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Abstract

We study the numerical algorithm and error analysis for the Cahn-Hilliard equation with
dynamic boundary conditions. A second-order in time, linear and energy stable scheme is
proposed, which is an extension of the first-order stabilized approach. The corresponding energy
stability and convergence analysis of the scheme are derived theoretically. Some numerical
experiments are performed to verify the effectiveness and accuracy of the second-order numerical
scheme, including numerical simulations under various initial conditions and energy potential
functions, and comparisons with the literature works.
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1 Introduction

The Cahn-Hilliard equation was originally introduced by Cahn and Hilliard [2] to describe phase
separation and coarsening in heterogeneous systems such as alloys, glass and polymer mixtures.
The standard Cahn-Hilliard equation can be written as follows:







φt = ∆µ, (x, t) ∈ Ω× (0, T ),

µ = −ε∆φ+
1

ε
F ′(φ), (x, t) ∈ Ω× (0, T ),

where the parameter ε > 0 means the thickness of the interface, Ω ⊆ R
d(d = 2, 3) denotes a

bounded domain whose boundary Γ = ∂Ω with the unit outward normal vector n. To describe
binary alloys, the function φ represents the difference between the two local relative concentrations.
The area of φ = ±1 corresponds to the pure phase of the materials, which are separated by an
interfacial region whose thickness is proportional to ε.
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The Cahn-Hilliard equation can be alternatively viewed as the gradient flow of the Ginzburg-
Landau type energy functional

Ebulk(φ) =

∫

Ω

{

ε

2
|∇φ|2 +

1

ε
F (φ)

}

dx,

in H−1. µ denotes the chemical potential in Ω, which can be expressed as the Fréchet derivative of
the bulk free energy Ebulk. The term f(x) = F ′(x) with F (x) being a given double-well potential
as

F (x) =
1

4
(x2 − 1)2, f(x) = x3 − x, x ∈ R. (1.1)

When the time evolution of φ is limited to a bounded region, the appropriate boundary conditions
are required. The classical choice is homogeneous Neumann condition:

{

∂nµ = 0, (x, t) ∈ Γ× (0, T ),

∂nφ = 0, (x, t) ∈ Γ× (0, T ),

where ∂n represents the outward normal derivative on Γ. The two most important properties of
Cahn-Hilliard equation are the conservation of mass

∫

Ω
φ(t)dx =

∫

Ω
φ(0)dx, ∀t ∈ [0, T ],

and energy decreasing
d

dt
Ebulk(φ) = −‖∇µ‖2Ω ≤ 0.

When considering some special applications (for example, the hydrodynamics applications, such as
contact line problem), it is necessary to describe the short-range interaction between the mixture
and the solid wall. However, the standard homogeneous Neumann condition ignores the influence
of boundary on volume dynamics. Therefore, the researchers added surface energy into the total
energy in recent years,

Etotal(φ,ψ) = Ebulk(φ) + Esurf (ψ), (1.2)

with

Esurf (ψ) =

∫

Γ

{

δκ

2
|∇Γψ|

2 +
1

δ
G(ψ)

}

dS,

where δ denotes the thickness of the interface area on the boundary and the parameter κ is related
to the surface diffusion. If κ = 0, it is related to the moving contact line problem. G is the surface
potential, ∇Γ represents the tangential surface gradient operator and ∆Γ denotes the Laplace-
Beltrami operator on Γ. Several dynamic boundary conditions have been proposed and analyzed,
for example, [7, 10, 17, 18, 21, 6, 23, 24]. By taking the variational derivative of the total energy, Liu
and Wu proposed Cahn-Hilliard model with dynamic boundary conditions called Liu-Wu Model
[21]:



















































φt = ∆µ, (x, t) ∈ Ω× (0, T ),

µ = −ε∆φ+
1

ε
F ′(φ), (x, t) ∈ Ω× (0, T ),

∂nµ = 0, (x, t) ∈ Γ× (0, T ),

φ|Γ = ψ, (x, t) ∈ Γ× (0, T ), (1.3)

ψt = ∆ΓµΓ, (x, t) ∈ Γ× (0, T ),

µΓ = −δκ∆Γψ +
1

δ
G′(ψ) + ε∂nφ, (x, t) ∈ Γ× (0, T ).
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Here, µ, µΓ denote the chemical potentials in the bulk and on the boundary, respectively. The model
assumes that there is no mass exchange between the bulk and the boundary, namely, ∂nµ = 0. The
classical choice of F, G is the smooth double-well potential

F (x) =
1

4
(x2 − 1)2, G(x) =

1

4
(x2 − 1)2, x ∈ R. (1.4)

Moreover, the dynamic boundary conditions ensure the conservation of the total mass
∫

Ω
φ(t)dx+

∫

Γ
ψ(t)dS =

∫

Ω
φ(0)dx +

∫

Γ
ψ(0)dS, ∀t ∈ [0, T ],

especially we have
∫

Ω
φ(t)dx =

∫

Ω
φ(0)dx,

∫

Γ
ψ(t)dS =

∫

Γ
ψ(0)dS, ∀t ∈ [0, T ], (1.5)

indicating that the Liu-Wu model satisfies the mass conservation law in the bulk and on the
boundary, respectively. Moreover, it is easy to find that the system (1.3) satisfies energy dissipation
law:

d

dt
Etotal(φ,ψ) = −‖∇µ‖2Ω − ‖∇ΓµΓ‖

2
Γ ≤ 0.

The numerical algorithms of Cahn-Hilliard equation have been well studied. There are many
effective methods for time discretization, such as the convex splitting method [13, 25], the invariant
energy quadratization (IEQ) method [33, 35, 36], the scalar auxiliary variable (SAV) method [26]
and stabilized linearly implicit approach. Chen and Shen [3] and Zhu et al. [37] applied the
Fourier-spectral method to the stabilized semi-implicit scheme for the Cahn-Hilliard equation. Xu
and Tang [32] introduced different stability terms and established a large time-stepping stable
semi-implicit method for the two-dimensional epitaxial growth model. He et al. [15] proposed
a similar method for the Cahn-Hilliard equation, in which the stability term B(φn+1 − φn) (or
B(φn+1 − 2φn + φn−1)) is added to the nonlinear volume force of the first-order (second-order)
scheme. Shen and Yang [27] applied similar stability terms to Allen-Cahn equation and Cahn-
Hilliard equation to design the unconditionally energy stable first-order linear schemes and second-
order linear schemes under reasonable stability conditions. This idea has been adopted in [8] for
the stabilized Crank-Nicolson schemes for phase field models. Wu et al. [31] proposed another
stabilized second-order Crank-Nicolson scheme for tumor-growth system, which involved a new
concave-convex energy splitting. These time marching schemes will lead to a linear system, which is
easier to solve than the nonlinear system generated by the traditional convex splitting scheme, which
implicitly deals with the nonlinear convex force. On the other hand, when explicitly dealing with
nonlinear forces, it is necessary to introduce appropriate stability terms and appropriate truncated
nonlinear function f̃(φ) instead of f(φ) to prove the unconditional energy stability property with
reasonable stability constant. It is worth mentioning that Li et al. [19, 20] proved that the energy
stability characteristics can also be obtained, however, a larger stability constant is required with no
truncation made to f(φ). Stabilization techniques are also used to construct higher order schemes,
such as exponential time difference (ETD) scheme [16] and Runge-Kutta scheme [14, 28].

Recently, numerical approximations of the Cahn-Hilliard equation with dynamic boundary con-
ditions have been raised (see [1, 5, 4, 9, 12, 29] ). Specifically, a finite element approach for the
Liu-Wu model has been proposed in [29, 11], where the model is simulated by the direct discretiza-
tion based on piecewise linear finite element function, and the corresponding nonlinear system is
solved by the Newton’s method. However, in the above finite element scheme, the backward implicit
Euler method is used for time discretization, in which the nonlinear system needs to be solved in
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each time step. Recently, a linear and energy stable numerical scheme for Liu-Wu model has been
proposed in [1], which is an extension of the stable linear implicit method for the classic boundary
conditions.

In this paper, the stability and convergence of second-order semi-implicit time marching scheme
are studied. We use the second order backward differentiation formula (BDF2) to discrete time
derivative. For the nonlinear force with second-order stability, the explicit extrapolation method is
used and stabilizers are added to ensure energy dissipation, where the stabilizers are inspired by the
work [30] by Wang and Yu. The main features of our scheme include the following: (1) To the best
of our knowledge, this is the first linear, second-order stabilized semi-implicit scheme for this model;
(2) At the discrete level, the constant coefficient linear system is obtained. We only need to solve
the linear equation at each step, which reduces the computation cost greatly; (3) Discrete energy
dissipation is proved. The finite difference method is used for spatial discretization and satisfies the
discretized energy dissipation law; (4) We also give the error analysis in l∞(0, T ;H−1)∩ l2(0, T ;H1)
norm in detail.

