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Abstract

In this paper, we have given a new definition of continuous fractional wavelet transform in R
N
, namely the

multidimensional fractional wavelet transform (MFrWT) and studied some of the basic properties along with
the inner product relation and the reconstruction formula. We have also shown that the range of the proposed
transform is a reproducing kernel Hilbert space and obtain the associated kernel. We have obtained the uncertainty
principle like Heisenberg’s uncertainty principle, logarithmic uncertainty principle and local uncertainty principle of
the multidimensional fractional Fourier transform (MFrFT). Based on these uncertainty principles of the MFrFT
we have obtained the corresponding uncertainty principles i.e., Heisenberg’s, logarithmic and local uncertainty
principles for the proposed MFrWT.
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1 Introduction

In 1980 Namias introduced the fractional Fourier transform (FrFT), also known as essentially equivalent transforms,
as a generalization of the traditional Fourier transform (FT)([18]) . This theory was later refined and studied in [1],
[16]. FrFT has been used as a substantial tool for analysis of the signal, sensor data, transmission signals such as
radio signals and many others, for example [1],[4],[14],[22],[20]. Because of the scarcity of localization information,
It is not suitable for processing signals with varying fractional frequencies over time. The Fourier transform, on the
other hand, has been found to be unsuitable for characterizing some practical uses or dealing with their inherent
mathematical issues. As a repercussion, some Fourier transforms have been developed to compensate for the FT’s
imprecision, such as the FrFT, wavelet transform ([7]) and the windowed Fourier transform ([9]). Mendlovich et al.
([17]) devised the Fractional Wavelet Transform to analyze with optical signals in 1997. The proposal was to use the
wavelet transform of the signal’s fractional spectrum, which was obtained using FrFT. Since then, FrFT has produced
fractional frequencies that last for the entire duration of the signal rather than a specific time, preventing the signal
from communicating local information. As a result, the fractional wavelet transformation investigated in [17] fails to
capture the signal’s local properties. As a result, Shi et al. ([23]) proposed a new fractional wavelet transform that
combines aspects of both the classical and FrFT wavelet transforms and returns the signal’s local information. In [6],
Dai et al. studied a new FrWT, which is more general than the transform studied in [23], [21]. They also studied the
multiresolution analysis associated with it. Luchko et al. ([15]) gave a novel definition of FrFT and the corresponding
fractional wavelet transform have been studied in [25],[27]. For more information on the fractional Fourier transform
introduced in [15], we refer the reader to [13],[26].

In recent times, Zayed [31] proposed 2-dimensional FrFT

Fα,β(u, v) =

∫

R2

k(x, y, u, v;α, β)f(x, y)dxdy,

where k(x, y, u, v;α, β) is given by equation (3.13) in [31], which is not a tensor product of two 1-dimensional FrFT ([1]).
He verified its properties with the convolution theorem, the inverse theorem, and the Poisson summation formula.
Kamalakkanan et al. [12] proved the inverse formula for MFRFT ([19]) which is defined as the tensor product of
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N-copies of a 1-dimensional FrFT. He also studied the related convolution theorem and product theorem, as well as
presenting a generalised fractional convolution that was more general than the one in [11]. Verma et al. ([28]) extended
the continuous fractional wavelet transforms in RN with the dilation parameter in RN and studied the associated
uncertainty principles along with its boundedness on Morrey space. As per taking the context on multidimensional
fractional Fourier transform and one-dimensional fractional wavelet transforms, in this paper, we provide definition
of multidimensional fractional wavelet transforms with N−dimensional parameter α in a more precise way, including
properties of continuous fractional wavelet transforms.

The signal’s frequency and time at any point in the time-frequency plane are unknown. To put it another way,
we have no way of knowing which spectral components are present at any given time. All we can do is look at which
spectrum components are present at any given time frame. This issue is called the uncertainty principle. Heisenberg
discovered and formulated the uncertainty principle, which states that a moving particle’s momentum and state cannot
be determined simultaneously. The principles of logarithmic, Heisenberg, and local uncertainty help us to perceive
the interrelationships between different transformed domains better than the unrelated appearance [6], [30]. Because
they are signal processing elements, the three uncertainty principles are well suited for potential later applications
([10]). The detailed description and history of these three inequalities are given in [8].

The purpose of this paper is to define novel multidimensional fractional wavelet transform (MFrWT) with pa-
rameter (α1, α2, · · · , αN ) that is broader in scope than the transforms defined earlier. We give some basic properties
of the suggested transform and obtain the inner product relation, reconstruction/retransformation formula and also
characterize its range. We derive the Heisenberg’s uncertainty inequality, local uncertainty inequality and logarithmic
uncertainty inequality for the MFrFT. Based on the properties of the MFrWT and the uncertainty inequalities associ-
ated with the MFrFT we derive the same for the MFrWT. The rest of the paper is organized as follows. In section 2,
we review some fundamental definitions. In section 3, The MFrWT’s theoretical framework, including its definition,
properties, and inverse transformation, has been established. In addition, we defined the range of transformations
and demonstrated that the range is the reproducing kernel Hilbert space. In section 4, we have obtained several
uncertainty principles for the MFrWT. Lastly, in section 5, we conclude our paper.

2 Preliminaries

Let ‖ · ‖ denote the Euclidean norm and R
N be the N -dimensional Euclidean space that is, for x = (x1, x2, · · · , xN ) ∈

RN

‖x‖ =

√

√

√

√

N
∑

i=1

x2i .

We specify |x|m = |x1x2x3 · · ·xN | and RN0 = {x ∈ RN : |x|m 6= 0}. For x = (x1, x2, · · · , xN ), y = (y1, y2, · · · , yN ) ∈
RN , x+y = (x1+y1, x2+y2, · · · , xN+yN), xy = (x1y1, x2y2, · · · , xNyN).Moreover y ∈ RN0 then, x

y
=
(

x1

y1
, x2

y2
, · · · , xN

yN

)

and if α = (α1, α2, · · · , αN ) then we define sinα = (sinα1, sinα2, · · · , sinαN ).

