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Abstract: Exploring the relationship among multiple sets of data from one same group en-

ables practitioners to make better decisions in medical science and engineering. In this paper,

we propose a sparse collaborative learning (SCL) model, an optimization with double-sparsity

constraints, to process the problem with two sets of data and a shared response variable. It is

capable of dealing with the classification problems or the regression problems dependent on the

discreteness of the response variable as well as exploring the relationship between two datasets

simultaneously. To solve SCL, we first present some necessary and sufficient optimality condi-

tions and then design a gradient projection Newton algorithm which has proven to converge to

a unique locally optimal solution globally with at least a quadratic convergence rate. Finally,

the reported numerical experiments illustrate the efficiency of the proposed method.

Keywords: Sparse collaborative learning, double-sparsity, stationary point, gradient projection

Newton, convergence analysis, numerical experiment

1 Introduction

There are many scenarios where datasets from the same group can be collected from various sources.

Therefore, they differ but interact [14, 27, 30, 33]. For example, a researcher studying cancer

outcomes may collect gene expression data and copy number data from a group of patients. The

traditional approaches to do predictions are either merging two datasets or using two datasets

separately. Both ways ignore the fact that they are from different sources with different meanings

(e.g., gene expression and copy number). As stated in [26], exploring the relationship between

sources allows for extracting informative biomarkers and improving clinical outcome predictions.

Motivated by such practical applications, in this paper, we propose the following sparse collaborative

learning (SCL) problem:

min
θ1,θ2

1

n

[
a · `(θ1;X,y) + b · `(θ2;Z,y) +

c

2
‖Xθ1 − Zθ2‖2

]
=: f(θ1,θ2)

s.t. ‖θ1‖0 ≤ s1, ‖θ2‖0 ≤ s2,

(1.1)

where `(·) is a general loss function, X ∈ Rn×p1 , Z ∈ Rn×p2 are two datasets from two different

sources and y ∈ Rn is the shared response, n is the sample/subject size, and p1, p2 represent the

feature/variable sizes of two datasets. Here, ‖θ‖0 is the zero norm of θ, counting the number of

its nonzero elements, s1 � p1, s2 � p2 are two integers representing the prior information on

the upper bounds of the signal sparsity, a, b and c are positive parameters, and ‖ · ‖ represents

the Euclidean norm. SCL models have been applied into many real-world applications, such as

face recognition by using a mixture of synthetic and real images with dynamic weight [9], medical

diagnosis including schizophrenia, Alzheimer’s disease, or various neurocognitive phenotypes by

using genetic and imaging data [11, 38, 12].
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Two typical examples of ` will be investigated in this paper. When ` is the linear regression

loss,

`lin(θ;X,y) :=
1

2

n∑
i=1

(yi − 〈xi,θ〉)2,

SCL is called sparse collaborative regression (SCoRe [11]) usually working for the continuous re-

sponse y. Here, 〈x, z〉 is the inner product of two vectors x and z and xi is a column vector

corresponding the i-th row of X. SCoRe is a combination of linear regression and canonical corre-

lation analysis (CCA). The former makes predictions via employing two different types of datasets

and the latter explores the relationship between them. Examples of employing `lin include CoRe

[5], multi-task CoRe [38] and the models studied in [9, 12].

We note that the aforementioned models based on `lin aimed to process the continuous response

y. However, various real-world applications involve discrete responses, in particular for those in

classification problems including the severity of the disease, whether or not to die and to name

a few. Under such circumstances, linear regression-based models are unlikely to provide accurate

predictions and hence it is necessary to consider the logistic regression loss defined by,

`log(θ;X,y) :=

n∑
i=1

(
log (1 + exp〈xi,θ〉)− yi〈xi,θ〉

)
.

SCL with such a loss is called the sparse logistic collaborative regression (SLCoRe), which can

be used to deal with datasets with discrete response y. SLCoRe is a combination of logistic

regression and CCA, aiming at classifying the samples in each of the two datasets while exploring

the relationship between them. It is well-known that discrete responses are frequently involved in

classification problems, while most of the existing classification methods including support vector

machines [16, 34] and logistic regression [15, 22, 28, 29] only target one dataset. Very little work

makes predictions for multiple sets of data and explores the relationship among them at the same

time.

However, to accurately characterize the sparsity, it is suggested to impose the sparsity con-

straints directly instead of using the approximations/regularizations. For example, Beck and Eldar

[4] thoroughly studied a general sparsity-constrained optimization model and developed the famous

iterative hard thresholding algorithm, in the meanwhile, Bahmani et al. [2] and Plan et al. [22]

investigated the logistic regression model with sparsity constraints. After which there is a vast

body of work on developing optimization algorithms and understanding the properties of various

sparse estimators for the sparsity constrained optimization [28, 20, 21, 37, ?]. We emphasize that

all those work aimed at addressing applications with single datasets rather than multiple datasets.

It this paper, we study two typical examples of SCL: SLCoRe with ` = `log and SCoRe with

` = `lin. All results to be established are based on these two models. The main contributions of

the paper are summarized as follows:

I) We propose a unified framework, SCL, for the problems with discrete or continuous response

variables and two different sets of data. It can classify or predict the data in each dataset,

and explore the relationship between the two datasets. New model (1.1) exploits the sparsity

constraints directly, which enables to select a sufficiently small portion of informative features

in each dataset provided that s1 and s2 are small enough.
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II) We investigate the first-order necessary and sufficient optimality conditions (see Theorem 3.1

and Theorem 3.2) for SCL as well as the existence and the uniqueness of its solution (see

Theorem 3.3). One of the optimality conditions is associated with the α-stationary point seen

Definition 3.1 that allows for algorithmic design conveniently.

III) We develop a gradient projection Newton algorithm (GPNA) that combines the gradient

projection motivated by the α-stationary point and the Newton step to accelerate the con-

vergence. We prove that GPNA not only converges to a unique local minimizer of problem

(1.1) globally (see Theorem 4.1) but also has a quadratic convergence rate for SLCoRe and

termination within finite steps for SCoRe (see Theorem 4.2) under a mild assumption. These

nice convergence properties indicate that our proposed algorithm should behave excellently in

terms of high accuracy and speed, which is testified by its outstanding numerical performance.

We note that SCL problem (1.1) has a close link to the multi-model problem where multiple

models based on the learned data distributions are used to make predictions [10, 23, 31, 36]. In

contrast, SCL focuses on two groups of data not only for the prediction but also for exploring their

inter-group relationships. To this end, if two groups of data in the dataset are known, then SCL

with c = 0 (namely, no inter-group relationships are investigated) in problem (1.1) can be deemed

as a special case of the multi-model problem.

To end this section, we present the organization of this paper. The next section describes the

notation that will be employed through this paper and displays some properties of the objective

function of problem (1.1). In section 3, we establish the first-order necessary and sufficient opti-

mality conditions as well as the existence and the uniqueness of the solutions to problem (1.1). The

algorithm GPNA and its convergence properties are provided in section 4. Numerical experiments

on synthetic and real data are reported in section 5, and some concluding remarks are given in the

section 6.

2 Preliminaries

Before giving the main results, we define some notations that will be employed throughout the

paper. Let [p] := {1, 2, . . . , p}, [n] := {1, 2, . . . , n}. We denote sparse set Σp
s in Rp by

Σp
s := {θ ∈ Rp : ‖θ‖0 ≤ s},

where s � p is an integer. For a vector θ, denote its neighborhood with a radius δ by N(θ, δ) :=

{u ∈ Rp : ‖θ−u‖ < δ}, and its support set by Γ(θ) := {i ∈ [p] : θi 6= 0}. The complement set of Γ is

written as Γ. For a given set T , its spanned subspace of Rp is denoted by Rp
T := {θ ∈ Rp : Γ(θ) ⊆ T}.

Let θΓ be the subvector of θ indexed on Γ. We merge two vectors θ1 and θ2 as a single column

vector via (θ1;θ2) := (θ>1 θ
>
2 )>. Finally, for a matrix A ∈ Rn×p, let λmax(A) and λmin(A) present

its largest and smallest eigenvalue, respectively, and ATJ denotes the sub-matrix containing rows

indexed by T and columns indexed by J . In particular, AT : := AT [p] and A:J := A[n]J .

To characterize the projection of θ onto Σp
s, we denote θ↓i the ith largest element in magnitude

of θ. Based on this, projection ΠΣp
s
(θ) that is given by

ΠΣp
s
(θ) := argmin

u∈Σp
s

‖θ − u‖
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can be derived as follows: If θ↓s = 0 or θ↓s > θ↓s+1, then it is unique, i.e.,

(ΠΣp
s
(θ))i =

θi, | θi |≥ θ↓s,

0, | θi |< θ↓s.

If there are more than one equal to θ↓s, we can choose any one of them and let the rest be 0. If

θ↓s = θ↓s+1 6= 0, then

(ΠΣp
s
(θ))i =


θi, | θi |> θ↓s,

θi or 0, | θi |= θ↓s,

0, | θi |< θ↓s.

For example, for θ = {2, 4, 3,−3, 1} and Σ5
2 = {u ∈ R5 : ‖u‖0 ≤ 2}, we have ΠΣ5

2
(θ) = (0, 4, 3, 0, 0)>

or (0, 4, 0,−3, 0)>.

Below are some concepts that will be used in this paper.

