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UNIFIED ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR
FRICTIONAL CONTACT PROBLEM WITH NORMAL COMPLIANCE

KAMANA PORWAL AND TANVI

ABSTRACT. In this article, a reliable and efficient a posteriori error estimator of residual type is
derived for a class of discontinuous Galerkin methods for the frictional contact problem with reduced
normal compliance which is modeled as a quasi-variational inequality. We further derive a priori
error estimates in the energy norm under the minimal regularity assumption on the exact solution.
The convergence behavior of error over uniform mesh and the performance of error estimator are
illustrated by the numerical results.

1. INTRODUCTION

This article is devoted to the numerical analysis of the frictional contact problem with normal com-
pliance. Frictional contact problems are of great interest since the processes involving frictional
contact between two bodies occur in many engineering and industrial applications. In these prob-
lems, an elastic body, under the influence of body forces and surface tractions, comes into contact
of a rigid surface on a part of its boundary (called contact boundary). The lubricated contact
boundary results in a frictionless contact problem while we get frictional contact problems when
the contact boundary is not lubricated. We refer to the book by Kikuchi & Oden [43] for modeling
and detailed understanding of frictionless and frictional contact problems. In order to study these
problems within the framework of variational inequalities the first attempt was made in [26]. In
most cases, the contact problems arising in real life have interface with non-zero compliance because
of the presence of asperities and absorbed impurities etc in real surfaces. The frictional contact
problem with normal compliance can be modeled as a quasi-variational inequality. The convergence
analysis of conforming finite element approximation based on quadrilateral elements for frictional
contact problem with normal compliance is studied in [47]. A Cea’s type error inequality of con-
forming finite element method for frictional contact problem with reduced normal compliance is
obtained in [37], therein a posteriori error analysis is also discussed using regularization method.
We refer to [28] for residual type a posteriori error estimates of linear continuous finite element
method for the same problem. Some more notable works on the numerical analysis of static/time
dependent frictional contact problem with normal complaince can be found in [45] 46}, 2 38, [62].
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Discontinuous Galerkin (DG) methods, which were first proposed in [52], are mainly attractive due
to the flexibility of using local hp adaption. The articles [3} [4], [50} [40] 53] are excellent references for
the comprehensive study of these methods. DG methods are also widely used to solve variational
inequalities. We refer to [57, 68, 20, 29] and [32], [33] 6] 61, [7, B4] respectively, for a priori and a
posteriori analysis of DG methods for variatonal inequalities of the first kind. The articles [35] [51]
discuss the convergence analysis of DG methods over uniform mesh and adaptive mesh based
on a posteriori error estimator for variational inequalities of the second kind. Further, we refer
to [39, 10, @, 11} 36l (9L 21] and references therein for other works on the numerical analysis of
variational inequalities of the second kind. In [62], DG methods for frictional contact problem with
normal compliance has been proposed. In this article, we first derive a residual type a posteriori
error estimator of DG methods for the frictional contact problem with reduced normal compliance
which is shown to be both reliable and efficient. Followed by that, we establish an abstract a priori
error estimate by assuming minimal regularity of the exact solution. The analysis is carried out in
a general framework which holds for a class of DG methods. Numerical results are presented to
illustrate the theoretical findings.

We consider the deformation of an elastic body unilaterally supported by a rigid foundation and
occupying domain € ¢ R? which is a bounded polygonal domain with Lipschitz boundary 0Q = T.
The boundary I is partitioned into three relatively open mutually disjoint parts I'p, I'r and I'c with
meas(I'p) > 0. Let S denotes the space of second order symmetric tensors on R? with the scalar

product defined as w : ¢ = w;j¢;; for w, ¢ € S and the corresponding norm |@| := (¢ : o)\/2.

The linearized strain tensor € and stress tensor o belong to the class of second order symmetric
tensors and are defined respectively, as

(1.1) €(u) = %(Vu + vaul),
(1.2) o(u) = Ce(u),

where, the vector-valued function u : © < R? — R? denotes the displacement vector and the
operator C : 2 x § — S is the fourth-order elasticity tensor of the material. In the following study,
we assume elastic body to be homogeneous and isotropic, therefore

(1.3) Ce(u) := Mr(e(u))I + 2ue(u).

where, A > 0 and p > 0 are Lamé’s coeflicients and I denotes 2 x 2 identity matrix.

For any displacement field v, we adopt the notation v, = v-n and v, = v —v,n respectively, as its
normal and tangential component on the boundary where n is the outward unit normal vector to I'.
Similarly, for a tensor-valued function o : {2 — S the normal and tangential component are defined

as o, = on-n and o, = on — o,n respectively. Further, we have the following decomposition
formula

(on)-v =0opvy + 07 - V.
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In order to state the weak formulation for the frictional contact problem, we introduce the space
V of admissible displacements by

V={ve[H Q] :v = 00onTp}.

Given f € [L*(Q)]?, g € [L*(Tr)]?, 9o € HY/?(I'¢) with g, > 0, variational formulation of the
frictional contact problem with normal compliance is to find u € V s.t.

(1.4) a(u,v — u) + jp(u,v — u) + jr(u,v) — jr(u,u) = (fv—u) V veV,

where, the bilinear form a(:,-), the functional j,(-,-), j-(-,-) and the linear functional (f,-) are
defined by

a(lw,v) = f o(w): €(v) dr,
Q

jn(w’ ’U) = J Cn(wn - ga)Tn'Un dS,
Pe

rw,o) = [ ertn = gu) o] ds,
el

(f,v)zf _f~'vdac+f g-vds YVw,v € V|
Q I'r

with ¢,,c; € LP(T¢), 1 < my, < o0 and 0 < m; < o . The classical(strong) form associated to
the quasi variational inequality (1.4]) is to find the displacement vector w :  — R? satisfying the

equations ([L.5)-(L.9),

(1.5) —div o(u)=f nQ,

(1.6) u=0 onIp,

(1.7) oclum=g onlp,

(1.8) on(u) = —cp(un — go)7™ on Tg,
|UT| < CT(Un - ga)Tt = ur =0

(1.9) on T'¢
lor| = cr(un — ga)Tt = Uy = —Ao; for some A =0

The equation (1.5) is the equilibrium equation, in which volume forces of density f acts in (.
The equation (1.6) justifies that displacement field vanishes on I'p, which means that the body
is clamped on I'p. Surface traction of density g acts on I'p in (1.7). The normal compliance
condition is given by (1.8) where g, is the initial gap between the body and foundation, u,, is the
normal displacement and (u,, —g,)+ represents the penetration of the body in the foundation. Here,
cn € L*(T'¢) is a non negative function with the property c,(x) = 0 for £ < 0. The relation (1.9)
form a version of the Coulomb’s Law of dry friction where ¢; € L*(I'¢) is a non negative friction
bound with the property ¢-(x) = 0 for < 0.
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In this article, we will analyze the frictional contact problem with reduced normal compliance law
[37] i.e. my = 0. Therefore, ([1.9) steps down to

lor] <er = ur =0
0 on T'o.

lor| = ¢r = ur = =)Ao, for some \ =

In this case the functional j,(u,v) reduces to jr(v) which is defined by

Jr(v) = f cr|vr| ds.
Fe

The variational formulation ((1.4)) reduces to the following problem: to find the displacement vector
ueV st.