Definition 2.1. For 1 ≤ P < ∞, the Lebesgue space LP (RN ) is a Banach space and for every complex valued
measurable function f ∈ RN such that

∫

RN

|f(t)|P dt <∞,

where norm is given by

‖f‖LP (RN ) =

(
∫

RN

|f(t)|P dt
)

1

P

.

In particular, L2(RN ) is a Hilbert space in which the inner product is stated by

〈f, g〉L2(RN ) =

∫

RN

f(t)g(t)dt,

here g(t) denotes the complex conjugate of g(t).

Definition 2.2. Assume X is a complete inner product space of complex-valued functions defined on S, where S is
an arbitrary set with the inner product defined by 〈., .〉X . Then a complex-valued function K defined on S × S is
known as reproducing kernel of X if it fulfill the necessary conditions,

for a particular p ∈ S, we’ve K(·, p)also in X and f(p) = 〈f(·),K(·, p)〉X for every f ∈ X.
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We’ll go through the definition of the MFrFT ([12]) in the next section.

Definition 2.3. The MFrFT of f ∈ L2(RN ), of order α = (α1, α2, · · · , αN ), αi ∈ (−π, π) \{0}, for i = 1, 2, · · · , N
and λ ∈ R− {0}, is given by

Fα,λ (f) (ξ) = Fα,λ (ξ) =

∫

RN

f (x)Kα,λ (x, ξ) dx, (1)

where Kα,λ (x, ξ) =

N
∏

i=1

Kαk,λ (xk, ξk) and Kαk,λ (xk, ξk) , for k = 1, 2, · · · , N, are defined by

Kαk,λ (xk, ξk) =











c(αk)

(
√
2π)

eiλ
2{a(αk)[xk

2+ξk
2−2b(αk)xkξk]}, αk /∈ πZ

∆(xk − ξk), αk ∈ 2πZ

∆(xk + ξk), αk ∈ 2πZ+ π.

Here, x = (x1, x2, x3, ..., xN ), a(αk) =
cot(αk)

2 , b(αk) = sec(αk), c(αk) =
√
1− i cotαk.

The kernel Kα,λ (x, ξ) can be re-written as

Kα,λ (x,η) =
c(αλ)

(
√
2π)N

eα,λ2(x)eα,λ2(η)e−iλ
2
∑

N

k=1
xkηk cscαk ,

where

eα,λ2(x) = eiλ
2
∑

N

k=1
a(αk)xk

2

, c(αλ) = c(α1)c(α2) · · · c(αN ) (2)

and
αλ =

(

cot−1(λ2 cotα1), cot
−1(λ2 cotα2), · · · , cot−1(λ2 cotαN )

)

.

3 Multidimensional Fractional Wavelet Transform (MFrWT)

Definition 3.1. A non-zero function ψ ∈ L2(RN ) is wavelet admissible if
∫

R
N

0

|(Fα,λψ)(u)|2
du

|u|m
<∞. (3)

A wavelet admissible function is also known as a fractional wavelet or simply a wavelet.

Now, we define our new MFrWT.
Let f ∈ L2(RN ) and ψ be an admissible wavelet, then MFrWT is given by

(Wα,λ
ψ f)(a, b) = c(αλ)eα,−λ2(f̃ ∗ ğ)(b), a ∈ R

N
0 , b ∈ R

N ,

where ∗ is the convolution given by

(µ ∗ ν)(x) =
∫

RN

µ(y)ν(x − y)dy,

ψ̃ = ψeα,λ2 , f̃ = feα,λ2 and ğ(t) = 1√
|a|m

ψ̃
(−t

a

)

.

Therefore,

(Wα,λ
ψ f)(a, b) = c(αλ)eα,−λ2(b)(f̃ ∗ ğ)(b)

= c(αλ)eα,−λ2(b)

∫

RN

f̃(t)
1

√

|a|m
ψ̃

(

t− b

a

)

dt

= c(αλ)eα,−λ2(b)

∫

RN

f(t)eα,λ2 (t)
1

√

|a|m
ψ̃

(

t− b

a

)

dt

=

〈

f(t), c(αλ)eα,λ2(b)eα,−λ2(t)
1

√

|a|m
ψ̃

(

t− b

a

)

〉

= 〈f(t),Ψα,λ,a,b(t)〉 ,

where Ψα,λ,a,b(t) = c(αλ)eα,λ2(b)eα,−λ2(t) 1√
|a|m

ψ̃
(

t−b
a

)

.

We now prove some properties of the proposed MFrWT.
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Theorem 3.1. Let ψ, φ ∈ L2(RN ) be two wavelets and for any two functions f, g ∈ L2(RN ). Also let σ > 0 and
r, s ∈ C, then

(i) Linearity: Wα,λ
ψ (rf + sg) = r(Wα,λ

ψ f) + s(Wα,λ
ψ g). This property shows that the MFrWT upholds the super-

position principle, which is useful for multicomponent signal analysis.

(ii) Anti-linearity: Wα,λ

(rψ+sφ)f = rWψf + sWφf.

(iii) Dilation: (Wα,λ
ψ Dσf)(a, b) =

C′

σN
W

α,λ
σ

ψ f(σa, σb), where Dσ is a dilation operator, which is given by Dσf(t) =

f(σt) and C′ = σ
N

2





c(αλ)

c

(

αλ

σ

)



,

(iv) Conjugacy: (Wα,λ
ψ f)(a, b) =W−α,λ

ψ
f(a, b).

(v) Parity: (Wα,λ
ψ Pf)(a, b) =Wα,λ

ψ f(−a,−b), Here, P is the parity operator, which is defined by Pf(x) = f(−x).

(vi) Translation: (Wα,λ
ψ τyf)(a, b) = eα,−λ2(b)eα,λ2(b − y)eα,λ2 (y)(Wα,λ

ψ f̌)(a, b − y), where fractional translation

operator τy is given by τyf(x) = f(x− y) and f̌(t) = f(t)eiλ
2
∑

N

k=1
a(αk)2tkyk .

Proof. The proof of (i) and (ii) are straight forward and thus can be omitted.