Definition 2.1 (s-regularity [4]). A matrix A ∈ Rn×p is called s-regular if its any s columns are

linearly independent.

Definition 2.2 (Strong smoothness [13]). If function f is continuously differentiable, then for any

θ,d ∈ Rp, we say that function f is strongly smooth on Rp with a parameter Lf > 0 if it holds that

f(θ + d) ≤ f(θ) + 〈∇f(θ),d〉+ (Lf/2)‖d‖2.

Definition 2.3 (Restricted strong convexity [2, 37, 1, 25]). If function f is twice continuously

differentiable, then for any θ,d ∈ Σp
r satisfying θ + d ∈ Σp

r, we say that function f is r-restricted

strongly convex on Σp
r with a parameter lf > 0 if it holds that

f(θ + d) ≥ f(θ) + 〈∇f(θ),d〉+ (lf/2)‖d‖2 or 〈d,∇2f(θ)d〉 ≥ (lf/2)‖d‖2.

If these conditions hold for lf = 0, then f is called r-restricted convex on Σp
r.

We now give some properties of f in problem (1.1), including the strong smoothness and re-

stricted strong convexity as well as the Lipschitz continuity of its gradient and Hessian matrix.

Proposition 2.1. Let θ := (θ1;θ2) and ` = `log. Objective function f in problem (1.1) has the

following properties.

1) It is convex, twice continuously differentiable and strongly smooth with parameter Lf given

by

Lf := λmax

(
1

n

[
(a/4 + c)X>X −cX>Z
−cZ>X (b/4 + c)Z>Z

])
,

which indicates that ∇f is Lipschitz continuous with parameter Lf for any θ and θ′,

‖∇f(θ)−∇f(θ′)‖ ≤ Lf‖θ − θ′‖.

2) Its Hessian matrix ∇2f(θ) takes the form of

∇2f(θ) =
1

n

[
X>(aD1 + cI)X −cX>Z
−cZ>X Z>(bD2 + cI)Z

]
,
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where I is the identity matrix, D1 and D2 are two diagonal matrices with

(D1)ii =
exp〈xi,θ1〉

(1 + exp〈xi,θ1〉)2
, i ∈ [n],

(D2)ii =
exp〈zi,θ2〉

(1 + exp〈zi,θ2〉)2
, i ∈ [n].

Moreover, ∇2f(·) is Lipschitz continuous with constant Cf , namely,

‖∇2f(θ)−∇2f(θ′)‖ ≤ Cf‖θ − θ′‖, (2.1)

for any θ and θ′, where

Cf :=
3
√

2

n
max

{
amax

i∈[n]
‖xi‖1λmax(X>X), bmax

i∈[n]
‖zi‖1λmax(Z>Z)

}
.

3) If matrix [X Z] is (s1 + s2)-regular, then it is (s1 + s2)-restricted strongly convex on Σp1+p1
s1+s2

with a positive parameter lf given by

lf := min
|T |≤s1+s2

λmin

(
c

n

[
X>X −X>Z
−Z>X Z>Z

]
TT

)
. (2.2)

Proof. 1) It is easy to see that f is convex and twice continuously differentiable. Since t/(1 + t)2 ≤
1/4 for any t ≥ 0, it follows λmax(∇2f(θ)) ≤ Lf for any θ ∈ Rp1+p2 . This can show that the

gradient of f is Lipschitz continuous with parameter Lf immediately.

2) It follows from [28, Lemma A.3] that∇2`(θ1;X) and both∇2`(θ2;Z) are Lipschitz continuous

with constants

C1 := (3/n) max
i∈[n]
‖xi‖1λmax(X>X), C2 := (3/n) max

i∈[n]
‖zi‖1λmax(Z>Z).

Then we have

‖∇2f(θ)−∇2f(θ′)‖ = ‖a∇2`(θ1;X) + b∇2`(θ2;Z)− a∇2`(θ′1;X)− b∇2`(θ′2;Z)‖

≤ aC1‖θ1 − θ′1‖+ bC2‖θ2 − θ′2‖

≤ max{aC1, bC2}(‖θ1 − θ′1‖+ ‖θ2 − θ′2‖)

≤
√

2 max{aC1, bC2}‖θ − θ′‖.

3) If matrix [X Z] is (s1 + s2)-regular, then so is matrix [X − Z]. Note that

∇2f(θ) =
1

n

[
aX>D1X 0

0 bZ>D2Z

]
+
c

n

[
X>X −X>Z
−Z>X Z>Z

]
=: A+B.

Clearly, both A and B are positive semi-definite. Moreover, B = (c/n)[X −Z]>[X −Z]. According

to the (s1 + s2)-regular of the matrix [X Z], we can get BTT is positive definite. Therefore, for any

d := (d1; d2) 6= 0 with ‖d1‖0 ≤ s1 and ‖d2‖0 ≤ s2, we have

〈d,∇2f(θ)d〉 = 〈d, (A+B)d〉 ≥ 〈d, Bd〉 ≥ lf‖d‖2 > 0.

This displays that the (s1 + s2)-restricted strong convexity of f(θ) on Σp1+p2
s1+s2 . The proof is

complete.
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We note that the classical logistic regression which has been shown to be only strictly convex

instead of being restricted strongly convex even though the assumption of the regularity of the

sample matrix is imposed. However, the objective function of SLCoRe can be restricted strongly

convex if the sample matrix is regular. In addition, if we only have one dataset, SLCoRe will

degenerate into the classical sparse logistic regression. At this point, see the example in [28],

similar results can be obtained. Similarly, for the objective function of SCoRe, we easily obtain the

following results.

Proposition 2.2. Let θ := (θ1;θ2) and ` = `lin. Objective function f in (1.1) is convex, twice

continuously differentiable and has Hessian matrix ∇2f(θ) in the form of

∇2f(θ) =
1

n

[
(a+ c)X>X −cX>Z
−cZ>X (b+ c)Z>Z

]
=: Q.

Moreover, it is strongly smooth with parameter Lf := λmax (Q) and thus ∇f is Lipschitz continuous

with parameter Lf . If [X Z] is (s1 + s2)-regular, then it is (s1 + s2)-restricted strongly convex on

Σp1+p1
s1+s2 with a positive parameter lf > 0 given by

lf := min
|T |≤s1+s2

λmin (QTT ) . (2.3)

It is worth mentioning that the main theorems in the sequel are established based on the

assumption of s-regularity. So, to end this section, we would like to see which types of matrices [X Z]

could satisfies s-regularity. To proceed with that, we introduce the famous Restricted Isometry

Property (RIP, [6]). A matrix Φ ∈ Rn×p is said to satisfy s-order RIP, if there exists a constant

δs ∈ [0, 1) such that

(1− δs)‖θ‖2 ≤ ‖Φθ‖2 ≤ (1 + δs)‖θ‖2

for all vectors θ ∈ Σp
s. This definition is equivalent to

(1− δs) ≤ λmin(Φ>:TΦ:T ) ≤ λmax(Φ>:TΦ:T ) ≤ (1 + δs), ∀ |T | ≤ s.

Therefore, matrices satisfying s-order RIP must satisfy s-regularity. On the other hand, it has

proven in [7, 3] that random Gaussian matrix, random binary matrix, and Fourier matrix satisfy

s-order RIP with a high probability when s is small enough. Hence, these matrices also satisfy

s-regularity.

3 Optimality Conditions

This section establishes the optimality conditions of SCL being useful for the algorithmic develop-

ment, before which, for notational convenience, we define

θ := (θ1;θ2),

∇if(θ) := ∇θi
f(θ), i = 1, 2,

Σi := Σpi
si , i = 1, 2,

Σ := {θ ∈ Rp1+p2 : θ1 ∈ Σ1,θ2 ∈ Σ2},

s := s1 + s2.

(3.1)
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Similar rules are also applied for θ∗1 and θ∗2. Based on these notation, we now establish the first-order

necessary and sufficient optimality conditions for problem (1.1).

Theorem 3.1. Let θ∗ be a point that satisfies

(∇jf(θ∗))i = 0, i ∈ Γ(θ∗j ), if ‖θ∗j‖0 = sj ,

∇jf(θ∗) = 0, if ‖θ∗j‖0 < sj ,

(3.2)

for j = 1, 2. Then θ∗ is a local minimizer of (1.1) if and only if it satisfies (3.2).

Proof. Necessity. Based on [24, Theorem 6.12], a local minimizer θ∗ of the problem (1.1) must

satisfy that −∇f(θ∗) ∈ NΣ(θ∗) = NΣ1(θ∗1) × NΣ2(θ∗2), where NΣ(θ∗) is the normal cone of Σ at

θ∗ and the equality is by [24, Theorem 6.41]. Then the explicit expression (see [20, Table 1]) of

normal cone NΣj (θ
∗
j ) enable us to derive (3.2) immediately.

Sufficiency. Let θ∗ satisfy (3.2). The convexity of f leads to

f(θ) ≥ f(θ∗) + 〈∇1f(θ∗),θ1 − θ∗1〉+ 〈∇2f(θ∗),θ2 − θ∗2〉.

If there is a δ > 0 such that, for any θ ∈ Σ ∩N(θ∗, δ),

〈∇1f(θ∗),θ1 − θ∗1〉 = 〈∇2f(θ∗),θ2 − θ∗2〉 = 0, (3.3)

then the conclusion can be made immediately. Therefore, we next to show (3.3). In fact, by (3.2),

we note that ∇jf(θ∗) = 0 if ‖θ∗j‖0 < sj , which indicates it suffices to consider the worst case of

‖θ∗j‖0 = sj , j = 1, 2. Under such a case, we define

δ := min
j=1,2

min
i∈Γ(θ∗

j )
| (θ∗j )i | .

