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Abstract

Image demosaicking and denoising are the first two key steps of the color im-
age production pipeline. The classical processing sequence has for a long time
consisted of applying denoising first, and then demosaicking. Applying the op-
erations in this order leads to oversmoothing and checkerboard effects. Yet, it
was difficult to change this order, because once the image is demosaicked, the
statistical properties of the noise are dramatically changed and hard to handle
by traditional denoising models. In this paper, we address this problem by a
hybrid machine learning method. We invert the traditional color filter array
(CFA) processing pipeline by first demosaicking and then denoising. Our demo-
saicking algorithm, trained on noiseless images, combines a traditional method
and a residual convolutional neural network (CNN). This first stage retains all
known information, which is the key point to obtain faithful final results. The
noisy demosaicked image is then passed through a second CNN restoring a noise-
less full-color image. This pipeline order completely avoids checkerboard effects
and restores fine image detail. Although CNNs can be trained to solve jointly
demosaicking-denoising end-to-end, we find that this two-stage training per-
forms better and is less prone to failure. It is shown experimentally to improve
on the state of the art, both quantitatively and in terms of visual quality.

Keywords: Demosaicking, denoising, pipeline, convolutional neural networks,
residual.

1. Introduction

The objective of demosaicking is to build a full-color image from four spa-
tially undersampled color channels. Indeed, digital cameras can only capture
one color information on each pixel through a single monochrome sensor, and
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Figure 1: The image shows the raw data collected by the sensor and the color filter arrays of
the Bayer pattern.

most of them use color filter arrays (CFA) such as the Bayer pattern [1] (shown
in Figure [1)) to obtain images. The raw data collected in this way is missing
two-thirds of pixels and is contaminated by noise. Hence, image demosaicking,
i.e. the task of reconstructing a full-color image from the incomplete raw data
is a typical ill-posed problem.

The conventional method for processing noisy raw sensor data has been to
perform denoising and demosaicking as two independent steps. Since demo-
saicking is a complex interpolation process, the raw noise becomes correlated
and anisotropic after demosaicking (see [2] for a detailed discussion), thus losing
its independent Poisson noise structure. This means that most classic denois-
ing algorithms are not directly applicable. Indeed, most algorithms rely on the
AGWN (additive Gaussian white noise) assumption, which is approximately
valid after a simple Anscombe transform has been applied to the raw data.
Moreover, most standard demosaicking algorithms with good performance are
designed based on the critical noise-free condition. This takes for granted the
assumption that the image processing pipeline starts with denoising [3} [l [5].

However, some researchers have observed that demosaicking first and then
denoising yields a better visual quality. Condat [6] proposed to demosaick first
and then project the noise into the luminance channel of the reconstructed image
before denoising according to the grayscale image. This idea was later refined
in [7, 8]. Recently Jin et al. [2] improved the ”demosaicking first” pipeline via a
simple modification of the traditional color denoiser, and gave the corresponding
theoretical explanation.

Both pipelines have significant shortcomings. A “denoising first” pipeline
removes noise directly on the CFA image. Yet, CFA image denoising differs from
the usual grayscale or full-color image denoising. Indeed, CFA image denoising
implies subsampling the CFA image into a half-size four-channel RGGB image,
which is then denoised. This leads not only to a poor preservation of image
details due to the reduced resolution, but also to a loss of the correlation between
the red (R), green (G) and blue (B) channels. As a result, the restored image is
oversmoothed and checkerboard effects [9] are introduced. On the other hand,
the “demosaicking first” pipeline also introduces a thorny issue: It requires
denoising a demosaicked residual noise whose statistical properties have been



changed by a complex interpolation, which are hard to model accurately. This
was almost impossible for traditional denoising algorithms, but current data-
driven deep learning based methods offer new paths to solve this problem. In
recent years, deep convolutional neural networks have achieved great success in
computer vision and image processing. In image classification and recognition
[10, 11, denoising [12, 3] 14l 5] 16], demosaicking [1°7, 18] 19} 20} 21], super-
resolution [22] 23] and other high-level and low-level visual tasks, deep learning
methods surpass traditional methods. Since deep learning is data driven, it can
find the hidden rules from the data without relying on hand-made filters and
a priori knowledge. In this paper, we take advantage of this new flexibility to
handle a noise with complex statistical properties, like the one introduced by a
”demosaicking first” pipeline.

We therefore implement a ” demosaicking first and then denoising” approach
by a network with a two-stage training strategy. Convolutional neural networks
(CNNs) are first combined with traditional algorithms to obtain an effective
demosaicking algorithm. Using this demosaicking as a base, we use another
CNN to remove the demosaicked residual noise, whose statistical properties
have been changed. Our main contributions are:

e A CNN architecture implementing the “demosaick first and then denoise”
pipeline, which effectively restores full-color images from noisy CFA im-
ages while preserving more detail and avoiding oversmoothing and checker-
board artifacts.

e Ablation studies show that this architecture and the proposed two-stage
training strategy perform better than usual end-to-end approaches, enable
a more stable training, and yield state-of-the-art results.

e A modified Inception architecture to implement the two stages of our net-
work. This choice fosters cross-channel information fusion for producing
a more accurate estimate of the original image and improves the recep-
tive field to reduce artifacts. In that way, we obtain a lighter network
than current state-of-the-art approaches [24] 25] without compromising
performance.