(1.10) a(u,v —u) + jp(u,v —u) + j;(v) — j-(u) = (fyv—u) ¥V veV.
The existence and uniqueness of the solution u of the problem follows from [37].
We define,

A={pe[l”(Tc)? : |/ <1lae on T'cl

Now, we will characterize the continuous solution u of ((1.10)) through the use of Lagrange multiplier
139 51].

Lemma 1.1. There exists Ar € A such that
a(uav)+jn(uav)+g(>‘7'7v) = (f,v) VoveV,
Ar-ur = |ur| a.e onTg,

where

g Ar,v) = J Cr A - Uy ds.
|6}

In the subsequent analysis, we also require the following bound on the exact solution w of (1.10)
by load vectors [37].

Lemma 1.2. Let uw € V be the solution of continuous problem (1.10). Then

lullgi) < CUFle@ + l9lz2@y))

where C' is a constant independent of h.

In view of the following imbedding result [24],
(1.11) HY(Q) > LYT¢) ¥ g e [1,0),

it can be be observed that o, (u) € L?(T'¢).



DISCONTINUOUS GALERKIN METHODS FOR FRICTIONAL CONTACT PROBLEM WITH NORMAL COMPLIANCE

The rest of the article is arranged as follows: In next section, we introduce notations and present
some useful preliminary results which will be used in subsequent analysis. DG formulation is
presented for the continuous problem in Section |3} Followed by that in Section |4} a posteriori
error analysis of DG methods for the frictional contact problem with reduced normal compliance
has been established. A priori error analysis with minimal regularity on exact solution u
of is carried out in Section 5| In Section @ numerical results are presented to illustrate the
theoretical findings. Finally, we present the conclusions of this article in Section

2. PRELIMINARIES
2.1. Notations. The following notations will be used in the further analysis.
Tn := a family of regular triangulation of €2,
&y := set of all edges of Ty,
5}; := set of all interior edges of Ty,
5}; := set of all boundary edges of Tp,
{ee & ecTp},
& i={ee&:ecTr},
EC = {eec & ec Ty},
o =& LEP,

Tp := set of all elements of 7}, sharing the vertex p,

o
S~}
i

Te := set of all elements of T; sharing the edge e,
Vi := set of all interior vertices of 7y,
Vr := set of all vertices of element T,
Vaq := set of all boundary vertices of Ty,
V,f := set of all vertices of Ty, lying on I'g,
V;? := set of all vertices of Ty, lying on I'¢,
VP .= set of all vertices of T, lying on T'p,
T := an element of 7},
ht := diameter of T,
h :=max{hp : T € Tp},
he := length of an edge e,
Py(T) := space of polynomials of degree < k defined on T, 0 < k € Z.
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The notations, Vj(v) and divp(v), respectively denote elementwise gradient and divergence i.e.
for T € Tp, Vi(v)|r = Vv, divy(v)|r = div(v). Further, for v € V4, ep(v) and op(v) are such
that ep(v)|r = €(v), T € T, and op(v) = 2uen(v) + Atr(ep(v))1.

In order to deal with nonsmooth functions, we define the broken Sobolev space [H'(Q, T;,)]? as
[H (2, Ty)]? = {v e [L2(Q)]* s v|r e [HY(T)? V T e T}
and the corresponding norm on this space is defined as || - H% n=2reT; | - ”%Il(T)‘

Let e e E}'L be an interior edge and let T and T~ be the neighbouring elements s.t. e € 0T U 0T~
and let n* is the unit outward normal vector on e pointing from T+ to T~ s.t. n~ = —n™'. For a
vector valued function v € [H'(Q, 73,)]? and a matrix valued function ¢ € [H'(Q, 7;,)]>*?, averages
{-} and jumps [[-]] across the edge e are defined as follows:

fo} = %(’v* +v7) and [[v] = %('t)*@n+ +nt v +vT@n +n®v),

(6} = 5(@" +6) and [#] = ™n" +¢7n",
where vt = v|p+, ¢t = @|p+.

For any e € £, it is clear that there is a triangle T € T, such that e € 0T N 0S. Let n, be the unit

normal of e that points outside 7. Then, the averages {-} and jumps [[-]] of vector valued function
v e [HY(Q,T,)]? and a matrix valued function ¢ € [H' (€2, 7)]?*? are defined as follows:

(0} =v, ad [o] = L (0@ne + ne@v),
fo} = ¢, and [[@]] = Pne.
In the above definitions v ® n is a 2 x 2 matrix with v;n; as its (i,7)" entry.
The discontinuous finite element space V4, is defined as
Vi ={ve[l*(Q)]?:v|lre[P(T)]* VTeT).

In the subsequent analysis, we will also require the conforming finite element subspace defined by
V. = Vi, n V| which we choose as standard Lagrange linear finite element space.

Throughout the article, C' denotes a generic positive constant that is independent of mesh parameter
h. The notation X ~ Y says that there exists positive constants C'1, Cy such that C1Y < X < C5Y.

The following Clement type approximation result [I6] will be useful in establishing convergence
analysis.
Lemma 2.1. Let v € V. Then there exist vy, € V. such that on any T € Ty,

v — vp| sy < Ch%:sH'UHHl(TT)a s=0,1,

where Tr = {T" € T, : T' n T # ¢} and C is a positive constant independent of h .
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The following inverse and trace inequalities [16] 50] will also be frequently used in the subsequent
analysis.

Lemma 2.2. (Discrete trace inequality) Let v € [H(T)]? for T € Tj, and e be an edge of T. Then,
it holds that

[N

(2.1) Ivllzz(e) < C (A0l F2 gy + hellVOlIZ2i)) 2,

where C' is a constant independent of h.

Lemma 2.3. (Inverse inequalities) Let T € T, and e be an edge of T. Then, it holds that for any
vV E Vh

1
(2.2) [Vl Lo(e)y < Che * ||V 2(e)

_1
(2.3) [v[lL2(e) < Che * ||l 2(ry ¥ T € Th,
(2.4) IVl 2y < Cht vl 2y ¥ T €T,

where C is a constant independent of h.

2.2. Enriching Operator. An enriching map FEj : Vi, — V. plays a crucial role in deriving a
posteriori error estimates for the class of discontinuous Galerkin methods as it maps non-conforming
function to conforming function [12] 13| [14] [15].

As we know, that any function in V. is uniquely determined by the nodal values at the vertices V},
of Ty, therefore, for vy € V3, we define Epvp € Vi by averaging as follows:

1 .
— vplr(p) forpe VEUVE U VY,
Eh’Uh(p) _ |7;| TeTp h h h
0 for p e VhD.

where |7,| denotes the cardinality of 7).

In the following lemma, we state the approximation properties of smoothing map Ej, [34, [51].
Lemma 2.4. It holds that

_ 1
S (h21B — ol + 1V (B — )|, 0)) < c( > i llolif.) e vi
TeT;, ek, €

3. DISCRETE PROBLEM

3.1. DG Formulations. In the following subsection, we present DG formulations for solving the
quasi-variational inequality (L.10). In [62] several DG methods have been considered for the fric-
tional problem with normal compliance for which the bilinear form By (-, -) are listed below. Let rq
and 7. denote the global and local lifting operators, respectively [4], [58]. Further, in defining the
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bilinear forms, we use the shorter notations (w, v)q, {w,v)gy and g instead of {, wv dz, {., wv ds
h

and {, o (up) : €,(vp) do respectively.
1. SIPG method [62, 58, 3]:
B (un,vn) = g — ([unll, fon(vn)}) — [onll, fon(un)}) + L nhe un]l : [vn]] ds,

for up, vy € Vp and n = n, > 0.

