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Abstract. In this article, a reliable and efficient a posteriori error estimator of residual type is

derived for a class of discontinuous Galerkin methods for the frictional contact problem with reduced

normal compliance which is modeled as a quasi-variational inequality. We further derive a priori

error estimates in the energy norm under the minimal regularity assumption on the exact solution.

The convergence behavior of error over uniform mesh and the performance of error estimator are

illustrated by the numerical results.

1. Introduction

This article is devoted to the numerical analysis of the frictional contact problem with normal com-

pliance. Frictional contact problems are of great interest since the processes involving frictional

contact between two bodies occur in many engineering and industrial applications. In these prob-

lems, an elastic body, under the influence of body forces and surface tractions, comes into contact

of a rigid surface on a part of its boundary (called contact boundary). The lubricated contact

boundary results in a frictionless contact problem while we get frictional contact problems when

the contact boundary is not lubricated. We refer to the book by Kikuchi & Oden [43] for modeling

and detailed understanding of frictionless and frictional contact problems. In order to study these

problems within the framework of variational inequalities the first attempt was made in [26]. In

most cases, the contact problems arising in real life have interface with non-zero compliance because

of the presence of asperities and absorbed impurities etc in real surfaces. The frictional contact

problem with normal compliance can be modeled as a quasi-variational inequality. The convergence

analysis of conforming finite element approximation based on quadrilateral elements for frictional

contact problem with normal compliance is studied in [47]. A Cea’s type error inequality of con-

forming finite element method for frictional contact problem with reduced normal compliance is

obtained in [37], therein a posteriori error analysis is also discussed using regularization method.

We refer to [28] for residual type a posteriori error estimates of linear continuous finite element

method for the same problem. Some more notable works on the numerical analysis of static/time

dependent frictional contact problem with normal complaince can be found in [45, 46, 2, 38, 62].

Key words and phrases. frictional contact problem; normal compliance; discontinuous Galerkin methods; a posteriori
error analysis; variational inequalities; medius analysis.
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Discontinuous Galerkin (DG) methods, which were first proposed in [52], are mainly attractive due

to the flexibility of using local hp adaption. The articles [3, 4, 50, 40, 53] are excellent references for

the comprehensive study of these methods. DG methods are also widely used to solve variational

inequalities. We refer to [57, 58, 20, 29] and [32, 33, 6, 61, 7, 34] respectively, for a priori and a

posteriori analysis of DG methods for variatonal inequalities of the first kind. The articles [35, 51]

discuss the convergence analysis of DG methods over uniform mesh and adaptive mesh based

on a posteriori error estimator for variational inequalities of the second kind. Further, we refer

to [39, 10, 9, 11, 36, 59, 21] and references therein for other works on the numerical analysis of

variational inequalities of the second kind. In [62], DG methods for frictional contact problem with

normal compliance has been proposed. In this article, we first derive a residual type a posteriori

error estimator of DG methods for the frictional contact problem with reduced normal compliance

which is shown to be both reliable and efficient. Followed by that, we establish an abstract a priori

error estimate by assuming minimal regularity of the exact solution. The analysis is carried out in

a general framework which holds for a class of DG methods. Numerical results are presented to

illustrate the theoretical findings.

We consider the deformation of an elastic body unilaterally supported by a rigid foundation and

occupying domain Ω Ă R2 which is a bounded polygonal domain with Lipschitz boundary BΩ “ Γ.

The boundary Γ is partitioned into three relatively open mutually disjoint parts ΓD, ΓF and ΓC with

measpΓDq ą 0. Let S denotes the space of second order symmetric tensors on R2 with the scalar

product defined as w : φ “ wijφij for w, φ P S and the corresponding norm |φ| :“ pφ : φq1{2.

The linearized strain tensor ε and stress tensor σ belong to the class of second order symmetric

tensors and are defined respectively, as

εpuq “
1

2
p∇u`∇uT q,(1.1)

σpuq “ Cεpuq,(1.2)

where, the vector-valued function u : Ω Ă R2 Ñ R2 denotes the displacement vector and the

operator C : ΩˆS Ñ S is the fourth-order elasticity tensor of the material. In the following study,

we assume elastic body to be homogeneous and isotropic, therefore

Cεpuq :“ λtrpεpuqqI ` 2µεpuq.(1.3)

where, λ ą 0 and µ ą 0 are Lamé’s coefficients and I denotes 2ˆ 2 identity matrix.

For any displacement field v, we adopt the notation vn “ v ¨n and vτ “ v´vnn respectively, as its

normal and tangential component on the boundary where n is the outward unit normal vector to Γ.

Similarly, for a tensor-valued function σ : Ω Ñ S the normal and tangential component are defined

as σn “ σn ¨ n and στ “ σn ´ σnn respectively. Further, we have the following decomposition

formula

pσnq ¨ v “ σnvn ` στ ¨ vτ .
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In order to state the weak formulation for the frictional contact problem, we introduce the space

V of admissible displacements by

V “ tv P rH1pΩqs
2

: v “ 0 on ΓDu.