The rest of the paper is organized as follows. Section [2| presents related work
on demosaicking and denoising. The demosaicking and denoising model is intro-
duced in Section 3] Section [ provides quantitative and qualitative comparisons
with state-of-the-art methods. The concluding remarks are given in Section

2. Related Work

2.1. Demosaicking

Demosaicking is a classic problem with a vast literature. All authors agree
that the key to attaining a good demosaicking is to restore the image regions
with high-frequency content. Smooth regions are instead easy to interpolate
from the available samples. The earliest demosaicking algorithms used methods



such as spline interpolation and bilinear interpolation to process each channel.
These methods introduce serious zipper effects. In order to eliminate the arti-
facts at the image edges, Laroche and Prescott [26] introduced a direction adap-
tive filter by selecting a preferred direction to interpolate the additional color
values according to gradient values. Inspired by this idea, Adams and Hamilton
proposed a direction adaptive inter-channel correlation filter [27) 28] under the
assumption that derivatives of R, G and B are nearly equal. The G channel
interpolation is obtained by a discrete directional Taylor formula involving the
second order derivative of either the R or the B channel (see [29]). Once the G
channel interpolation was complete, the G channel was taken as a guide image
to help the R and B channel interpolation. Many advanced algorithms have
still extended the idea of a combination of direction adaptive and inter-channel
correlation. In order to make better use of the correlation between channels,
Zhang and Wu [30] developed an adaptive filtering method using directional lin-
ear minimum mean square error estimation (DLMMSE). Both horizontal and
vertical direction interpolations fail to restore the color value when the pixels
are located near some edge or in textured regions resulting in zipper artifacts
at those areas. In order to solve this issue, Pekkucuksen and Altunbasak [31]
decomposed the horizontal and vertical directions into four directions of east,
west, south, and north on the basis of [30], and then used the color differences
in the four directions to estimate the missing G value. Similarly to [31], Kiku et
al. [32] proposed RI which calculates four directions’ interpolations of R, G and
B channels via a Guided Filter [33], and improves the tentative estimates by sub-
stituting a residual technique for the HA interpolation [27) 28]. The MLRI [34]
and MLRI+4wei [35] were the improved versions of RI by minimizing the Lapla-
cian energy of the guided filter. Moreover, ARI [36] united the advantages of
RI and MLRI by combining both methods in an iterative process with the most
appropriate number of iteration steps at each pixel. These last interpolation
algorithms have received a detailed mathematical analysis in [29].

In addition to the above local interpolation algorithms, other classic image
processing techniques have been attempted to tackle the problem: algorithms
based on non-local similarity [37, B8, [39], wavelet-based algorithms [40, 41],
frequency domain based algorithm [42] 43], and dictionary learning based algo-
rithms [44], 45].

Accompanying the wide application of deep learning in the field of image pro-
cessing, demosaicking algorithms based on deep learning achieved great success
and redefined the state-of-the-art. Tan et al. [I8] addressed the demosaicking
problem by learning a deep residual CNN. A two-phase network architecture
was designed to reconstruct the G channel first and then estimate the R and B
channel using the reconstructed G channel as guide. After calculating the inter-
channel correlation coefficients, Cui et al. [46] found that R/G and G/B were
more relevant than R/B and established a 3-stage CNN structure for demosaick-
ing according to this observation. Instead of using two-phase or three-phase net-
work architecture, Tan et al. [19] learned directly the residual between ground
truth image and an initial full color image obtained by a fast demosaicking
method [47]. This idea combined the traditional method and CNNs to simplify



the network structure for the demosaicking problem. Syu et al. [48] used a con-
volutional neural network to design a demosaicking algorithm, and compared
the effects of convolution kernels of different sizes on the reconstruction. At the
same time they also designed a new CFA pattern using a data-driven approach.
Different from conventional demosaicking CNN methods, Yamaguchi and Ike-
hara [49] took chrominance images as the output of CNN to improve the result.
Higher-Resolution Network (HERN) was proposed by Mei et al. [50] to solve
the demosaicking problem by learning global information from high resolution
data with a feasible GPU memory usage.

2.2. Joint demosaicking and denoising

Since the raw CFA data is altered by noise while most demosaicking algo-
rithms assume a noise-free image, the image processing pipeline often requires a
denoising step. Denoising and demosaicking are both ill-posed problems in the
pipeline of reconstruction of full color images. In order to reduce artifacts caused
by error accumulation, some works have proposed to jointly perform demosaick-
ing and denoising. Condat and Mosaddegh [5I] proposed an algorithm based on
total variation minimization. Klatzer et al. [52] formulated joint demosaicking
and denoising problem as an energy minimization problem. Khashabi et al. [53]
introduced a machine learning method by learning a statistical model from nat-
ural images to avoid artifacts. Menon and Calvagno [54] evaluated the noise
properties after the space-varying demosaicking method [55] and then proposed
a joint demosaicking and denoising one. Tan et al. [56] addressed the joint de-
mosaicking and denoising problem as a TV regularization model with multiple
effective priors and solved by the alternating direction method of multipliers
(ADMM).