(iii) Using the definition of Dσf, we have

(Wα,λ
ψ Dσf)(a, b) =

∫

RN

(Dσf)(t)Ψα,λ,a,b(t)dt

=

∫

RN

f(σt)Ψα,λ,a,b(t)dt, (4)

on putting σt = u and dt =
du

σ
in equation (4), we get

(Wα,λ
ψ fσ)(a, b) =

1

σN

∫

RN

f(u)Ψα,λ,a,b

(u

σ

)

du. (5)

Now,

Ψα,λ,a,b(t) = c(αλ)eα,λ2(b)eα,−λ2(t)
1

√

|a|m
ψ̃

(

t− b

a

)

⇒ Ψα,λ,a,b

(u

σ

)

= c(αλ)eα,λ2(b)eα,−λ2

(u

σ

) 1
√

|a|m
ψ̃

(

(u
σ
)− b

a

)

= c(αλ)eα,λ2

σ2

(σb)e
α,−λ2

σ2

(u)
1

√

|a|m
ψ̃

(

u− σb

σa

)

.

= σ
N

2 c(αλ)eα,λ2

σ2

(σb)e
α,−λ2

σ2

(u)
1

√

|σa|m
ψ̃

(

u− σb

σa

)

.

Therefore,

Ψα,λ,a,b

(u

σ

)

= C′Ψα,λ
σ
,σa,σb(u), (6)

where C′ = σ
N

2





c(αλ)

c

(

α λ

σ

)



. We now get the required result by putting equation (6) into equation (5).
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(iv)

(Wα,λ
ψ f)(a, b) =

〈

f(t),Ψα,λ,a,b(t)
〉

L2(RN )

=

〈

f(t), c((−α)λ)eα,λ2(b)eα,−λ2(t)
1

√

|a|m
ψ̃

(

t− b

a

)

〉

L2(RN )

=

〈

f(t), c((−α)λ)e−α,λ2(b)e
−α,−λ2(t)

1
√

|a|m
ψ̃

(

t− b

a

)

〉

L2(RN )

=

〈

f(t), c((−α)λ)e−α,λ2(b)e
−α,−λ2(t)

1
√

|a|m
(ψeα,λ2)

(

t− b

a

)

〉

L2(RN )

=

〈

f(t), c((−α)λ)e−α,λ2(b)e
−α,−λ2(t)

1
√

|a|m
(ψe−α,λ2)

(

t− b

a

)

〉

L2(RN )

= W−α,λ

ψ
f(a, b).

(v) Using the definition of Pf, we have

(Wα,λ
ψ Pf)(a, b) =

∫

RN

Pf(t)Ψα,λ,a,b(t)dt

=

∫

RN

f(−t)Ψα,λ,a,b(t)dt. (7)

Putting −t = x in equation (7), we get

(Wα,λ
ψ Pf)(a, b) =

∫

RN

f(x)Ψα,λ,a,b(−x)dx. (8)

Now,

Ψα,λ,a,b(−t) = c(αλ)eα,λ2(b)eα,−λ2(−t)
1

√

|a|m
ψ̃

(−t− b

a

)

= c(αλ)eα,λ2(−b)eα,−λ2(t)
1

√

|a|m
ψ̃

(

t− (−b)

−a

)

= Ψα,λ,−a,−b(t). (9)

We get the required result by putting equation (9) into equation (8).

(vi) Using the definition of τyf, we get

(Wα,λ
ψ τyf)(a, b) =

∫

RN

τyf(x)Ψα,λ,a,b(x)dx

=

∫

RN

f(x− y)Ψα,λ,a,b(x)dx, (10)

and by putting x− y = t,x = t+ y, dx = dt in equation (10), we get

(Wα,λ
ψ τyf)(a, b) =

∫

RN

f(t)Ψα,λ,a,b(t+ y)dt. (11)

5



Now,

Ψα,λ,a,b(t + y) =c(αλ)eα,λ2(b)eα,−λ2(t+ y)
1

√

|a|m
ψ̃

(

t+ y − b

a

)

=c(αλ)eα,λ2(b)eα,−λ2(t+ y)
1

√

|a|m
ψ̃

(

t− (b− y)

a

)

=eα,λ2(b)eα,−λ2(b− y)eα,−λ2(y)e−iλ
2
∑

N

k=1
a(αk)2tkyk

[

c(αλ)eα,λ2(b− y)eα,−λ2(t)

1
√

|a|m
ψ̃

(

t− (b− y)

a

)

]

=eα,λ2(b)eα,−λ2(b− y)eα,−λ2(y)e−iλ
2
∑

N

k=1
a(αk)2tkykΨα,λ,a,b−y(t). (12)

We get the required result by putting equation(12) into equation (11).

Now we will derive some lemmas that will help us to demonstrate the inner product relation for MFrWT .

Lemma 3.1. (FrFT of Ψα,λ,a,b(t)) Suppose a non-zero function ψ ∈ L2(RN ) is given, then

(Fα,λΨα,λ,a,b)(ξ) = c(αλ)
√

|a|meα,λ2(b)eα,λ2(ξ)eα,−λ2(aξ)e−iλ
2
∑

N

k=1
bkξk cscαk(Fα,λψ)(aξ). (13)

Proof. For any ξ ∈ RN ,

(Fα,λΨα,λ,a,b)(ξ) =

∫

RN

Ψα,λ,a,b(t)Kα,λ (t, ξ) dt

= c(αλ)eα,λ2(b)

∫

RN

eα,−λ2(t)
1

√

|a|m
ψ̃

(

t− b

a

)

c(αλ)

(
√
2π)N

eα,λ2(t)eα,λ2 (ξ)e−iλ
2
∑

N

k=1
tkξk cscαkdt

=
1

√

|a|m
|c(αλ)|2
(
√
2π)N

eα,λ2(b)

∫

RN

ψ̃

(

t− b

a

)

eα,λ2(ξ)e−iλ
2
∑

N

k=1
tkξk cscαkdt. (14)

Putting t = au+ b and dt = |a|mdu in equation (14), we’ve

(Fα,λΨα,λ,a,b)(ξ)

=
|c(αλ)|2
(
√
2π)N

√

|a|meα,λ2(b)eα,λ2(ξ)eα,−λ2(aξ)e−iλ
2
∑

N

k=1
bkξk cscαk

∫

RN

ψ̃(u)eα,λ2(aξ)e−iλ
2
∑

N

k=1
akukξk cscαkdu

= c(αλ)
√

|a|meα,λ2(b)eα,λ2(ξ)eα,−λ2(aξ)e−iλ
2
∑

N

k=1
bkξk cscαk

∫

RN

ψ(u)Kα,λ(u,aξ)du

= c(αλ)
√

|a|meα,λ2(b)eα,λ2(ξ)eα,−λ2(aξ)e−iλ
2
∑

N

k=1
bkξk cscαk(Fα,λψ)(aξ).