Given f P rL2pΩqs2, g P rL2pΓF qs
2, ga P H

1{2pΓCq with ga ą 0, variational formulation of the

frictional contact problem with normal compliance is to find u P V s.t.

apu, v ´ uq ` jnpu, v ´ uq ` jτ pu,vq ´ jτ pu,uq ě pf, v ´ uq @ v P V ,(1.4)

where, the bilinear form ap¨, ¨q, the functional jnp¨, ¨q, jτ p¨, ¨q and the linear functional pf, ¨q are

defined by

apw, vq “

ż

Ω
σpwq : εpvq dx,

jnpw, vq “

ż

ΓC

cnpwn ´ gaq
mn
` vn ds,

jτ pw, vq “

ż

ΓC

cτ pwn ´ gaq
mt
` |vτ | ds,

pf, vq “

ż

Ω
f ¨ v dx`

ż

ΓF

g ¨ v ds @ w,v P V ,

with cn, cτ P L
8pΓCq, 1 ď mn ă 8 and 0 ď mt ă 8 . The classical(strong) form associated to

the quasi variational inequality (1.4) is to find the displacement vector u : Ω Ñ R2 satisfying the

equations (1.5)-(1.9),

´div σpuq “ f in Ω,(1.5)

u “ 0 on ΓD,(1.6)

σpuqn “ g on ΓF ,(1.7)

σnpuq “ ´cnpun ´ gaq
mn
` on ΓC ,(1.8)

|στ | ă cτ pun ´ gaq
mt
` ùñ uτ “ 0

|στ | “ cτ pun ´ gaq
mt
` ùñ uτ “ ´λστ for some λ ě 0

+

on ΓC .(1.9)

The equation p1.5q is the equilibrium equation, in which volume forces of density f acts in Ω.

The equation p1.6q justifies that displacement field vanishes on ΓD, which means that the body

is clamped on ΓD. Surface traction of density g acts on ΓF in p1.7q. The normal compliance

condition is given by p1.8q where ga is the initial gap between the body and foundation, un is the

normal displacement and pun´gaq` represents the penetration of the body in the foundation. Here,

cn P L
8pΓCq is a non negative function with the property cnpxq “ 0 for x ď 0. The relation p1.9q

form a version of the Coulomb’s Law of dry friction where cτ P L
8pΓCq is a non negative friction

bound with the property cτ pxq “ 0 for x ď 0.
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In this article, we will analyze the frictional contact problem with reduced normal compliance law

[37] i.e. mt “ 0. Therefore, (1.9) steps down to

|στ | ă cτ ùñ uτ “ 0

|στ | “ cτ ùñ uτ “ ´λστ for some λ ě 0

+

on ΓC .

In this case the functional jτ pu,vq reduces to jτ pvq which is defined by

jτ pvq “

ż

ΓC

cτ |vτ | ds.

The variational formulation (1.4) reduces to the following problem: to find the displacement vector

u P V s.t.

apu, v ´ uq ` jnpu, v ´ uq ` jτ pvq ´ jτ puq ě pf, v ´ uq @ v P V .(1.10)

The existence and uniqueness of the solution u of the problem (1.10) follows from [37].

We define,

Λ “ tµ P rL8pΓCqs
2 : |µ| ď 1 a.e. on ΓCu.

Now, we will characterize the continuous solution u of (1.10) through the use of Lagrange multiplier

[39, 51].

Lemma 1.1. There exists λτ P Λ such that

apu, vq ` jnpu, vq ` gpλτ , vq “ pf ,vq @ v P V ,

λτ ¨ uτ “ |uτ | a.e on ΓC ,

where

gpλτ , vq “

ż

ΓC

cτλτ ¨ vτ ds.

In the subsequent analysis, we also require the following bound on the exact solution u of (1.10)

by load vectors [37].

Lemma 1.2. Let u P V be the solution of continuous problem (1.10). Then

}u}H1pΩq ď Cp}f}L2pΩq ` }g}L2pΓF q
q

where C is a constant independent of h.

In view of the following imbedding result [24],

H1pΩq ãÑ LqpΓCq @ q P r1,8q,(1.11)

it can be be observed that σnpuq P L
2pΓCq.
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The rest of the article is arranged as follows: In next section, we introduce notations and present

some useful preliminary results which will be used in subsequent analysis. DG formulation is

presented for the continuous problem (1.10) in Section 3. Followed by that in Section 4, a posteriori

error analysis of DG methods for the frictional contact problem with reduced normal compliance

(1.10) has been established. A priori error analysis with minimal regularity on exact solution u

of (1.10) is carried out in Section 5. In Section 6, numerical results are presented to illustrate the

theoretical findings. Finally, we present the conclusions of this article in Section 7.