The advent of deep learning techniques and the increasing availability of
large training data sets, have led to a new generation of state-of-the-art algo-
rithms that are able to reconstruct the full color images from noisy CFA im-
ages. Gharbi et al. [I7] built a huge image database where images were mined
from the web and trained a network on it for avoiding zippering or moiré arti-
facts. Inspired by image regularization methods [57], Kokkinos et al. [24, 58]
established a novel deep learning architecture that combines a majorization-
minimization algorithm with residual denoising networks. Huang et al. [59]
proposed a lightweight end-to-end network using deep residual learning and ag-
gregated residual transformations. In order to use real data directly, Ehret et
al. [60] introduced a mosaic-to-mosaic training strategy which doesn’t require
ground truth RGB data. The proposed framework can be used to fine-tune a
pretrained network to a RAW burst. The self-guidance network (SGNet) [20]
was proposed according to the fact that the G channel of CFA image contains
more information. The G channel is recovered first and works as a guide image
to interpolate the R and B channels. In [21], G channel prior features are uti-
lized as guidance to extract and upsample the features of the whole image. Xing
and Egiazarian [25] proposed an end-to-end solution for the joint demosaicking,
denoising and super-resolution. They showed that merely training the network
with mean absolute error loss function yielded superior results.



Satisfactory results have been obtained for joint demosaicking and denois-
ing based on deep learning, but these algorithms all rely on the fitting power
of CNNs to solve multiple tasks simultaneously end-to-end. Undoubtedly, this
ignores the inter-task correlation, especially the long debated issue of demo-
saicking and denoising pipeline order.

3. Residual learning for demosaicking and denoising

The biggest obstacle to applying a demosaicking first and then denoising
pipeline is the correlated noise resulting from the demosaicking. This is very dif-
ficult for model-based denoisers. Using CNNs can attain satisfactory end-to-end
results, however these methods neglect the dependency between the demosaick-
ing and denoising tasks. Inspired by [6l [2], we propose a two-stages CNN for
reconstructing full-color images from noisy CFA images. In the first stage, we
design a demosaicking algorithm that combines traditional methods and deep
learning by ignoring the noise. All known information is retained in this stage,
which is key to obtain good final results. After the first stage, a noisy full-color
image is obtained whose noise statistical properties have been changed by the
demosaicking. The second CNN is used to learn to remove the demosaicked
residual noise and to effectively recover the underlying textures.

The noisy CFA model is written as

Y =M. * (X +e), (1)

where X is an original full-color image, Y is the noisy CFA (or mosaicked) image,
€ is Gaussian noise with zero mean and standard deviation o, the operator .x
denotes the array element-wise multiplication and M denotes the CFA mask.
The CFA mask M and its inverse mask are defined as

MR 1*MR
M = MG and IM = 1 —MG s (2)

MB 1_MB
[0, if(i,)) ¢ Qr;
MR(””‘{ 1, if (i, ) € O,
[0, i (4,4) ¢ Qs
MG(“”‘{ 1 it (i,)) € Q.
[0, i (4,5) ¢ Qs
A@“”_{l,ﬁ@ﬁeQ&

where 1(4,j) = 1, © denotes the set of CFA image pixels, Qg, Q¢g, Qp C Q are
disjoint sets of pixels, which respectively record R, G and B values in the CFA
image, and satisfy Qp U Qg U Qp = Q.

The first stage considers only the noise-free CFA model

Y =M. %X, (3)
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Figure 2: Our two stages CNN architecture for demosaicking-denoising. The first stage takes
GBTF to preprocess the CFA image and uses a CNN to learn residuals improving the demo-
saicking performance of GBTF. In the second stage, when the noisy CFA image is demosaicked,
another CNN is used to learn the residual noise in order to reconstruct the finally full-color
image. The term ”replace” corresponds to Eq. .

where X is a full-color image, Y is the noise-free CFA (or mosaicked) image. We
first use the GBTF algorithm [31] to obtain a raw demosaicked image X GBTF =
GBTF(Y) and a residual Rgprr = X f)A(GBTF. The residual is then corrected
with a CNN. For that we use a modified Inception architecture in order to
achieve better performance in learning the residual and get an estimator Rgprr
(see Figure [2).

The final full-color image is obtained as

Xpy =IM. « (Xaprr + Roprr) + M. x X. (4)

The first term in the above equation is the demosaicked image estimated by
the CNN and evaluated on the inverse CFA mask M, while the second term is
unaltered input CFA samples on the mask M. The resulting CNN is adapted
to demosaick noise-free images. So, applying it to a noisy CFA image, produces
a noisy demosaicked image.