Then for any θ ∈ N(θ∗, δ) ∩ Σ, we have

∀ i ∈ Γ(θ∗j ), | (θj)i | = | (θj)
∗
i − (θj)

∗
i + (θj)i |

≥ | (θj)
∗
i | − | (θj)

∗
i − (θj)i |

≥ | (θj)
∗
i | −‖θ∗j − θj‖

> | (θj)
∗
i | −δ

≥ 0.

The above relationship means that i ∈ Γ(θ∗j ) (i.e. (θ∗j )i 6= 0 ) implies |(θj)i| > 0 (i.e. (θj)i 6= 0),

which leads to Γ(θ∗j ) ⊆ Γ(θj). This by ‖θj‖0 ≤ sj = ‖θ∗j‖0 = |Γ(θ∗j )| allows us to yield that

Γ(θ∗j ) = Γ(θj), j = 1, 2, ∀ θ ∈ N(θ∗, δ) ∩ Σ.

Using the above fact and (3.2) derives that

〈∇jf(θ∗),θj − θ∗j 〉 = 〈(∇jf(θ∗))Γ(θ∗
j ), (θj − θ∗j )Γ(θ∗

j )〉 = 0.

The proof is complete.

7



Based on Theorem 3.1, however, the necessary and sufficient optimality conditions (3.2) mean

that there is no useful information for the case i /∈ Γ(θ∗j ) when ‖θ∗j‖0 = sj . So, we introduce the

concept of the α-stationary point of (1.1).

Definition 3.1. We say that θ∗ is an α-stationary point of problem (1.1) if there exists an α > 0

such that

θ∗1 ∈ ΠΣ1(θ∗1 − α∇1f(θ∗)), θ∗2 ∈ ΠΣ2 (θ∗2 − α∇2f (θ∗)) .

If there is only one variable, the definition of the α-stationary points is the same as that in

[4, 20] which allows us to derive its explicit expression as follows.

Lemma 3.1. For a given α > 0, the point θ∗ is an α-stationary point of problem (1.1) if and only

if for j = 1, 2, it satisfies

α(∇jf(θ∗))i


= 0, i ∈ Γ(θ∗j ),

≤ (θ∗)↓s, i ∈ Γ(θ∗j ),

if ‖θ∗j‖0 = sj ,

∇jf(θ∗) = 0, if ‖θ∗j‖0 < sj .

(3.4)

Comparing conditions (3.2) and (3.4), the latter provides more information for the case of

i ∈ Γ(θ∗j ). It can be clearly seen that the latter is a stronger condition and suffices to the former.

The following result reveals the relationships among the α-stationary point and the global/local

minimizers of problem (1.1).

Theorem 3.2. Let θ∗ be an α-stationary point of problem (1.1), then it is a local minimizer.

Furthermore, if ‖θ∗1‖0 < s1, ‖θ∗2‖0 < s2, then it is also a global minimizer. Conversely, if θ∗ is a

global minimizer of problem (1.1), then it is an α-stationary point with 0 < α < 1/Lf .

Proof. Since condition (3.4) imply (3.2) and a point satisfying (3.2) is a local minimizer by Theorem

3.1, an α-stationary point of (1.1) is a local minimizer.

Conversely, suppose that a global minimizer θ∗ of problem (1.1) is not an α-stationary point

with 0 < α < 1/Lf , that is, there exists η∗1 6= θ∗1 or η∗2 6= θ∗2 such that

η∗1 ∈ ΠΣ1 (θ∗1 − α∇1f (θ∗)) or η∗2 ∈ ΠΣ2 (θ∗2 − α∇2f (θ∗)) .

Without loss of any generality, we have both of the above conditions. Then

‖η∗j − θ∗j + α∇jf(θ∗)‖2 ≤ ‖θ∗j − θ∗j + α∇jf(θ∗)‖2, j = 1, 2,

by the definition of projection Π(·), which implies

〈η∗j − θ∗j ,∇jf(θ∗)〉 ≤ −(1/2α)‖η∗j − θ∗j‖2, i = 1, 2.

Using this condition and the strong smoothness of f results in

f(η∗) ≤ f(θ∗) + 〈∇f(θ∗),η∗ − θ∗〉+ (Lf/2)‖η∗ − θ∗‖2

≤ f(θ∗) + (Lf/2− 1/(2α)) ‖η∗ − θ∗‖2 < f(θ∗),

where the last inequality is from 0 < α < 1/Lf . The above condition contradicts with the optimality

of θ∗. So θ∗ is an α-stationary point with 0 < α < 1/Lf . The proof is complete.
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To end this section, we would like to see the existence and uniqueness of solutions to problem

(1.1), which is revealed by the following theorem.

Theorem 3.3. If matrix [X Z] is s-regular, then the global minimizer of problem (1.1) exists, and

the local minimizers are finitely many and each of them is unique.

Proof. Based on our notation Rpj
Tj

= {θj ∈ Rpj : Γ(θj) ⊆ Tj} , we note that θj ∈ Rpj
Tj

implies

|Γ(θj)| ≤ |Tj |, j = 1, 2. Therefore, original problem (1.1) is equivalent to

min
θ1,θ2

f(θ1,θ2)

s.t. θ1 ∈ Rp1
T1
, ∀ |T1| = s1,

θ2 ∈ Rp2
T2
, ∀ |T2| = s2.

This problem is clearly equivalent to

min
|T1|=s1,|T2|=s2

{
min
θ1,θ2

f(θ1,θ2), s.t. θ1 ∈ Rp1
T1
, θ2 ∈ Rp2

T2

}
. (3.5)

If matrix [X Z] is s-regular, then f is s-restricted strongly convex on Σp1+p2
s = Σp1+p2

s1+s2 by Propo-

sition 2.1 or Proposition 2.2, and hence it is s-restricted strongly convex on Rp1
T1
× Rp2

T2
due to

Rp1
T1
× Rp2

T2
⊆ Σp1+p2

s1+s2 .

It follows from [19, Lemma 6] that the inner program admits a unique global minimizer denoted

by (θ∗1(T1),θ∗2(T2)). Note that T1 ⊆ [p1] and T2 ⊆ [p2]. Thus there are finitely many T1 and T2 such

that | T1 |= s1 and | T2 |= s2, and so are the inner programs. This indicates that (θ∗1(T1),θ∗2(T2))

is finitely many. To derive the global minimizer of (3.5), we only pick one (θ∗1(T1),θ∗2(T2)) that

makes the objective function value of (3.5) minimal. Therefore, the global minimizers exist.

We next show that any local minimizer θ∗ is unique. To proceed with that, denote δ :=

min{δ1, δ2} where

δj :=

+∞, θ∗j = 0,

mini∈Γ(θ∗
j ) | (θ∗j )i |, θ∗j 6= 0,

j = 1, 2.

Clearly, δ1, δ2 > 0 and hence δ > 0. Then, similar reasoning allows us to derive (3.3) for any

θ ∈ Σ ∩N(θ∗, δ). This and f being s-restricted strongly convex lead to

f(θ) ≥ f(θ∗) + (lf/2)‖θ − θ∗‖2.

The above condition indicates θ∗ is the unique global minimizer of problem min{f(θ) : θ ∈ Σ ∩
N(θ∗, δ)}, namely, θ∗ is the unique local minimizer of problem (1.1). The proof is complete.

4 Gradient Projection Newton Algorithm

In this section, we propose the gradient projection Newton algorithm (GPNA) for problem (1.1).

Again, for notational simplicity, we define some notations

uk := (uk
1; uk

2), θk := (θk
1;θk

2),

Γk := Γ(uk), Hk := ∇2f(uk),

θk(α) := (θk
1(α);θk

2(α)), θk
j (α) ∈ ΠΣj (θ

k
j − α∇jf(θk)), j = 1, 2.

9



Based on the notation in (3.1), we actually have

θk(α) ∈ ΠΣ(θk − α∇f(θk)). (4.1)

The algorithmic framework of GPNA summarized in Algorithm 1 consists of two major compo-

nents. The first one is based on the two projected gradient steps, which enforces two variables to

satisfy the sparsity constraints. The second part adopts a Newton step to speed up the convergence.

However, the Newton step is only performed when one of the following conditions is satisfied,

Condition 1) Γ(θk
1) = Γ(uk

1), Γ(θk
2) = Γ(uk

2),

Condition 2) ‖∇1f(uk)‖ < ε, Γ(θk
2) = Γ(uk

2),

Condition 3) ‖∇2f(uk)‖ < ε, Γ(θk
1) = Γ(uk

1),

Condition 4) ‖∇1f(uk)‖ < ε, ‖∇2f(uk)‖ < ε,

(4.2)

where ε > 0 is a given tolerance.

Algorithm 1 GPNA: Gradient Projection Newton Algorithm

Require: Initialize θ0. Let 0 < σ, 0 < ε, 0 < α0 ≤ 1, 0 < γ < 1, 0 < ε < tol0 and set k ⇐ 0.

1: while tolk > ε do

2: Gradient projection: Find the smallest integer qk = 0, 1, · · · such that

3: f(θk(α0γ
qk)) ≤ f(θk)− (σ/2)‖θk(α0γ

qk)− θk‖2.