2. Preliminaries

2.1. Notations. The following notations will be used in the further analysis.

Th :“ a family of regular triangulation of Ω,

Eh :“ set of all edges of Th,

E ih :“ set of all interior edges of Th,

Ebh :“ set of all boundary edges of Th,

EDh :“ te P Ebh : e Ă ΓDu,

EFh :“ te P Ebh : e Ă ΓF u,

ECh :“ te P Ebh : e Ă ΓCu,

Eoh :“ E ih Y EDh ,
Tp :“ set of all elements of Th sharing the vertex p,

Te :“ set of all elements of Th sharing the edge e,

V ih :“ set of all interior vertices of Th,
VT :“ set of all vertices of element T ,

VBΩ :“ set of all boundary vertices of Th,

VFh :“ set of all vertices of Th lying on ΓF ,

VCh :“ set of all vertices of Th lying on ΓC ,

VDh :“ set of all vertices of Th lying on ΓD,

T :“ an element of Th,
hT :“ diameter of T ,

h :“ maxthT : T P Thu,
he :“ length of an edge e,

PkpT q :“ space of polynomials of degree ď k defined on T, 0 ď k P Z.
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The notations, ∇hpvq and divhpvq, respectively denote elementwise gradient and divergence i.e.

for T P Th, ∇hpvq|T “ ∇v, divhpvq|T “ divpvq. Further, for v P Vh, εhpvq and σhpvq are such

that εhpvq|T “ εpvq, T P Th and σhpvq “ 2µεhpvq ` λtrpεhpvqqI.

In order to deal with nonsmooth functions, we define the broken Sobolev space rH1pΩ, Thqs2 as

rH1pΩ, Thqs2 :“ tv P rL2pΩqs2 : v|T P rH
1pT qs2 @ T P Thu

and the corresponding norm on this space is defined as } ¨ }21,h “
ř

TPTh } ¨ }
2
H1pT q.

Let e P E ih be an interior edge and let T` and T´ be the neighbouring elements s.t. e P BT`YBT´

and let n˘ is the unit outward normal vector on e pointing from T` to T´ s.t. n´ “ ´n`. For a

vector valued function v P rH1pΩ, Thqs2 and a matrix valued function φ P rH1pΩ, Thqs2ˆ2, averages

tt¨uu and jumps rr¨ss across the edge e are defined as follows:

ttvuu “
1

2
pv` ` v´q and rrvss “

1

2
pv` b n` ` n` b v` ` v´ b n´ ` n´ b v´q,

ttφuu “
1

2
pφ` ` φ´q and rrφss “ φ`n` ` φ´n´,

where v˘ “ v|T˘ , φ
˘ “ φ|T˘ .

For any e P Ebh, it is clear that there is a triangle T P Th such that e P BT X BΩ. Let ne be the unit

normal of e that points outside T . Then, the averages tt¨uu and jumps rr¨ss of vector valued function

v P rH1pΩ, Thqs2 and a matrix valued function φ P rH1pΩ, Thqs2ˆ2 are defined as follows:

ttvuu “ v, and rrvss “
1

2
pv b ne ` ne b vq,

ttφuu “ φ, and rrφss “ φne.

In the above definitions v b n is a 2ˆ 2 matrix with vinj as its pi, jqth entry.

The discontinuous finite element space Vh is defined as

Vh “ tv P rL
2pΩqs2 : v|T P rP1pT qs

2 @ T P Thu.

In the subsequent analysis, we will also require the conforming finite element subspace defined by

Vc “ Vh X V , which we choose as standard Lagrange linear finite element space.

Throughout the article, C denotes a generic positive constant that is independent of mesh parameter

h. The notation X „ Y says that there exists positive constants C1, C2 such that C1Y ď X ď C2Y.

The following Clement type approximation result [16] will be useful in establishing convergence

analysis.

Lemma 2.1. Let v P V . Then there exist vh P Vc such that on any T P Th,

}v ´ vh}HspT q ď Ch1´s
T }v}H1pTT q, s “ 0, 1,

where TT “ tT 1 P Th : T 1 X T ‰ φu and C is a positive constant independent of h .
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The following inverse and trace inequalities [16, 50] will also be frequently used in the subsequent

analysis.

Lemma 2.2. (Discrete trace inequality) Let v P rH1pT qs2 for T P Th and e be an edge of T . Then,

it holds that

‖v‖L2peq ď C
`

h´1
e ‖v‖2

L2pT q ` he‖∇v‖
2
L2pT q

˘
1
2 ,(2.1)

where C is a constant independent of h.

Lemma 2.3. (Inverse inequalities) Let T P Th and e be an edge of T. Then, it holds that for any

v P Vh

‖v‖L8peq ď Ch
´ 1

2
e ‖v‖L2peq,(2.2)

‖v‖L2peq ď Ch
´ 1

2
e ‖v‖L2pT q @ T P Th,(2.3)

‖∇v‖L2pT q ď Ch´1
T ‖v‖L2pT q @ T P Th,(2.4)

where C is a constant independent of h.

2.2. Enriching Operator. An enriching map Eh : Vh Ñ Vc plays a crucial role in deriving a

posteriori error estimates for the class of discontinuous Galerkin methods as it maps non-conforming

function to conforming function [12, 13, 14, 15].