To handle noisy CFA images, another stage is needed to remove the noise.
Given the trained demosaicking as a basic component, we apply it to model
and obtain a noisy full-color image X py which can be decomposed as

Xpm =X +epm. (5)

Here, epyy is the residual noise (including artifacts) of the demosaicked image,
which is no longer independent identically distributed (I.I.D.), and has complex
unknown statistical properties. This would be extremely challenging for tradi-
tional denoising models that strongly rely on statistical assumptions, therefore



we use another CNN to learn to extract the residual noise pjys and obtain the
estimator £pys (see Figure . The final full-color image is reconstructed as

)?DMDN = XDM - é\DMo (6)

There are several advantages in training separate demosaicking and denoising
networks:

e First, the noise-free demosaicking focuses on reconstructing the structure
and details in the image without concessions. In addition, the demo-
saicking network needs not be adapted to each noise level, and all known
information is preserved.

e Second, the demosaicked result facilitates the task of the denoiser which
has to adapt only to the noise and demosaicking artifacts. As we will see
later, training a joint denoising and demosaicking network with equivalent
capacity as the demosaicking and denoising networks indeed yields lower
quality results.

e Third, the proposed two stage architecture and trainig strategy is more
stable at training time than an end-to-end network with equal capacity.

8.1. Demosaicking in a noise-free setting

The CFA images are different from ordinary images as the values of adjacent
pixels represent the intensity of different colors. Many of the existing deep learn-
ing algorithms subsample the CFA images to four-channel RGGB images and
send them to the network. However, this operation reduces the image resolution.
Therefore, the network needs to perform functions similar to super-resolution,
and cannot only focus on image demosaicking. Some algorithms use bilinear
interpolation as preprocessing in order to preserve the spatial arrangement of
the samples. However, the bilinear interpolation results are suboptimal and this
affects the performance of the convolutional network. In this work, we use the
gradient based threshold free (GBTF) method [31], which has superior perfor-
mance compared to the bilinear interpolation. Improving the network input also
alleviates the task for the network. In subsequent ablation experiments, GBTF
is shown to better preserve image textures.

After the CFA image is preprocessed, we use a convolutional neural network
for residual learning. The network architecture is shown in Figure Syu et
al. pointed out in their work [48] that convolution kernels of different sizes will
affect the reconstruction accuracy. The larger the size of the convolution kernel,
the higher the reconstruction accuracy. However, the number of parameters us-
ing a 5x 5 convolution kernel is 2.7 times that of using a 3 x 3 convolution kernel.
We want to increase the receptive field, but without giving up the lightweight
3 x 3 convolution kernels. In the image demosaicking task, due to the lack of
color information, the full-color image reconstruction must make full use of the
correlation of the three RGB channels. Therefore, the degree of cross-channel in-
formation fusion determines the performance of the demosaicking algorithm. In
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Figure 3: Architecture of the Inception block. In order to get a better cross-channel fusion
and a larger receptive field, we use 1 X 1 convolution kernels and three-way branches to reduce
the parameters while strengthening the fusion of cross-channel information. This is extremely
important for demosaicking.

order to get a better cross-channel fusion and a larger receptive field, we propose
modifying the architecture of GoogleNet Inception-ResNet [11] and adapting the
Inception block. On the one hand, it is scalable and can increase the receptive
field of the network without increasing the number of parameters and computa-
tions. On the other hand, the multi-branch structure facilitates the extraction
and fusion of features at different levels. The proposed network has 16 Incep-
tion blocks. The architecture of the Inception block and a lightweight version
we propose in this paper are shown in Figure In the Inception block, we
use 1 x 1 convolution kernels to fuse and compress the channels, and use three-
way branches to learn different residual features, and finally concatenate the
three-way branches. We also design a lightweight Inception block, which will be
denoted by (-) in what follows. With roughly the same number of parameters as
a 3 x 3 Conv-BN-ReLU block for 64-layer feature maps, the proposed Inception
block increases the network depth (3 non-linearities) and has a larger receptive
field (5x5). Moreover, the Inception(-) uses about 50% of the parameters of the
3 x 3 Conv-BN-ReLU. The parameter comparison data are shown in Table

3.2. Denoising after demosaicking

Since the demosaicking stage is trained in a noise-free setting, when a noisy
input is demosaicked its output will contain a correlated residual noise. Remov-
ing this noise also requires learning. We therefore propose to use a denoising
network to remove the structured noise resulting from demosaicking a noisy
CFA image. We first learn a network for each noise level, but in the experiment
sections we will also consider a noise level flexible network trained on a range
of noise levels (with o € [0,20] as in [I7]). In the noise level flexible network,
the noise map shown in Figure [2] is introduced, which consists of the standard
deviation o of Gaussian noise added to the CFA image.



Table 1: Inception architecture and number of parameters. The depth of Conv-BN-ReLU is
1, the receptive field is 3, but the depth of the Inception is 3, and receptive field is 5. And
Inception(-) has the same properties and the number of parameters is only 52.8% of Conv-

BN-ReLU.

Inception Inception(-) Conv.
Input the
number of 64 64 64
feature layers
First branch 32(1 x 1) 16(1 x 1)
16(1 x 1)
32(1 x 1)
Second branch 32(3 x 3) igg i ;; 3% 3
16(3 x 3)
32(1 x 1) 16(1 x 1)
Third branch 32(3 x 3) 32(3 x 3)
32(3 x 3) 32(3 x 3)
Output the
number of 64 64 64
feature layers
Number of 39360 19456 36992
parameters
GFLOPs
(128 x 128) 0.649 0.321 0.607

For the denoising network, we also use the same Inception block architecture
as the demosaicking network. As shown in Figure [2] the demosaicked image is
used as input to the denoising stage. In addition, the features computed at the
last layer of the demosaicking stage are reused by introducing them into the
denoising stage by a skip connection.