The rest of this article is organized as follows. We first introduce some defintions and notations
in Section 2. In Section 3 we present the BDF2-type scheme. A modified energy stability is
established and we prove that the scheme has the property of decreasing energy. Subsequently, the
convergence estimate is provided in Section 4. In Section 5, we present some numerical experiments,
including the cases with different initial conditions, cases with different potential functions and the
accuracy test. Finally, the concluding remarks are given in Section 6.

2 Preliminaries

Before giving the stabilized scheme and corresponding error analysis, we make some definitions in
this section which will be used in the paper.

We consider a finite time interval [0, T ] and a domain Ω ⊆ R
d, which is a bounded domain with

sufficient smooth boundary Γ = ∂Ω and n = n(x) is the unit outward normal vector on Γ.
We use ‖ · ‖m,p,Ω to denote the standard norm of the Sobolev space Wm,p(Ω) and ‖ · ‖m,p,Γ to

denote the standard norm of the Sobolev space Wm,p(Γ). In particular, we use ‖ · ‖Lp(Ω), ‖ · ‖Lp(Γ)

to denote the norm of W 0,p(Ω) = Lp(Ω) and W 0,p(Γ) = Lp(Γ); ‖ · ‖m,Ω, ‖ · ‖m,Γ to denote the norm
of Wm,2(Ω) = H2(Ω) and Wm,2(Γ) = H2(Γ); we also use ‖ · ‖Ω and ‖ · ‖Γ to denote the norm of
W 0,2(Ω) = L2(Ω) and W 0,2(Γ) = L2(Γ). Let (·, ·)Ω, (·, ·)Γ represent the inner product of L2(Ω) and
L2(Γ), respectively. In addition, define for p ≥ 0

H−p(Ω) = (Hp(Ω))∗, H−p
0 (Ω) = {u ∈ H−p(Ω)| 〈u, 1〉p = 0},

where 〈·, ·〉p stands for the dual product between H
p(Ω) and H−p(Ω). We denote L2

0(Ω) := H0
0 (Ω).

For u ∈ L2
0(Ω), let −∆−1u := u1 ∈ H1(Ω) ∩ L2

0(Ω), where u1 is the solution to

−∆u1 = u in Ω,
∂u1
∂n

= 0 on ∂Ω,

and ‖u‖−1,Ω :=
√

(u,−∆−1u)Ω. Similarly, H−p(Γ), L2
0(Γ) := H0

0 (Γ), ‖u‖−1,Γ :=
√

(u,−∆−1
Γ u)Γ

are also defined. Let τ be the time step size. For a sequence of functions f0, f1, · · · , fN in some
Hilbert space E, we denote the sequence by {fτ} and define the following discrete norm for {fτ}:

‖fτ‖l∞(E) = max
0≤n≤N

(

‖fn‖E

)

,
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For simplicity, we denote

δtφ
n+1 := φn+1 − φn, δttφ

n+1 := φn+1 − 2φn + φn−1, φ̂n+1 = 2φn − φn−1,

δtψ
n+1 := ψn+1 − ψn, δttψ

n+1 := ψn+1 − 2ψn + ψn−1, ψ̂n+1 = 2ψn − ψn−1.

3 Second order scheme of the model

We propose a stabilized linear BDF2 scheme for the Liu-Wu model as follows























































































3
2φ

n+1 − 2φn + 1
2φ

n−1

τ
= ∆µn+1, x ∈ Ω, (3.1)

µn+1 = −ε∆φn+1 +
1

ε
f
(

2φn − φn−1
)

−A1τ∆
(

φn+1 − φn
)

+B1

(

φn+1 − 2φn + φn−1
)

, x ∈ Ω, (3.2)

∂nµ
n+1 = 0, x ∈ Γ, (3.3)

φn+1|Γ = ψn+1, x ∈ Γ, (3.4)
3
2ψ

n+1 − 2ψn + 1
2ψ

n−1

τ
= ∆Γµ

n+1
Γ , x ∈ Γ, (3.5)

µn+1
Γ = −δκ∆Γψ

n+1 +
1

δ
g
(

2ψn − ψn−1
)

+ ε∂nφ
n+1

−A2τ∆Γ

(

ψn+1 − ψn
)

+B2

(

ψn+1 − 2ψn + ψn−1
)

+A1τ∂n
(

φn+1 − φn
)

,x ∈ Γ, (3.6)

where f = F ′, g = G′ are the nonlinear chemical potential. In particular, we notice that a second
order approximation to f and g at time step tn+1 are taken as f(2φn−φn−1) and g(2ψn−ψn−1). T
is the fixed time, N is the number of time steps and τ = T/N is the step size. A1, B1, A2 and B2

are four non-negative constants to be determined, and the stabilization terms A1τ∆
(

φn+1 − φn
)

,
B1

(

φn+1 − 2φn + φn−1
)

, A2τ∆Γ

(

ψn+1 − ψn
)

and B2

(

ψn+1 − 2ψn + ψn−1
)

are added to the bulk
equation and boundary equation to enhance stability, respectively. Before proving the stability, we
first give some Assumptions.

Assumption 1. Assume that the Lipschitz properties hold for the second derivative of F with
respect to φ and the second derivative of G with respect to ψ (namely, f ′ and g′). f ′ and g′ are
bounded. Precisely, there exists positive constants K1, K2, L1 and L2 such that

|f ′(φ1)− f ′(φ2)| ≤ K1|φ1 − φ2|, |g′(ψ1)− g′(ψ2)| ≤ K2|ψ1 − ψ2|, ∀φ1, φ2, ψ1, ψ2 ∈ R,

and
max
φ∈R

|f ′(φ)| ≤ L1, max
ψ∈R

|g′(ψ)| ≤ L2.

Assumption 2. Assume that the mass conservative property is available for the two initial values
of interior and boundary respectively:

1

|Ω|

∫

Ω
φ1dx =

1

|Ω|

∫

Ω
φ0dx = m0,

1

|Γ|

∫

Γ
ψ1dx =

1

|Γ|

∫

Γ
ψ0dx = m1.

We have the energy stability as follows.
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Theorem 3.1. Assume that Assumption 1 and Assumption 2 hold. Then under the conditions

A1 ≥
1

α2

L1
2

16ε2
− α1

ε

2τ
, B1 ≥

L1

ε
, (3.7)

A2 ≥
1

α2

L2
2

16δ2
− α1

δκ

2τ
, B2 ≥

L2

δ
, (3.8)

0 ≤ α1 ≤ 1, 0 < α2 ≤ 1, (3.9)

we have

Ẽ(φn+1, ψn+1)

≤ Ẽ(φn, ψn)−
1

4τ
‖δttφ

n+1‖2−1,Ω −
1

4τ
‖δttψ

n+1‖−1,Γ

−(1− α1)(
ε

2
‖∇δtφ

n+1‖2Ω +
δκ

2
‖∇Γδtψ

n+1‖2Γ)− (1− α2)
1

τ
(‖δtφ

n+1‖2−1,Ω + ‖δtψ
n+1‖2−1,Γ)

−

(

2

√

α2

(

A1 +
α1ε

2τ

)

−
L1

2ε

)

‖δtφ
n+1‖2Ω −

(

2

√

α2

(

A2 +
α1δκ

2τ

)

−
L2

2δ

)

‖δtψ
n+1‖2Γ

−

(

B1

2
−
L1

2ε

)

‖δttφ
n+1‖2Ω −

(

B2

2
−
L2

2δ

)

‖δttψ
n+1‖2Γ, (3.10)

where

Ẽ(φn+1, ψn+1) = Etotal(φn+1, ψn+1) +
1

4τ

(

‖δtφ
n+1‖2−1,Ω + ‖δtψ

n+1‖2−1,Γ

)

+

(

L1

2ε
+
B1

2

)

‖δtφ
n+1‖2Ω +

(

L2

2δ
+
B2

2

)

‖δtψ
n+1‖2Γ. (3.11)

Proof. Integrating both sides of equation (3.1), we have

1

|Ω|

∫

Ω
φn+1dx = m0, n = 1, ...N.

