3.6). Then, there exists h0, such that, for all h < h0, there holds.

‖σ − σh‖curl,Ω + ‖u− uh‖0,Ω .

{∑
T∈Th

η2
T

}1/2

+ ‖u−Θhu‖0,Ω,

|λ− λh| .
∑
T∈Th

η2
T + ‖u−Θhu‖20,Ω,

where the hidden constants are independent of h.

5.5. Efficiency. The aim of this section is to obtain a lower bound for the local
indicator (5.1). To do this task, we will apply the localization technique based in
bubble functions, together with inverse inequalities. In order to present the material,
the efficiency will be proved in several steps, where each one of these correspond to
one of the terms of (5.1).

Now our task is to bound each of the contributions of ηT in (5.1). We begin with
the term

h2
T

∥∥∥∥curl(uh)− 1

µ
σrh

∥∥∥∥2

0,T

.

Given an element T ∈ Th, and using that curl(u) = σr/µ, let us define ΥT :=
curl(uh)−σrh/µ. Then, invoking the properties of the bubble function ψT defined in
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Lemma 5.4 we have

‖ΥT ‖20,T . ‖ψ1/2
T ΥT ‖20,T =

∫
T

ψTΥT :

(
curl(uh − u) +

1

µ
(σr − σrh)

)
. ‖ curl(ψTΥT )‖0,T ‖u− uh‖0,T + ‖ψTΥT ‖0,T ‖σ − σh‖0,T
. h−1

T ‖u− uh‖0,T + ‖σ − σh‖0,T ‖ΥT ‖0,T .

Then we have that

(5.6) h2
T

∥∥∥∥curl(uh)− 1

µ
σrh

∥∥∥∥2

0,T

. ‖u− uh‖0,T + h2
T ‖σ − σh‖0,T .

Now we prove the following result.

Lemma 5.12. Let τh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each
T ∈ Th such that approximates τ ∈ L2(Ω), where div(τ ) = 0 on each T ∈ Th. Then,
there holds

‖div(τh)‖0,T . h−1
T ‖τ − τh‖0,T ∀T ∈ Th,

where the hidden constant is independent of h.

Proof. From the bubble functions properties of Lemma 5.4, integrating by parts,
using the fact that ψT = 0 on ∂T , and applying Cauchy-Schwarz inequality, we obtain

‖div(τh)‖20,T . ‖ψ1/2
T div(τh)‖20,T =

∫
T

ψT div(τh) · div(τh − τ )

= −
∫
T

∇ (ψT div(τh)) : (τh − τ ) . ‖∇ (ψT div(τh)) ‖0,T ‖τh − τ‖0,T

. h−1
T ‖τh − τ‖0,T ‖ψT div(τh)‖0,T . h−1

T ‖τh − τ‖0,T ‖div(τh)‖0,T .

This conclude the proof.

Lemma 5.13. Let τh ∈ L2(Ω) be a piecewise polynomial of degree k ≥ 0 on each
T ∈ Th such that approximates τ ∈ L2(Ω), where div(τ ) = 0 on each T ∈ Th. Then,
there holds

‖JτhK‖0,e . h−1/2
e ‖τ − τh‖0,ωe

∀e ∈ Eh,

where the hidden constant is independent of h.

Proof. Given an edge e ∈ Eh, we denote by wh := JτhK the corresponding jump
of τh. Then, employing Lemma 5.4 and integrating by parts on each triangle, we
obtain of ωe, we obtain

‖wh‖20,e . ‖ψ1/2
e wh‖20,e = ‖ψ1/2

e L(wh)‖20,e =

∫
e

ψeL(wh) · JτhK

=

∫
ωe

div(τh) · ψeL(wh) +

∫
ωe

τh : ∇ (ψeL(wh)) .

Now, since Jτ K = 0, we have

0 =

∫
ωe

div(τ ) · ψeL(wh) +

∫
ωe

τ : ∇ (ψeL(wh)) .



18 FELIPE LEPE, GONZALO RIVERA AND JESUS VELLOJIN

Thus, we have the following estimate

‖wh‖20,e .
∫
ωe

div(τh − τ ) · ψeL(wh) +

∫
ωe

(τh − τ ) : ∇ (ψeL(wh))

. ‖div(τh)‖0,ωe
‖ψeL(wh)‖0,ωe

+ ‖τh − τ‖0,ωe
‖∇ (ψeL(wh)) ‖0,ωe

.