4: Set αk = α0γ
qk , uk = θk(αk) and θk+1 = uk.

5: if one of the conditions in (4.2) is satisfied then

6: Newton step: If the following equations are solvable

7: Hk
ΓkΓk

(vk
Γk
− uk

Γk
) = −(∇f(uk))Γk

, vk
Γk

= 0, (4.3)

8: and the solution vk satisfies

9: f(vk) ≤ f(uk)− (σ/2)‖vk − uk‖2, (4.4)

10: then set θk+1 = vk.

11: end if

12: Compute tolk := ‖(∇f(θk+1))Γk
‖ and set k := k + 1.

13: end while

14: Output the solution θk.

Remark 4.1. We have some comments on the halting condition and computational complexity for

GPNA in Algorithm 1.

• One can discern that if θk+1 = uk, then θk+1
Γk

= 0. If θk+1 = vk, then the updating rule (4.3)

for vk indicates that

Γ(vk) ⊆ Γk = Γ(uk), (4.5)

10



which also implies θk+1
Γk

= 0. Now suppose tolk = 0, i.e., (∇f(θk+1))Γk
= 0. Then θk+1

satisfies (3.2) and thus is a local minimizer of problem (1.1). Therefore, it makes sense to

terminate the algorithm when tolk < ε.

• We note that the calculations of ΠΣ1 ,ΠΣ2 and gradient ∇f dominate the computation for

the gradient projection step. And these three terms are easy to calculate and their total

computational complexity is about O(n(p1 + p2)). For the Newton step, if matrix [X Z] is s-

regular, then the inverse of Hk
ΓkΓk

exists due to | Γk |≤ s, which means that every Newton step

is well defined. Moreover, the worst-case computational complexity of deriving vk is about

O(s3 + ns2). Overall, the entire computational complexity of the kth iteration of Algorithm 1

is O(s3 +ns2 + qkn(p1 + p2)). We prove that αk is bounded by upper and lower bounds. If we

know the strong smooth parameter Lf of the objective function f , then qk may be taken as 1

or a small positive integer.

4.1 Global convergence

Before establishing the main convergence results, we define a constant α by

α := min
{

1, γ(σ + Lf )−1
}
,

which is a positive scalar. We first need the following lemma.

Lemma 4.1. Let {θk} be the sequence generated by GPNA. The following statements are true.

1) For any 0 < α ≤ 1/(σ + Lf ), it holds that

f(θk(α)) ≤ f(θk)− (σ/2)‖θk(α)− θk‖2, (4.6)

and thus infk≥0{αk} ≥ α > 0.

2) {f(θk)} is a non-increasing sequence and

lim
k→∞

‖uk − θk‖ = lim
k→∞

‖θk+1 − θk‖ = 0.

3) Any accumulating point of sequence {θk} is an α-stationary point with 0 < α ≤ α of problem

(1.1).

Proof. 1) It follows from (4.1) that θk(α) ∈ ΠΣ(θk − α∇f(θk)) and thus

‖θk(α)− (θk − α∇f(θk))‖2 ≤ ‖θk − (θk − α∇f(θk))‖2,

which results in

2α〈∇f(θk),θk(α)− θk〉 ≤ −‖θk(α)− θk‖2.

This and the strong smoothness of f with constant Lf derive that

f(θk(α)) ≤ f(θk) + 〈∇f(θk),θk(α)− θk〉+ (Lf/2)‖θk(α)− θk‖2

≤ f(θk)− (1/(2α)− (Lf/2))‖θk(α)− θk‖2

≤ f(θk)− (σ/2)‖θk(α)− θk‖2,

11



where the last inequality is from 0 < α ≤ 1/(σ +Lf ). Invoking the Armijo-type step size rule, one

has αk ≥ γ/(σ + Lf ), which by αk ≤ 1 proves the desired assertion.

2) By (4.6) and uk = θk(αk), we have

f(uk) ≤ f(θk)− (σ/2)‖uk − θk‖2. (4.7)

By the framework of Algorithm 1, if θk+1 = uk, then the above condition implies,

f(θk+1) ≤ f(θk)− (σ/2)‖θk+1 − θk‖2.

If θk+1 = vk, then we obtain

f(θk+1) = f(vk) ≤ f(uk)− (σ/2)‖θk+1 − uk‖2

≤ f(θk)− (σ/2)‖uk − θk‖2 − (σ/2)‖θk+1 − uk‖2

≤ f(θk)− (σ/4)‖θk+1 − θk‖2,

where the second and last inequalities used (4.7) and a fact ‖a+b‖2 ≤ 2‖a‖2 +2‖b‖2 for all vectors

a and b. Both cases lead to

f(θk+1) ≤ f(θk)− (σ/4)‖θk+1 − θk‖2,

f(θk+1) ≤ f(θk)− (σ/2)‖uk − θk‖2.
(4.8)

Therefore, {f(θk)} is non-increasing, which by (4.8) and f ≥ 0 yields∑
k≥0

max{(σ/4)‖θk+1 − θk‖2, (σ/2)‖uk − θk‖2}

≤
∑
k≥0

[
f(θk)− f(θk+1)

]
= f(θ0)− lim

k→∞
f(θk+1) ≤ f(θ0).

The above condition suffices to limk→∞ ‖θk+1 − θk‖ = limk→∞ ‖uk − θk‖ = 0.

3) Let θ∗ be any accumulating point of {θk}. Then there exists a subset M of {0, 1, 2, . . .} such

that limk(∈M)→∞ θk = θ∗. This further implies limk(∈M)→∞ uk = θ∗ by applying 2). In addition,

as stated in 1), we have {αk} ⊆ [α, 1], which indicates that one can find a subsequence K of M

and a scalar α∗ ∈ [α, 1] such that {αk : k ∈ K} → α∗. Overall, we have

lim
k(∈K)→∞

θk = lim
k(∈K)→∞

uk = θ∗, lim
k(∈K)→∞

αk = α∗ ∈ [α, 1]. (4.9)

Let ηk := θk − αk∇f(θk). The framework of Algorithm 1 implies

uk ∈ ΠΣ(ηk), lim
k(∈K)→∞

ηk = θ∗ − α∗∇f(θ∗) =: η∗. (4.10)

The first condition means uk ∈ Σ for any k ≥ 1. Note that Σ is closed and θ∗ is the accumulating

point of {uk} by (4.9). Therefore, θ∗ ∈ Σ, which results in

min
θ∈Σ
‖θ − η∗‖ ≤ ‖θ∗ − η∗‖. (4.11)
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If ‘<’ holds in the above condition, then there is an ε0 > 0 such that

‖θ∗ − η∗‖ − ε0 = min
θ∈Σ
‖θ − η∗‖

≥ min
θ∈Σ

(‖θ − ηk‖ − ‖ηk − η∗‖)

= ‖uk − ηk‖ − ‖ηk − η∗‖,

where the last equality is from (4.10). Taking the limit of both sides of the above condition along

k(∈ K) → ∞ yields ‖θ∗ − η∗‖ − ε0 ≥ ‖θ∗ − η∗‖ by (4.9) and (4.10), a contradiction with ε0 > 0.

Therefore, we must have the equality holds in (4.11), showing that

θ∗ ∈ ΠΣ(η∗) = ΠΣ (θ∗ − α∗∇f(θ∗)) .

The above relation means the conditions in (3.4) hold for α = α∗, then these conditions must hold

for any 0 < α ≤ α due to α ≤ α∗ from (4.9), namely,

θ∗ ∈ ΠΣ (θ∗ − α∇f(θ∗)) ,

displaying that θ∗ is an α-stationary point of problem (1.1), as desired. The proof is complete.

The above lemma allows us to conclude that the whole sequence converges.

Theorem 4.1. Let {θk} be the sequence generated by GPNA. Then the whole sequence converges

to a unique local minimizer of (1.1) if [X Z] is s-regular.

Proof. As shown in Lemma 4.1, {θk} ⊆ {θ : f(θ) ≤ f(θ0),θ ∈ Σ} is a bounded set due to s-

restricted strong convexity of f from the s-regularity of [X Z]. Therefore, one can find a subsequence

of {θk} that converges to α-stationary point θ∗ with 0 < α ≤ α of problem (1.1). Recall that an

α-stationary point θ∗ is also a local minimizer by Theorem 3.2, which by Theorem 3.3 indicates

that θ∗ is unique if [X Z] is s-regular. In other words, θ∗ is an isolated local minimizer of problem

(1.1). Finally, it follows from θ∗ being isolated, [18, Lemma 4.10] and limk→∞ ‖θk+1 − θk‖ = 0

by Lemma 4.1 that the whole sequence converges to the unique local minimizer, θ∗. The proof is

complete.

4.2 Convergence rate

This part aims to establish the convergence rate of GPNA when the sequence falls into a local area

of its limiting point. Before the main result, we claim the following facts.

Lemma 4.2. Suppose [X Z] is s-regular. Let {θk} be the sequence generated by GPNA and θ∗ be

its limit. The following results hold for sufficiently large k.

1) The support set of θ∗ can be identified by

Γ(θ∗j )


⊆ (Γ(θk

j ) ∩ Γ(uk
j )), if ‖θ∗j‖0 < sj ,

≡ Γ(θk
j ) ≡ Γ(uk

j ), if ‖θ∗j‖0 = sj ,

j = 1, 2. (4.12)
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2) The Newton step is always admitted if we set σ ∈ (0, lf/2).