As we know, that any function in Vc is uniquely determined by the nodal values at the vertices Vh
of Th, therefore, for vh P Vh, we define Ehvh P Vc by averaging as follows:

Ehvhppq “

$

&

%

1

|Tp|
ř

TPTp vh|T ppq for p P VFh Y V ih Y VCh ,

0 for p P VDh .
where |Tp| denotes the cardinality of Tp.

In the following lemma, we state the approximation properties of smoothing map Eh [34, 51].

Lemma 2.4. It holds that

ÿ

TPTh

´

h´2
T }Ehv ´ v}

2
L2pT q ` }∇pEhv ´ vq}

2
L2pT q

¯

ď C

˜

ÿ

ePEh

1

he
}rrvss}20,e

˙

@v P Vh.

3. Discrete Problem

3.1. DG Formulations. In the following subsection, we present DG formulations for solving the

quasi-variational inequality (1.10). In [62] several DG methods have been considered for the fric-

tional problem with normal compliance for which the bilinear form Bhp¨, ¨q are listed below. Let r0

and re denote the global and local lifting operators, respectively [4, 58]. Further, in defining the
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bilinear forms, we use the shorter notations pw,vqΩ, xw,vyEo
h

and g instead of
ş

Ωwv dx,
ş

Eo
h
wv ds

and
ş

Ω σhpuhq : εhpvhq dx respectively.

1. SIPG method [62, 58, 3]:

B
p1q
h puh,vhq “ g ´ xrruhss, ttσhpvhquuy ´ xrrvhss, ttσhpuhquuy `

ż

Eo
h

ηh´1
e rruhss : rrvhss ds,

for uh,vh P Vh and η ě ηo ą 0.

2. NIPG method [58, 62]:

B
p2q
h puh,vhq “ g ` xrruhss, ttσhpvhquuy ´ xrrvhss, ttσhpuhquuy `

ż

Eo
h

ηh´1
e rruhss : rrvhss ds,

for uh,vh P Vh and η ą 0.

3. Bassi et al. [58, 62]:

B
p3q
h puh,vhq “ g ´ xrruhss, ttσhpvhquuy ´ xrrvhss, ttσhpuhquuy `

ÿ

ePEo
h

ż

Ω
ηCreprruhssq : reprrvhssq dx,

for uh,vh P Vh and η ą 3.

4. Brezzi et al. [4, 58, 19]:

B
p4q
h puh,vhq “ g ´ xrruhss, ttσhpvhquuy ´ xrrvhss, ttσhpuhquuy ` pCr0prruhssq, r0prrvhssqq

`
ÿ

ePEo
h

ż

Ω
ηCreprruhssq : reprrvhssq dx,

for uh,vh P Vh and η ą 0.

5. LDG Method [22, 23]:

B
p5q
h puh,vhq “ g ´ xrruhss, ttσhpvhquuy ´ xrrvhss, ttσhpuhquuy ` pCr0prruhssq, r0prrvhssqq

`

ż

Eo
h

ηh´1
e rruhss : rrvhss ds,

for uh,vh P Vh and η ą 0.

Let Bhp¨, ¨q represents one of the five bilinear form B
piq
h p¨, ¨q, 1 ď i ď 5. Then, the corresponding

discrete formulation of the model problem (1.10) is to find uh P Vh such that

Bhpuh, vh ´ uhq ` jnpuh, vh ´ uhq ` jτ pvhq ´ jτ puhq ě pf, vh ´ uhq @ vh P Vh.(3.1)
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where we rewrite the bilinear form Bhp¨, ¨q as

Bhpuh, vhq “ ahpuh, vhq ` bhpuh, vhq,

where

ahpuh, vhq “

ż

Ω
σhpuhq : εhpvhq dx

and bilinear form bhp¨, ¨q consists of all the remaining terms that accounts for consistency and

stability. A key observation is that the bilinear form bhp¨, ¨q for all the DG methods (1) - (5)

satisfies the following estimate:

|bhpw,vq| ď C

ˆ

ÿ

ePEo
h

ż

e

1

he
rrwss2 ds

˙1{2

|v|H1pΩq @w P Vh, v P Vc.(3.2)

Define norm |||¨|||h on the space Vh as

|||v|||2h “| v |
2
h ` | v |

2
˚,

where

| v |2h“
ÿ

TPTh

| v |2T , | v |2˚“
ÿ

ePE0
h

h´1
e }rrvss}

2
0,e

with

| v |2T“

ż

T
Cεpvq : εpvq dx, }rrvss}20,e “

ż

e
rrvss : rrvss ds.

Note, the norm |||¨|||h is equivalent to usual DG norm }v}21,h` | v |2˚ by Korn’s inequality and

Poincaré Fredrichs inequality for piece wise H1 spaces [14, 15].

The existence and uniqueness of the discrete problem (3.1) is discussed in [62]. Analogous to the

continuous problem, following is the characterization of the discrete problem (3.1).

Lemma 3.1. There exists a unique Lagrange multiplier λhτ P Λ such that the solution uh of the

discrete problem (3.1) can be characterized by

Bhpuh, vhq ` jnpuh, vhq ` gpλhτ , vhq “pf, vhq @vh P Vh,(3.3)

λhτ ¨ uhτ “|uhτ | a.e on ΓC .(3.4)

Since jnpuh, vhq is linear in the second component, henceforth the proof of the last lemma follows

using the similar arguments as in Lemma 3.1 of [51].