Thus δtφ
n+1 ∈ L2

0(Ω) for n = 0, ...N . Pairing (3.1) with (−∆)−1δtφ
n+1 and adding to (3.2) paired

with −δtφ
n+1, we have

(

3φn+1 − 4φn + φn−1

2τ
, (−∆)−1δtφ

n+1

)

Ω

= ε(∆φn+1, δtφ
n+1)Ω −

1

ε
(f(φ̂n+1), δtφ

n+1)Ω +A1τ
(

∂n(φ
n+1 − φn), δtφ

n+1
)

Γ

−A1τ‖∇δtφ
n+1‖2Ω −B1(δttφ

n+1, δtφ
n+1)Ω.

With the fact that

2(hn+1 − hn, hn+1) = ‖hn+1‖2 − ‖hn‖2 + ‖hn+1 − hn‖2,

and
(

3hn+1 − 4hn + hn−1

2τ
, hn+1

)

=
1

4τ
(‖hn+1‖2 + ‖2hn+1 − hn‖2 − ‖hn‖2 − ‖2hn − hn−1‖2 + ‖δtth

n+1‖2),
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we have

−

(

3φn+1 − 4φn + φn−1

2τ
, (−∆)−1δtφ

n+1

)

Ω

= −
1

τ
‖δtφ

n+1‖2−1,Ω −
1

4τ
(‖δtφ

n+1‖2−1,Ω − ‖δtφ
n‖2−1,Ω + ‖δttφ

n+1‖2−1,Ω), (3.12)

ε(∆φn+1, δtφ
n+1)Ω = ε(∂nφ

n+1, δtφ
n+1)Γ −

ε

2
(‖∇φn+1‖2Ω − ‖∇φn‖2Ω + ‖∇δtφ

n+1‖2Ω), (3.13)

and

−B1(δttφ
n+1, δtφ

n+1)Ω = −
B1

2
‖δtφ

n+1‖2Ω +
B1

2
‖δtφ

n‖2Ω −
B1

2
‖δttφ

n+1‖2Ω. (3.14)

Expanding F (φn+1) and F (φn) at φ̂n+1 = 2φn − φn−1 yields

F (φn+1) = F (φ̂n+1) + f(φ̂n+1)(φn+1 − φ̂n+1) +
1

2
f ′(ξn1 )(φ

n+1 − φ̂n+1)2,

and

F (φn) = F (φ̂n+1) + f(φ̂n+1)(φn − φ̂n+1) +
1

2
f ′(ξn2 )(φ

n − φ̂n+1)2,

where ξn1 is between φn+1 and φ̂n+1, ξn2 is between φn and φ̂n+1. Substracting the above two
equations and using the facts that φn+1 − φ̂n+1 = δttφ

n+1 and φn − φ̂n+1 = −δtφ
n, we obtain

F (φn+1)− F (φn)− f(φ̂n+1)δtφ
n+1 =

1

2
f ′(ξn1 )(δttφ

n+1)2 −
1

2
f ′(ξn2 )(δtφ

n)2

≤
L1

2
|δttφ

n+1|2 +
L1

2
|δtφ

n|2. (3.15)

Combining the result with (3.12)-(3.15), we obtain

I := −
1

ε

(

f(φ̂n+1), δtφ
n+1
)

Ω

=
1

τ
‖δtφ

n+1‖2−1,Ω +
1

4τ

(

‖δtφ
n+1‖2−1,Ω − ‖δtφ

n‖2−1,Ω + ‖δttφ
n+1‖2−1,Ω

)

− ε(∂nφ
n+1, δtφ

n+1)Γ +
ε

2

(

‖∇φn+1‖2Ω − ‖∇φn‖2Ω + ‖∇δtφ
n+1‖2Ω

)

− A1τ(∂n(φ
n+1 − φn), δtφ

n+1)Γ +A1τ‖∇δtφ
n+1‖2Ω

+
B1

2
‖δtφ

n+1‖2Ω −
B1

2
‖δtφ

n‖2Ω +
B1

2
‖δttφ

n+1‖2Ω

≤ −
1

ε

(

F (φn+1)− F (φn), 1
)

Ω
+
L1

2ε
‖δttφ

n+1‖2Ω +
L1

2ε
‖δtφ

n‖2Ω.

Rewriting I gives

1

ε

(

F (φn+1)− F (φn), 1
)

Ω
+
ε

2

(

‖∇φn+1‖2Ω − ‖∇φn‖2Ω
)

+
1

4τ

(

‖δtφ
n+1‖2−1,Ω − ‖δtφ

n‖2−1,Ω

)

− ε
(

∂nφ
n, δtφ

n+1
)

Γ
−A1τ

(

∂n(φ
n+1 − φn), δtφ

n
)

Γ

+
L1

2ε

(

‖δtφ
n+1‖2Ω − ‖δtφ

n‖2Ω
)

+
B1

2

(

‖δtφ
n+1‖2Ω − ‖δtφ

n‖2Ω
)

≤ −
1

4τ
‖δttφ

n+1‖2−1,Ω −
1

τ
‖δtφ

n+1‖2−1,Ω −
ε

2
‖∇δtφ

n+1‖2Ω −A1τ‖∇δtφ
n+1‖2Ω

+
L1

2ε
‖δtφ

n+1‖2Ω −
B1

2
‖δttφ

n+1‖2Ω +
L1

2ε
‖δttφ

n+1‖2Ω. (3.16)
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Similarly, integrating both sides of equation (3.5), we get

1

|Γ|

∫

Γ
ψn+1dx = m1, n = 1, ...N.

Thus δtψ
n+1 ∈ L2

0(Γ) for n = 0, 1, · · ·N . Pairing (3.5) with (−∆Γ)
−1δtψ

n+1 and adding to (3.6)
paired with δtψ

n+1, we have

(

3ψn+1 − 4ψn + ψn−1

2τ
, (−∆Γ)

−1δtψ
n+1

)

Γ

= δκ(∆Γψ
n+1, δtψ

n+1)Γ −
1

δ
(g(ψ̂n+1), δtψ

n+1)Γ − ε(∂nφ
n+1, δtψ

n+1)Γ −A1τ(∂n(φ
n+1 − φn), δtψ

n+1)Γ

−A2τ‖∇Γδtψ
n+1‖2Γ −B2(δttψ

n+1, δtψ
n+1)Γ.

The integral of each part reads as follows:

−

(

3ψn+1 − 4ψn + ψn−1

2τ
, (−∆Γ)

−1δtψ
n+1

)

Γ

= −
1

τ
‖δtψ

n+1‖2−1,Γ −
1

4τ
(‖δtψ

n+1‖2−1,Γ − ‖δtψ
n‖2−1,Γ + ‖δttψ

n+1‖2−1,Γ), (3.17)

δκ(∆Γψ
n+1, δtψ

n+1)Γ = −δκ
(

∇Γψ
n+1,∇Γδtψ

n+1
)

Γ

= −
δκ

2
(‖∇Γψ

n+1‖2Γ − ‖∇Γψ
n‖2Γ + ‖∇Γδtψ

n+1‖2Γ), (3.18)

−ε(∂nφ
n+1, δtψn+1)Γ = −ε(∂nφ

n+1, δtφ
n+1)Γ, (3.19)

−B2(δttψ
n+1, δtψ

n+1)Γ = −
B2

2
‖δtψ

n+1‖2Γ +
B2

2
‖δtψ

n‖2Γ −
B2

2
‖δttψ

n+1‖2Γ. (3.20)

Expanding G(ψn+1) and G(ψn) at ψ̂n+1 = 2ψn − ψn−1 leads to

G(ψn+1) = G(ψ̂n+1) + g(ψ̂n+1)(ψn+1 − ψ̂n+1) +
1

2
g′(ζn1 )(ψ

n+1 − ψ̂n+1)2,

and

G(ψn) = G(ψ̂n+1) + g(ψ̂n+1)(ψn − ψ̂n+1) +
1

2
g′(ζn2 )(ψ

n − ψ̂n+1)2,

where ζn1 is between ψn+1 and ψ̂n+1, ζn2 is between ψn and ψ̂n+1. Substracting the above two
equations and using the fact that ψn+1 − ψ̂n+1 = δttψ

n+1 and ψn − ψ̂n+1 = −δtψ
n, we get

G(ψn+1)−G(ψn)− g(ψ̂n+1)δtψ
n+1 =

1

2
g′(ζn1 )(δttψ

n+1)2 −
1

2
g′(ζn2 )(δtψ

n)2

≤
L2

2
|δttψ

n+1|2 +
L2

2
|δtψ

n|2, (3.21)

and

−A1τ
(

∂n(φ
n+1 − φn), δtψ

n+1
)

Γ
= −A1τ

(

∂n(φ
n+1 − φn), δtφ

n+1
)

Γ
. (3.22)
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Combining the result with (3.17)-(3.22), we obtain

II := −
1

δ

(

g(ψ̂n+1), δtψ
n+1
)

Γ

=
1

τ
‖δtψ

n+1‖2−1,Γ +
1

4τ

(

‖δtψ
n+1‖2−1,Γ − ‖δtψ

n‖2−1,Γ + ‖δttψ
n+1‖2−1,Γ

)

+ ε(∂nφ
n+1, δtφ

n+1)Γ +
δκ

2

(

‖∇Γψ
n+1‖2Γ − ‖∇Γψ

n‖2Γ + ‖∇Γδtψ
n+1‖2Γ

)

+ A1τ
(

∂n(φ
n+1 − φn), δtφ

n+1
)

Γ
+A2τ‖∇Γδtψ

n+1‖2Γ

+
B2

2
‖δtψ

n+1‖2Γ −
B2

2
‖δtψ

n‖2Γ +
B2

2
‖δttψ

n+1‖2Γ

≤ −
1

δ

(

G(ψn+1)−G(ψn), 1
)

Γ
+
L2

2δ
‖δttψ

n+1‖2Γ +
L2

2δ
‖δtψ

n‖2Γ.