2. NIPG method [58, [62]:

B un on) = 9 + (und (o)1) = onll ()b + [ o [un) [onl) .

h

for up,vp € Vi, and n > 0.

3. Bassi et al. [58, 62]:

B (unvn) = g — Qunll, fon(on)}) — onll fon(un)}y + 3 L nCre([un]) : re([onl) de,

o
eely

for up, vy € Vp and n > 3.

4. Brezzi et al. [4, 58, [19]:
B (un, o) = g — (unll, fon(vn) ) — ol fonun)}) + (Cro([unll), ro([val)
+ L nCre([unl)) : re([vn]) dz,

o
ec&p

for up, vy € Vp and n > 0.

5. LDG Method [22, 23]:
B (un, vn) = g — (unll, fon(vn)}) — ol fonun)}) + (Cro([unll), ro([val)
+J nhe_l[[uh]] : [vn] ds,
&y

for up,vp € V3, and n > 0.

Let Bj(+,-) represents one of the five bilinear form B}(li)(', ), 1 < i < 5. Then, the corresponding

discrete formulation of the model problem (1.10]) is to find up, € V}, such that

(3.1) By(uh, v — un) + jn(Uhy Vh — up) + jr(vn) — jr(un) = (f,vn — un) YV vp € Vi
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where we rewrite the bilinear form Bj(-,-) as

Bh(uh, ’Uh) = ah(uh, 'vh) + bh(uh, ’Uh),

where

ah(uh,vh) = J O'h('uh): eh('vh) dr
Q

and bilinear form by(-,-) consists of all the remaining terms that accounts for consistency and

stability. A key observation is that the bilinear form by(-,-) for all the DG methods (1) - (5)

satisfies the following estimate:

1 1/2
(3.2) by (w, v)| < c( > f }7[[11;]]2 ds) V] 1) Yw € Vi, veE V.
e

odJe
ee&p

Define norm ||-[|,, on the space V4, as

2
h = % + ‘ v |>2k’
vl =[v |

where
lvli= ), lvl7, [ v 3= he ' ITolIG.
TeTh, ecEp
with
o= | Celo)seo) da, oDl = | [ol: o] ds
e
Note, the norm |||, is equivalent to usual DG norm [v|?,+ | v |2 by Korn’s inequality and

Poincaré Fredrichs inequality for piece wise H'! spaces [14} [15].

The existence and uniqueness of the discrete problem ([3.1]) is discussed in [62]. Analogous to the
continuous problem, following is the characterization of the discrete problem (3.1]).

Lemma 3.1. There exists a unique Lagrange multiplier Ap+ € A such that the solution up, of the
discrete problem (3.1)) can be characterized by

(3.3) Bi(un, vh) + jn(Uh, vh) + 9(Anr,vn) =(f,vn)  VYop € Vp,

(3.4) Ahr  Upr =|ups| a.e on Te.

Since j,(up, vp) is linear in the second component, henceforth the proof of the last lemma follows
using the similar arguments as in Lemma 3.1 of [51].

As in the case of continuous solution u of ([1.10]), the discrete solution up, of (3.1)) is also uniformly
bounded by load vectors.
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Lemma 3.2. Let up € Vi, be the solution of the discrete problem. Then

lunlin < CUF 2@ + 19lz20p)

where C' is a constant independent of h.

This lemma can be proved on the same lines as in Theorem 2.3 of [37].

4. A POSTERIORI ERROR ANALYSIS

In this section, we derive a residual-type estimator for the error ||u — us||, and study a posteriori
error analysis. The error estimators are defined by

=3 W e,
TeT,

5 = helllon(wn)l 1720,

i
eel}

N
7732, = Z hiH[[uh]]H%Q(eP

0
ee&})

772 = Z heHo'hT(uh) + CTAhTH%Q(e)7

C
ee&

77% = Z heHO'h(uh)’n _QH%Q(e)’

F
eey

= Y helonn(un) + cn(unn — ga) 7™ 22
eeé’,?

The total residual estimator 7y, is defined by
My =m0 + 105 + 05+ nf 05+ .

We will use the following integration by parts formula in the subsequent analysis:

L on(w) : ep(v) do = —f divp op(w)-vde+ Y. | [on(w)] - {o} ds+ > | {on(w)}: [v] ds

Q eeS}iL € eek V¢

for all v, w e [HY(Q, Tn)]?.

Next, we establish the reliability of the error estimator ny,.

4.1. Reliability Estimates. In the following subsection, we derive the upper bound for the dis-
cretization error by error estimator ny.
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Theorem 4.1. Let u and up, be the solution of (1.10) and (3.1), respectively. Then, there exist a

positive constant C independent of h s.t.

e = wnlly + D] ellon(un —w)|72 < C(ﬁ% + ) he|\cf|iz(€)>.

C C
ey ee&y

Proof. We have,

2
lle = unllz < D) |u—wnlir+n3.
TeTh
Using Lemma [2.4] we note that

Z lu —upf < Z lu — Epunl; r + Z |Evun — unlir

TeT, TeT, TeT,
2 2
< Z |u — Epunl|ir +n3.
TeTh

Set ¢ = u — Epup € V. Lemma [2.I] guarantees the approximation of ¢ as ¢p, € V.. Using the
V-ellipticity of the bilinear form a(-,-), characterization in terms of multipliers for the continuous
and discrete solutions stated in Lemma [T.1] and Lemma we obtain

>, lu— Epunlir < alu — Epun, @)

TeTs,

= (fs @) — jn(u, @) — 9(Ar, @) — a(Erun, )
= (fy ¢ — @n) + (f, dn) — jn(u, @) — g(Ar, @) + an(un — Epun, @)
— ap(un, ¢ — dn) — an(wn; Pn)
= (fs & — on) — jn(u, @) — g(Ar, @) + an(un — Epun, @)
+ bn(un, Pn) + jn(Uh, dn) + 9(Anr, dn) — an(un, @ — @n)
= (fs0 — On) — 9(Anr, & — dn) — jn(un, & — dn) + b (un, Pn)
— ap(Uns @ — @n) + Jn(Uhs @) — jn(U, @) + g(Anry @) — 9(Ar, @)
+ ap(un — Epun, )
=Ty + Ty + T3+ Ty,

where

Ty = (fs¢ — &n) — 9(Ahrs @ — dn) — an(Uns @ — Gn) + bp(Uns dr) — jn(vn, ¢ — @n),
Th = ap(un — Epun, @),

T35 = g(Ahrs @) — 9(Ary @),

Ty = jn(uh, @) — jn(u, @).