Proof. 1) If ‖θ∗j‖0 = sj , then by θk
j → θ∗j ,u

k
j → θ∗j and ‖θk

j ‖0 ≤ sj , ‖uk
j ‖0 ≤ sj , we must have

Γ(θ∗j ) ≡ Γ(θk
j ) ≡ Γ(uk

j ) for sufficiently large k. If ‖θ∗j‖0 < sj , similar reasoning allows for deriving

Γ(θ∗j ) ⊆ Γ(θk
j ) and Γ(θ∗j ) ⊆ Γ(uk

j ).

2) By Theorem 4.1, the limiting point, θ∗, is a local minimizer of problem (1.1). Therefore,

it satisfies (3.2) from Theorem 3.1. We first conclude that for sufficiently large k, one of the four

conditions in (4.2) must be satisfied. In fact, there are four cases for θ∗ and each case can imply

one condition in (4.2) as follows:

Case 1) ‖θ∗1‖0 = s1, ‖θ∗2‖0 = s2 =⇒ Condition 1),

Case 2) ‖θ∗1‖0 < s1, ‖θ∗2‖0 = s2 =⇒ Condition 2),

Case 3) ‖θ∗1‖0 = s1, ‖θ∗2‖0 < s2 =⇒ Condition 3),

Case 4) ‖θ∗1‖0 < s1, ‖θ∗2‖0 < s2 =⇒ Condition 4).

We now show them one by one. The Lipschitz continuity of ∇f indicates that

max{‖∇jf(uk)−∇jf(θ∗)‖, ‖(∇f(uk))Γk
− (∇f(θ∗))Γk

}

≤ ‖∇f(uk)−∇f(θ∗)‖ ≤ Lf‖uk − θ∗‖.
(4.13)

The relation of Case 1) ⇒ Condition 1) can be derived by (4.12) immediately. For Case 2), we

have Γ(θk
2) ≡ Γ(uk

2) by (4.12) and

‖∇1f(uk)‖ = ‖∇1f(uk)−∇1f(θ∗)‖ (by (3.2))

≤ Lf‖uk − θ∗‖ (by (4.13))

≤ ε. (by uk → θ∗)

Therefore, Case 2) ⇒ Condition 2). Similarly, we can show the last two relations.

Next, since [X Z] is s-regular, Hk
ΓkΓk

is non-singular, which means that the equations (4.3) are

solvable. Finally, we show the inequality (4.4) is true when σ ∈ (0, lf/2). In fact, the conditions

(4.12) and (3.2) enable to derive

(∇f(θ∗))Γk
= 0, (4.14)

for sufficiently large k. Then it follows from (4.3) that

‖vk − uk‖ = ‖vk
Γk
− uk

Γk
‖ (by (4.5))

= ‖(Hk
ΓkΓk

)−1(∇f(uk))Γk
‖ (by (4.3))

≤ (1/lf )‖(∇f(uk))Γk
‖ (by (2.2) or (2.3))

= (1/lf )‖(∇f(uk))Γk
− (∇f(θ∗))Γk

‖ (by (4.14))

≤ (Lf/lf )‖uk − θ∗‖ → 0. (by (4.13))
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The above condition indicates that ‖vk − uk‖ → 0, resulting in

o(‖vk − uk‖2) ≤ (lf/4)‖vk − uk‖2, (4.15)

for sufficiently large k. Now, we have the following chain of inequalities,

2f(vk)− 2f(uk) = 2〈∇f(uk),vk − uk〉+ 2o(‖vk − uk‖2)

+ 〈∇2f(uk)(vk − uk),vk − uk〉 (by Taylor expansion)

= 2〈(∇f(uk))Γk
, (vk − uk)Γk

〉+ 2o(‖vk − uk‖2)

+ 〈Hk
ΓkΓk

(vk − uk)Γk
, (vk − uk)Γk

〉 (by (4.5))

= −〈Hk
ΓkΓk

(vk − uk)Γk
, (vk − uk)Γk

〉+ 2o(‖vk − uk‖2) (by (4.3))

≤ −lf‖(vk − uk)Γk
‖2 + o(‖vk − uk‖2) (by (2.2) or (2.3))

= −lf‖vk − uk‖2 + 2o(‖vk − uk‖2) (by (4.5))

≤ −(lf/2)‖vk − uk‖2 (by (4.15))

≤ −σ‖vk − uk‖2. (by σ ∈ (0, lf/2))

Overall, the Newton step is always admitted for sufficiently large k. The proof is complete.

Finally, we conclude that GPNA can converge quadratically for SLCoRe and terminate within

finite steps for SCoRe by the following theorem.

Theorem 4.2. Suppose [X Z] is s-regular. Then the sequence generated by GPNA with σ ∈
(0, lf/2) eventually converges to its limit quadratically for SLCoRe or within finitely many steps for

SCoRe, namely, for sufficiently large k,

‖θk+1 − θ∗‖ ≤ (1+Lf )2Cf

2lf
‖θk − θ∗‖2, if ` = `log,

θk+1 = θ∗, if ` = `lin.

Proof. We first estimate ‖uk − θ∗‖. Recalling (4.1) that

uk = θk(αk) ∈ ΠΣ(θk − αk∇f(θk))

and Γk = Γ(uk), we have

uk
Γk

= θk
Γk
− αk(∇f(θk))Γk

, uk
Γk

= 0.

This enables us to deliver that

‖uk − θ∗‖ = ‖θk
Γk
− αk(∇f(θk))Γk

− θ∗Γk
‖ (by uk

Γk
= θ∗

Γk
= 0 from (4.12))

= ‖θk
Γk
− αk(∇f(θk))Γk

− θ∗Γk
− αk(∇f(θ∗))Γk

)‖ (by (4.14))

≤ ‖θk
Γk
− θ∗Γk

‖+ αk‖(∇f(θk))Γk
− (∇f(θ∗))Γk

)‖

≤ (1 + Lf )‖θk − θ∗‖. (by 0 < αk ≤ 1 and (4.13))

(4.16)
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By Lemma 4.2 2), the Newton step is always admitted for sufficiently large k. Then direct calcu-

lations lead the following chain of inequalities,

‖θk+1 − θ∗‖ = ‖vk − θ∗‖

= ‖vk
Γk
− θ∗Γk

‖ (by vk
Γk

= θ∗
Γk

= 0 from (4.12))

= ‖uk
Γk
− θ∗Γk

− (Hk
ΓkΓk

)−1(∇f(uk))Γk
‖ (by (4.3))

= ‖uk
Γk
− θ∗Γk

− (Hk
ΓkΓk

)−1((∇f(uk))Γk
− (∇f(θ∗))Γk

)‖ (by (4.14))

≤ (1/lf )‖Hk
ΓkΓk

(uk
Γk
− θ∗Γk

)− ((∇f(uk))Γk
− (∇f(θ∗))Γk

)‖ (by (2.2) or (2.3))

≤ (1/lf )‖∇2f(uk)(uk − θ∗)− (∇f(uk)−∇f(θ∗))‖

= (1/lf )‖
∫ 1

0 (∇2f(u∗ + t(uk − θ∗))−∇2f(uk))(uk − θ∗)dt‖

≤ (1/lf )
∫ 1

0 ‖∇
2f(u∗ + t(uk − θ∗))−∇2f(uk)‖‖uk − θ∗‖dt.

Note that if ` = `lin, then ∇2f(u∗ + t(uk − θ∗)) = ∇2f(uk) = Q. The above condition implies

‖θk+1 − θ∗‖ ≤ 0, namely, θk+1 = θ∗. If ` = `log, then above condition implies

‖θk+1 − θ∗‖ ≤ (1/lf )
∫ 1

0 Cf‖u∗ + t(uk − θ∗)− uk‖‖uk − θ∗‖dt (by (2.1))

≤ (Cf/lf )‖uk − θ∗‖2
∫ 1

0 (1− t)dt

= (Cf/(2lf ))‖uk − θ∗‖2.

which combining (4.16) can make the conclusion immediately. The proof is complete.

5 Numerical experiments

This section implements GPNA to solve SCL with synthetic datasets and real datasets. All numeri-

cal experiments are conducted by running MATLAB (R2018b) on an ideapad with CPU @2.30GHz

2.40GHz and 4GB memory. Apart from the stopping criterion outlined in the algorithm, we also

set the maximum number of iterations to 1000. We set S = ε = 0.0001, ε = 0.001, α0 = 1 and

γ = 0.5. The initial point is chosen as θ0 = 0.

5.1 SLCoRe model for discrete response variables

In this subsection, we solve SCL with ` = `log, namely, SLCoRe. This model usually works well

for the data with discrete response variables. In the sequel, we first present two testing examples,

followed by the parameters’ tuning for GPNA and its numerical comparisons with some benchmark

methods on synthetic and real datasets.

5.1.1 Test examples

Synthetic and real data are tested for SLCoRe.
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Example 5.1 (Synthetic data). Similar to [2], each sample xi, i ∈ [n] in X ∈ Rn×p1 is indepen-

dently generated by an autoregressive process

xi(j+1) = θxij +
√

1− θ2cj for all j ∈ [p1 − 1],

with xi1 ∈ N (0, 1), cj ∈ N (0, 1) and θ ∈ [0, 1) being the correlation parameter. Note that the larger

θ is, the more correlated two columns are. Let Z = X + 0.01 · Λ with Λij ∈ N (0, 1). Therefore,

for such an example, p1 = p2 =: p. The sparse parameters θ1 ∈ Rp and θ2 ∈ Rp have s1 and s2

nonzero entries that are drawn independently from the standard Gaussian distribution, respectively.