As in the case of continuous solution u of (1.10), the discrete solution uh of (3.1) is also uniformly

bounded by load vectors.
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Lemma 3.2. Let uh P Vh be the solution of the discrete problem. Then

}uh}1,h ď Cp}f}L2pΩq ` }g}L2pΓF q
q

where C is a constant independent of h.

This lemma can be proved on the same lines as in Theorem 2.3 of [37].

4. A posteriori error analysis

In this section, we derive a residual-type estimator for the error |||u ´ uh|||h and study a posteriori

error analysis. The error estimators are defined by

η2
1 “

ÿ

TPTh

h2
T }f}

2
L2pT q,

η2
2 “

ÿ

ePEi
h

he}rrσhpuhqss }
2
L2peq,

η2
3 “

ÿ

ePE0
h

η

he
}rruhss}

2
L2peq,

η2
4 “

ÿ

ePEC
h

he}σhτ puhq ` cτλhτ }
2
L2peq,

η2
5 “

ÿ

ePEF
h

he}σhpuhqn´ g}
2
L2peq,

η2
6 “

ÿ

ePEC
h

he}σhnpuhq ` cnpuhn ´ gaq
mn
` }2L2peq.

The total residual estimator ηh is defined by

η2
h “ η2

1 ` η
2
2 ` η

2
3 ` η

2
4 ` η

2
5 ` η

2
6.

We will use the following integration by parts formula in the subsequent analysis:
ż

Ω
σhpwq : εhpvq dx “ ´

ż

Ω
divh σhpwq ¨ v dx`

ÿ

ePEi
h

ż

e
rrσhpwqss ¨ ttvuu ds`

ÿ

ePEh

ż

e
ttσhpwquu : rrvss ds

for all v, w P rH1pΩ, Thqs2.

Next, we establish the reliability of the error estimator ηh.

4.1. Reliability Estimates. In the following subsection, we derive the upper bound for the dis-

cretization error by error estimator ηh.
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Theorem 4.1. Let u and uh be the solution of (1.10) and (3.1), respectively. Then, there exist a

positive constant C independent of h s.t.

|||u ´ uh|||
2
h `

ÿ

ePEC
h

he}σnpuh ´ uq}
2
L2peq ď C

ˆ

η2
h `

ÿ

ePEC
h

he}cτ }
2
L2peq

˙

.

Proof. We have,

|||u ´ uh|||
2
h ď

ÿ

TPTh

|u ´ uh|
2
1,T ` η

2
3.

Using Lemma 2.4, we note that
ÿ

TPTh

|u ´ uh|
2
1,T ď

ÿ

TPTh

|u´ Ehuh|
2
1,T `

ÿ

TPTh

|Ehuh ´ uh|
2
1,T

ď
ÿ

TPTh

|u´ Ehuh|
2
1,T ` η

2
3.

Set φ “ u ´ Ehuh P V . Lemma 2.1 guarantees the approximation of φ as φh P Vc. Using the

V -ellipticity of the bilinear form ap¨, ¨q, characterization in terms of multipliers for the continuous

and discrete solutions stated in Lemma 1.1 and Lemma 3.1, we obtain
ÿ

TPTh

|u´ Ehuh|
2
1,T ď apu´ Ehuh,φq

“ pf, φq ´ jnpu, φq ´ gpλτ , φq ´ apEhuh,φq

“ pf, φ ´ φhq ` pf, φhq ´ jnpu, φq ´ gpλτ , φq ` ahpuh ´ Ehuh,φq

´ ahpuh, φ ´ φhq ´ ahpuh, φhq

“ pf, φ ´ φhq ´ jnpu, φq ´ gpλτ , φq ` ahpuh ´ Ehuh,φq

` bhpuh,φhq ` jnpuh, φhq ` gpλhτ , φhq ´ ahpuh, φ ´ φhq

“ pf, φ ´ φhq ´ gpλhτ , φ ´ φhq ´ jnpuh, φ ´ φhq ` bhpuh,φhq

´ ahpuh, φ ´ φhq ` jnpuh, φq ´ jnpu, φq ` gpλhτ , φq ´ gpλτ , φq

` ahpuh ´ Ehuh,φq

“ T1 ` T2 ` T3 ` T4,

where

T1 “ pf, φ ´ φhq ´ gpλhτ , φ ´ φhq ´ ahpuh, φ ´ φhq ` bhpuh, φhq ´ jnpuh, φ ´ φhq,

T2 “ ahpuh ´ Ehuh,φq,

T3 “ gpλhτ , φq ´ gpλτ , φq,

T4 “ jnpuh, φq ´ jnpu, φq.