Rewriting II yields

1

δ

(

G(ψn+1)−G(ψn), 1
)

Γ
+
δκ

2

(

‖∇Γψ
n+1‖2Γ − ‖∇Γψ

n‖2Γ
)

+
1

4τ

(

‖δtψ
n+1‖2−1,Γ − ‖δtψ

n‖2−1,Γ

)

+ ε(∂nφ
n+1, δtφ

n+1)Γ +A1τ
(

∂n(φ
n+1 − φn), δtφ

n
)

Γ

+
L2

2δ

(

‖δtψ
n+1‖2Γ − ‖δtψ

n‖2Γ
)

+
B2

2

(

‖δtψ
n+1‖2Γ − ‖δtψ

n‖2Γ
)

≤ −
1

4τ
‖δttψ

n+1‖2−1,Γ −
1

τ
‖δtψ

n+1‖2−1,Γ −
δκ

2
‖∇Γδtψ

n+1‖2Γ −A2τ‖∇Γδtψ
n+1‖2Γ

+
L2

2δ
‖δtψ

n+1‖2Γ −
B2

2
‖δttψ

n+1‖2Γ +
L2

2δ
‖δttψ

n+1‖2Γ. (3.23)

Noticing the facts that

χ1‖∇δtφ
n+1‖2Ω +

α2

τ
‖δtφ

n+1‖2−1,Ω ≥ 2

√

χ1α2

τ
‖δtφ

n+1‖2Ω,

and

χ2‖∇Γδtψ
n+1‖2Γ +

α̃2

τ
‖δtψ

n+1‖2−1,Γ ≥ 2

√

χ2α̃2

τ
‖δtψ

n+1‖2Γ,

with χ1 = A1τ +
α1ε

2
,χ2 = A2τ +

α̃1δκ

2
, 0 ≤ α1, α̃1 ≤ 1, 0 < α2, α̃2 ≤ 1, we have

−
(α1ǫ

2
+A1τ

)

‖∇δtφ
n+1‖2Ω −

α2

τ
‖δtφ

n+1‖2−1,Ω ≤ −2

√

(α1ε

2τ
+A1

)

α2‖δtψ
n+1‖2Γ,

and

−

(

α̃1δκ

2
+A2τ

)

‖∇Γδtψ
n+1‖2Γ −

α̃2

τ
‖δtψ

n+1‖2−1,Γ ≤ −2

√

(

α̃1δκ

2τ
+A2

)

α̃2‖δtφ
n+1‖2Γ.

For simplicity, let α1 = α̃1, α2 = α̃2 in the following.
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Combining the above equations and the inequalities we get

1

ε

(

F (φn+1)− F (φn), 1
)

Ω
+
ε

2

(

‖∇φn+1‖2Ω − ‖∇φn‖2Ω
)

+
1

4τ

(

‖δtφ
n+1‖2−1,Ω − ‖δtφ

n‖2−1,Ω

)

+
L1

2ε

(

‖δtφ
n+1‖2Ω − ‖δtφ

n‖2Ω
)

+
B1

2

(

‖δtφ
n+1‖2Ω − ‖δtφ

n‖2Ω
)

+
1

δ

(

G(ψn+1)−G(ψn), 1
)

Γ
+
δκ

2

(

‖∇Γψ
n+1‖2Γ − ‖∇Γψ

n‖2Γ
)

+
1

4τ

(

‖δtψ
n+1‖2−1,Γ − ‖δtψ

n‖2−1,Γ

)

+
L2

2δ

(

‖δtψ
n+1‖2Γ − ‖δtψ

n‖2Γ
)

+
B2

2

(

‖δtψ
n+1‖2Γ − ‖δtψ

n‖2Γ
)

≤ −
1

4τ
‖δttφ

n+1‖2−1,Ω −
1

4τ
‖δttψ

n+1‖2−1,Γ

− (1− α1)(
ε

2
‖∇δtφ

n+1‖2Ω +
δκ

2
‖∇Γδtψ

n+1‖2Γ)− (1− α2)
1

τ
(‖δtφ

n+1‖2−1,Ω + ‖δtψ
n+1‖2−1,Γ)

+

(

−2

√

(
α1ε

2τ
+A1)α2 +

L1

2ε

)

‖δtφ
n+1‖2Ω +

(

−
B1

2
+
L1

2ε

)

‖δttφ
n+1‖2Ω

+

(

−2

√

(
α1δκ

2τ
+A1)α2 +

L2

2δ

)

‖δtψ
n+1‖2Γ +

(

−
B2

2
+
L2

2δ

)

‖δttψ
n+1‖2Γ.

Then under the conditions (3.7)-(3.9), for the modified energy (3.11), the estimate (3.10) holds.

Remark 3.2. We can see that the BDF2 scheme (3.1)-(3.6) is conditionally stable if we take
α1 = α2 = 1 and the constraint on time step is

τ ≤ min

{

8ǫ3

L2
1

,
8δ3κ

L2
2

}

.

If we set the artificial parameters as (3.7)-(3.9), then the scheme is unconditionally stable, which
implies the stabilizers A1 and A2 play an important role in order to obtain an unconditionally
energy stable scheme.

4 Convergence analysis

We will establish the error estimate of the semi-discretized BDF2 scheme for the Cahn-Hilliard
model with dynamic boundary conditions in the norm of l∞(0, T ;H−1) ∩ l2(0, T ;H1). Let φ(tn),
ψ(tn) be the exact solution at time t = tn to equation (1.3) and φn, ψn be the solution at time t = tn

to the numerical scheme (3.1)-(3.6). Define the error functions enφ = φn − φ(tn), enψ = ψn − ψ(tn),
enµ = µn−µ(tn), enΓ = µnΓ −µΓ(t

n). Because the integrals of φn and ψn are conserved, δtφ
n belongs

to L2
0(Ω) and δtψ

n belongs to L2
0(Γ). This fact makes the H−1 norms of enφ and enψ are well-defined

in H−1(Ω) and H−1(Γ), respectively. Before presenting the detailed error analysis, we need to give
an Assumption.

Assumption 3. Assume that there exist two constants C0 and C1 independent of τ , such that

‖e1φ‖
2
−1 + ετ‖∇e1φ‖

2 ≤ C0τ
4,

and
‖e1ψ‖

2
−1 + δκτ‖∇Γe

1
ψ‖

2 ≤ C1τ
4.

We have the error estimate as follows.
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Theorem 4.1. Suppose that the exact solutions (φ,ψ, µ, µΓ) are sufficiently smooth and Assumption
1, 2 and 3 hold. Then ∀τ ≤ 1, we have the following error estimate for the BDF2 scheme (3.1)-
(3.6):

max
1≤n≤N

{‖en+1
φ ‖2−1,Ω + ‖2en+1

φ − enφ‖
2
−1,Ω + 2A1τ

2‖∇en+1
φ ‖2Ω

+‖en+1
ψ ‖2−1,Γ + ‖2en+1

ψ − enψ‖
2
−1,Γ + 2A2τ

2‖∇Γe
n+1
ψ ‖2Γ}

+
N
∑

n=1

(2A1τ
2‖δt∇e

n+1
φ ‖2Ω + τε‖∇en+1

φ ‖2Ω + ‖δtte
n+1
φ ‖2−1,Ω + 4B1τ‖e

n+1
φ ‖2Ω

+ 2A2τ
2‖δt∇Γe

n+1
ψ ‖2Γ + τδκ‖∇Γe

n+1
ψ ‖2Γ + ‖δtte

n+1
ψ ‖2−1,Γ + 4B2τ‖e

n+1
ψ ‖2Γ)

≤ exp
(

(C8ε
−3 + C9δ

−3)T
) (

C10ε
−1 +C11δ

−1 +C0(5 + 2A1ε
−1τ) + C1(5 + 2A2δ

−1κ−1τ)
)

τ4.

where C8, C9, C10, C11 are four constants that can be uniformly bounded independent of ε, δ, κ
and τ .