This completes the proof.

Lemma 3.2. (FrFT ofWα,λ
ψ f(a, b)) Suppose ψ be an admissible wavelet and for any arbitrary function f ∈ L2(RN ),

then

Fα,λ(W
α,λ
ψ f)(a, b)(ξ) =

√

|a|m(
√
2π)N

c(αλ)

c(αλ)
F (ξ),

where F (ξ) = eα,λ2(aξ)(Fα,λf)(ξ)(Fα,λψ)(aξ).

Proof. Here, we know

(Wα,λ
ψ f)(a, b) = 〈f(t),Ψα,λ,a,b(t)〉

Therefore,

(Wα,λ
ψ f)(a, b) = 〈(Fα,λf)(ξ), (Fα,λΨα,λ,a,b)(ξ))〉

=

∫

RN

(Fα,λf)(ξ)(Fα,λΨα,λ,a,b)(ξ)dξ

=

∫

RN

(Fα,λf)(ξ)c(αλ)
√

|a|meα,−λ2(b)eα,−λ2(ξ)eα,λ2(aξ)eiλ
2
∑

N

k=1
bkξk cscαk(Fα,λψ)(aξ)dξ. (15)
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From equation (15), we have

(Wα,λ
ψ f)(a, b) = c(αλ)

√

|a|m
∫

RN

eα,−λ2(b)eα,−λ2(ξ)eiλ
2
∑

N

k=1
bkξk cscαkF (ξ)dξ,

where

F (ξ) = eα,λ2(aξ)(Fα,λ)(ξ)(Fα,λψ)(aξ). (16)

Thus, we have

(Wα,λ
ψ f)(a, b) =

√

|a|m(
√
2π)N

c(αλ)

c(αλ)

∫

RN

K−α,λ (b, ξ)F (ξ)dξ

=
√

|a|m(
√
2π)N

c(αλ)

c(αλ)
F−α,λ(F (ξ))(b),

which implies that

Fα,λ(W
α,λ
ψ f)(a, b)(ξ) =

√

|a|m(
√
2π)N

c(αλ)

c(αλ)
F (ξ). (17)

We get the required result by putting equation (16) into equation (17).

Theorem 3.2. (Inner product relation for MFrWT) Let Wα,λ
ψ f and Wα,λ

ψ g represent the MFrWT of functions f
and g with respect to admissible wavelet ψ respectively and then

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ g)(a, b)
dadb

|a|2m
= Cα,λ〈f, g〉L2(RN ), (18)

where

Cα,λ = (2π)N
∫

R
N

0

|(Fα,λψ)(u)|2
du

|u|m
. (19)

Proof. Treating (Wα,λ
ψ f)(a, b), (Wα,λ

ψ g)(a, b) as L2(RN ) are functions of some variable b and using the Parseval’s
theorem for the MFrFT ([12], Theorem 3.3) we have

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ g)(a, b)
dadb

|a|2m
=

∫

R
N

0

(∫

RN

Fα,λ((W
α,λ
ψ f)(a, b))(ξ)Fα,λ((W

α,λ
ψ g)(a, b))(ξ)dξ

)

da

|a|2m
.

(20)

Now, using equation (17) in equation (20), we get

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ g)(a, b)
dadb

|a|2m

=

∫

R
N

0

(∫

RN

√

|a|m(
√
2π)Neα,λ2(aξ)(Fα,λψ)(aξ)(Fα,λf)(ξ)

√

|a|m(
√
2π)Neα,λ2(aξ)(Fα,λψ)(aξ)(Fα,λg)(ξ)dξ

)

da

|a|2m

= (2π)N
∫

R
N

0

∫

RN

(Fα,λψ)(aξ)(Fα,λψ)(aξ)(Fα,λf)(ξ)(Fα,λg)(ξ)dξ
da

|a|m

=

∫

RN

(Fα,λf)(ξ)(Fα,λg)(ξ)

(

∫

R
N

0

(2π)N (Fα,λψ)(aξ)(Fα,λψ)(aξ)
da

|a|m

)

dξ.

Thus we have
∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ g)(a, b)
dadb

|a|2m
=

∫

RN

Cα,λ(Fα,λf)(ξ)(Fα,λg)(ξ)dξ

= Cα,λ 〈(Fα,λf)(ξ), (Fα,λg)(ξ)〉L2(RN ) .

Again, applying Parseval’s inequality ([12], Theorem 3.3), we get the required result. Fubini’s theorem has been used
to justify changing the order of integration.
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Corollary 3.1. Suppose ψ be an admissible wavelet and for any arbitrary function f ∈ L2(RN ). Then
∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ f)(a, b)
dadb

|a|2m
= Cα,λ‖f‖2L2(RN ).

Theorem 3.3. (Reconstruction formula) Suppose there exist an arbitrary function f ∈ L2(RN ) and an wavelet
admissible function ψ. Also let Cα,λ 6= 0 as defined in equation (19). The reconstruction formula for f is then as
follows:

f(t) =
1

Cα,λ

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
.

Proof. We have

〈

Wα,λ
ψ f(a, b),Wα,λ

ψ g(a, b)
〉

L2(RN

0
×RN )

=

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)(Wα,λ

ψ g(a, b))
dadb

|a|2m

=

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)

∫

RN

g(t)Ψα,λ,a,b(t)dt
dadb

|a|2m

=

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)

∫

RN

g(t)Ψα,λ,a,b(t)dt
dadb

|a|2m

=

∫

RN

g(t)

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
dt

=

〈

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
, g(t)

〉

L2(RN )

.