3.3. Training procedure

The two stages of our method are trained independently, each with its own
loss, which are both based on the classical mean square error (MSE) loss. In
the first stage, the network is trained on a noise-free dataset. The loss for the
noise-free demosaicking stage is

N
1 ~. 112
— i _vi 7
Lpm(Opnmr) 5N ;:1 HXDM X H ) (7)
Kby, = IM. % ()?gBTF 4 F(Xh ;O DM)) + M.+ X, 8)

where F()?&BTF; ©pu) is the output of the demosaicking network to estimate
the residual Rgprr (see (4)).

After the demosaicking network is trained, we apply it to noisy CFA images
(see model (1])) to produce noisy full-color images (see model (). The goal of
the second stage is then to remove residual demosaicked noise €pjys. Therefore
the loss for this stage is

1 n [ a 12
‘CDN(@DN):EZH‘XWDMDN_XlH’ (9)
i=1

10



XiDMDN = XEJV[ - G(XiDM; 6DN)a (10)

where G()?}) i ©pn) is the output of the denoising network, which works as
an estimator of epyy.

For training the joint demosaicking and denoising, Gharbi et al. provided
a dataset of two million 128 x 128 images (MIT Dataset) [I7]. Ma et al. es-
tablished the Waterloo Exploration Database (WED) with 4,744 high-quality
natural images [61] and Syu et al. provided the Flickr500 with 500 high-quality
images [48]. We use these datasets to build our training and test sets. Indeed,
100,000 images were randomly selected from the MIT dataset. And 4653 im-
ages in WED and 491 images in Flickr500 were randomly cropped into 100,000
images (128 x 128). These 200,000 patches (128 x 128) constitute our training
set. Furthermore, 91 images in WED and 9 images in Flickr500 composed our
test set. During the training time, the patch was flipped and rotated 180° with
a 50% probability for data augmentation.

For training the denoising model we started by adding Gaussian white noise
to the CFA images sampled from the training set (see Table [3| for the standard
deviation o of the noise) and applied the demosaicking network to the noisy
CFA images. The color residual noise images, which were obtained by feeding
the noisy CFA images into the demosaicing network, were utilized for training
the denoising model.

The network architecture was implemented in PyTorch. The network weights
were initialized using [62] and the biases were first set to 0. The optimization
was performed by the ADAM optimizer [63] using the default parameters. The
batch size was set to 64, and the initial learning rate to 10~2. The learning rate
decay strategy was the exponential decay method, and the learning rate decayed
by 0.9 every 3000 iterations. Our model was trained on a NVIDIA Tesla V100
and required 50 epochs for each training iteration. The non-lightweight demo-
saicing and denoising algorithms at each level typically took approximately 3
days to train, while the lightweight algorithms could be trained within a day.

4. EXPERIMENTS

4.1. Datasets

We chose the classic Kodak [64] and McMaster [42] datasets for evaluating
our algorithm on the demosaicking and denoising task. The Kodak dataset
consists of 24 images (768 x 512). The McMaster dataset consists of 18 images
(500 x 500), which were cropped from the 2310 x 1814 high-resolution images.
At the same time, we conducted experiments on our test set, Urban100 dataset
[65] and MIT moiré [I7] to verify the reliability of our proposed algorithm. The
Urban100 dataset is often used in super-resolution tasks and contains 100 high-
resolution images. MIT moiré is the test set used by the JCNN algorithm [17],
which contains 1000 images of 128 x 128 resolution that are prone to generate
moiré.

11
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Figure 4: Results of the various comparisons between state-of-the-art and our method for
noise-free demosaicking on image 18 of Kodak.

4.2. Quantitative and qualitative comparisons

Peak signal-to-noise ratio (PSNR) [66] and structural similarity (SSIM) [67]
were used to evaluate the performance of the algorithms.

Noise-free demosaicking. In the noise-free CFA image demosaicking task, we
compared three traditional algorithms (GBTF [31], MLRI+wei [35], ARI [30])
and six deep learning algorithms (C-RCNN [24], JCNN [17], CDM-CNN [1§],
CDM-3-Stage [46], LCNN-DD [59], JDNDMSR [25]). Table [2f summarizes the
performance of all algorithms on the dataset. We can see that our proposed
algorithm outperforms the other algorithms in the noise-free demosaicking. On
the Kodak dataset, our proposed method surpasses the state-of-the-art by 0.34
dB in the average PSNR value. This gain is 0.27 dB on the McMaster dataset
and 0.92 dB on Urban100. At the same time, our proposed lightweight method
also achieved good performance. It ranks second on the Kodak and Urban100
dataset and third on the McMaster dataset. On the MIT moiré, the average
PSNR value of our proposed algorithm is 0.12 dB lower than that of JCNN [17],
but we only used 5% of the training data they provided.