We now estimate 7;, 1 < i < 4 individually. Using integration by parts in the third term of 77 and
gathering all the terms, we find
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=3 [ £o@-ondet Y | (@ onunne) @ - on) ds

TET ESF

- Z J Uhn Uh + Cn(“hn _ga) ) (¢ ¢h ds — Z [[O'h Uh>]] {{d) ¢h}} ds

eEgC 665’ €

+ by (un, r) — ) J Ohr(un) + crAnr) - (@ — @n)r ds

6650

Now, we evaluate the terms on right hand side in the last equation one by one. The first term is
bounded by using Cauchy-Schwartz inequality and Lemma as follows:

1/2 1/2
3 f f-(¢—on)d < DIRANA ) ( > hT2“¢_¢h“%2(T))

TeT, TeTh TeTh
1/2
<( X #fEn) o)
TeTh

The bound on second and third terms follows from Cauchy-Schwartz, discrete trace inequality and
Lemma 2.7] as:

1/2 1/2
> f g —on(up)ne) - (¢ — ¢n) ds < ( > hellg - Uh(%)"e”%?@)) < > et - ¢h|\2L2(e)>

F F F
e} ee&; ee&}

1/2
< ( 5 he|g—ah(uh)ne||12(e)> Bl oy

F
eely

and

1/2 1/2
Z [[U'h Uh ]] {{¢ (,bh}} ds < < Z he\[[ah(uh)]]lia(e)> < Z h21H¢ - ¢h’%2(e)>

ee‘gz € eeSZL eegi
1/2
< (X tellontunl ) 19l or
ee&'}l

As ¢p, € V. the bound on by, (up, ¢p) directly follows from (3.2). Again a use of Cauchy-Schwartz,
discrete-trace inequality and Lemma [2.1] yields

- 2 f Uhn Uh + Cn(uhn - ga)Tn) ) (¢ - ¢h)n ds

eegc

1/2 1/2
< (X helomlwn) + entunn = )P o) (35 410 Sl

C C
eely eesy
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1/2
< (35 helomnCum) + colunn )2 s ) 1o

C
eck Py
and

- f(dm(’uh) +¢rAnr) - (@ — @n)r ds

C
ec&y

1/2 1/2
< ( Z heHO'hr(Uh) +C7')‘h7'|%2(5)> ( 2 he_lH(d)— d)h)T‘%?(e))

eeé’,? 665}?
1/2
< ( S bl (un) +cTAhT|i2(e)) Bl
eeé’,?

Combining, we have

(4.1) T < nnl bl )-
Using the boundedness of the bilinear form By (-, ) w.r.t. [|-[[, and Lemma [2.4] we have

Ty = ap(un — Epun, @) < [[un — Epunll,lloll, < n3léla @)
Further, using the relation |[A+| < 1, [Apr| < 1, Ar - ur = |ur| and Apr - upr = |up.| a.e. on I,

the term T3 can be estimated as:

T3 = g()‘h‘ra ¢) - g(>‘7'7 ¢)

= J CrAhr - Uy dS — J crAnr - (Epup): ds — J
e e

CrAr - Uy dS + J crAr - (Epup), ds
e

el

< f cr|(Epup),| ds — f ¢ Anr - (Epup); ds
I'c

NG}

= J C.,-|(Ehuh)7-| ds — f CT|’u,hT| ds + J CrAhr * Upr dS — J Cr\hr (Ehuh)T ds
FC FC FC FC’

< f cr|(Epun)r — un,| ds + f ¢rArr - (Unr — (Epun)r) ds
I'c INe}

<2 ) lerlzze Enun — wnl 2

665}?
1/2
< C( > he”cT|%2(e)> 73
865}?

In order to estimate T}, we will use standard monotonicity argument [37] i.e. ((z —c¢)} — (y —
o) )(x—y) =0V x,y,ceR, r=0) to observe

(42) jn(uha u — Uh) - ]n(u7u - Uh) <0.
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Thus, a use of (4.2) yields
T4 = jn(uh’ d)) - ]n(u7 ¢)
= Jn(Uh,w — up) + jn(vn, un — Eyup) — jn(u, u — up) — ju(u, up — Epup)
< jn(un, un — Eyun) — jn(u, un — Epun)
=S f (. — G0)"™" — (1t — o)) (un — Brun) ds.
eeSC

We will consider two different cases: m,, = 1 and m,, > 1. When m,, = 1, the last relation reduces
to

Z J Cn uhn .ga + — ( Up — ga)Jr](uh - Ehuh)n ds

eEEC

Z Jcn|uhn un‘ Uh _Ehuh) ds

eESC

< ) lenllzoltnn = tnl 2l (un — Bvun)nlr2e
665,?

(un — Enun)nllr2(e)

eeShC
otherwise for my, > 1, using the identity |(a)7 — (b)"| < m|a —b|(|a|™ " + \b\m Da, beRm=1,
Cauchy Holder’s inequality, (1.11]) together with Lemma and Lemma , we find

Ty < ), lenlzoe)l(tnn = ga)7 = (un = ga) 7" |12(e)ltthn — (Enwn)nlz2(e)

C
ee&y

< 35 (1 = 9l )+ o = i1y ) =l

eegc

”uhn - (Ehuh)nHL2(e) ds

< 3 (Jun - anll " + b = gl i) ) o = vl — (Brunulza ds

eeEC
<> (un — Epun)nl2e)
665}?
where the Hélder conjugates £, 4 € (1,0) satlsfylng —|— 2= 2 are such that ¢(m, — 1) > 1. Thus,

for m, = 1, we have

Ty < Clu—unlin Y. Jurn — (Bawn)nlrze

C
ee&y
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Finally, using standard inverse estimate and discrete Cauchy- Schwartz inequality in Ty, we obtain

Ty < Clu—unlin Y |tnn — (Bntn)nllr2e)

eeSE
<Clu—wunlin >, D) he ?|un — Byunl 2
eESE TeTe
1/2 1/2
<Clu — ’uh1,h< Z he) < Z hy?||un — Eh’uh|%2(T)> :
668,? TeT

as he ~ hr. As a consequence of Lemma 2.4 and identity Zeeg}? |he| = |T¢l, we find
Ty < Cllu — unll,ns-

Combining the estimates obtained in 77, T3, T3, T4 and using Young’s inequality, we get the
desired bound on the error term.

In order to find the upper bound for Zeeg,? hellon(u — uh)H%Q(e), we recall (1.8)), and use identity
(a +b)? < 2(a? + b?) as follows:
hellon(w — wn) 720 < 2(hel = cn(tun — ga)T™ + cn(tnn — 9a) 7" [720)
(4.3) + hellon(un) + cn(unn — 9a) 7" [72())
where e € Shc . Using the similar arguments as used in estimating T, we get

I = en(un — ga)" + cn(unn — ga)TnHLQ(e) < Cllup, — uhnHLP(e)'

for p > 2. As a consequence, we find
(4.4) | = en(un = ga) 7" + cn(tnn = 9a) 1" [ 12(e) < Clltn = unn|Lr(re) < Clu — unllip.
Therefore, summing over all e € £ and using the identity . ce€C |he] = |T¢l, we find
(4.5) D, hellon(u —un) e < llu — unll; + 7.

ccEC

This completes the proof. O

4.2. Efficiency estimates. In this section, we show that the error estimator 7; provides a lower
bound for the true error up to data oscillations. In order to prove the efficiency of the estimators
we will first prove the following lemma.