Using theorem (3.2)

〈f, g〉L2(RN ) =
1

Cα,λ

〈

(Wα,λ
ψ f), (Wα,λ

ψ g)
〉

L2(RN

0
×RN )

=
1

Cα,λ

〈

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
, g(t)

〉

L2(RN )

⇒ f(t) =
1

Cα,λ

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
.

Hence, the theorem follows.

Now, we will derive a theorem which gives reproducing kernel for the range of the MFrWT.

Theorem 3.4. (Reproducing kernel for the range of MFrWT) Let ψ be a wavelet. Also let Cα,λ 6= 0 as defined in

equation (19) and (a0, b0) ∈ RN × RN0 . Then, F ∈ L2
(

RN × RN0 ,
dadb
|a|2

m

)

be the MFrWT of some f ∈ L2(RN ) iff

F (a0, b0) =

∫

R
N

0

∫

RN

F (a, b)Kα,λ,Ψ(a0, b0;a, b)
dadb

|a|2m
,

where Kα,λ,Ψ(a0, b0 : a, b) is the reproducing kernel which satisfies,

Kα,λ,Ψ(a0, b0;a, b) =
1

Cα,λ

∫

RN

Ψα,λ,a,b(t)Ψα,λ,a0,b0
(t)dt.

Proof. Suppose for an arbitrary function f ∈ L2(RN ) be such that Wα,λ
ψ f = F , then we can write,

F (a0, b0) = (Wα,λ
ψ f)(a0, b0)

=

∫

RN

f(t)Ψα,λ,a0,b0
(t)dt

=
1

Cα,λ

∫

RN

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)Ψα,λ,a,b(t)

dadb

|a|2m
Ψα,λ,a0,b0

(t)dt

=

∫

R
N

0

∫

RN

(Wα,λ
ψ f)(a, b)

(

1

Cα,λ

∫

RN

Ψα,λ,a,b(t)Ψα,λ,a0,b0
(t)dt

)

dadb

|a|2m
.
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Hence,

F (a0, b0) =

∫

R
N

0

∫

RN

F (a, b)Kα,λ,Ψ(a0, b0;a, b)
dadb

|a|2m
,

where Kα,λ,Ψ(a0, b0;a, b) =
1

Cα,λ

∫

RN

Ψα,λ,a,b(t)Ψα,λ,a0,b0
(t)dt.

On the other way round, Let’s assume that the context holds only for the provided F ∈ L2
(

RN × RN0 ,
dadb
|a|2

m

)

then

required f is determined by

1

Cα,λ

∫

R
N

0

∫

RN

F (a, b)Ψα,λ,a,b(t)
dadb

|a|2m
.

This completes the proof.

4 Heisenberg’s Uncertainty Inequality for MFrWT

The uncertainty principle, first proposed by a German physicist named Werner Heisenberg in 1927, states that it
is impossible to measure position and momentum at any arbitrarily well localised state at the same time. That is,
measuring position without disrupting momentum is impossible, and vice versa. [5]. Similarly, in terms of time and
frequency, it is impossible to measure time and frequency at any state simultaneously. Here we will derive Heisenberg’s
uncertainty inequality for MFrFT.

4.1 Relation between Classical and Fractional Fourier Transform

Now we derive a relationship between classical FT and MFrFT which will further help us to prove Heisenberg’s
uncertainity inequality for MFrFT

(Fα,λf)(ξ) =

∫

RN

f(t)Kα,λ(t, ξ)dt,

here α = (α1, α2, α3, · · · , αN ) and ξ = (ξ1, ξ2, ξ3, · · · , ξN ).
We have

(Fα,λf)(ξ) =

∫

RN

f(t)
c(αλ)

(
√
2π)N

eα,λ2(ξ)eα,λ2(t)e−iλ
2
∑

N

k=1
tkξk cscαkdt

=
c(αλ)

(
√
2π)N

eα,λ2(ξ)

∫

RN

f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

e−iλ
2
∑

N

k=1
tkξk cscαkdt.

Therefore,

(Fα,λf)(ξ) =
c(αλ)

(
√
2π)N

eα,λ2(ξ)

∫

RN

f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

e−iλ
2
∑

N

k=1
tkξk cscαkdt. (21)

As we know traditional Fourier transform is stated as

Ff(ξ) =
1

(
√
2π)N

∫

RN

f(t)e−i
∑

N

k=1
tkξkdt, ξ = (ξ1, ξ2, · · · ξN ) ∈ R

N .

Replacing f(t) by f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

, and on putting λ2ξ
sinα

in place of ξ, we get

F(f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

)

(

λ2ξ

sinα

)

=
1

(
√
2π)N

∫

RN

f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

e−iλ
2
∑

N

k=1
tkξk cscαkdt. (22)

From equation (21) and (22), we have

(Fα,λf)(ξ) = c(αλ)eα,λ2(ξ)F(f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

)

(

λ2ξ

sinα

)

.

This gives

F(f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

)(η) =
1

c(αλ)eα,λ2

(

1
λ2η sinα

) (Fα,λf)

(

1

λ2
η sinα

)

. (23)
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Equation (23) gives the relation between the classical and fractional FT. For the MFrFT, we now derive Heisenberg’s
uncertainty principle.
If f ∈ L2(RN ) be any arbitrary function, then Heisenberg’s uncertainty inequality for dimension N is described by
the following [28].

(∫

RN

‖t‖2 |f(t)|2 dt
)(∫

RN

‖η‖2|Ff(η)|2dη
)

≥ N2

4
‖f‖4L2(RN ). (24)

Replace f(t) by f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

and noting that
∣

∣

∣f(t)eiλ
2
∑

N

k=1
a(αk)tk

2

∣

∣

∣ = |f(t)|, we’ve
(∫

RN

‖t‖2|f(t)|2dt
)(∫

RN

‖η‖2|F(f(t)eiλ2
∑

N

k=1
a(αk)tk

2

)(η)|2dη
)

≥ N2

4
‖f‖4L2(RN ). (25)

On putting η =
λ2ξ

sinα
in

∫

RN

‖η‖2|F(f(t)eiλ2
∑

N

k=1
a(αk)tk

2

)(η)|2dη and using equation (23), we get

∫

RN

‖η‖2|F(f(t)eiλ2
∑

N

k=1
a(αk)tk

2

)(η)|2dη =
λ2N

| sinα|m

∫

RN

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

2 ∣
∣

∣

∣

1

c(αλ)eα,λ2(ξ)
(Fα,λf)(ξ)

∣

∣

∣

∣

2

dξ.