Now, applying Lemma 5.12 to each element of ωe, using that h−1
Te
≤ h−1

e , together
with Lemmas 5.5 and 5.4, we obtain

‖wh‖20,e . h−1/2
e ‖τh − τ‖0,ωe‖wh‖0,e.

This conclude the proof.

As a consequence of the above lemma, we have the following results

(5.7) h2
T

∥∥∥∥div

(
1

µ
σrh

)∥∥∥∥2

0,T

. ‖σ−σh‖20,T , and he

∥∥∥∥s 1

µ
σrh

{∥∥∥∥2

0,e

. ‖σ−σh‖20,ωe
,

for all e ∈ Eh(Ω), and the hidden constants are independent of h. Finally, for the
term ‖Θhuh − uh‖20,T , we add and subtract Θhu and u, apply triangle inequality,
and Lemma 5.2, leading to

(5.8) ‖Θhuh − uh‖20,T . ‖u− uh‖20,T + ‖Θhuh −Θhu‖20,T + ‖Θhu− u‖20,T .

Note that the last term of (5.8) is asymptotically negligible thanks to Lemma 5.2.
Gathering the previous results, namely (5.6)–(5.8), we are in a position to estab-

lish the efficiency η, which is stated in the following result.

Theorem 5.14 (Efficiency). The following estimate holds

η2 :=
∑
T∈Th

η2
T . ‖u− uh‖20,Ω + ‖σ − σh‖20,Ω + h.o.t,

where the hidden constant is independent of h and the discrete solution.

Proof. The proof is a consequence of (5.6)–(5.7) and Lemma 5.2.

Remark 5.15. Through our paper, we have considered a formulation that elim-
inates the pressure, which can be recovered by a postprocess of the stress tensor.
However, it is possible to consider a formulation in terms of the velocity, pressure
and velocity as the one studied in [18] for the source problem. This leads to a more
expensive finite element scheme, but flexible in the choice of finite elements. All the
computations that we performed along our paper, can be replicated to this formulation
that incorporates the pressure.

6. Numerical experiments. In this section we report some numerical tests in
order to assess the performance of the proposed mixed element methods. We divide
this section into two parts: in the first part, we are interested in the computation of
the spectrum and the order of convergence for the eigenvalues. This is with the goal
to verify the accuracy of the methods and compare the methods. The second part is
related to assess the performance of the proposed a posteriori error estimator.

We have implemented the discrete eigenvalue problem in a FEniCS code [31, 3].
The rates of convergence have been computed with a least-square fitting.

With the computed results at hand, we compare the schemes that only differ on
the H(curl,Ω) finite element space. In what follows, N denotes the mesh resolution,
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Fig. 1. Test 1. Examples of the meshes used in the unit square.

Table 1
Test 1. Lowest computed eigenvalues for polynomial degrees k = 0, 1, 2 using the P2

k-NED(1)
k

scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [32]

13.07172 13.07948 13.08235 13.08371 1.88 13.08636 13.086
22.92407 22.98365 23.00442 23.01402 2.03 23.03084 23.031

0
22.92407 22.98365 23.00442 23.01402 2.03 23.03084 23.031
31.92158 31.99380 32.01930 32.03116 2.00 32.05232 32.053
38.18216 38.37946 38.44657 38.47729 2.09 38.52901 38.532
13.08610 13.08615 13.08616 13.08617 3.56 13.08617 13.086
23.03127 23.03112 23.03110 23.03110 4.60 23.03109 23.031

1
23.03127 23.03112 23.03110 23.03110 4.60 23.03109 23.031
32.05268 32.05242 32.05240 32.05239 5.59 32.05239 32.053
38.53319 38.53172 38.53147 38.53141 4.04 38.53136 38.532
13.08617 13.08617 13.08617 13.08617 5.79 13.08617 13.086
23.03109 23.03109 23.03109 23.03109 5.71 23.03109 23.031

2
23.03109 23.03109 23.03109 23.03109 5.71 23.03109 23.031
32.05238 32.05239 32.05239 32.05239 5.42 32.05239 32.053
38.53137 38.53136 38.53136 38.53136 6.02 38.53136 38.532

with h ∼ N−1, and dof denotes the degrees of freedom, which will depends on the
numerical scheme used.

In each test we plot selected eigenfunctions. The velocity field is recovered directly
from solving the eigenproblem, whereas the pressure and vorticity are recovered in
postprocessing by

ph = −1

2
(σh : J), curl(uh) =

1

µ
(σh + phJ).