Proof. A careful consistency analysis implies that























































































3
2φ(t

n+1)− 2φ(tn) + 1
2φ(t

n−1)

τ
= ∆µ(tn+1) +Rn+1

φ , x ∈ Ω, (4.1)

µn+1 = −ε∆φ(tn+1) +
1

ε
f
(

φ(tn+1)
)

−A1τ∆
(

φ(tn+1)− φ(tn)
)

+B1

(

φ(tn+1)− 2φ(tn) + φ(tn−1)
)

+Rn+1
µ , x ∈ Ω, (4.2)

∂nµ(t
n+1) = 0, x ∈ Γ, (4.3)

φ(tn+1)|Γ = ψ(tn+1), x ∈ Γ, (4.4)
3
2ψ(t

n+1)− 2ψ(tn) + 1
2ψ(t

n−1)

τ
= ∆ΓµΓ(t

n+1) +Rn+1
ψ , x ∈ Γ, (4.5)

µΓ(t
n+1) = −δκ∆Γψ(t

n+1) +
1

δ
g
(

ψ(tn+1)
)

+ ε∂nφ(t
n+1)−A2τ∆Γ

(

ψ(tn+1)− ψ(tn)
)

+B2

(

ψ(tn+1)− 2ψ(tn) + ψ(tn−1)
)

+A1τ∂n
(

φ(tn+1)− φ(tn)
)

+Rn+1
Γ , x ∈ Γ, (4.6)

where the residual terms are

Rn+1
φ =

3
2φ(t

n+1)− 2φ(tn) + φ(tn−1)

τ
− φt(t

n+1),

Rn+1
ψ =

3
2ψ(t

n+1)− 2ψ(tn) + ψ(tn−1)

τ
− ψt(t

n+1),

Rn+1
µ = A1τ∆

(

φ(tn+1)− φ(tn)
)

−B1

(

φ(tn+1)− 2φ(tn) + φ(tn−1)
)

,

Rn+1
Γ = A2τ∆

(

ψ(tn+1)− ψ(tn)
)

−B2

(

ψ(tn+1)− 2ψ(tn) + ψ(tn−1)
)

−A1τ∂n
(

φ(tn+1)− φ(tn)
)

.

For simplicity, we define

Rn+1
1 = φ(tn+1)− 2φ(tn) + φ(tn−1),

Rn+1
2 = τ

(

φ(tn+1)− φ(tn)
)

,

Rn+1
3 = ψ(tn+1)− 2ψ(tn) + ψ(tn−1),

Rn+1
4 = τ

(

ψ(tn+1)− ψ(tn)
)

.
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By substracting (4.1)-(4.6) from the corresponding scheme (3.1)-(3.6), we derive the error equations
as follows,






























































































3
2e
n+1
φ − 2enφ +

1
2e
n−1
φ

τ
= ∆en+1

µ −Rn+1
φ , x ∈ Ω, (4.7)

en+1
µ = −ε∆en+1

φ +
1

ε

(

f(2φn − φn−1)− f(φ(tn+1))
)

−A1τ∆δte
n+1
φ

+B1δtte
n+1
φ −A1∆R

n+1
2 +B1R

n+1
1 , x ∈ Ω, (4.8)

∂ne
n+1
µ = 0, x ∈ Γ, (4.9)

en+1
φ |Γ = en+1

ψ , x ∈ Γ, (4.10)

3
2e
n+1
ψ − 2enψ + 1

2e
n−1
ψ

τ
= ∆Γe

n+1
Γ −Rn+1

ψ , x ∈ Γ, (4.11)

en+1
Γ = −δκ∆Γe

n+1
ψ +

1

δ

(

g(2ψn − ψn−1)− g(ψ(tn+1))
)

+ ε∂ne
n+1
φ −A2τ∆Γδte

n+1
ψ

+B2δtte
n+1
ψ +A1τ∂nδte

n+1
φ −A2∆ΓR

n+1
4 +B2R

n+1
3 +A1∂nR

n+1
2 , x ∈ Γ. (4.12)

Pairing (4.7) with (−∆)−1en+1
φ and adding to (4.8) paired with −en+1

φ , we have

(

3
2e
n+1
φ − 2enφ +

1
2e
n−1
φ

τ
, (−∆)−1en+1

φ

)

Ω

− ε(∆en+1
φ , en+1

φ )Ω −A1τ(∆δte
n+1
φ , en+1

φ )Ω

= (Rn+1
φ , (−∆)−1δte

n+1
φ )Ω −B1(R

n+1
1 , en+1

φ )Ω +A1(∆R
n+1
2 , en+1

φ )Ω

− B1(δtte
n+1
φ , en+1

φ )Ω −
1

ε

(

f(2φn − φn−1)− f(φ(tn+1)), en+1
φ

)

Ω

:= J1 + J2 + J3 + J4 + J5. (4.13)

The left hand side of (4.13) can be estimated term by term as below:
(

3
2e
n+1
φ − 2enφ +

1
2e
n−1
φ

τ
, (−∆)−1en+1

φ

)

Ω

=
1

4τ
(‖en+1

φ ‖2−1,Ω + ‖2en+1
φ − enφ‖

2
−1,Ω)

−
1

4τ
(‖enφ‖

2
−1,Ω + ‖2enφ − en−1

φ ‖2−1,Ω) +
1

4τ
‖δtte

n+1
φ ‖2−1,Ω, (4.14)

−ε(∆en+1
φ , en+1

φ )Ω = −ε(∂ne
n+1
φ , en+1

φ )Γ + ε‖∇en+1
φ ‖2Ω, (4.15)

−A1τ(∆δte
n+1
φ , en+1

φ )Ω = −A1τ(∂nδte
n+1
φ , en+1

φ )Γ +A1τ(δt∇e
n+1
φ ,∇en+1

φ )Ω

= −A1τ(∂nδte
n+1
φ , en+1

φ )Γ +
1

2
A1τ(‖∇e

n+1
φ ‖2Ω − ‖∇enφ‖

2
Ω + ‖δt∇e

n+1
φ ‖2Ω). (4.16)

Next, we estimate the terms on the right hand side of (4.13)

J1 = −(Rn+1
φ , (−∆)−1en+1

φ )Ω ≤
1

η1
‖∆−1Rn+1

φ ‖2−1,Ω +
η1
4
‖∇en+1

φ ‖2Ω, (4.17)

J2 = −B1(R
n+1
1 , en+1

φ )Ω ≤
B2

1

η1
‖Rn+1

1 ‖2−1,Ω +
η1
4
‖∇en+1

φ ‖2Ω, (4.18)

12



J3 = A1(∆R
n+1
2 , en+1

φ )Ω = A1(∂nR
n+1
2 , en+1

φ )Γ −A1(∇R
n+1
2 ,∇en+1

φ )Ω

≤
A2

1

η1
‖∇Rn+1

2 ‖2Ω +
η1
4
‖∇en+1

φ ‖2Ω +A1(∂nR
n+1
2 , en+1

φ )Γ, (4.19)

J4 = −B1(δtte
n+1
φ , en+1

φ )Ω = −B1

(

en+1
φ − (2enφ − en−1

φ ), en+1
φ

)

Ω

≤ −B1‖e
n+1
φ ‖2Ω +

B2
1

η1
‖2enφ − en−1

φ ‖2−1,Ω +
η1
4
‖∇en+1

φ ‖2Ω, (4.20)

J5 = −
1

ε

(

f(2φn − φn−1)− f(φ(tn+1)), en+1
φ

)

Ω

≤
K1

ε
(|2φn − φn−1 − φ(tn+1)|, |en+1

φ |)Ω

=
K1

ε
(|2enφ − en−1

φ − δttφ(t
n+1)|, |en+1

φ |)Ω

≤
K2

1

ε2η1
‖2enφ − en−1

φ ‖2−1,Ω +
K2

1

ε2η1
‖Rn+1

1 ‖2−1,Ω +
η1
2
‖∇en+1

φ ‖2Ω, (4.21)

where η1 is a positive constant.
Similarly, pairing (4.11) with (−∆Γ)

−1en+1
ψ and adding to (4.12) paired with −en+1

ψ , we have

(

3
2e
n+1
ψ − 2enψ + 1

2e
n−1
ψ

τ
, (−∆Γ)

−1en+1
ψ

)