Now, consider

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

=

∥

∥

∥

∥

(

λ2ξ1
sinα1

,
λ2ξ2
sinα2

, · · · , λ
2ξN

sinαN

)∥

∥

∥

∥

.

Let
1

sinαi
= mi for i = 1, 2, · · · , N, then

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

= λ2‖ (m1ξ1,m2ξ2, · · · ,mNξN ) ‖

= λ2
(

m1
2ξ21 +m2

2ξ22 + · · ·+mN
2ξ2N

)
1

2 .

(26)

Therefore,
∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

≤ λ2M‖ξ‖, (27)

where M2 = max{m2
i : i = 1, 2 · · · , N}.

Therefore,

∫

RN

‖η‖2|F(f(t)eiλ2
∑

N

k=1
a(αk)tk

2

)(η)|2dη ≤ M2

|c(αλ)|2
λ2N+4

|sinα|m

∫

RN

‖ξ‖2|Fα,λf(ξ)|2dξ. (28)

Using inequality (28) in (25), we get

(∫

RN

‖t‖2|f(t)|2dt
)(∫

RN

‖ξ‖2|Fα,λf(ξ)|2dξ
)

≥ |c(αλ)|2| sinα|m
M2(λ2)N+2

N2

4
‖f‖4L2(RN ).

Which implies

(∫

RN

‖t‖2|f(t)|2dt
)(∫

RN

‖ξ‖2|Fα,λf(ξ)|2dξ
)

≥ Pα,λ

N2

4
‖f‖4L2(RN ), (29)

where

Pα,λ =
|c(αλ)|2| sinα|m
M2(λ2)N+2

. (30)

Lemma 4.1. Let ψ be an admissible wavelet and for any function f ∈ L2(RN ). Then,
∫

R
N

0

∫

RN

‖ξ‖2|Fα,λ((W
α,λ
ψ f)(a, ·))(ξ)|2dξ da

|a|2m
= Cα,λ

∫

RN

‖ξ‖2|(Fα,λf)(ξ)|2dξ,

where Cα,λ is as defined in equation (19).
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Proof. Using lemma (3.2) and theorem (3.2), we get

∫

R
N

0

∫

RN

‖ξ‖2|Fα,λ((W
α,λ
ψ f)(a, b))(ξ)|2dξ da

|a|2m

=

∫

R
N

0

∫

RN

‖ξ‖2|a|m(2π)N (Fα,λψ)(aξ)(Fα,λf)(ξ)(Fα,λψ)(aξ)Fα,λf(ξ)dξ
da

|a|2m

= Cα,λ

∫

RN

‖ξ‖2|(Fα,λf)(ξ)|2dξ.

This concludes the proof.

Equation (29) is the Heisenberg’s uncertainty inequality for the MFrFT. Now we prove the Heisenberg’s uncertainty
principle for the MFrWT following the idea of [24],[29].

Theorem 4.1. (Heisenberg’s inequality of uncertainty for MFrWT) Let ψ be an admissible wavelet and for any

function f ∈ L2(RN ), the MFrWT of f with respect to the variable α is specified by (Wα,λ
ψ f)(a, b) . Then

(

∫

R
N

0

∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db da

|a|2m

)

(∫

RN

‖ξ‖2|(Fα,λf)(ξ)|2dξ
)

≥ Pα,λCα,λ

N2

4
‖f‖2L2(RN ),

where Cα,λ and Pα,λ are defined in equation (19) and equation (30) respectively.

Proof. By substituting (Wα,λ
ψ f)(a, ·) for f(·) in equation (29), we obtain

(∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db

)(∫

RN

‖ξ‖2|Fα,λ((W
α,λ
ψ f)(a, .))(ξ)|2dξ

)

≥ Pα,λ

N2

4
‖(Wα,λ

ψ f)(a, .)‖4L2(RN ).

Taking the square root of the above equation on both sides yields,

(∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db

)
1

2

(∫

RN

‖ξ‖2|Fα,λ((W
α,λ
ψ f)(a, b))(ξ)|2dξ

)
1

2

≥ P
1

2

α,λ

N

2

∫

RN

|(Wα,λ
ψ f)(a, b)|2db.

Now, we Integrate above equation with respect to the measure da
|a|2

m

, we’ve

∫

R
N

0

(∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db

)
1

2

(∫

RN

‖ξ‖2|Fα,λ(W
α,λ
ψ f(a, b))(ξ)|2dξ

)
1

2 da

|a|2m

≥ P
1

2

α,λ

N

2

∫

R
N

0

∫

RN

|(Wα,λ
ψ f)(a, b)|2 dadb|a|2m

.

Using Holder’s inequality and corollary (3.1), we have

(

∫

R
N

0

∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db da

|a|2m

)
1

2

(

∫

R
N

0

∫

RN

‖ξ‖2|Fα,λ((W
α,λ
ψ f)(a, b))(ξ)|2dξ da

|a|2m

)
1

2

≥ P
1

2

α,λ

N

2
Cα,λ‖f‖2L2(RN ).

Squaring both sides and applying lemma (4.1), we obtain

(

∫

R
N

0

∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db da

|a|2m

)

(

Cα,λ

∫

RN

‖ξ‖2|(Fα,λf)(ξ)|2dξ
)

≥ Pα,λ

N2

4
C2

α,λ‖f‖4L2(RN ),

i.e.,

(

∫

R
N

0

∫

RN

‖b‖2|(Wα,λ
ψ f)(a, b)|2db da

|a|2m

)

(
∫

RN

‖ξ‖2|(Fα,λf)(ξ)|2dξ
)

≥ Pα,λCα,λ

N2

4
‖f‖4L2(RN ).