Finally, we denote by P2
k-NED(`)

`+k−1, with ` ∈ {1, 2} and k = 0, 1, 2, the numerical
scheme using piecewise elements of order k to approximate u and the Nédelec family

NED(`)
`+k−1 of order `+ k − 1 to approximate σ.

6.1. Test 1: Square. In this test we consider as computational domain the
square Ω := (−1, 1)2, where the number of elements scales as 2N2. Examples of
meshes used in the example are depicted in Figure 1. The convexity of this domain
allows to obtain sufficiently smooth eigenfunctions. This implies that the convergence
rates will be optimal, i.e., a behavior O(h2(k+1)), for k = 0, 1, 2, is expected.

In Table 1 we report the first five eigenvalues computed with the P2
k-NED(1)

k

scheme, considering several refinement levels and k = 0, 1, 2. The column λextr shows
extrapolated values, obtained with a least square fitting. The values are compared
those of [32], where a similar experiment was performed.

For k = 0, 1 the order of approximation is clearly O(N−(k+1)). Meanwhile for
k = 2 the computed convergence for the fourth eigenvalue is lower than optimal.
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Table 2
Test 1. Lowest computed eigenvalues for polynomial degrees k= 0, 1, 2 using the P2

k-NED(2)
k

scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [32]

13.18088 13.12837 13.10993 13.10138 2.02 13.08631 13.086
23.32433 23.16178 23.10467 23.07821 2.02 23.03156 23.031

0
23.32433 23.16178 23.10467 23.07821 2.02 23.03156 23.031
32.61702 32.30485 32.19470 32.14355 2.00 32.05163 32.053
39.35261 38.89728 38.73736 38.66325 2.02 38.53259 38.532
13.08642 13.08622 13.08618 13.08617 4.00 13.08617 13.086
23.03240 23.03135 23.03118 23.03113 4.00 23.03109 23.031

1
23.03240 23.03135 23.03118 23.03113 4.00 23.03109 23.031
32.05619 32.05315 32.05263 32.05249 3.98 32.05239 32.053
38.53707 38.53250 38.53172 38.53151 4.00 38.53136 38.532
13.08617 13.08617 13.08617 13.08617 6.13 13.08617 13.086
23.03110 23.03109 23.03109 23.03109 6.06 23.03109 23.031

2
23.03110 23.03109 23.03109 23.03109 6.06 23.03109 23.031
32.05240 32.05239 32.05239 32.05239 6.04 32.05239 32.053
38.53138 38.53136 38.53136 38.53136 6.00 38.53136 38.532

This is expected since for this numerical scheme, the computed eigenvalues on each
refinement are very close to the extrapolated value, which affect the convergence rate.
However, we observe that they match with those from the literature.

On the other hand, Table 2 shows the computed eigenvalues when using the

P2
k-NED(2)

k+1 scheme, where we observe that an optimal rate of convergence is reached
for all choices of k. In this case, the deterioration of the convergence order for k = 2 is
not observed since the eigenvalues calculated with all possible decimal places always
remain at a sufficient distance from the extrapolated value. This suggests a superior

stability of the P2
k-NED(2)

k+1 scheme at higher orders.
In Figure 2, a comparison of the error behavior between the two schemes is ob-

served. We report curves for k = 1, 2 since for k = 0 the results are similar. Here, we
consider the relative errors eλi

, for i = 1, ..., 5, where

eλi :=
|λhi − λextri |
|λextri |

.

Also, we denote by eλi
(NED(1)

k ) and eλi
(NED(2)

k+1) the relative errors obtained using

P2
k-NED(1)

k and P2
k-NED(2)

k+1 schemes, respectively. It is clear that the slopes of the

methods behaves like O(h2(k+1)).
For completeness, in Figure 3 we depict the velocity field and the postprocessed

pressure on the square domain for the lowest computed eigenvalue. In Figure 4 we
present the postprocessed vorticity components for the first computed eigenfunction.

6.2. Test 2: Non-polygonal domain. In this experiment we take a curved
domain and approximate it by polygonal meshes. This leads to a variational crime,
which will affect the order of convergence. The domain for this experiment is the
unit circle Ω := {(x, y) ∈ R2 : x2 + y2 ≤ 1}, and in Figure 5 we show examples of
the meshes we consider to approximate this domain. We recall that N represents the
mesh resolution such that the number of elements is asymptotically 6N2.