We now estimate Ti, 1 ď i ď 4 individually. Using integration by parts in the third term of T1 and

gathering all the terms, we find
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T1 “
ÿ

TPTh

ż

T
f ¨ pφ ´ φhq dx`

ÿ

ePEF
h

ż

e
pg ´ σhpuhqneq ¨ pφ ´ φhq ds

´
ÿ

ePEC
h

ż

e
pσhnpuhq ` cnpuhn ´ gaq

mn
` q ¨ pφ´ φhqn ds´

ÿ

ePEi
h

ż

e
rrσhpuhqss ¨ ttφ ´ φhuu ds

` bhpuh,φhq ´
ÿ

ePEC
h

ż

e
pσhτ puhq ` cτλhτ q ¨ pφ ´ φhqτ ds.

Now, we evaluate the terms on right hand side in the last equation one by one. The first term is

bounded by using Cauchy-Schwartz inequality and Lemma 2.1 as follows:

ÿ

TPTh

ż

T
f ¨ pφ ´ φhq dx ď

ˆ

ÿ

TPTh

h2
T }f}

2
L2pT q

˙1{2ˆ
ÿ

TPTh

h´2
T }φ ´ φh}

2
L2pT q

˙1{2

ď

ˆ

ÿ

TPTh

h2
T }f}

2
L2pT q

˙1{2

|φ|H1pΩq.

The bound on second and third terms follows from Cauchy-Schwartz, discrete trace inequality and

Lemma 2.1 as:

ÿ

ePEF
h

ż

e
pg ´ σhpuhqneq ¨ pφ ´ φhq ds ď

ˆ

ÿ

ePEF
h

he}g ´ σhpuhqne}
2
L2peq

˙1{2ˆ
ÿ

ePEF
h

h´1
e }φ ´ φh}

2
L2peq

˙1{2

ď

ˆ

ÿ

ePEF
h

he}g ´ σhpuhqne}
2
L2peq

˙1{2

|φ|H1pΩq.

and

´
ÿ

ePEi
h

ż

e
rrσhpuhqss ¨ ttφ ´ φhuu ds ď

ˆ

ÿ

ePEi
h

he}rrσhpuhqss}
2
L2peq

˙1{2ˆ
ÿ

ePEi
h

h´1
e }φ ´ φh}

2
L2peq

˙1{2

ď

ˆ

ÿ

ePEi
h

he}rrσhpuhqss}
2
L2peq

˙1{2

|φ|H1pΩq.

As φh P Vc the bound on bhpuh,φhq directly follows from (3.2). Again a use of Cauchy-Schwartz,

discrete-trace inequality and Lemma 2.1 yields

´
ÿ

ePEC
h

ż

e
pσhnpuhq ` cnpuhn ´ gaq

mn
` q ¨ pφ´ φhqn ds

ď

ˆ

ÿ

ePEC
h

he}σhnpuhq ` cnpuhn ´ gaq
mn
` }2L2peq

˙1{2ˆ
ÿ

ePEC
h

h´1
e }φ ´ φh}

2
L2peq

˙1{2
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ď

ˆ

ÿ

ePEC
h

he}σhnpuhq ` cnpuhn ´ gaq
mn
` }2L2peq

˙1{2

|φ|H1pΩq.

and

´
ÿ

ePEC
h

ż

e
pσhτ puhq ` cτλhτ q ¨ pφ ´ φhqτ ds

ď

ˆ

ÿ

ePEC
h

he}σhτ puhq ` cτλhτ }
2
L2peq

˙1{2ˆ
ÿ

ePEC
h

h´1
e }pφ ´ φhqτ }

2
L2peq

˙1{2

ď

ˆ

ÿ

ePEC
h

he}σhτ puhq ` cτλhτ }
2
L2peq

˙1{2

|φ|H1pΩq.

Combining, we have

T1 ď ηh|φ|H1pΩq.(4.1)

Using the boundedness of the bilinear form Bhp¨, ¨q w.r.t. |||¨|||h and Lemma 2.4, we have

T2 “ ahpuh ´ Ehuh,φq ď |||uh ´ Ehuh|||h|||φ|||h ď η3|φ|H1pΩq.

Further, using the relation |λτ | ď 1, |λhτ | ď 1, λτ ¨ uτ “ |uτ | and λhτ ¨ uhτ “ |uhτ | a.e. on ΓC ,

the term T3 can be estimated as:

T3 “ gpλhτ , φq ´ gpλτ , φq

“

ż

ΓC

cτλhτ ¨ uτ ds´

ż

ΓC

cτλhτ ¨ pEhuhqτ ds´

ż

ΓC

cτλτ ¨ uτ ds`

ż

ΓC

cτλτ ¨ pEhuhqτ ds

ď

ż

ΓC

cτ |pEhuhqτ | ds´

ż

ΓC

cτλhτ ¨ pEhuhqτ ds

“

ż

ΓC

cτ |pEhuhqτ | ds´

ż

ΓC

cτ |uhτ | ds`

ż

ΓC

cτλhτ ¨ uhτ ds´

ż

ΓC

cτλhτ ¨ pEhuhqτ ds

ď

ż

ΓC

cτ |pEhuhqτ ´ uhτ | ds`

ż

ΓC

cτλhτ ¨ puhτ ´ pEhuhqτ q ds

ď 2
ÿ

ePEC
h

}cτ }L2peq}Ehuh ´ uh}L2peq

ď C

ˆ

ÿ

ePEC
h

he}cτ }
2
L2peq

˙1{2

η3.