This concludes the proof for this section.
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4.2 Logarithmic Uncertainty Principle for MFrWT

Basic idea about logarithmic uncertainty principle for fractional wavelet transform is given by Mawardi Bahri in [2].
In this context, we formally derive a logarithmic uncertainty principle for the MFrFT using MFrFT properties and
the logarithmic uncertainty principle for the fractional Fourier transform.
In [3], the logarithmic uncertainty inequality for classical Fourier transform is given by

∫

RN

ln ‖x‖|f(x)|2dx+

∫

RN

ln ‖η‖|Ff(η)|2dη ≥ D

∫

RN

|f(x)|2dx, (31)

where D = ψ
(

N
4

)

− ln 2, ψ(t) = d
dt
[lnΓ (t)].

Replacing f(x) with f(x)eiλ
2
∑

N

k=1
a(αk)xk

2

in inequality (31) and observing that
∣

∣

∣f(x)eiλ
2
∑

N

k=1
a(αk)xk

2

∣

∣

∣ = |f(x)| ,
we get

∫

RN

ln ‖x‖ |f(x)|2 dx+

∫

RN

ln ‖η‖|F(f(x)eiλ2
∑

N

k=1
a(αk)xk

2

)(η)|2dη ≥ D

∫

RN

|f(x)|2dx. (32)

Put η = λ2ξ
sinα

in

∫

RN

ln ‖η‖|Ff(x)eiλ2
∑

N

k=1
a(αk)xk

2

(η)|2dη and using equation (23), we get

∫

RN

ln ‖η‖|F(f(x)eiλ2
∑

N

k=1
a(αk)xk

2

)(η)|2dη =
λ2N

|sinα|m

∫

RN

ln

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

∣

∣

∣

∣

1

c(αλ)eα,λ2(ξ)
Fα,λf(t)(ξ)

∣

∣

∣

∣

2

dξ

=
1

|c(αλ)|2
λ2N

|sinα|m

∫

RN

ln

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

|(Fα,λf)(ξ)|2 dξ.

From equation (32), we get

∫

RN

ln ‖x‖|f(x)|2dx+
1

|c(αλ)|2
λ2N

|sinα|m

∫

RN

ln

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

|(Fα,λf)(ξ)|2dξ ≥ D

∫

RN

|f(x)|2dx.

Then we have
∫

RN

ln ‖x‖|f(x)|2dx+ P ′
α,λ

∫

RN

ln

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

|(Fα,λf)(ξ)|2dξ ≥ D

∫

RN

|f(x)|2dx, (33)

where

P ′
α,λ =

λ2N

|c(αλ)|2| sinα|m
. (34)

From equation (27), we know

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

≤ λ2M‖ξ‖.

Taking ln on both sides of above equation, we get

ln

∥

∥

∥

∥

λ2ξ

sinα

∥

∥

∥

∥

≤ ln(λ2M) + ln ‖ξ‖.

Therefore, equation(33) can be re-written as,

∫

RN

ln ‖x‖|f(x)|2dx+ P ′
α,λ

∫

RN

[ln(λ2M) + ln ‖ξ‖]|(Fα,λf)(ξ)|2dξ ≥ D

∫

RN

|f(x)|2dx
∫

RN

ln ‖x‖|f(x)|2dx+ P ′
α,λ ln(λ

2M)

∫

RN

|(Fα,λf)(ξ)|2dξ + P ′
α,λ

∫

RN

ln ‖ξ‖|(Fα,λf)(ξ)|2dξ ≥ D

∫

RN

|f(x)|2dx.

Using Parseval’s relation, we get
∫

RN

ln ‖x‖|f(x)|2dx+ P ′
α,λ

∫

RN

ln ‖ξ‖|(Fα,λf)(ξ)|2dξ ≥ (D − P ′
α,λ ln(λ

2M))

∫

RN

|f(x)|2dx. (35)

With the help of logarithmic uncertainty inequality for MFrFT (35), we will prove the following for the MFrWT.
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Theorem 4.2. (Logarithmic uncertainty inequality for MFrWT) Let ψ be an admissible wavelet and for any f ∈
L2(RN ) and for some M > 0, Let MFrWT of f with parameter α is given by (Wα,λ

ψ f)(a, b). Then

∫

R
N

0

∫

RN

ln ‖b‖|(Wα,λ
ψ f)(a, b)|2db da

|a|2m
+ Cα,λP

′
α,λ

∫

RN

ln ‖ξ‖|Fα,λf)|2(ξ)dξ

≥
(

D − P ′
α,λ ln(λ2M)

)

Cα,λ‖f‖2L2(RN ),

where P ′
α,λ is given by equation (34).

Proof. Replace f(.) with (Wα,λ
ψ f)(a, .) on either side of equation (35), we have

∫

RN

ln ‖b‖|(Wα,λ
ψ f)(a, b)|2db+ P ′

α,λ

∫

RN

ln ‖ξ‖ |(Fα,λ(W
α,λ
ψ f)(a, b))(ξ)|2dξ

≥
(

D − P ′
α,λ ln(λ2M)

)

∫

RN

|(Wα,λ
ψ f)(a, b)|2db.

Now, we integrate above equation with respect to measure da
|a|2

m

, we get

∫

R
N

0

∫

RN

ln ‖b‖|(Wα,λ
ψ f)(a, b)|2db da

|a|2m
+ P ′

α,λ

∫

R
N

0

∫

RN

ln ‖ξ‖ |(Fα,λ(W
α,λ
ψ f)(a, b))(ξ)|2dξ da

|a|2m

≥
(

D − P ′
α,λ ln(λ2M)

)

∫

R
N

0

∫

RN

|(Wα,λ
ψ f)(a, b)|2db da

|a|2m
.

(36)

Hence, using corollary (3.1) and lemma (3.2) in equation (36), we have

∫

R
N

0

∫

RN

ln ‖b‖|(Wα,λ
ψ f)(a, b)|2db da

|a|2m
+ P ′

α,λCα,λ

∫

RN

ln ‖ξ‖|(Fα,λf)(ξ)|2dξ

≥
(

D − P ′
α,λ ln(λ2M)

)

Cα,λ

∫

RN

|f(x)|2dx.

where M2 = max

{

1

sin2 αi
: i = 1, 2, · · · , N

}

.

This concludes the proof for this section.