First we present in Table 3 the results from approximating the eigenproblem using

the P2
k-NED(1)

k scheme. It is observed that, for the case k = 0 we have the desired



MIXED METHODS FOR THE STOKES SPECTRAL PROBLEM 21

Fig. 2. Test 1. Comparison of the eigenvalues error curves in the square domain using

P2
k-NED(1)

k and P2
k-NED(2)

k+1, for k = 1, 2.

Fig. 3. Test 1. Approximate velocity field uh (left) and postprocessed pressure ph (right),
corresponding to the first eigenvalue in the square domain.

convergence. However, for k > 0 we observe that the convergence remains at O(h2) '
O(dof−1), showing explicitly the effect of variational crime. This is also reflected in

Table 4, where despite applying the P2
k-NED(2)

k scheme, which contains more dofs, the
convergence does not improve for k > 0. However, the results obtained are are in good

agreement with those predicted by theory. The results from using the P2
k-NED(2)

k+1

scheme are described in Table 4, where similar rates of convergence are observed. We
further explore the results by presenting Figure 6 and 7. In Figure 6 we can observe
the velocity and postprocessed pressure for the fourth normal mode approximation,
while the vorticity components calculated by postprocessing are observed in Figure
7.

6.3. Test 3: Mixed boundary conditions. The aim of the following test is to
explore the performance of the proposed method in a more general eigenvalue problem.
To do this task, we consider the the boundary ∂Ω of our domain is separated into two
section by ∂Ω := ΓD∪ΓN , where ΓD and ΓN represents the part of the boundary where
we impose Dirichlet and Neumann boundary conditions, respectively. We assume that
both ΓD and ΓN have positive measure. With these definitions at hand, the problem
to consider is the following: Find λ ∈ R, the stress σ, the velocity u and the pressure
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Fig. 4. Test 1. Postprocessed vorticity components curl(uh)11 (left), curl(uh)12 (center) and
curl(uh)22 (right) corresponding to the first eigenvalue in the square domain.

Fig. 5. Test 2. Example of meshes used in the circular domain.

Table 3
Test 2. Lowest computed eigenvalues for polynomial degrees k = 0, 1, 2 using the P2

k-NED(1)
k

scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [26]

14.70187 14.69082 14.68695 14.68515 2.01 14.68198 14.68345
26.39800 26.38501 26.38046 26.37835 2.01 26.37463 26.37840

0
26.39800 26.38501 26.38046 26.37835 2.01 26.37463 26.37862
40.73553 40.71969 40.71396 40.71128 1.93 40.70625 40.71434
40.73553 40.71969 40.71396 40.71128 1.93 40.70625 40.71606
14.68868 14.68495 14.68364 14.68304 2.01 14.68197 14.68345
26.38672 26.37998 26.37763 26.37654 2.02 26.37464 26.37840

1
26.38672 26.37998 26.37763 26.37654 2.02 26.37464 26.37862
40.72530 40.71477 40.71113 40.70944 2.03 40.70651 40.71434
40.72530 40.71477 40.71113 40.70944 2.03 40.70651 40.71606
14.68871 14.68496 14.68365 14.68304 2.01 14.68361 14.68345
26.38673 26.37999 26.37763 26.37654 2.01 26.37680 26.37840

2
26.38673 26.37999 26.37763 26.37654 2.01 26.37680 26.37862
40.72516 40.71476 40.71112 40.70944 2.01 40.70647 40.71434
40.72516 40.71476 40.71112 40.70944 2.01 40.70647 40.71606

Fig. 6. Test 2. Approximate velocity field uh (left) and postprocessed pressure ph (right),
corresponding to the fourth eigenvalue in the unit circular domain.
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Table 4
Test 2. Lowest computed eigenvalues for polynomial degrees k= 0, 1, 2 using the P2

k-NED(2)
k+1

scheme.

k N = 20 N = 30 N = 40 N = 50 Order λextr [26]

14.82469 14.71768 14.69784 14.69090 2.01 14.68199 14.68345
26.77392 26.47427 26.41889 26.39951 2.02 26.37450 26.37840

0
26.77392 26.47427 26.41889 26.39951 2.02 26.37450 26.37862
41.56881 40.92423 40.80343 40.76105 2.01 40.70545 40.71434
41.56881 40.92423 40.80343 40.76105 2.01 40.70545 40.71606
14.68873 14.68496 14.68365 14.68304 2.02 14.68198 14.68345
26.38682 26.38000 26.37764 26.37655 2.03 26.37464 26.37840