Lemma 4.2. Let u € V be the solution of continuous problem (1.10) and let vy, € Vi, be an
arbitrary element then, the following results hold:

(i) 2 Wzl Fl7eey < Clllw — wnllz + Osc(£)?),
TeTh
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(1) 3 hellon(@n)lZa < Cllu — vl + Osc(£)?),

eegﬁ
(iii) Z helon(vp)n — gﬂiz(e) < CO(fJlu — Uh”‘i + Osc(f)? + Osc(g)?),
eeS,Ij
(10) 3 hellon (om) + e A2y < Clllu — vall? + Oself)? + Oseler)? + Ose(Ar)?),
665,?
() Y] helonn(on) + enlvnn = 9a)2" 32y < Clllwn = ull} + on =l + Y] hellow(on = w)lEaq,):
e ecEC
c h
where
Osclfft = 3 B1F - Flan,
TeTh
Osc(g)? = Z helg — §||%2(e)v
eeé‘,l:
OSC(CT)Q = Z he”CT - C_T||%2(e)’
eeé‘,?
Osc(Ar)? = Z hel|Ar — ’\_7'H2L2(e)'
eeéf}?

where © denotes the L? projection of v onto the space of piece-wise constant functions.

Proof. (i) Let T € T}, be arbitrary and let £ € P3(T') be bubble function that vanishes on 07" and
takes unit value at the barycenter of T'. By equivalence of norms on finite dimensional spaces, we

have
4.6 Fll2.,m < f-f dz.
(4.6) ey < | &F 7 da

Let ¢ = f&. We can identify ¢ as an element of [H{(Q)]? by extending it by 0 outside of T'. It
follows from Lemma 1.1, integration by parts and a standard inverse estimate that

|erfa=| rods| F-pow
—alw,d)+ | (F= 1)@ do+ | divo(w)-o ds
~aw, @)+ [ (F= 1) s do | oton):e(@) ds
~ | (otw ~ o) e(@) ot [ (F- )0 ds

< |u — va| g ()Pl ) + |IF = Flrzenyl@lle2 )
< |u — valm iy h 7 @l 2y + IF = Fleer)l @l 2
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(4.7) < (lu - ’Uh\Hl(T)h%1 +1F = flezery) 1 £l ez
Combining (4.6)) and (4.7)), we obtain

W Fl72r) < lw = vnlip ey + BEIF — Fl72r
and hence by triangle inequality,
(4.8) Wl fl e ery < 1w = vnlip oy + W I F = Flize
Summing up (4.8]) over all triangles in T, we get the desired result.

(i1) Let e € E,il be arbitrary and this edge is shared by two triangles T~ and T'". Let n. be the
unit vector normal to e and pointing from the triangle T~ to T'". We construct a bubble function
€ € Py(T~ uT7") such that it vanishes on the boundary of quadrilateral 7~ u T and takes unit
value at the midpoint of e. Define B = ££€1 on T~ U T where &1 € [Py(T~ U TT)]? such that
&1 = [[on(vn)]] on edge e. We can identify 3 by its zero extension outside 7= u T yielding
B e [HL(2)]2. A use of equivalence of norms on finite dimensional space yields

a3 < | ta € ds
(4.9) =fﬁ-£1 ds.

It then follows from integration by parts, Lemma 1.1, Cauchy Schwartz inequality and standard
inverse estimate that

JIonenn-gas= | o) :e@) s
| i@ s | ppdi | ofwe)

T—uT+

<§]Qu—wmmwmmn+mumﬂmpm)

TeTe
< Z (Ju— vh|H1(T)h%1 + £l L2 ) 1Bl L2

TeTe
(4.10) < Z (lw — vl ryhy' + HfHLQ(T))h;pHglHLQ(e)
TeTe
Since he ~ hr, therefore, combining (4.9) and -, we obtain
(4.11) hi/QH[[Gh(vh)]]HLz(e) < X (Jw = vl + bl fle)-

TeT.
Squaring (4.11]) and summing up over all the interior edges, we find

3 helllonwn)l32) < D) lu—valing + ) WEIFR )

ec&} TeTh TeT
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Finally, (i7) follows with a use of (i).

(iii) Let e € & and let T be the triangle such that e € 07. We construct a bubble function
¢ € P»(T) that vanishes on 0T \e and takes unit value at the midpoint of e. Define &; € [Py(T)]? by
assigning &1 = o (vp)n — g on edge e. Define B = €7 on T and extend 3 by 0 outside of T and
hence it belongs to V. Now, using equivalence of norms on finite dimensional space, we obtain

a3 < | ta €0 ds

(4.12) =f;3-§1 ds.
Using Lemma [I.T}, we find

L,@'ﬁl dS:J;O'h(vh)n-ﬁds—Fj

e

(4.13) = LUh(Uh)n'5d5+f

e

(g—g)-ﬁds—fg-ﬁds

(g—g)'ﬁds—a(U,ﬁ)JrLf-de.

Now, the use of integration by parts, Cauchy Schwartz and standard inverse estimates in (4.13)
yields

L,B-ﬁl ds = fTU(vh) 1 e(B) dm—JTa(u) 1 €(B) dx—i—J;(g—g) -3 ds+fo-ﬂ dx.
< |u = valgy () Blar ) + [ Fle2)Bl 2y + 19 — Gllr2)lBl L2

< (Ju - ’Uh|Hl(T)h%1 + [ fl2r) + he'?g - Gl r2()18ll2(r)

(4.14) < <|u — vnlmy byt + | F 2y + he 2lg - §L2(e)>hé/2||£1L2(e)-
Combining and , we get,
(4.15) h2 €1l 2oy < [u — vnlger) + hrl fll 2y + b g — Gllrz )

Squaring (4.15)) and summing up over all e € 5,1; , we obtain

2 hellon(n)n = gl7ay < 35 Ju—vnliney + Y, WEIFI7em) + D) helg =17
665;; TeTh TeTh 6655

hence, thereafter using triangle inequality (ii7) follows from (7).
(iv) Let e € Shc be arbitrary and let T" be the triangle such that e < 07. In order to estimate
lohr(VR) + ¢ A7 | L2(e), We will make use of triangle inequality as follows:

(4.16) lonr (V) + crAr|r2e) < [onr(vn) + EAz|L2e) + [Ar(cr — )l 12(e)-
Also,

(4.17) lonr(vn) + Azl L2 < lonr(vn) + G Azlr2ge) + e (Ar = Ar) | L2(e)-
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Define a bubble function £ € P»(T") which vanishes on ¢7'\e and takes unit value at the midpoint
of e. Let & € [Po(T)]? such that &1, = 0 and &1+ = o (vn) + & Ar on edge e. Define B = €&
on 1" whose extension by 0 outside of T" belongs to V. Using the equivalence of norms on finite

dimensional space, we have

Jeal3eqo < [ 61 ds

(4.18) = f onr(vn) - B ds + f &AMy - B ds.
as €1+ = €1. A use of integration by parts yields

JT on(vp) : €(B) de = JT —divoy(vy) - B dx + L on(vp)n - B ds

T

= f O hn(VR) B ds + J ohr(vn) - Br ds

€

= J o-hT(,vh) - Br ds

(4.19) = f onr(vn) - B ds.