Figure 4| illustrates a challenging case in which existing algorithms always
produce color distortions (in the necklace part), while the proposed algorithm
presents no distortion. In order to better observe the reconstruction effect of
the algorithm, we show the residual image between the reconstructed image
generated by all the algorithms and the ground truth. It can be seen that the
visual effect is consistent with the numerical evaluation.
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JDNDMSR 1.5CBM3D
26. 70/0 8391 31.48/0.9240 30.95/0.9317 31. 88/0 9345 32. 12/0 9386

Ground truth 30. 40/0 9149

Figure 5: Comparison between state-of-the-art algorithms and our method for demosaicking
and denoising in image 6 of the Urban dataset with noise o = 10.

urs
29.63/0.8660

JCNN
Ground truth 29.14/0.8510 27.98/0.7951 29.58/0.8626 29. 15/0.8564 29. 55/0 8635

Figure 6: Comparison between state-of-the-art algorithms and our method for demosaicking
and denoising in image 1 of the Kodak dataset with noise o = 15.

Joint demosaicking and denoising. For the task of demosaicking and denoising
of noisy CFA images, we compared with the joint demosaicking and denoising al-
gorithm using ADMM by [56]. The joint demosaicking and denoising algorithms
based on deep learning proposed in [I7] (JCNN), in [24] (C-RCNN), in [59)]
(LCNN-DD), in [20] (SGNef[T)) and in [25] (JDNDMSR). We also considered our
proposed demosaicking network combined with CBM3D for denoising [68], and
following the suggestion of Jin et al.[2], the CBM3D denoising parameter was
set to 1.5 times the original o value (denoted 1.5CBM3D). Table [3| summarizes
the performance comparison of all algorithms. It can be seen that our algorithm
performs better than other state-of-the-art algorithms.

Figure show the comparison of visual effects and image quality between
the state-of-the-art and our proposed method. As can be seen in Figure
and [8] our restored images show a more distinct image texture and fine detail.
Figure [f] illustrates that on the fence: our restored image is more pleasant
and has fewer color distortions and checkerboard artifacts. We also note that
CBM3D + our proposed demosaicking also outperforms the state-of-the-art for
both quantitative and visual quality.

1Since we didn’t obtain the source code of the algorithm SGNet [20], the PSNR and SSIM
values of the algorithm were taken from the article directly.
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. M Ours(-) Ours
Ground truth 30.07/0.8092 29.07/0.7994 30 78/0. 8318 30 48/0.8299 30.91/0.8419 31.03/0.8442

Figure 7: Comparison between state-of-the-art algorithms and our method for demosaicking
and denoising in image 1 of the Kodak dataset with noise o = 20.

ADMM JDNDMSR 1.5CBM3D Ours
28.90/0.7221 29.79/0.7796 29.48/0.7714 30.35/0.8086

Ground truth

28. 81/0 7077

29. 70/0 7740

Figure 8: Comparison between state-of-the-art algorithms and our method for demosaicking
and denoising in image 585 of the MIT moiré with noise o = 20.

Table 4: Comparison of the results (PSNR/SSIM) between different flexible joint demosaicking
and denoising methods in the interval of the noise level o € (0, 20] for five image sets. The
best value is marked in bold, the second is marked in red.

o | Dataset JCNN JDNDMSR | Ours(-)-F Ours-F
Kodak 33.21/0.9007 | 33.94/0.9115 | 33.92/0.9116 | 34.03/0.9129
McMaster 33.02/0.8972 | 33.80/0.9126 | 33.85,/0.9121 | 33.97/0.9142

10 | WED + Flickr |32.70/0.9081 | 33.56/0.9258 | 33.70,/0.9269 | 33.83/0.9284
Urban 100 31.26/0.9248 | 32.57/0.9438 | 32.75/0.9454 | 32.95/0.9471
MIT moiré 30.39/0.8724(30.73/0.8759 | 31.09/0.8884 | 31.31/0.8919
Kodak 20.91/0.8168 | 30.79/0.8430 | 30.75,/0.8441 | 30.86/0.8465
McMaster 29.79/0.8139(30.93/0.8608 | 30.88/0.8571 | 31.02/0.8609

20 | WED + Flickr |29.53/0.8354 | 30.71/0.8762|30.71/0.8750 | 30.84/0.8780
Urban 100 28.00/0.8552(29.44/0.8972 | 29.39/0.8963 | 29.61,/0.9002
MIT moiré 27.57/0.7842(28.21/0.8107 | 28.28/0.8141 | 28.49/0.8207

Noise level flexible joint demosaicking and denoising. Referring to [17, 20} 25],
the noise level map was introduced in the denoising stage to flexibly handle
the noise of a certain range of noise levels (¢ € (0,20]). The corresponding
PSNR and SSIM values are shown in Table One can observe that the pro-
posed method is superior to JCNN [I7] and JDNDMSR [25] for all five image

16



Table 5: NIQE comparison between our proposed method and JCNN in DND dataset.

JCNN Ours(-) Ours
linRGB 13.2701 8.8395 4.3157
sRGB 12.2354 7.8584 3.8507

databases. Our lightweight method is very competitive with JDNDMSR, [25]
and outperforms JCNN [I7].