Finally, response y ∈ {0, 1}n is randomly generated from the Bernoulli distribution with

Prob{yi = 0 | xi, zi} =
1

2

[
1

1 + exp (−〈xi,θ1〉)
+

1

1 + exp (−〈zi,θ2〉)

]
.

Example 5.2 (Real data). Two real datasets are taken into account. They are the alcohol depen-

dence data with n = 46, p1 = 500 and p2 = 300 [33]1 and Diffuse large B-cell lymphoma (DLBCL)

data with n = 203, p1 = 17350 and p2 = 386165 [14] 2. All datasets are feature-wisely scaled to

[−1, 1].

To evaluate the performance of one method, we report the CPU time (in seconds), the classifi-

cation error rate (CER) [28] and the canonical correlation value (CCV) defined by

CER :=
‖ sign(Xθ1)− y‖0 + ‖ sign(Zθ2)− y‖0

n
, CCV :=

‖Xθ1 − Zθ2‖
n

,

where θ = (θ1;θ2) is the solution obtained by one method and (sign(x))i = 1 if xi > 0 and

(sign(x))i = 0 otherwise for i ∈ [n]. Note that the smaller CER (or the smaller CCV or the shorter

CPU time) the better performance.

5.1.2 Sensitivity analysis

We now implement GPNA to see its performance under different choices of (a, b, c, s1, s2) .

(a) Effect of (a, b, c). Recall that there are three parameters (a, b, c) involved in problem (1.1).

We fix a = 1, c = 0.01 but vary b ∈ [0.01, 10] to see the effect of b and fix a = 1, b = 1 but change

c ∈ [0.0001, 1] to see the effect of c. The average results over 100 instances for Example 5.1 are

presented in Fig. 1, where n = 200, p = 2000 and s1 = s2 = 20.

When a and c are fixed, from the three above sub-figures in Fig. 1, one can observe that CER

is declining steadily when b ∈ [0.01, 1) but dramatically when b ∈ [1, 10]. However, the best choice

of b for CCV and CUP time is b = 1 = a. Therefore, for Example 5.1 with p1 = p2 and s1 = s2,

the best option to set a and b should be a = b.

When a and b are fixed, from the three bottom sub-figures in Fig. 1, it can be clearly seen that

the larger values of c, the smaller CCV and longer CPU time. One can observe that the variance

of c ∈ [0.0001, 0.01] do not influence CER significantly.

We test some other choices and find the following options for (a, b, c) that allows GPNA to

render desirable overall performance:

a =
s1

s1 + s2
, b =

s2

s1 + s2
, c =

1

s1 + s2
.

1Available at https://github.com/cran/CVR/blob/master/data/alcohol.rda
2Available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11318
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Figure 1: Effect of b and c for Example 5.1.

Therefore, in the following numerical experiments, we fix a, b, c as above choices if no additional

information is provided.

(b) Effect of (s1, s2). To see the effect of s1 and s2, we choose both s1 and s2 from

{5, 10, · · · , 40}. The average results of GPNA for Example 5.1 are shown in Fig. 2 where n =

18



200, p = 2000, θ = 0.5. The figure demonstrates that the larger s1 or s2 the higher values of CER,

leading to better performance. Moreover, the closer between s1 and s2 is, the smaller CCV is.

CER

0.33 0.26 0.23 0.20 0.16 0.11 0.05 0.01

0.34 0.30 0.25 0.22 0.19 0.15 0.04 0.04

0.38 0.32 0.28 0.24 0.21 0.15 0.13 0.11

0.40 0.35 0.32 0.28 0.23 0.20 0.19 0.16

0.44 0.39 0.34 0.31 0.28 0.25 0.22 0.19

0.48 0.42 0.37 0.35 0.31 0.28 0.26 0.23

0.52 0.46 0.43 0.38 0.36 0.31 0.29 0.27

0.57 0.51 0.47 0.44 0.41 0.37 0.35 0.33

s
1

s
2

CCV

0.16 0.14 0.13 0.12 0.11 0.10 0.07 0.02

0.14 0.13 0.12 0.10 0.09 0.08 0.03 0.06
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0.11 0.09 0.07 0.06 0.02 0.07 0.09 0.11

0.09 0.07 0.05 0.01 0.06 0.08 0.11 0.12

0.07 0.04 0.01 0.05 0.08 0.10 0.12 0.13

0.04 0.00 0.05 0.07 0.09 0.11 0.13 0.14

0.00 0.04 0.07 0.09 0.11 0.13 0.14 0.16

s
1

s
2

Figure 2: Effect of s1 and s2 for Example 5.1.

5.1.3 Effectiveness

To illustrate the effectiveness of our proposed model SLCoRe as well as the method GPNA, several

alternative approaches are selected. They are SCoRe [11], GPGN [28], GraSP [2], IIHT [21] and

NTGP [32]. The first one is used to solve the SCoRe, which can be used to illustrate that SLCoRe

is a better model than SCoRe for the discrete response variables. GPGN, GraSP, IIHT and NTGP

solve the sparse logistic regression that merges two datasets into a single one, which can be used

to highlight the advantage of the model SLCoRe for two interrelated datasets.

(c) Comparison for Example 5.1. For simplicity, we fix n = 1000, p = 10000 while choose

θ ∈ {0, 0.5, 0.8} and s1, s2 ∈ {200, 300, 500}. For each case of (θ, s1, s2), we test 100 instances and

report the average results of GPNA, SCoRe, GPGN, IIHT, GraSP and NTGP. Some comments on

the reported data in Tables 1 and 2 can be made.

Regarding CER, GPNA achieves the minimum values compared with other methods regardless

of the sparsity and correlation how to change. The error rate of the other five methods is more

than 10% for the case of two data sets. Moreover, CERs obtained by GPNA, GPGN, IIHT, GraSP

and NTGP are smaller than SCoRe, which indicates that `log is more advantageous than `lin for

the discrete responses.

Regarding CCV, GPNA delivers tiny values, which shows that there is a high correlation be-

tween the two datasets. Although SCoRe can also reveal the relationship between two datasets,

the result is not as good as GPNA. Nevertheless, they both perform smaller CCVs than GPGN,

IIHT, GraSP and NTGP since the latter four methods solve the model that ignores the relationship

between two datasets.

Regarding CPU time, it is obvious that GPNA is the fastest and the calculations take less than

a second for all scenarios. By contrast, the other methods need much longer time, especially for

larger sparsity, with SCoRe taking 28 seconds, which is 47 times longer than GPNA.
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Table 1: Comparison of the results for Example 5.1.

CER CCV TIME

s2 s2 s2

s1 Algs. 200 300 500 200 300 500 200 300 500

θ = 0

200 GPNA 0.013 0.016 0.022 0.040 0.074 0.086 00.5 00.6 00.5

SCoRe 0.410 0.452 0.398 0.231 0.332 0.354 15.5 17.1 18.1

IIHT 0.396 0.259 0.263 0.286 0.512 0.519 01.5 01.7 01.5

GraSP 0.224 0.363 0.245 0.384 0.467 0.596 02.9 02.2 01.6

GPGN 0.117 0.144 0.131 0.486 0.643 0.678 00.7 00.7 00.8

NTGP 0.128 0.137 0.143 0.573 0.586 0.697 01.1 01.2 01.2

300 GPNA 0.012 0.000 0.000 0.084 0.032 0.062 00.4 00.5 00.5

SCoRe 0.391 0.384 0.423 0.382 0.518 0.521 20.3 24.2 23.6

IIHT 0.241 0.256 0.407 0.476 0.561 0.869 01.5 01.7 01.5

GraSP 0.237 0.266 0.304 0.561 0.627 0.922 03.8 02.1 01.6

GPGN 0.134 0.107 0.096 0.558 0.734 0.877 00.7 00.7 00.8

NTGP 0.118 0.142 0.153 0.621 0.727 0.973 01.4 01.5 01.4

500 GPNA 0.024 0.000 0.000 0.087 0.061 0.014 00.5 00.7 00.6

SCoRe 0.425 0.459 0.480 0.231 0.242 0.318 20.3 24.6 26.4

IIHT 0.323 0.413 0.328 0.396 0.461 0.469 01.5 01.3 01.5

GraSP 0.243 0.261 0.252 0.853 0.886 0.877 01.6 01.3 01.1

GPGN 0.126 0.109 0.115 0.878 0.974 0.963 00.8 00.9 00.9

NTGP 0.135 0.183 0.167 0.931 0.924 0.987 01.4 01.5 01.6

θ = 0.5

200 GPNA 0.014 0.021 0.023 0.050 0.086 0.087 00.4 00.4 00.5

SCoRe 0.423 0.398 0.451 0.213 0.252 0.385 16.7 18.9 21.1

IIHT 0.264 0.253 0.246 0.319 0.478 0.491 02.1 01.5 02.0

GraSP 0.243 0.258 0.251 0.343 0.437 0.553 04.7 02.6 01.5

GPGN 0.134 0.118 0.156 0.461 0.586 0.672 00.6 00.7 00.7

NTGP 0.144 0.152 0.153 0.429 0.536 0.543 01.5 01.6 01.8

300 GPNA 0.017 0.000 0.000 0.086 0.032 0.043 00.4 00.6 00.7

SCoRe 0.423 0.384 0.366 0.247 0.342 0.425 21.5 23.7 24.8

IIHT 0.246 0.273 0.282 0.324 0.363 0.513 01.7 01.9 01.5

GraSP 0.257 0.253 0.271 0.337 0.472 0.438 03.2 01.9 01.4

GPGN 0.145 0.157 0.138 0.512 0.466 0.539 00.7 00.8 00.8

NTGP 0.148 0.157 0.143 0.384 0.473 0.614 01.6 01.7 01.9

500 GPNA 0.018 0.000 0.000 0.089 0.071 0.020 00.5 00.7 00.7

SCoRe 0.443 0.483 0.456 0.343 0.462 0.437 18.4 22.9 28.4

IIHT 0.239 0.252 0.399 0.478 0.526 0.854 01.8 01.6 01.7

GraSP 0.258 0.264 0.285 0.523 0.528 0.694 01.5 01.3 01.1

GPGN 0.157 0.127 0.148 0.633 0.579 0.715 00.7 00.7 00.8

NTGP 0.128 0.137 0.153 0.584 0.162 0.849 01.7 01.6 01.7
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Table 2: Comparison of the results for Example 5.1.