as B, = 0. Now, it follows from (4.18)), (4.19)), Lemma 1.1, Cauchy Schwartz inequality and standard

inverse estimate that

2 _ v
113 < | on(on) i e8) dot [ X, -5 ds

€

- | onton):e(8) o |

T

ow) s e(8) do— |

e

CT)\.,--Bds—FJ f-ﬂdx+Jc‘T)\_T-Bds
T e

- me(vh) o (u): e(B) da + foﬂ dz + Lm ~Ar)-Bds+ LXT@ ) B ds

< ‘u . ’Uh|H1(T)‘B|H1(T) + HfHLQ(T)HﬂHLQ(T) + ||CT”L:>O(e)H)\_7— - )\THLQ(e)H/BHL?(e)
+ [ Azl oo ler = exll2(e) 18l L2 o)

1/QHCTHLw(e) ”XT - )‘THLQ(e)

< (|u onln st + | Fliam + b
I W N cT|L2<e>) 18l
< hi/2<|u — vnlgryhyt + I F ey + he 2 ler | o) | Ar = Arllr2(e)

+h e — cTHL2<e>> 1€z (e)-
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Squaring the last equation and summing over all e € 5}? , we obtain

(4.20) Z he|ohr(vn) + c})\_THQLQ(e) < C(llw — wnll; + Osc(£)? + Osc(er)? + Osc(Ar)?

C
ee&

Finally using (4.16[), (4.17) and (4.20)), we arrive at the desired estimate (iv).

(v) This term can not be estimated directly by using the standard techniques of bubble functions.

Since, in general due to the positive part of the function,
Ho'hn(vh) + Cn('Uhn - ga)Tn H%ﬂ(e) € J(Uhn(vh) + Cn(vhn - ga)Tn)QB ds
e
where 3 is an edge bubble function. We proceed to estimate it as follows: first using (1.8)), we find
|lohn(vR) + cn(vhn — ga)™ HLQ(e)
= thn(vh) - Un(u) - Cn(un - ga)Tn + Cn(vhn - ga)Tn HL2(e)
(4.21) < llonn(vn) = on(w)lr2ee) + len(van — 9a)§" — cn(tn — ga)¥" | 12(e)-

where e € 8,? . Again, we will consider two cases. For m,, = 1, using (1.11)) in the above equation

[@E21), we find

lonn (V) + cn(vin = 9a) T |2(e) < [onn(vR) = on(w)|L2e) + lenllLe(e)[vnn — unllL2(e)

< lonn(vn) — on(w)|r2(e) + llenle (o) lvn — wf1,n-

Otherwise for m, > 1, a use of Cauchy Holder’s inequality and identity |a™ — ™| < m |a —
bl (Ja|™ =t + |b|™"1) where a,b > 0, m > 1 yields
lohn(vh) + cn(Vhn = 9a)'¥" [ 12(e)

< mnflenll Lo @) | (Whn = wn) ([vhn = gal™ ™1 + [un = ga™ ) 22(e)

+ [onn(vh — w)|r2(e)

< mnuanLm(e) lvhn — UNHLP(e)H‘Uhn - ga|mni1 + |un — ga|mn71HL<1(e)

+ [onn(vh — w)|r2(e)

n—1 n—1

< C”Uhn - un“LP(e) <|vhn - ga| TQ(mn—l)(e) + Hun - ga”Tq(mn—l)(e)>

(4.22) + |ohn (VR — u>HL2(e)'

where, £ and £ are Holder conjugates satisfying % + % = % and g(m, — 1) = 1. Further, using

(1.11)) and Lemmal[l.2] we obtain
(4.23) |[tn — gal Znﬂ;ifl)(e) < Jun — gaHan(;E;i—m(pc) <C.

Also,

lvhn — gaHLQ(mnfl)(e) < |[onn — UnHLq(mnfU(rc)
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< [0hn — tnl a0 + tim — Galtme-s(r)
(4.24) < |vn —ullip +C.
where C is constant depending on | f| 12(qy, |9 2(r)and |gal ﬁ’?ii—n(m- Using (4.23)), (1.11]) and
(4.24) in (4.22) we obtain,
Jomn(0m) + n(0nn — 907 20y < o — wln(on —wl5 ™ +C) + lona(on — w2,
Thus, we have
(4.25) he' onn(vn) + cavnn = 9a) 7" [12(e) < he*Cllon — wlin + b [on — |7
+ h?|opn (Vh — )| £2(e)-
Squaring (4:25) and summing over all e € £ and finally using the identity . ce€C |he] = |Tcl, we

obtain

D helomn(vn) + cn(vnn = 9a) 1" 720) < Cllon — ullz + [vn — w75 + Y hellonn(vn — w)[72 ).
eeS,? eeg}?

This completes the proof of this lemma. ]
The following theorem ensures the efficiency of the error estimator »y,.

Theorem 4.3. Let uw € V' and up € Vi, be the solution of continuous problem (L.10|) and discrete
problem (3.1)), respectively. Then, the following results hold.

2
M < llun —ullz + ) helown(un — w720 + D) eller|Fo o) [ Anr = Arl2(
eGSE ee&'g

+ Osc(f)? + Osccr)? + Osc(Ar)?.

Proof. As 7],21 =n? +n3 +n? +n3+n?+n2. Now n1,m2,n;5 are bounded above by the terms on the
right hand side by using previous lemma with vy = up.
To bound 73, we have

Ui n n
> o llundiFe < 3 4ol = wnllfag + X 2ol

6682 ¢ 6652 6682
2
< [llw — wnlll-
Further to bound n4, we have

7 hellon(un) + crAnr|7,0 < D) hellon(un) + e ArlF, 0 + D) hellerAne = Ar) |72

6655 6655 eef,'g
< Z he|onr(un) + CT)‘TH%Q(e) + Z hEHCTH%W(e)H’\hT - ’\T”2L2(e)a
665}? 665,?

therein, a use of last lemma will yield the desired bound.
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In order to bound 7, let e € 5}(5 be arbitrary. Now, using ([1.8]) and triangle inequality, we have
lonn (un) + cn(unn = 9a)1" |12(e) < llonmn(un — w)lr2ee) + len(unn — ga)" — cn(tn = ga) ™ l22(e)-
A use of (4.4]) yields

(4'26) ||Uhn(uh) + Cn(uhn - ga)Tn ”LQ(e) < CHU — Un

[Lh + onn(un — )| 20,

where C' is a constant depending on load vectors. Therefore, squaring (4.26) and summing over all
e € ¢ and using the identity Zeeghc |he| = |T¢l, we find

(4.27) D hellonn(un) + calunn = 9a) T 720y < llu = unlly + > helonn(un — u)|7z(,
668}? GES}?
This completes the proof. O

5. MEDIUS ANALYSIS

In this section, a priori error bounds are derived with minimal regularity assumption on the exact
solution u of (L.10), say w € H19)(Q) for s € (0,1]. The name medius analysis indicates that
both a priori and a posteriori techniques are employed in this analysis [31].

Theorem 5.1. Let u and up be the solution of continuous problem(1.10) and discrete problem
(3.1), respectively. Then, for any vy € Vi, we have

o~ wnl < ing (llon —wllf + 3 B2 2ler] ool — wnliage
VhEVh 668,?
+ Z hello hn (vn — ’U;)H%z(e)> + Osc(f)* + Osc(cr)? + Osc(Ar)2.