In order to estimate T4, we will use standard monotonicity argument [37] i.e. ppx ´ cqr` ´ py ´

cqr`qpx´ yq ě 0 @ x, y, c P R, r ě 0q to observe

jnpuh,u ´ uhq ´ jnpu,u ´ uhq ď 0.(4.2)
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Thus, a use of (4.2) yields

T4 “ jnpuh,φq ´ jnpu, φq

“ jnpuh,u´ uhq ` jnpuh,uh ´ Ehuhq ´ jnpu,u´ uhq ´ jnpu,uh ´ Ehuhq

ď jnpuh,uh ´ Ehuhq ´ jnpu,uh ´ Ehuhq

“
ÿ

ePEC
h

ż

e
cnrpuhn ´ gaq

mn
` ´ pun ´ gaq

mn
` spuh ´ Ehuhqn ds.

We will consider two different cases: mn “ 1 and mn ą 1. When mn “ 1, the last relation reduces

to

T4 ď
ÿ

ePEC
h

ż

e
cnrpuhn ´ gaq` ´ pun ´ gaq`spuh ´ Ehuhqn ds

ď
ÿ

ePEC
h

ż

e
cn|uhn ´ un|puh ´ Ehuhqn ds

ď
ÿ

ePEC
h

}cn}L8peq}uhn ´ un}L2peq}puh ´ Ehuhqn}L2peq

ď
ÿ

ePEC
h

}cn}L8peq}uh ´ u}1,h}puh ´ Ehuhqn}L2peq.

otherwise for mn ą 1, using the identity |paqm` ´pbq
m
` | ď m|a´ b|

`

|a|m´1` |b|m´1
˘

a, b P R,m ě 1,

Cauchy Hölder’s inequality, (1.11) together with Lemma 1.2 and Lemma 3.2 , we find

T4 ď
ÿ

ePEC
h

}cn}L8peq}puhn ´ gaq
mn
` ´ pun ´ gaq

mn
` }L2peq}uhn ´ pEhuhqn}L2peq

ď
ÿ

ePEC
h

C

ˆ

}uhn ´ ga}
mn´1
Lqpmn´1qpeq ` }un ´ ga}

mn´1
Lqpmn´1qpeq

˙

}un ´ uhn}Lppeq

}uhn ´ pEhuhqn}L2peq ds

ď
ÿ

ePEC
h

C

ˆ

}uh ´ ga}
mn´1
1,h ` }u´ ga}

mn´1
H1pΩq

˙

}un ´ uhn}Lppeq}uhn ´ pEhuhqn}L2peq ds

ď
ÿ

ePEC
h

C}uh ´ u}1,h}puh ´ Ehuhqn}L2peq.

where the Hölder conjugates p
2 ,

q
2 P p1,8q satisfying 1

p `
1
q “

1
2 are such that qpmn ´ 1q ě 1. Thus,

for mn ě 1, we have

T4 ď C}u ´ uh}1,h
ÿ

ePEC
h

}uhn ´ pEhuhqn}L2peq.
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Finally, using standard inverse estimate and discrete Cauchy- Schwartz inequality in T4, we obtain

T4 ď C}u ´ uh}1,h
ÿ

ePEC
h

}uhn ´ pEhuhqn}L2peq

ď C}u ´ uh}1,h
ÿ

ePEC
h

ÿ

TPTe

he
´1{2}uh ´ Ehuh}L2pT q

ď C}u ´ uh}1,h

ˆ

ÿ

ePEC
h

he

˙1{2ˆ
ÿ

TPTh

h´2
T }uh ´ Ehuh}

2
L2pT q

˙1{2

.

as he „ hT . As a consequence of Lemma 2.4 and identity
ř

ePEC
h
|he| “ |ΓC |, we find

T4 ď C|||u ´ uh|||hη3.

Combining the estimates obtained in T1, T2, T3, T4 and using Young’s inequality, we get the

desired bound on the error term.

In order to find the upper bound for
ř

ePEC
h
he}σnpu ´ uhq}

2
L2peq, we recall (1.8), and use identity

pa` bq2 ď 2pa2 ` b2q as follows:

he}σnpu ´ uhq}
2
L2peq ď 2phe} ´ cnpun ´ gaq

mn
` ` cnpuhn ´ gaq

mn
` }2L2peq

` he}σnpuhq ` cnpuhn ´ gaq
mn
` }2L2peqq(4.3)

where e P ECh . Using the similar arguments as used in estimating T4, we get

} ´ cnpun ´ gaq
mn
` ` cnpuhn ´ gaq

mn
` }L2peq ď C}un ´ uhn}Lppeq.

for p ą 2. As a consequence, we find

} ´ cnpun ´ gaq
mn
` ` cnpuhn ´ gaq

mn
` }L2peq ď C}un ´ uhn}LppΓCq

ď C}u ´ uh}1,h.(4.4)

Therefore, summing (4.3) over all e P ECh and using the identity
ř

ePEC
h
|he| “ |ΓC |, we find

ÿ

ePEC
h

he}σnpu ´ uhq}
2
L2peq ď |||u ´ uh|||

2
h ` η

2
6.(4.5)

This completes the proof. �

4.2. Efficiency estimates. In this section, we show that the error estimator ηh provides a lower

bound for the true error up to data oscillations. In order to prove the efficiency of the estimators

we will first prove the following lemma.