CER CCV TIME

s2 s2 s2

s1 Algs. 200 300 500 200 300 500 200 300 500

θ = 0.8

200 GPNA 0.055 0.051 0.060 0.085 0.104 0.105 00.4 00.5 00.5

SCoRe 0.491 0.473 0.432 0.252 0.344 0.335 14.7 19.4 21.6

IIHT 0.282 0.260 0.251 0.274 0.417 0.423 02.0 02.1 01.9

GraSP 0.301 0.253 0.268 0.284 0.349 0.464 06.4 04.1 03.5

GPGN 0.167 0.137 0.142 0.433 0.512 0.641 00.6 00.7 00.7

NTGP 0.211 0.176 0.189 0.343 0.487 0.622 01.7 01.7 01.8

300 GPNA 0.052 0.000 0.000 0.105 0.059 0.093 00.4 00.5 00.5

SCoRe 0.435 0.412 0.397 0.334 0.338 0.396 16.4 20.3 23.7

IIHT 0.268 0.271 0.257 0.434 0.475 0.587 01.6 01.7 01.4

GraSP 0.276 0.284 0.245 0.376 0.433 0.639 03.9 03.2 01.8

GPGN 0.154 0.138 0.165 0.533 0.537 0.626 00.7 00.7 00.8

NTGP 0.204 0.225 0.188 0.526 0.491 0.654 01.6 01.7 01.9

500 GPNA 0.061 0.000 0.000 0.108 0.085 0.031 00.5 00.5 00.6

SCoRe 0.457 0.423 0.382 0.324 0.356 0.431 18.4 22.8 28.7

IIHT 0.255 0.258 0.266 0.527 0.529 0.912 01.6 01.4 02.0

GraSP 0.239 0.254 0.263 0.518 0.538 0.883 02.4 01.8 01.4

GPGN 0.154 0.162 0.166 0.634 0.568 0.942 00.7 00.8 00.8

NTGP 0.173 0.213 0.188 0.638 0.652 0.875 01.7 01.9 01.8

(d) Comparison for Example 5.2. This part reports the numerical comparisons of GPNA,

SCoRe, GPGN, IIHT, GraSP and NTGP for analysing two real datasets.

We first apply our method to jointly analyze methylation and gene expression data in an al-

cohol dependence study [33]. SLCoRe can be used to identify the canonical variates from DNA

methylation (corresponding to X) and gene expression (corresponding to Z) supervised by the

phenotypical information, e.g., alcohol use disorder (AUD), which is observed as a binary indicator

variable y. In this study, genome-wide DNA methylation levels and genome-wide expression levels

of genes are quantified for n = 46 European Australians. Similar to [17], we choose top p1 = 500

CpG sites and p2 = 300 genes associated with AUD.

We use a random splitting procedure to compare the six methods. At each split, 10 observations

are randomly chosen as the testing data and the remaining 36 observations are the training data.

The random splitting is repeated 100 times. We choose different sparsity and the average results are

reported in Table 3 and show the better behaviour of GPNA since it obtains lower CER (meaning

better predictions), smaller CCV and runs much faster.

We next deal with a higher dimensional real dataset DLBCL [14]. It comprises of n = 203

patients, each of which has p1 = 17350 gene expression and p2 = 386165 copy numbers. We fixate

on the case where y is a binary variable indicating the survival or death or the cancer subtype.
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Table 3: Comparison of the results for Example 5.2.

Training Testing

s1 s2 CER CCV TIME(s) CER CCV

AUD

SCoRe 0.617 0.200 001.6 0.582 0.278

GPNA 20 10 0.025 0.004 000.2 0.004 0.005

20 20 0.020 0.009 000.2 0.002 0.007

35 20 0.018 0.008 000.2 0.002 0.012

35 35 0.017 0.007 000.3 0.000 0.005

IIHT 20 10 0.525 0.248 001.6 0.480 0.890

20 20 0.472 0.251 001.6 0.530 0.893

35 20 0.455 0.251 001.6 0.463 0.889

35 35 0.466 0.253 001.7 0.428 0.871

GraSP 20 10 0.528 0.338 001.5 0.410 0.932

20 20 0.443 0.336 001.3 0.500 0.919

35 20 0.487 0.328 001.7 0.422 0.922

35 35 0.482 0.334 001.7 0.338 0.916

GPGN 20 10 0.243 0.365 000.2 0.334 0.974

20 20 0.284 0.378 000.3 0.347 0.868

35 20 0.233 0.469 000.3 0.346 0.884

35 35 0.215 0.478 000.3 0.317 0.967

NTGP 20 10 0.556 0.595 000.3 0.420 0.863

20 20 0.524 0.553 000.3 0.376 0.761

35 20 0.488 0.528 000.3 0.397 0.837

35 35 0.472 0.557 000.3 0.385 0.868

DLBCL

SCoRe 0.753 0.592 070.4 0.682 0.634

GPNA 50 50 0.054 0.036 000.3 0.024 0.029

50 100 0.034 0.067 000.3 0.039 0.085

100 100 0.000 0.024 000.3 0.001 0.022

100 150 0.000 0.017 000.3 0.002 0.014

IIHT 50 50 0.471 0.796 042.5 0.464 0.732

50 100 0.458 0.763 043.6 0.483 0.746

100 100 0.488 0.743 046.3 0.462 0.737

100 150 0.482 0.737 047.6 0.455 0.739

GraSP 50 50 0.456 0.854 235.4 0.472 0.861

50 100 0.458 0.846 254.7 0.483 0.867

100 100 0.432 0.852 228.6 0.457 0.854

100 150 0.427 0.848 233.2 0.463 0.851

GPGN 50 50 0.408 0.973 000.9 0.487 0.832

50 100 0.384 0.972 000.9 0.453 0.731

100 100 0.387 0.881 001.1 0.473 0.848

100 150 0.395 0.956 001.1 0.434 0.907

NTGP 50 50 0.421 0.834 038.2 0.428 0.911

50 100 0.452 0.786 040.3 0.478 0.841

100 100 0.478 0.879 041.8 0.503 0.812

100 150 0.474 0.934 042.4 0.433 0.865
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Again, the 203 samples are split into 153 ones as the training set and 50 ones as the testing set.

The random splitting is repeated 100 times. Similar phenomenon to AUD data can be observed

for DLBCL in Table 3, showing the better performance of GPNA.

5.2 SCoRe model for continuous response variables

In the subsequent numerical experiments, we focus on SCL with ` = `lin, namely, SCoRe. This

model is proper for the data with continuous response variables. For such a model, we also do

parameters’ tuning for GPNA and get similar observations to that for SLCoRe. Therefore, we keep

the same setting of parameters as previous examples for GPNA.

5.2.1 Test examples

Again, synthetic and real data are tested for SCoRe.

Example 5.3 (Synthetic data). The sample data X and Z as well as the sparse parameters θ1 ∈
Rp and θ2 ∈ Rp are generated the same as Example 5.1, while the response y is generated by

y = (Xθ1 + Zθ2)/2.

Example 5.4 (Real data). Two real datasets are taken into consideration. They are the body mass

index (BMI) of mouse data with n = 294, p1 = 163 and p2 = 215 [30]3 and DLBCL data. All

datasets are feature-wisely scaled to [−1, 1].

To evaluate the performance of one method, we report the CPU time (in seconds), the mean

square error (MSE) and CCV defined by

MSE :=
‖y −Xθ1‖+ ‖y − Zθ2‖

n
, CCV :=

‖Xθ1 − Zθ2‖
n

,

where θ = (θ1;θ2) is the solution obtained by one method.

5.2.2 Effectiveness

Besides three aforementioned methods SCoRe, GraSP, IIHT, we also select two additional methods

SP [8] and LNA [35] for comparisons. Again, GraSP, IIHT, SP and LNA are solving the problem

without consider the interrelationship between two datasets.