4.3. Results on real image datasets

Since the raw data is represented in the linear RGB color space (ie, without
gamma transformation), inspired by [2I] 69], we used the unprocessing algo-
rithm [69] to convert the training data to linear RGB data and fine-tune the
proposed algorithm. We evaluated the proposed algorithm on real images from
the Darmstadt Noise Dataset (DND) [70]. Since there is no ground truth for
these real world images, we decided to use the qualitative natural image quality
evaluator (NIQE) [71] to evaluate the perceptual quality of the reconstructed
images. The only input of NIQE is the restored image. Lower NIQE scores
mean higher image quality. The NIQE scores of the restored results for real
images were compared in linear RGB and sRGB color spaces for the various
algorithms and are shown in Table 5} The NIQE scores of our method and of
its lightweight version are much lower than that of JCNN. Figure [9] shows the
restored images of the various algorithms in the sRGB space providing a visual
quality confirmation of these measurements. A key part of each image in a red
box is zoomed in and placed on the right side to make comparison easier. One
can see that our proposed method restores better the textures and suppresses
more noise than JCNN. Taking the first column of Figure [J] for example, the
restored image of JCNN can’t recover the top left curve, which is broken in the
middle.

4.4. Ablation study and running time

Architecture choices, ablation study. Our ablation experiments trained and com-
pared the following models:

e (a) Using GBTF [31] for preprocessing, while the demosaicking network is
built using 16 classic Conv-BN-ReLU blocks (consistent with our network
parameters).

e (b) Using GBTF [31] for preprocessing, while the demosaicking network
is built using 8 Resblocks (consistent with our network parameters).

e (c) Using HA [27] for preprocessing, while the network uses our proposed
Inception block.

e (d) Using bilinear interpolation for preprocessing, while the network uses
our proposed Inception block.
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g
NIQE=4.2286 _

Ours NIQE=3.1433 © NIQE=3.3624 NIQE=4.3052 NIQE=3.8501

Figure 9: Comparison of JCNN with our method for demosaicking and denoising in real
images of DND. Each group of images consists of the whole image and a part of the image.
The image on the left is the whole image, and the image on the right is the zoomed in image
of the part in the red box on the left.

The performance of the above four cases on the five datasets is shown in Ta-
ble|§| (A). As can be seen from the table, good results can also be obtained using
bilinear interpolation, but GBTF is a better choice when working with textured
images. The table also shows that GBTF for preprocessing and using Inception
blocks are more effective for image demosaicking.

Two-stage vs. end-to-end training. To verify the importance of the two-stage
training we compared it with a joint demosaicking and denoising network trained
end-to-end. For this experiment we set the noise level to o = 20. Table [6] (B)
shows the difference between both strategies. We can see that the end-to-end
training of the networks (with equivalent capacity) is not as effective as the two-
stage training. This highlights the importance of training first the demosaicking
network on noise-free data. The network parameters from the two-stage training
can actually be further refined with an end-to-end fine-tuning, which results in
a slight boost. As can be seen from the training process in Figure the
two-stages training followed by fine-tuning allows for more stable training with
better results. In our experiments, we also found that the two-stages training
is more robust and more independent from initialization. On the contrary,
end-to-end training is more sensitive to initial values and is prone to training
failure. In Figure [10] (a) and (b), we list the training records of an end-to-end
model that failed to train once. As shown in Figure [10| (a) and (b), the end-
to-end training is prone to failure due to training fluctuations, while two-stage
training results in a smooth progression. To compare the training robustness
of the different schemes, we trained the lightweight end-to-end network and
the two-stage network 10 times respectively. The training results are shown in
Figure [10| (c). One can see that the end-to-end network is not stable. Its final
results are not the highest value seen during the training process. There is only
a 20% success rate, while the two-stage method is very stable and the final result

18
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Figure 10: Plots (a) and (b) compare the performance of different training strategies along
the training iterations. We compare the end-to-end training, the two-stage training and
finetuning after the two-stage training. We also report the evolution of a failed end-to-end
training (purple curve), which were obtained with the same parameters as the blue curve.
In (c), the end-to-end network and the two-stage network were each trained 10 times (for
this experiment we used only the lightweight architecture). The unstable behavior (as in the
purple curve) was observed in eight out of ten end-to-end trainings, while the the two stage
training never exhibited such behavior. The red curve marks the PSNR reached at the end of
each training.

always reaches the highest value of each training. This shows that, although
CNNs have a powerful fitting capability that enables addressing multiple tasks
in an end-to-end fashion, it is still important to consider the order of the tasks
to design a reasonable pipeline.