4.3 Local Uncertainty Inequality for MFrWT

In harmonic analysis, Heisenberg’s uncertainty principle states that if any arbitrary function f is specifically restricted,
the corresponding Fourier transform of f cannot be reduced to the neighborhood of a point, But this never prevents
the Fourier transform of f from being focused approximately at two or more distinct points. In fact, it cannot occur
either, and this is the purpose of local uncertainty inequalities to make this specific. The local uncertainty principle
for the classical Fourier transform can be stated using the definition of the traditional Fourier transform for α = π

2 ,
as follows [30] :
(i)There exists a invariable Aθ for 0 < θ < N

2 such that for every measurable subsets K of RN and for all f ∈ L2(RN )

∫

K

|(Ff)(ξ)|2dξ ≤ Aθ(λ(K))
2θ

N ‖‖x‖θf‖2L2(RN ). (37)

(ii)There exists a invariable Aθ for θ > N
2 such that for every measurable subsets K of RN and for all f ∈ L2(RN )

∫

K

|(Ff)(ξ)|2dξ ≤ Aθλ(K)‖f‖2−
N

θ

L2(RN )
‖‖x‖θf‖

N

θ

L2(RN )
. (38)

Replacing f(x) by f(x)eiλ
2
∑

N

k=1
a(αk)xk

2

in equation (37) and using equation (23) we have

∫

K

∣

∣

∣

∣

(Fα,λf)

(

1

λ2
ξ sinα

)∣

∣

∣

∣

2

dξ ≤ |c(αλ)|2Aθ(λ(K))
2θ

N ‖‖x‖θf‖2L2(RN ). (39)
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Put 1
λ2 ξ sinα = η in equation (39), we have

(λ2)N

| sinα|m

∫

K

|(Fα,λf)(η)|2dη ≤ |c(αλ)|2Aθ(λ(K))
2θ

N ‖‖x‖θf‖2L2(RN ).

That is,
∫

K

|(Fα,λf)(η)|2dη ≤ |c(αλ)|2Aθ
| sinα|m
(λ2)N

(λ(K))
2θ

N ‖‖x‖θf‖2L2(RN ). (40)

Similarly, from equation (38), we get
∫

K

|(Fα,λf)(η)|2dη ≤ |c(αλ)|2Aθ
| sinα|m
(λ2)N

λ(K)‖f‖2−
N

θ

L2(RN )‖‖x‖
θf‖

N

θ

L2(RN ). (41)

Now, we will illustrate the major outcome of this section.

Theorem 4.3. (Local uncertainty inequality for MFrWT) If ψ is an admissible wavelet and θ be such that 0 < θ < N
2 .

Then, for every measurable subsets K of RN , there exist constant Aθ and for all f ∈ L2(RN ) such that

∫

K

|(Fα,λf)(η)|2dη ≤ |c(αλ)|2
Cα,λ

Aθ
| sinα|m
(λ2)N

(λ(K))
2θ

N

∫

R
N

0

∫

RN

‖b‖2θ
∣

∣

∣(W
α,λ
ψ f)(a, b)

∣

∣

∣

2

db
da

|a|2m
.

Proof. By substituting Wα,λ
ψ f(a, ·) for f(·) in equation (40), we obtain

∫

K

|Fα,λ((W
α,λ
ψ f)(a, b))(η)|2dη ≤ |c(αλ)|2Aθ

| sinα|m
(λ2)N

(λ(K))
2θ

N ‖‖b‖θ(Wα,λ
ψ f)(a, b)‖2L2(RN ).

Now we integrate either side of above equation with respect to da
|a|2

m

, we get

∫

R
N

0

∫

K

|Fα,λ((W
α,λ
ψ f)(a, b))(η)|2 da

|a|2m
dη ≤ |c(αλ)|2Aθ

| sinα|m
(λ2)N

(λ(K))
2θ

N

∫

R
N

0

‖‖b‖θ(Wα,λ
ψ f)(a, b)‖2L2(RN )

da

|a|2m
,

and using theorem (3.2),

Cα,λ

∫

K

|(Fα,λf)|2dη ≤ |c(αλ)|2Aθ
| sinα|m
(λ2)N

(λ(K))
2θ

N

∫

R
N

0

∫

RN

∣

∣

∣‖b‖θ(Wα,λ
ψ f)(a, b)

∣

∣

∣

2

db
da

|a|2m
.

This gives
∫

K

|(Fα,λf)|2dη ≤ |c(αλ)|2
Cα,λ

Aθ
| sinα|m
(λ2)N

(λ(K))
2θ

N

∫

R
N

0

∫

RN

‖b‖2θ
∣

∣

∣(W
α,λ
ψ f)(a, b)

∣

∣

∣

2

db
da

|a|2m
.

This concludes the proof.

The following theorem expresses the local uncertainty inequality for MFrWT when θ>N
2 .

Theorem 4.4. (Local uncertainty inequality for MFrWT ) Assume ψ is an admissible wavelet and θ is such that
θ>N

2 . Then, for every measurable subset K of RN , there exist a constant Aθ and for all f ∈ L2(RN ) such that

∫

K

|(Fα,λf)(η)|2dη ≤ |c(αλ)|2
Cα,λ

Aθ
| sinα|m
(λ2)N

λ(K)

∫

R
N

0

‖(Wα,λ
ψ f)(a, ·)‖2−

N

θ

L2(RN )
‖‖ · ‖θ(Wα,λ

ψ f)(a, ·)‖
N

θ

L2(RN )

da

|a|2m
.

Proof. Using equation (41), the proof follows similar to that of theorem 4.3.

5 Conclusions

We offer a novel definition of the wavelet transformation of a function specified in RN , i.e. MFrWT, and investigate
some of its fundamental aspects, such as linearity, anti-linearity, parity, conjugation, and so on, in this study. For
the image space of the suggested transformation, we established the inner product relation and inversion formula
for MFrWT with reproducible kernel function. Finally, Heisenberg’s uncertainty inequality and the logarithmic
uncertainty principle are obtained from the relationship between classical FT and MFrFT. The commonalities between
different transform domains can be better understood using logarithmic, Heisenberg, and local uncertainty principles.
The three uncertainty principles can be useful in the future because they are features of signal processing.
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