Γ

− δκ(∆Γe
n+1
ψ , en+1

ψ )Γ −A2τ(∆Γδte
n+1
ψ , en+1

ψ )Γ

= (Rn+1
ψ , (−∆Γ)

−1en+1
ψ )Γ −B2(R

n+1
3 , en+1

ψ )Γ +A2(∆ΓR
n+1
4 , en+1

ψ )Γ

− B2(δtte
n+1
ψ , en+1

ψ )Γ −
1

δ

(

g(2ψn − ψn−1)− g(ψ(tn+1)), en+1
ψ

)

Γ

− A1(∂nR
n+1
2 , en+1

ψ )Γ − ε(∂ne
n+1
φ , en+1

ψ )Γ −A1τ(∂nδte
n+1
φ , en+1

ψ )Γ

: = J6 + J7 + J8 + J9 + J10 + J11 + J12 + J13. (4.22)

The left hand side of (4.22) can be estimated as follows,
(

3
2e
n+1
ψ − 2enψ + 1

2e
n−1
ψ

τ
, (−∆Γ)

−1en+1
ψ

)

Γ

=
1

4τ
(‖en+1

ψ ‖2−1,Γ + ‖2en+1
ψ − enψ‖

2
−1,Γ)

−
1

4τ
(‖enψ‖

2
−1,Γ + ‖2enψ − en−1

ψ ‖2−1,Γ) +
1

4τ
‖δtte

n+1
ψ ‖2−1,Γ, (4.23)

−δκ(∆Γe
n+1
Γ , en+1

ψ )Γ = δκ‖∇Γe
n+1
ψ ‖2Γ, (4.24)

−A2τ(∆Γδte
n+1
ψ , en+1

ψ )Γ = A2τ(δt∇Γe
n+1
ψ ,∇Γe

n+1
ψ )Γ

=
1

2
A2τ(‖∇Γe

n+1
ψ ‖2Γ − ‖∇Γe

n
ψ‖

2
Γ + ‖δt∇Γe

n+1
ψ ‖2Γ). (4.25)

Also, we estimate the terms on the right hand side of (4.22),

J6 = −(Rn+1
ψ , (−∆Γ)

−1en+1
φ )Γ ≤

1

η2
‖∆−1

Γ Rn+1
ψ ‖2−1,Γ +

η2
4
‖∇Γe

n+1
ψ ‖2Γ, (4.26)
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J7 = −B2(R
n+1
3 , en+1

ψ )Γ ≤
B2

2

η2
‖Rn+1

3 ‖2−1,Γ +
η2
4
‖∇Γe

n+1
ψ ‖2Γ, (4.27)

J8 = A2(∆ΓR
n+1
4 , en+1

ψ )Γ ≤
A2

2

η2
‖∇ΓR

n+1
4 ‖2Γ +

η2
4
‖∇Γe

n+1
ψ ‖2Γ, (4.28)

J9 = −B2(δtte
n+1
ψ , en+1

ψ )Γ = −B2

(

en+1
ψ − (2enψ − en−1

ψ ), en+1
ψ

)

Γ

≤ −B2‖e
n+1
ψ ‖2Γ +

B2
2

η2
‖2enψ − en−1

ψ ‖2−1,Γ +
η2
4
‖∇Γe

n+1
ψ ‖2Γ, (4.29)

J10 = −
1

δ

(

g(2ψn − ψn−1)− g(ψ(tn+1)), en+1
ψ

)

Γ

≤
L2

δ
(|2ψn − ψn−1 − ψ(tn+1)|, |en+1

ψ |)Γ

=
K2

δ
(|2enψ − en−1

ψ − δttψ(t
n+1)|, |en+1

ψ |)Γ

≤
K2

2

δ2η2
‖2enψ − en−1

ψ ‖2−1,Γ +
K2

2

δ2η2
‖Rn+1

3 ‖2−1,Γ +
η2
2
‖∇Γe

n+1
ψ ‖2Γ, (4.30)

where η2 is a positive constant.

J11 = −A1(∂nR
n+1
2 , en+1

ψ )Γ, (4.31)

J12 = −ε(∂ne
n+1
φ , en+1

ψ )Γ, (4.32)

J13 = −A1τ(∂nδte
n+1
φ , en+1

ψ )Γ. (4.33)

Combining (4.13)-(4.33) leads to

1

4τ
(‖en+1

φ ‖2−1,Ω + ‖2en+1
φ − enφ‖

2
−1,Ω) +

1

2
A1τ‖∇e

n+1
φ ‖2Ω

+
1

2
A1τ‖δt∇e

n+1
φ ‖2Ω + ε‖∇en+1

φ ‖2Ω +
1

4τ
‖δtte

n+1
φ ‖2−1,Ω

+ B1‖e
n+1
φ ‖2Ω +

1

4τ
(‖en+1

ψ ‖2−1,Ω + ‖2en+1
ψ − enψ‖

2
−1,Ω)

+
1

2
A2τ‖∇Γe

n+1
ψ ‖2Γ +

1

2
A2τ‖δt∇Γe

n+1
ψ ‖2Γ + δκ‖∇Γe

n+1
ψ ‖2Γ +

1

4τ
‖δtte

n+1
ψ ‖2−1,Γ +B2‖e

n+1
ψ ‖2Γ

≤
1

4τ
(‖enφ‖

2
−1,Ω + ‖2enφ − en−1

φ ‖2−1,Ω) +
1

2
A1τ‖∇e

n
φ‖

2
Ω +

1

η1
‖∆−1Rn+1

φ ‖2−1,Ω

+
3

2
η1‖∇e

n+1
φ ‖2Ω +

1

η1

(

B2
1 +

K2
1

ε2

)

‖Rn+1
1 ‖2−1,Ω +

A2
1

η1
‖∇Rn+1

2 ‖2Ω

+
1

η1

(

B2
1 +

K2
1

ε2

)

‖2enφ − en−1
φ ‖2−1,Ω +

1

4τ
(‖enψ‖

2
−1,Γ + ‖2enψ − en−1

ψ ‖2−1,Γ)

+
1

2
A2τ‖∇Γe

n
ψ‖

2
Γ +

1

η2
‖∆−1

Γ Rn+1
ψ ‖2−1,Γ +

3

2
η2‖∇Γe

n+1
ψ ‖2Γ

+
1

η2

(

B2
2 +

K2
2

δ2

)

‖Rn+1
3 ‖2−1,Γ +

A2
2

η2
‖∇ΓR

n+1
4 ‖2Γ +

1

η2

(

B2
2 +

K2
2

δ2

)

‖2enψ − en−1
ψ ‖2−1,Γ. (4.34)
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Using Taylor expansions in integral form, we can get estimate for the residuals:

‖∆−1Rn+1
φ ‖2−1,Ω ≤ c1τ

3

∫ tn+1

tn−1

‖∂ttt∆
−1φ(t)‖2−1,Ωdt ≤ C2τ

3,

‖∆−1Rn+1
ψ ‖2−1,Γ ≤ c2τ

3

∫ tn+1

tn−1

‖∂ttt∆
−1
Γ ψ(t)‖2−1,Γdt ≤ C3τ

3,

‖Rn+1
1 ‖2−1,Ω ≤ c3τ

3

∫ tn+1

tn−1

‖∂ttφ(t)‖
2
−1,Ωdt ≤ C4τ

3,

‖Rn+1
3 ‖2−1,Γ ≤ c4τ

3

∫ tn+1

tn−1

‖∂ttψ(t)‖
2
−1,Γdt ≤ C5τ

3,

‖∇Rn+1
2 ‖2Ω ≤ c5τ

3

∫ tn+1

tn

‖∂t∇φ(t)‖
2
Ωdt ≤ C6τ

3,

‖∇Rn+1
4 ‖2Γ ≤ c6τ

3

∫ tn+1

tn

‖∂t∇Γψ(t)‖
2
Γdt ≤ C7τ

3.