C
ee&y

Proof. Let vp, be any arbitrary element in V3. Using triangle inequality and identity (a + b)? <
2(a® + b?), we get

2 2 2
(5.1) llw — wnll, < 2(llw — vall; + llvn — wnll;)-

Setting ¢ = vp, — up, and using coercivity of bilinear form By(-,-) w.r.t. [|-|[,, Lemma and
equation (3.1]), we find

allvn — unll; < Bu(vh — wn, vn — unp)

Bp(vhy @) + jn(un, @) + jr(vn) — jr(un) — (f, @)

< Bi(vn, & — Ep@) + Br(vh, End) — (f, ¢ — Eng) — (f, End) + jn(un, @)
+ jr(vn) — jr(un)

= By(vh, ¢ — Ep@) + Bi(vn, End) — (f, ¢ — Ep@) + jn(un, @) + j-(vn)

— jr(un) — a(u, Epd) — g(Ar, End) — jn(u, Ep@)

N
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= By(vh, ¢ — Eng) — (f, & — End) + g(Ar, & — Ep@) + ju(vh, @ — End)
+ Bp(vn, End) — a(u, Ex@) + jr(vn) — jr(un) — g(Ar; @) + jn(un, @)

— jn(6, En@®) — jin(vn, ¢ — Ene)

= R1 + Ry + R3s + Ry,

where,

Ry = By(vh, ¢ — End) — (f, ¢ — En@) + g(Ary & — Ened) + ju(vn, ¢ — End),
Ry = Bp(vh, En¢) — a(u, Ep9),

R3 = jr(vn) — jr(un) — 9(Ar, @),

Ry = ju(un, @) — jn(t, Enp) — jn(vn, ¢ — End).

Now, we will estimate Ry, Ro, R3 and R4 one by one. In order to estimate Ri, let £ = ¢ — Epo
and thereafter using integration by parts in the first term and gather the resulting terms, we find

Ry = ah(vhag) + bh(vhaé) - (.f7£> + g(>‘7'7 5) + jn(”h’ E)
= f o (vn) : €(&) dz + by(vn, €) — (£,€) + g(Ar €) + ju(vn, €)
TeTh

ZJ[[ahvh]] ey ds+ Y [ fonwn)} L€l ds+ Y Ja’hvhne ¢ ds

668' 8650 € eeSFu5c
+ bh(”h’ €) - (f 5) + g<)‘7'7 €) +jn('vh,,£)
-~y [ gdﬁgjahvh 9)-&ds+ Y, | [on(vnll - (€} ds
TeTh egF eeEl e
+ Z {on(vn)} : [1€]] ds + br(vn, € Z J Ohn(Vh) + cn(Vhn — ga)'}™) - & ds
6650 € Ec‘:c

—I-Zfahfvh + ¢ Ar) - &1 ds.

eegc

It can be observed that the following estimate holds for all the DG methods introduced in Section
3

1 1/2
52X [tontond: el as+ mion© < (3 [ ool ds) ol
eely) c ecE? e e

Using ([5.2)) and the similar arguments used in Theorem 4.1, we obtain
Ry < n(vn)|| ol
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where,

U
n(wn)® = D) Wl Fl7ery + D) hellon(wn)] e + D, }T”[[Uh]]H%Q(e)

TeTh eeE}iL 6652 ¢

+ Z he“O'hT(’Uh) + CTATH%Q(e) + Z he||a'h('vh)n - gH%Q(e)
665}? eeé'f

+ ) hel@nn(vn) + cn(vnn — ga) T 132 (0)-
eeg,?

A use of Young’s inequality and Lemma 4.2 yields

1
R; < B(|||'vh - u|||,2l + [|lvp — uH%’Z” + Osc(f)? + Osclcr)? + Osc(Ar)?

+ 3 hellonn(vn — w32 + Bl

eeSf
where 8 > 0 is arbitrary. Using the definition of a(-,-) and ap(-,-), (3.2), Lemma [2.4] and Young’s
inequality, the bound on Rs can be obtained as follows:
Ry = Bp(vh, Eng) — a(u, Ep¢)
= ap(Vhy En®) + bp(vn, Eng) — a(u, E,9)
1/2
= > Ju— bl g7y Ealpnry + (J he ' lon — u])? ds) |Endl i)
TeT, ‘92
< lw — vl [En@l o)

< lw = vnll, lloll,
1 2 2
< E\HU — onlly + Bl

where 51 > 0 is arbitrary. In order to estimate R3, we will use wr - Ay = |u,| and |A;| < 1 a.e. on
I'c and find

Ry = j‘r(vh) - jT(uh) - g()“ra ¢)

= f cr|vpr| ds —J crlups| ds —J CrAr - Vpr ds + j CrAr - Upr dS
Ie o] le T'e

< j cr|Unr| ds —f CrAr - Upr dS
T'c T'c

= J CT(|th\ — ]uT\) ds +f Cr g - (u.r — Vpy) ds

1G] Te

< ZJ crlur — vpr| ds
le
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<2 ) lerlimehtlw — val2e)-
e
A use of monotoncity argument [37], Cauchy Holder’s inequality, identity |(a)} — (b)7] < m|a —
bl(Ja|™ 4+ |b]™1) a, be R,m > 1, (1.11)) and Lemma 2.4 in Ry yields
Ry = jn(un, @) — jn(u, Ep@) — jn(vn, ¢ — Epe)
= Jjn(Uhy Vh — Un) — jn(U, En@) — jn(Vn, @ — End) + jn(Vh, Vo — un)
- Jn(v Up — Up)
Jn(Vhs Vh — uh) = jn(Vhs @ — En@) — jn(u, Epe)
—Jnh) ®) = jn(Vhs @ — En@) — jn(u, Eng)
= jn(Vn, En@) — jn(u, Ep@)

- L ((en(vnn = 9a)T" = cn(tn = ga)T") (En)n d

< [len(vnn — ga)" — cn(un — ga)TnHLQ(FC)H(Eh¢)n”L2(FC)
< chHLOO(I‘c)H (Vhn — 9a) 7™ — (un — ga)TnHLZ(FC)HEh(pHHl(Q)
< lenllze eyl (wan = 9a)¥" = (un = 9a) 7" |20 @l -

Following the similar arguments, used in proving (v) of Lemma 4.2, we obtain

m<c@% un+w%—wmﬂwm

Further, Young’s inequality yields

n 2
m<00w—wm-wv h>+MWM-

where o > 0 is arbitrary. Combining the bounds on R;, Ro, R3 and R4, and choosing 5, 81 and
B9 sufficiently small, we obtain

llon — unll; < C(H(U W)+ lon — ulls + D B ler| oo lw — val L2
6655
(5.3) + Z he| o pn(vn — u)H%g(e) + Osc(f)* + Osc(cr)* + Osc()\T)2>.
6655
Thus, using (5.3)) in (5.1]), we obtain
e — unll; < C(!(U w) [+ lon = wllz + Y kP erl ool — vl 2
6655

+ Z he| o phn(vn — u)H%g(e) + Osc(f)? + Osc(c,)? + Osc()\,-)2>

c
ee&y
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< Cinf (Jon — w25 + llon = wllf + 3 B e |poneylu — vnle
UhEVh

6655
+ Z he|ohn(vn — u) “%2(6)) + Osc(f)? + Osclcr)? + Osc(Ar)?.
6685
Since m,, = 1 which implies 2m,, > 2, therefore
inf Jon —ulfh" < Cinf |vn — ulf,
vhevy, VREV,

Hence,

2 . 2
HW—UNM<”ﬁ<Wm—Mh+§:@@thﬂu—%h%>
VhEVh eeSE

+ Z he| o phn (v — u)H%Q(e)> + Osc(f)? + Osccr)? + Osc(Ar)?.