1
26.38682 26.38000 26.37764 26.37655 2.03 26.37464 26.37862
40.72553 40.71483 40.71115 40.70945 2.05 40.70654 40.71434
40.72553 40.71483 40.71115 40.70945 2.05 40.70654 40.71606
14.68874 14.68497 14.68365 14.68304 2.02 14.68198 14.68345
26.38678 26.38000 26.37764 26.37655 2.02 26.37464 26.37840

2
26.38678 26.38000 26.37764 26.37655 2.02 26.37464 26.37862
40.72524 40.71478 40.71113 40.70945 2.01 40.70646 40.71434
40.72524 40.71478 40.71113 40.70945 2.01 40.70646 40.71606

Fig. 7. Test 1. Postprocessed vorticity components curl(uh)11 (left), curl(uh)12 (center) and
curl(uh)22 (right) corresponding to the fourth eigenvalue in the circular domain.

p such that 

σ − µcurl(u)− pJ = 0 in Ω,
curl(σ) = −λu in Ω,

p = −1

2
(σ : J) in Ω,

u = 0 on ΓD,
σs = 0 on ΓN ,

where s corresponds to the tangential component of the unitary vector on ΓN . In
what follows we will consider Ω := (0, 1)2 as computational domain. For this square,
we assume that the bottom is fixed and the rest of its sides are free of stress. We
observe from Table 5 that the computed eigenvalues are accurately recovered with our
both numerical schemes, with a clearly quadratic order of convergence. Moreover, our
extrapolated values are close to those presented on [33] for an alternative formulation
of the Stokes spectral problem. On the other hand, we present in Figures 8 and 9
plots of the velocity field, pressure and vorticity components associated to the third
eigenfunction of the problem with mixed boundary.

6.4. Test 4. A posteriori test on a non-convex domain. We end our
numerical test section with results for the proposed a posteriori estimator. To do
this task, we focus on simple eigenvalues of the spectrum of T . The computational
domain for this test is Ω := (−1, 1)×(−1, 1)\

(
(−1, 0)×(−1, 0)

)
and the only boundary
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Table 5
Test 3. Lowest computed eigenvalues using the P2

0-NED(1)
0 , and P2

0-NED(2)
1 , schemes in the

square domain with mixed boundary conditions.

scheme N = 20 N = 30 N = 40 N = 50 Order λextr [33]

2.46736 2.46738 2.46739 2.46739 2.14 2.46740 2.4674
6.24652 6.26420 6.27066 6.27372 1.91 6.27952 6.2799

P2
0-NED(1)

0
15.16639 15.18837 15.19693 15.20112 1.74 15.21010 15.2090
22.20329 22.20521 22.20584 22.20612 2.18 22.20657 22.2065
26.84469 26.91450 26.92896 26.93579 1.92 26.94869 26.9479
2.46824 2.46777 2.46761 2.46753 2.03 2.46740 2.4674
6.28434 6.28163 6.28065 6.28019 1.95 6.27935 6.2799

P2
0-NED(2)

1
15.23974 15.22297 15.21701 15.21423 1.98 15.20917 15.2090
22.27513 22.23705 22.22373 22.21756 2.03 22.20678 22.2065
27.04797 26.99278 26.97339 26.96439 2.01 26.94835 26.9479

Fig. 8. Test 3. Approximate velocity field uh (left) and postprocessed pressure ph (right),
corresponding to the third eigenvalue in the square domain with mixed boundary conditions.

condition is u = 0. Since the reentrant angle of this domain leads to a lack of regularity
for some eigenfunctions associated to T , our goal is to recover the optimal order of
convergence with the proposed estimator. The initial mesh for this test is depicted in
Figure 10.

It is well known that the regularity of the eigenfunctions in this geometry satisfy
2r ≥ 1.08, so that under uniform refinements, suboptimal error rates are expected
since s ≈ 2 min{r, k + 1} (see, for instance [32, 28]). The extrapolated value for this
experiment have been obtained through sufficiently fine meshing and least squares
fitting. We choose λ1 = 32.13183 as an exact solution, which is in good agreement
with the references above.

The adaptively refinement procedure is based on the blue-green marking strategy,
consisting of refining the triangle T that satisfy

ηT ≥ 0.5 max
T ′∈Th

ηT ′ .

In Table 6 we observe the behavior of the estimator η defined in (5.2) when the

families NED(1)
0 and NED(2)

1 are used, with 15 iterations of the adaptive refinement.
Note that |λ1−λ1h| ≈ Cdof−1.04 ≈ Ch2.08. We also note that the additional degrees of

freedom of the P2
0−NED(2)

1 scheme allow the method to be more efficient in the sense

that, the elements marked for refinement are fewer than those when using P2
0−NED

(1)
0 .