Taking η1 =
ε

2
, η2 =

δ

2
in (4.34), we get

(‖en+1
φ ‖2−1,Ω + ‖2en+1

φ − enφ‖
2
−1,Ω) + 2A1τ

2‖∇en+1
φ ‖2Ω + 2A1τ

2‖δt∇e
n+1
φ ‖2Ω

+ ετ‖∇en+1
φ ‖2Ω + ‖δtte

n+1
φ ‖2−1,Ω + 4B1τ‖e

n+1
φ ‖2Ω

+ (‖en+1
ψ ‖2−1,Γ + ‖2en+1

ψ − enψ‖
2
−1,Γ) + 2A2τ

2‖∇Γe
n+1
ψ ‖2Γ + 2A2τ

2‖δt∇Γe
n+1
ψ ‖2Γ

+ δκτ‖∇Γe
n+1
ψ ‖2Γ + ‖δtte

n+1
ψ ‖2−1,Γ + 4B2τ‖e

n+1
ψ ‖2Γ

≤ ‖enφ‖
2
−1,Ω + ‖2enφ − en−1

φ ‖2−1,Ω + 2A1τ
2‖∇enφ‖

2
Ω + C8τε

−3‖2enφ − en−1
φ ‖2−1,Ω

+ ‖enψ‖
2
−1,Γ + ‖2enψ − en−1

ψ ‖2−1,Γ + 2A2τ‖∇Γeψ‖
2
Γ +C9τδ

−3‖2enψ − en−1
ψ ‖2−1,Γ

+ C10ε
−1τ4 + C11δ

−1τ4, (4.35)

where
C8 = 8K2

1 + 8B2
1ε

2, C9 = 8K2
2 + 8B2

2δ
2,

C10 = 8C2 + 8C4(
K2

1

ε2
+B2

1) + 8C6A
2
1, C11 = 8C3 + 8C5(

K2
2

δ2
+B2

2) + 8C7A
2
2.

By using the discrete Gronwall inequality, we obtain

max
1≤n≤N

{‖en+1
φ ‖2−1,Ω + ‖2en+1

φ − enφ‖
2
−1,Ω + 2A1τ

2‖∇en+1
φ ‖2Ω

+‖en+1
ψ ‖2−1,Γ + ‖2en+1

ψ − enψ‖
2
−1,Γ + 2A2τ

2‖∇Γe
n+1
ψ ‖2Γ}

+
N
∑

n=1

(2A1τ
2‖δt∇e

n+1
φ ‖2Ω + τε‖∇en+1

φ ‖2Ω + ‖δtte
n+1
φ ‖2−1,Ω + 4B1τ‖e

n+1
φ ‖2Ω

+ 2A2τ
2‖δt∇Γe

n+1
ψ ‖2Γ + τδκ‖∇Γe

n+1
ψ ‖2Γ + ‖δtte

n+1
ψ ‖2−1,Γ + 4B2τ‖e

n+1
ψ ‖2Γ)

≤ exp
(

(C8ε
−3 + C9δ

−3)T
) (

C10ε
−1 +C11δ

−1 +C0(5 + 2A1ε
−1τ) + C1(5 + 2A2δ

−1κ−1τ)
)

τ4.

This completes the proof.
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5 Numerical experiments

In this section, we present some numerical experiments of the Liu-Wu model by scheme (3.1)-(3.6)
in two dimensions. For time discretization, we use the BDF2 scheme. For spatial operators, we use
the second-order central finite difference method to discretize them on a uniform spatial grid. For
such a linear scheme, we use the generalized minimum residual method as the linear solver. We
conduct the experiments on the rectangular domain [0, 1]2.

5.1 Accuracy test

In this section, numerical accuracy tests using the scheme (3.1)-(3.6) are presented to support
our error analysis. Let Ω to be the unit square, the spatial step size h = 1/256 and the time
step τ = 0.08, 0.04, 0.025, 0.0125, 0.01, 0.005. The parameters are chosen as ε = δ = 0.02, κ =
0.02, A1 = 68, A2 = 150, B1 = 120 and B2 = 120. The initial data is taken as the piecewise
constant setting:

φ0(x, y) =

{

0, x ∈ Ω,
1, x ∈ Γ.

(5.1)

We choose F and G to be the modified double-well potential as

F (x) = G(x) =







(x− 1)2, x > 1,
1
4(x

2 − 1)2, −1 ≤ x ≤ 1,
(x+ 1)2, x < −1.

Therefore, the second derivative of F with respect to φ and the second derivative of G with respect
to ψ are bounded

max
φ∈R

|F ′′(φ)| = max
ψ∈R

|G′′(ψ)| ≤ 2.

The errors are calculated as the difference between the solution of the coarse time step and that of
the reference time step τ = 2.5×10−4. In Figure 1, we plot the sum of L2 errors of φ and ψ between
the numerical solution and the reference solution at T = 4 with different time step sizes. The result
shows clearly that the slope of fitting line is 2.0653, which in turn verifies the convergence rate
of the numerical scheme is asymptotically at least second-order temporally for φ and ψ, which is
consistent with our numerical analysis in Section 4.
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Figure 1: The numerical errors ‖eφ‖Ω + ‖eψ‖Γ at T = 4.
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5.2 Cases with different initial conditions

We consider the numerical approximations for the Liu-Wu model with different initial conditions.

Case 1. The initial condition is set as piecewise constants:

φ0(x, y) =

{

1 x > 1/2,
−1 x ≤ 1/2.

(5.2)

In this example, the time step τ = 10−5 and the spacial size h = 0.01. The parameters are set
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Figure 2: Projection of numerical solution on y = 1
2 at t = 0.002 (left); Energy evolution (middle);

Mass evolution (right) for 0 ≤ t ≤ 0.002 with initial condition (5.2).

as ε = 1, δ = 0.1, κ = 1, A1 = A2 = 1, B1 = 1 and B2 = 10. We take the classical double well
potential function (1.4). We only plot the cutline of solution on y = 1

2 at t = 0.002 in Figure 2,
since the the numerical result is almost a constant in the vertical direction. It is consistent with
the literature works. The evolution of energy and mass with time are also shown in the Figure 2,
which reveals the energy stability and the conservation of mass in the region and the boundary.

Case 2. Consider the initial condition

φ0(x, y) = sin(4πx) cos(4πy). (5.3)

Here, the time step τ = 10−5 and the spacial size h = 0.01. The parameters are set as ε = δ =
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Figure 3: Numerical solution φ and ψ at t = 0.001 (left); Energy evolution (middle) for 0 ≤ t ≤
0.001; Mass evolution (right) for 0 ≤ t ≤ 0.001 with initial condition (5.3).

0.02, κ = 1, A1 = A2 = 1, B1 = B2 = 50 to ensure that the scheme is stable. The numerical
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solution at t = 0.001 is displayed in Figure 3. The development of energy and total mass for
0 ≤ t ≤ 0.001 is also shown in the Figure 3, which reveals the energy stability and the conservation
of mass in the region and the boundary, respectively. It is seen that the total energy has a quick
decay in the early stage until t = 0.0004, and then the energy decreases lightly.

Case 3. We reproduce the numerical experiment in Section 5.1 ever studied by Garcke and Knopf
[11]. The initial data is set to 0 at interior points and 1 on the boundary points. The time step is
τ = 8×10−6 and the spacial step is h = 0.01. The parameters are set as ε = δ = 0.02 and κ = 0.02.
The stability parameters are A1 = A2 = 5, B1 = B2 = 100.
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Figure 4: Total energy development for 0 ≤ t ≤ 0.025 (left); Mass in the bulk (middle); Mass on
the boundary (Right).

Figure 5: Snapshots of the phase variable φ at t = 0.00004, 0.00008, 0.00064, 0.0016, 0.004, 0.02.

The evolution of energy is presented in Figure 4. It is observed that the energy decays quickly
initially until about t = 0.017, and then the energy curve trends to become flat, which implies the
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system reaches a steady state. We also show the curves for the development of the mass in the
bulk (total φ) and on the boundary (total ψ) in Figure 4. Obviously, the both kinds of mass are
conserved respectively, which is consistent with theoretical result (1.5).

The numerical solutions at t = 0.00004, 0.00008, 0.00064, 0.0016, 0.004 and 0.02 are displayed
in Figure 5. Due to the conservation of mass on the boundary, the numerical solution remains 1
throughout the computation. A wavy structure begins to form starting from the initial time, and
then multi-layered wavy structure is evolved gradually. Next, the multi-layered structure may be
developed to the steady state: a circle centered in the region with −1 inside and 1 outside the
circle. These numerical results are consistent with the reference works in the literatures.

Case 4. We simulate a phase separation process in the case of vanishing adsorption rates. The
initial configuration is

φ0(x, y) = max{0.1 sin(πx), 0.1 sin(πy)}.

Here, we take the classical double well potential function (1.4). The time step τ = 8 × 10−5 and
the spacial step is h = 0.01. The parameters are set as ε = δ = 0.02 and κ = 1. The stability
parameters are A1 = A2 = 5, B1 = B2 = 100, which is compared with those listed in Section 5.1
in [22].

Figure 6: Snapshots of the phase variable φ at t = 0, 0.0004, 0.0006, 0.0024, 0.006, 0.0327, 0.2.