(e) Comparison for Example 5.3. We first compare GPNA with the other five methods

for Example 5.3. For simplicity, we fix n = 2000, p = 6000 while choose θ ∈ {0, 0.5} and s1, s2 ∈
{100, 200, 500}. For each case of (θ, s1, s2), we test 100 instances and report the average results of

GPNA, SCoRe, IIHT, GraSP, SP and LNA. Some comments on the data in Table 4 can be made.

Regarding MSE, GPNA achieves the smallest values in comparison with the other methods

regardless of how the sparsity levels s1, s2 and correlation parameter θ change. Once again, GPNA

produces relatively small CCVs, which indicates that there is a high correlation between the two

datasets. By contrast, since IIHT, GraSP, SP and LNA do not take the correlation into account,

their generated CCVs are higher than these by GPNA and SCoRe. It can be clearly seen that

GPNA runs the fastest, such as 0.6 seconds consumed when s1 = s2 = 500, θ = 0 v.s. 23.7, 16.4,

87.6, 56.1 and 2.6 seconds by the other five methods.

3Available at https://github.com/cran/CVR/blob/master/data/mouse.rda
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Table 4: Comparison of the results for Example 5.3.

MSE CCV TIME

s2 s2 s2

s1 Algs. 100 200 500 100 200 500 100 200 500

θ = 0

100 GPNA 0.083 0.097 0.171 0.015 0.081 0.169 00.3 00.4 00.4

SCoRe 0.243 0.268 0.284 0.031 0.092 0.201 16.5 17.6 19.3

IIHT 0.157 0.189 0.267 0.155 0.189 0.245 01.3 01.9 07.3

GraSP 0.232 0.173 0.322 0.163 0.211 0.258 14.4 18.5 33.6

SP 0.226 0.255 0.364 0.160 0.185 0.263 01.4 01.9 21.1

LNA 0.167 0.173 0.247 0.174 0.177 0.223 00.7 00.8 01.4

200 GPNA 0.097 0.115 0.161 0.081 0.010 0.139 00.4 00.5 00.5

SCoRe 0.214 0.277 0.286 0.082 0.093 0.175 19.3 19.2 21.7

IIHT 0.207 0.227 0.287 0.195 0.223 0.240 01.9 03.2 09.8

GraSP 0.211 0.252 0.324 0.243 0.245 0.251 21.7 27.2 47.4

SP 0.243 0.309 0.394 0.174 0.223 0.271 01.8 03.1 24.6

LNA 0.216 0.236 0.317 0.225 0.244 0.238 00.8 00.9 01.6

500 GPNA 0.165 0.148 0.182 0.163 0.142 0.063 00.4 00.4 00.6

SCoRe 0.291 0.318 0.285 0.184 0.147 0.185 17.4 21.4 23.7

IIHT 0.288 0.286 0.367 0.243 0.235 0.282 08.6 11.7 16.4

GraSP 0.317 0.264 0.334 0.259 0.221 0.273 35.6 50.2 87.6

SP 0.351 0.411 0.476 0.253 0.288 0.252 16.5 39.8 56.1

LNA 0.256 0.342 0.329 0.285 0.283 0.264 01.5 01.7 02.6

θ = 0.5

100 GPNA 0.094 0.096 0.188 0.015 0.082 0.172 00.3 00.6 00.9

SCoRe 0.242 0.265 0.267 0.144 0.167 0.184 16.7 19.4 22.3

IIHT 0.172 0.196 0.285 0.163 0.182 0.241 01.8 02.5 11.5

GraSP 0.187 0.224 0.273 0.152 0.187 0.252 18.3 24.2 32.6

SP 0.224 0.252 0.377 0.159 0.183 0.269 01.3 01.9 27.4

LNA 0.213 0.189 0.254 0.171 0.176 0.253 00.6 00.8 01.5

200 GPNA 0.095 0.117 0.168 0.088 0.031 0.137 00.4 00.6 00.8

SCoRe 0.212 0.224 0.281 0.158 0.145 0.174 18.8 20.5 23.1

IIHT 0.196 0.233 0.317 0.203 0.218 0.263 02.6 03.9 11.9

GraSP 0.248 0.236 0.339 0.199 0.253 0.256 21.7 35.3 47.8

SP 0.289 0.322 0.368 0.214 0.217 0.282 01.8 03.5 29.7

LNA 0.226 0.265 0.287 0.248 0.255 0.252 00.9 00.9 01.7

500 GPNA 0.187 0.167 0.182 0.183 0.129 0.056 00.6 00.7 00.7

SCoRe 0.287 0.245 0.272 0.195 0.146 0.122 20.4 21.8 23.3

IIHT 0.275 0.315 0.346 0.242 0.264 0.144 14.4 21.7 24.3

GraSP 0.244 0.337 0.386 0.296 0.302 0.221 42.2 51.7 70.4

SP 0.358 0.402 0.461 0.263 0.278 0.266 21.8 32.3 57.4

LNA 0.253 0.296 0.306 0.314 0.267 0.278 01.6 01.9 02.9
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Table 5: Comparison of the results for Example 5.4.

Training Testing

s1 s2 MSE CCV TIME(s) MSE CCV

Mouse

SCoRe 0.423 0.183 001.2 0.386 0.172

GPNA 20 10 0.196 0.121 000.1 0.256 0.151

20 20 0.174 0.120 000.1 0.223 0.136

40 20 0.141 0.103 000.1 0.184 0.126

40 40 0.125 0.088 000.1 0.167 0.103

IIHT 20 10 0.325 0.228 000.5 0.315 0.233

20 20 0.323 0.197 000.6 0.301 0.198

40 20 0.319 0.159 000.6 0.305 0.227

40 40 0.318 0.162 000.7 0.312 0.173

GraSP 20 10 0.324 0.265 000.7 0.336 0.302

20 20 0.312 0.263 000.7 0.328 0.273

40 20 0.286 0.237 000.8 0.313 0.262

40 40 0.294 0.258 000.9 0.327 0.235

SP 20 10 0.337 0.169 000.4 0.344 0.183

20 20 0.335 0.158 000.4 0.342 0.129

40 20 0.338 0.146 000.6 0.353 0.187

40 40 0.334 0.138 000.9 0.355 0.159

LNA 20 10 0.266 0.282 000.3 0.378 0.237

20 20 0.275 0.269 000.3 0.346 0.245

40 20 0.254 0.257 000.4 0.361 0.235

40 40 0.253 0.263 000.5 0.334 0.239

DLBCL

SCoRe 0.533 0.315 083.4 0.546 0.307

GPNA 50 50 0.267 0.166 000.6 0.313 0.213

50 100 0.243 0.167 000.6 0.339 0.225

100 100 0.234 0.159 000.6 0.324 0.212

100 150 0.233 0.158 000.7 0.311 0.215

IIHT 50 50 0.417 0.352 039.2 0.445 0.326

50 100 0.412 0.346 042.7 0.437 0.317

100 100 0.403 0.337 045.6 0.431 0.314

100 150 0.408 0.346 046.7 0.438 0.324

GraSP 50 50 0.456 0.434 235.5 0.441 0.362

50 100 0.458 0.457 254.8 0.451 0.353

100 100 0.432 0.442 228.6 0.439 0.351

100 150 0.422 0.446 232.7 0.440 0.363

SP 50 50 0.426 0.423 013.5 0.435 0.334

50 100 0.428 0.437 014.8 0.443 0.341

100 100 0.416 0.425 015.6 0.432 0.331

100 150 0.419 0.432 017.4 0.426 0.337

LNA 50 50 0.398 0.451 000.8 0.425 0.366

50 100 0.414 0.417 000.9 0.407 0.351

100 100 0.386 0.422 001.1 0.396 0.348

100 150 0.381 0.436 001.2 0.413 0.359
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(f) Comparison for Example 5.4. Finally, we report results of five methods for analysing

two real datasets: Mouse data and DLBCL. For mouse gene expression data, similar to [17], we

choose p1 = 163 single nucleotide polymorphisms (SNPs corresponding to X) and p2 = 215 genes

(corresponding to Z) of n = 294 for analysis. Again random splitting procedure is employed.

At each split, 140 observations are randomly chosen as the testing data and the remaining 154

observations are the training data. The random splitting is repeated 100 times. We choose different

sparsity and the average results are reported in Table 5 and display the better behaviour of GPNA

since it runs much faster and obtains lower MSE (meaning better predictions), smaller CCV. For

DLBCL, results present in Table 5, where the random splitting procedure being same as Example

5.2. Similarly, GPNA obtains lower MSE (meaning better predictions), smaller CCV and runs the

fastest, such as 0.6 seconds consumed when s1 = s2 = 50 v.s. 83.4, 39.2, 235.5, 13.5 and 0.9 seconds

by the other five methods, which demonstrate better performance of GPNA.

6 Conclusions and Future work

The SCL model proposed in this paper not only fulfils the tasks of classification or regression for each

dataset but also explores the relationship between two datasets. The usage of the double sparsity

constraints makes it more efficient for feature selections. To solve the SCL problem, the optimality

conditions have been investigated, leading to a gradient projection strategy in the algorithm. To

accelerate the convergence, we employed a Newton step when the iteration met some conditions.

The final developed gradient projection Newton algorithm has proven to be global and at least

quadratic convergent and possessed an excellent numerical performance. We feel that the proposed

method is capable of addressing some other general sparsity constrained optimization problems.

As pointed out by our referee, it is an interesting topic to apply the developed techniques and

method into dealing with the multi-model problems in particular for some practical applications,

such as regional climate prediction. We leave this as future research.
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