C
ee&y

The following result is a consequence of the last theorem with the choice of vy as in Lemma [2.1

Theorem 5.2. Suppose u € H1+9)(Q) for some s € (0,1]. Then, there exists a constant C > 0,
depending in the shape regqularity of Ty, such that

e = unll, < Cr°.

Remark 5.3. If the regularity of the continuous solution w is [H?(£2)]?, then from Theorem the
error term [|u — up||, converges with linear rate which is optimal. If uw € [H'(Q2)]?, one can easily
show that ||u — vnl||;, — 0 as h — 0 using the density argument [24]. Hence, whenever i — 0, then
e = wnll, — 0.

Remark 5.4. The abstract error estimate in Theorem 5.1 also holds for m,, = 0.

6. NUMERICAL EXPERIMENTS

In this section, we carry out the numerical experiments to illustrate the performance of a poste-
riori estimator derived in the Section [4] as well as the convergence behaviour of error on uniform
meshes. In order to perform numerical experiments we have implemented the codes in Matlab 9.8.0
(R2020a). Uzawa algorithm [30] is used to solve the discrete problem, therein we set 1078 to be
the relative error tolerance in the maximum norm.

For illustrating the behaviour of error estimator, we use the following algorithm:

SOLVE — ESTIMATE — MARK — REFINE
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In the step SOLVE, the discrete problem is solved for ug. Then, the error estimator 7, is computed
on each element in the step ESTIMATE and Dorfler marking scheme [25] with parameter 6 = 0.3
is used in the step MARK. Finally in the last step REFINE, the marked elements undergo
refinement using the newest vertex bisection algorithm and the above algorithm is repeated.

Now, we present numerical results for two test examples solved by SIPG and NIPG method. As the
exact solution u is unknown in both examples, error on uniform mesh is computed by calculating the
difference between the discrete solutions up obtained on the consecutive mesh. In these examples
the Lamé parameters p and A are computed by

B E - Ev
=50+ ™ T 0rva—2)

where, F and v denote the Young’s modulus and the Poisson ratio, respectively. For both the
examples the penalty parameter n is chosen to be 30u.

Example 6.1. In this ezample, we consider the domain  as (0,1) x (0.05,1.05) and the following
data (the unit daN/mm? stands for “decaNewtons per square millimeter”):

T'p = {1} x (0.05,1.05),

I'r = ({0} x (0.05,1.05)) U ((0,1) x {1.05}),

I'c = (0,1) x {0.05},
E = 2000daN /mm?, v =04 ,f=(0,0)daN/mm?, g = (200(5—y), —190)daN /mm?,
cr =450, ¢, =1, my, =1, g, = 0.05 mm.

The convergence behavior of error for SIPG and NIPG methods on the uniform mesh is shown
in Table 6.1. Figure 6.1 describes the behavior of the residual estimators for SIPG and NIPG
methods, respectively on adaptive meshes. We observe that the estimator converges optimally on
the adaptive mesh. Figure 6.2 show the adaptive mesh refinement at a certain level for SIPG and
NIPG method. We observe the mesh is refined more near the intersection of the boundaries and
near the contact edge, as it is evident that the body undergoes deformation under the action of
traction. Hence, the singular behavior of the discrete solution is well captured by the estimator.

Example 6.2. Therein, we consider the domain £ as (0,1) x (0,1) together with the following
data:

Ip=(0,1) x {1},
I'p = ({0} x (0,1)) u ({1} x (0,1)),
Lo = (0,1) x {0},
E = 2500daN /mm?, v =02 ,f = (0,0)daN/mm?,
g = (880,0)daN/mm?, ¢; = 250, ¢, = 1, go = 0.00mm, m,, = 1.
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h error order of conv. h error order of conv.
2-114.7518 x 1071 - 2-114.8844 x 1071 -

272 12.9620 x 10! 0.6818 27213.0242 x 107! 0.6916
273 | 1.7708 x 107! 0.7421 2731 1.807 x 107! 0.7427
274 11.0731 x 107! 0.7502 274 11.0732 x 1071 0.7519
275 | 6.7152 x 1072 0.7913 275 16.7186 x 102 0.7934

TABLE 6.1. Errors and orders of convergence for SIPG and NIPG methods on
uniform mesh for Example 1

—+— Estimator —*— Estimator

10%; —=— Optimal Rate 10° —o— Optimal Rate
510%¢ 2
% 10’ 5 10’

b=}

£ ©
@ £
- &

10"} 10

10°; 10°

102 10*

102 10*
Degrees of Freedom Degrees of Freedom

FIGURE 6.1. Estimator for SIPG and NIPG method for Example 1

0.9 0.9
08 s 08
07 07

06 - 06

0.5 X 0.5

0.4 0.4

03 K 03
0.2 % 0.2

0.1 - : 0.1

FI1GURE 6.2. Adaptive mesh for SIPG and NIPG methods for Example 1 at level
28

Table 6.2 depicts the errors and orders of convergence behavior of SIPG and NIPG methods on
uniform mesh for Example 2. Figure 6.3 describes the behaviour of the residual estimators for
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h error order of conv. h error order of conv.
2-116.7573 x 1071 - 27116.7731 x 1071 -

272 14.1330 x 107! 0.7091 2721 4.1610 x 107! 0.7028
273124171 x 107! 0.7735 27312.4403 x 107! 0.7698
2741 1.4053 x 107! 0.7824 27411.4197 x 107! 0.7814
275 | 8.235 x 1072 0.7901 2751 8.241 x 1072 0.7896

TABLE 6.2. Errors and orders of convergence for SIPG and NIPG methods on
uniform mesh for Example 2

SIPG and NIPG methods, with the increasing degree of freedom on adaptive meshes. Clearly, the
estimator converges optimally on the adaptive mesh. Figure 6.4 show the adaptive mesh refinement
at level 23 for the SIPG and NIPG method. We observe that the mesh refinement is high near the
contact edge due to the effect of traction and near the corners due to the intersection of boundaries.

—+— Estimator t —+— Estimator
10° —o— Optimal Rate 10° 3 —=— Optimal Rate
=
210? 10?
g ]
£ ]
3 E
=]
[}
1 w4
10 10 ¢
10° ‘ ] 10°} ‘ ‘
2 104 102 4
Degrees of Freedom Degrees of Freedom

Ficure 6.3. Estimator for SIPG and NIPG method for Example 2

7. CONCLUSIONS

In this paper, we have derived residual based a posteriori error estimators for a class of DG methods
for frictional contact problem with reduced normal compliance. The reliability and the efficiency
of a posteriori error estimator has been discussed. An abstract a priori error estimate has been
derived assuming minimal regularity on the exact solution w. Numerical results are presented to
demonstrate the convergence behaviour over uniform as well as adaptive mesh. The results of this
article are also valid for conforming finite element methods. The case with m; > 0 will be addressed

in future.
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