This is also observed in the intermediate meshes used in the adaptive algorithm shown
in Figure 12. The column corresponding to the effectivity |λ1 − λ1h|/η2 shows that
our estimator remains properly bounded above and below, away from zero.



MIXED METHODS FOR THE STOKES SPECTRAL PROBLEM 25

Fig. 9. Test 3. Postprocessed vorticity components curl(uh)11 (left), curl(uh)12 (center) and
curl(uh)22 (right) corresponding to the third eigenvalue in the square domain with mixed boundary
conditions.

Fig. 10. Test 4. Initial mesh on the L-shaped domain.

A graphical description of these results can be seen in Figure 11, where we can
observe the errors and the values of the estimator for each method. It is observed
that the errors behave similar to η2, i.e., they decay as O(h2), so the efficiency and
reliability are verified. Moreover, the plot includes a line with slope −1.0, which
corresponds to the optimal order of convergence for the proposed schemes. The slopes
of the lines obtained by a least squares fitting of the values computed with the adaptive
scheme are −1.04.
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Table 6
Test 4. Computed eigenfunction λ1h, error and effectivity indexes using the P2

0-NED(1)
0 and

P2
0-NED(2)

1 schemes with adaptively refinements.

scheme dof λ1h |λ1 − λ1h| η2 |λ1 − λ1h|/η2

P2
0-NED(1)

0

1181 30.19673 1.93509e+00 2.50851e+01 7.71413e-02
1399 31.01101 1.12082e+00 2.06562e+01 5.42608e-02
1975 31.33653 7.95304e-01 1.48616e+01 5.35140e-02
2919 31.60707 5.24757e-01 1.01735e+01 5.15805e-02
4471 31.75965 3.72184e-01 7.04846e+00 5.28036e-02
6561 31.88079 2.51042e-01 4.92335e+00 5.09900e-02
10023 31.98109 1.50742e-01 3.31763e+00 4.54366e-02
14067 32.00944 1.22386e-01 2.38015e+00 5.14196e-02
21599 32.05984 7.19859e-02 1.59321e+00 4.51830e-02
31619 32.08211 4.97245e-02 1.09533e+00 4.53967e-02
45401 32.09712 3.47087e-02 7.61922e-01 4.55541e-02
66797 32.10917 2.26548e-02 5.21796e-01 4.34171e-02
97183 32.11631 1.55191e-02 3.59593e-01 4.31573e-02
143721 32.12159 1.02378e-02 2.44116e-01 4.19381e-02
204461 32.12516 6.66500e-03 1.70746e-01 3.90346e-02

Order O(dof−1.04)
λ1 32.13183

P2
0-NED(2)

1

1907 33.05942 9.27595e-01 1.44740e+01 6.40871e-02
2103 33.23013 1.09830e+00 8.41858e+00 1.30462e-01
2347 33.29788 1.16605e+00 5.44523e+00 2.14142e-01
2575 33.34447 1.21264e+00 4.17494e+00 2.90457e-01
2893 33.31662 1.18480e+00 3.29619e+00 3.59443e-01
3609 32.96793 8.36099e-01 2.16033e+00 3.87023e-01
4677 32.66458 5.32752e-01 1.36450e+00 3.90438e-01
5559 32.58139 4.49556e-01 1.06559e+00 4.21885e-01
8325 32.41385 2.82018e-01 6.42697e-01 4.38804e-01
11651 32.34513 2.13299e-01 4.04288e-01 5.27590e-01
16179 32.27964 1.47810e-01 2.59997e-01 5.68505e-01
21025 32.24409 1.12260e-01 1.86314e-01 6.02532e-01
31091 32.20603 7.42023e-02 1.14587e-01 6.47564e-01
40873 32.18761 5.57772e-02 8.11620e-02 6.87233e-01
57171 32.17095 3.91252e-02 5.45027e-02 7.17859e-01

Order O(dof−1.04)
λ1 32.13183

Fig. 11. Test 4. Comparison between error, estimators and fit lines in the adaptive refinenment

using the lowest order NED(1)
0 and NED(2)

1 families.
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Fig. 12. Test 4. Adapted meshes associated to estimator η in the seventh, eleventh and last

iteration. Top row: P2
0-NED(1)

0 scheme with 10023, 45401 and 204461 degrees of freedom. Bottom

row: P2
0-NED(2)

0 with 4677, 16179 and 57171 degrees of freedom.
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