Due to the unstable initial configuration, the two phases will be separated into different regions,
where the value of φ is close to constants ±1. The solution evolution is shown in Figure 6. The
red color represents the phase φ = 1 and blue one indicates phase φ = −1. To visualize the
initial conditions, the figure of initial data is rescaled so that the red color represents φ = 0.1,
blue one corresponding φ = 0. Since the initial data is symmetric in both x- and y-direction, the
phase evolution is always developed in a symmetric way until it reaches the steady state with four
patterns arranged symmetrically. The evolution of energy and mass with time are also shown in
the Figure 7, which again indicates the energy stability and the conservation of mass in the region
and the boundary.
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Figure 7: Energy evolution (left); Mass evolution (right) in the case of vanishing adsorption rates.

Case 5. Here, we consider the shape deformation of a droplet. A square droplet is placed in
the area [0, 1]2 centered at (0.5, 0.25) and the length of each side is 0.5 (as shown in Figure 8).
The internal phase of the droplet is set to 1 and the external phase is set to −1. The forms of
F and G are taken as regular double well potential functions (1.4). The parameters are set as
ε = δ = 0.02, κ = 0.02. The stabilized parameters are chosen as A1 = A2 = 5, B1 = B2 = 100.
We use the time step τ = 2 × 10−4 and the spacial size h = 0.01 to simulate the deformation of
droplets from t = 0 to t = 0.5.

Figure 8: The initial data of the square shaped droplet.

The deformation of droplets at time t = 0.002, 0.01, 0.02, 0.1, 0.2 and 0.5 are shown in Figure
9. It is seen that the square droplet is smoothed around the two up corners of the initial structure.
Then it gradually evolves into circular droplets with equal average curvature. In addition, under
the constraint of mass conservation, the contact area between the droplet and the boundary almost
keeps unchanged with time, which is consistent with the previous work [18]. The development of
energy and mass are shown in Figure 10. It can be observed that the energy decreases quickly at the
initial stage, which corresponds to the quick deformation of the square to the smoothed structure.
Also we provided the energy curve from t = 0 to t = 0.1, again revealing the conservation of mass
on the region and boundary respectively.
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Figure 9: Snapshots of the phase variable φ at time t = 0.002, 0.01, 0.02, 0.1, 0.2, 0.5 with double
well potential functions.
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Figure 10: Energy evolution (left); Mass evolution (right) with the initial data of the square shaped
droplet.

5.3 Cases with different potential functions

In the previous numerical experiments, the surface potential function G takes the form of polyno-
mial. Here, we consider different forms.

Case 1. We consider the typical moving contact line problem

G(φ) =
γ

2
cos(θs) sin(

π

2
φ), (5.4)

where γ = 2
√
2

2 , θs is the static contact angle (cos θs = ±1
2 below). τ = 10−5, h = 0.01 and other

parameters are the same as those in the previous samples.
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We show the energy curve and mass curve for 0 ≤ t ≤ 0.01 in Figure 11. It is found that the
case cos θs = −1

2 takes longer time to reach the steady state than the case of cos θs =
1
2 . For both

cases, the mass in the bulk and on the boundary keep unchanged throughout the computation. In
Figures 12 and and 13, we present the phase contours for at t = 0.0003, 0.0005, 0.001, 0.002, 0.008
and 0.01 corresponding to cos θs =

1
2 and cos θs = −1

2 , respectively. Driven by the surface potential
function (5.4), the square droplet also tends to change into a circle with time, see Figure 12 and 13.
The same phenomena occurs in the Case 5 in Section 5.2. However, it is noted that the contact area
between the droplet and the boundary will change, which is different from the case of double well
potential (1.4). Therefore, due to the mass conservation on the region and boundary respectively,
the value of φ and ψ are not limited to the interval [−1, 1].
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Figure 11: Energy evolution of Liu-Wu model with surface potential energy (5.4) (left); Mass
evolution of Liu-Wu model when the cos θs =

1
2 (middle) and cos θs = −1

2 (right).

Figure 12: Snapshots of the phase variable φ at time t = 0.0003, 0.0005, 0.001, 0.002, 0.008, 0.01,
(cos θs =

1
2).
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Figure 13: Snapshots of the phase variable φ at time t = 0.0003, 0.0005, 0.001, 0.002, 0.008, 0.01,
(cos θs = −1

2).

Case 2. The Cahn-Hilliard equation with Flory-Huggins potential is widely used to describe
the spinodal decomposition and coarsening of binary mixtures. Namely, for the bulk and surface
potential, we consider the logarithmic Flory-Huggins potential as follows,

F (φ) = φ lnφ+ (1− φ) ln(1− φ) + θφ ln(1− φ),

G(ψ) = ψ lnψ + (1− ψ) ln(1− ψ) + θψ ln(1− ψ),

where the constant θ>0. In this case, φ and ψ represent the mass concentration of one component
in the bulk and on the boundary, rather than φ and ψ as the order parameters. Therefore, the
concentrations of other components in the bulk and on the boundary are denoted by 1 − φ and
1 − ψ respectively. Therefore, the corresponding physical correlation interval is (0, 1). According
to the work in [34], we need the regularized logarithmic potential as follows in order to ensure the
logarithmic potential smooth enough. Precisely, for 0 < ζ ≪ 1,

F̂ (φ) =



























φ lnφ+
(1− φ)2

2ζ
+ (1− φ) ln ζ −

ζ

2
+ θφ(1− φ), φ>1− ζ,

φ lnφ+ (1− φ) ln(1− φ) + θφ(1− φ), ζ ≤ φ ≤ 1− ζ,

(1− φ) ln(1− φ) +
φ2

2ζ
+ φ ln ζ −

ζ

2
+ θφ(1− φ), φ<ζ,

Ĝ(ψ) =



























ψ lnψ +
(1− ψ)2

2ζ
+ (1− ψ) ln ζ −

ζ

2
+ θψ(1− ψ), ψ>1− ζ,

ψ lnψ + (1− ψ) ln(1− ψ) + θψ(1− ψ), ζ ≤ ψ ≤ 1− ζ,

(1− ψ) ln(1− ψ) +
ψ2

2ζ
+ ψ ln ζ −

ζ

2
+ θψ(1− ψ), ψ<ζ.
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Figure 14: Snapshots of the phase variable φ at t = 0.005, 0.01, 0.015, 0.02, 0.035, 0.05 with the
Flory-Huggins potential.

Obviously, the advantage of using regularization potential is that the domain of F̂ and Ĝ are R,
so we don’t need to worry about the overflow caused by any small fluctuation near the region
boundary (0, 1) of the numerical solution.
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Figure 15: Energy evolution (left); Mass evolution (right) with the Flory-Huggins potential.

Here, we conduct the numerical simulations on the domain Ω = [0, 0.5]2 ⊂ R
2. The domain size

and the region is evenly divided into 128×128 grids. The time step τ = 10−4. The parameters are set
as ε = δ = 0.05, κ = 1, θ = 2.5, ζ = 0.005. The artificial parameters A1 = A2 = 10, B1 = B2 = 500
are used to ensure that the scheme is stable. The initial data is set as random numbers between
0.4 and 0.6. The numerical results at t = 0.005, 0.01, 0.015, 0.02, 0.035, 0.05 are plotted in Figure
14. It is seen that the numerical solution roughly lies in the interval (0.1, 0.9), which makes the
Flory-Huggins energy potential well-defined. The phase field along the boundary is dynamically
developed, see Figure 14. However, both the total mass in the interior domain and on the boundary
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remain unchanged, see Figure 15. The energy development is also displayed in Figure 15, again
indicating the energy decreasing throughout the computation and a quick decay at early stage.

Remark 5.1. In the actual numerical computations, we find the proposed BDF2 scheme displays the
property of stability energy with the stabilizers A1, A2, B1 and B2 much smaller than the theoretical
ones (3.7)-(3.9).

6 Conclusions

To the best of our knowledge, we are the first to propose the second-order stabilized semi-implicit
linear scheme for the Cahn-Hilliard equation with dynamic boundary conditions. The nonlinear
bulk forces are treated explicitly with four additional linear stabilization terms: A1τ∆

(

φn+1 − φn
)

,
B1

(

φn+1 − 2φn + φn−1
)

, A2τ∆Γ

(

ψn+1 − ψn
)

and B2

(

ψn+1 − 2ψn + ψn−1
)

. By a serial of esti-
mates both in the bulk and on the boundary, we find the modified total energy decays throughout
the time. We also present a rigorous analysis to obtain an optimal error estimate for the proposed
BDF2-type scheme, which is a more challenging work than the numerical analysis with classical
boundary conditions. Numerical experiments with various of initial conditions and potential func-
tions are presented to verify the stability and accuracy of the scheme, also we find many interesting
phenomena caused by dynamic boundary condition.
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