Dependency on the training dataset. In order to better compare the advantages
of the network architecture regardless of the influence of training data and train-
ing strategies, we retrained JCNN, using the same training data and training
strategy as for our algorithm. Table [7] shows the PSNR and SSIM of noise-free
demosaicking and joint demosaicking and denoising with noise level ¢ = 20.
Among them, JCNN-O represents the original parameters of JCNN and JCNN-
R stands for the retrained version of JCNN. From Table [7] one can see that
both our proposed method and its lightweight version outperform JCNN by a
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Table 7: Comparison of the results (PSNR/SSIM) of original JCNN (JCNN-O), retrained
JCNN (JCNN-R) and the proposed method for five image sets. The best value is marked in

bold, the second is marked in red.

o |Dataset JCNN-O JCNN-R Ours(-) Ours
Kodak 42.09/0.9881 (41.65/0.9874[42.49/0.9888|42.76,/0.9893
McMaster 38.95/0.9695 |38.68,/0.9677|39.25/0.9702|39.61/0.9725

0 |WED + Flickr| 39.24/0.9807 |39.11/0.9800|39.84/0.9820 |40.22,/0.9831
Urban 100 38.12/0.9842 [37.97/0.9833|38.88/0.9852|39.52/0.9864
MIT moiré 36.65/0.9588(35.19/0.9462|35.97/0.9516 | 36.53/0.9533
Kodak 31.32/0.8586 |31.37/0.8597(32.12/0.8780|32.24/0.8807
McMaster 31.25/0.8564 |31.31/0.8645|32.25/0.8867 | 32.40/0.8902

15| WED + Flickr| 30.96/0.8719 [31.09/0.8819|32.07/0.9022|32.20/0.9048
Urban 100 29.45/0.8912 |29.18/0.8953|30.96/0.9233(31.21/0.9268
MIT moiré 28.81/0.8283 |28.36/0.8165|29.60/0.8544|29.83/0.8597
Kodak 29.91/0.8168 |30.04/0.822830.89/0.8487|31.01/0.8518
McMaster 29.79/0.8139 |30.08,/0.8338|31.06/0.8635 | 31.21,/0.8670

20 | WED + Flickr| 29.53/0.8354 |29.83/0.852930.86/0.8800({31.00/0.8832
Urban 100 28.00/0.8552 |27.82/0.8642|29.59/0.9012|29.86/0.9060
MIT moiré 27.57/0.7842 |27.27/0.7758|28.47/0.8213|28.71/0.8288

Table 8: Average running time of demosaicking and joint demosaicking-denoising for 500
images (512 X 512) on a PC with Intel Core i7-9750H 2.60GHz, 16GB memory, and Nvidia
GTX-1650 GPU.

Method CPU(s) | GPU(s) | GFLOPs | Para(M)
GBTF [31] 2.74 - - -
MLRI+wei [35] 1.35 - - -
ARI [36] 25.58 - - -
DM | CDM-CNN [I5] 6.84 0.07 276.19 0.53
CDM-3-Stage [46] 18.61 0.35 | 1871.27 3.57
Ours(-) (DM) 15.12 0.28 92.34 0.35
Ours (DM) 24.86 0.44 176.23 0.67
ADMM [50] 472.27 - - -
C-RCNN [24] 112.77 2.32 2112.8 0.38
JCNN [17] 10.41 0.22 53.20 0.56
JDD | LCNN-DD [59] 1.86 0.04 14.89 0.23
JDNDMSR [25] 73.15 1.61 | 1641.77 6.33
Ours(-) (DM+DN) 30.13 0.55 184.68 0.70
Ours (DM+DN) 49.53 0.86 352.46 1.34

margin larger than 0.7 dB for all five test image sets under the same training
data and training strategy. This means that our proposed structure is superior
to JCNN for both tasks.

Computational complezrity. In order to estimate the computational complexity
of these algorithms, we tested the average time consumed by all algorithms to
process 500 images (512x512) on a PC with Intel Core i7-9750H 2.60GHz, 16GB
memory, and Nvidia GTX-1650 GPU. For the deep learning algorithms, only
the actual network processing time was calculated, not including the network
loading time. The time consumed by the algorithm in demosaicking noise-free
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images and in demosaicking and denoising CFA images with noise level of o = 10
is shown in Table [8] Since our network is composed of independent demosaick-
ing and denoising stages, the time consumed can be calculated separately. In
Table[§] DM denotes the demosaicking stage of our algorithm and JDD denotes
joint demosaicking and denoising. It can be seen that the processing time of our
algorithm is comparable to the other deep learning algorithms. It is also faster
than some traditional iterative algorithms, such as ARI [36] and ADMM [50].

5. Conclusion

In this paper, we proposed a CNN for joint demosaicking and denoising. The
proposed method relies on a demosaicking first then denoising approach, which
is realized by applying sequentially two CNNs. In the first stage, the GBTF
algorithm is combined with a CNN to reconstruct a full-color image from noisy
CFA image but ignoring the image noise. In the second stage, we use another
CNN to learn to remove the noise whose statistical properties were changed by
the demosaicking stage. This allows to remove demosaicing noise that would
otherwise be virtually impossible to remove using model-based methods.

More importantly, we show that even when dealing with CNNs with powerful
fitting capabilities a reasonable pipeline and its training (such as the proposed
two-stage training) can lead to significant performance gains with respect to
more mainstream approaches based on end-to-end training. In addition, in
order to improve the performance of the proposed method, we proposed an
architecture based on Inception blocks as well as a lightweight version with a
good speed-performance trade-off. Experiments conducted on multiple datasets
confirmed that our algorithm favourably compares to the state-of-the-art demo-
saicking algorithms and joint demosaicking and denoising algorithms.
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