Lemma 4.2. Let u P V be the solution of continuous problem (1.10) and let vh P Vh be an

arbitrary element then, the following results hold:

piq
ÿ

TPTh

h2
T }f}

2
L2pT q ď Cp|||u ´ vh|||

2
h `Oscpfq

2q,
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piiq
ÿ

ePEi
h

he}rrσhpvhqss}
2
L2peq ď Cp|||u ´ vh|||

2
h `Oscpfq

2q,

piiiq
ÿ

ePEF
h

he}σhpvhqn´ g}
2
L2peq ď Cp|||u ´ vh|||

2
h `Oscpfq

2 `Oscpgq2q,

pivq
ÿ

ePEC
h

he}σhτ pvhq ` cτλτ }
2
L2peq ď Cp|||u ´ vh|||

2
h `Oscpfq

2 `Oscpcτ q
2 `Oscpλτ q

2q,

pvq
ÿ

ePEC
h

he}σhnpvhq ` cnpvhn ´ gaq
mn
` }2L2peq ď Cp|||vh ´ u|||

2
h ` }vh ´ u}

2mn
1,h `

ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peqq,

where

Oscpfq2 “
ÿ

TPTh

h2
T }f ´ f̄}

2
L2pT q,

Oscpgq2 “
ÿ

ePEF
h

he}g ´ ḡ}
2
L2peq,

Oscpcτ q
2 “

ÿ

ePEC
h

he}cτ ´ c̄τ }
2
L2peq,

Oscpλτ q
2 “

ÿ

ePEC
h

he}λτ ´ λ̄τ }
2
L2peq.

where v̄ denotes the L2 projection of v onto the space of piece-wise constant functions.

Proof. (i) Let T P Th be arbitrary and let ξ P P3pT q be bubble function that vanishes on BT and

takes unit value at the barycenter of T . By equivalence of norms on finite dimensional spaces, we

have

}f̄}2L2pT q ď

ż

T
ξf̄ ¨ f̄ dx.(4.6)

Let φ “ f̄ξ. We can identify φ as an element of rH1
0 pΩqs

2 by extending it by 0 outside of T . It

follows from Lemma 1.1, integration by parts and a standard inverse estimate that
ż

T
ξf̄ ¨ f̄ dx “

ż

Ω
f ¨ φ dx`

ż

Ω
pf̄ ´ fq ¨ φ dx

“ apu, φq `

ż

Ω
pf̄ ´ fq ¨ φ dx`

ż

T
divσpvhq ¨ φ dx

“ apu, φq `

ż

T
pf̄ ´ fq ¨ φ dx´

ż

T
σpvhq : εpφq dx

“

ż

T
pσpuq ´ σpvhqq : εpφq dx`

ż

T
pf̄ ´ fq ¨ φ dx

ď |u ´ vh|H1pT q|φ|H1pT q ` }f̄ ´ f}L2pT q}φ}L2pT q

ď |u ´ vh|H1pT qh
´1
T }φ}L2pT q ` }f̄ ´ f}L2pT q}φ}L2pT q
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ď
`

|u ´ vh|H1pT qh
´1
T ` }f̄ ´ f}L2pT q

˘

}f̄}L2pT q.(4.7)

Combining (4.6) and (4.7), we obtain

h2
T }f̄}

2
L2pT q ď |u ´ vh|

2
H1pT q ` h

2
T }f̄ ´ f}

2
L2pT q.

and hence by triangle inequality,

h2
T }f}

2
L2pT q ď |u ´ vh|

2
H1pT q ` h

2
T }f̄ ´ f}

2
L2pT q.(4.8)

Summing up (4.8) over all triangles in Th we get the desired result.

(ii) Let e P E ih be arbitrary and this edge is shared by two triangles T´ and T`. Let ne be the

unit vector normal to e and pointing from the triangle T´ to T`. We construct a bubble function

ξ P P4pT
´ Y T`q such that it vanishes on the boundary of quadrilateral T´ Y T` and takes unit

value at the midpoint of e. Define β “ ξξ1 on T´ Y T` where ξ1 P rP0pT
´ Y T`qs2 such that

ξ1 “ rrσhpvhqss on edge e. We can identify β by its zero extension outside T´ Y T` yielding

β P rH1
0 pΩqs

2. A use of equivalence of norms on finite dimensional space yields

}ξ1}
2
L2peq ď

ż

e
ξξ1 ¨ ξ1 ds

“

ż

e
β ¨ ξ1 ds.(4.9)

It then follows from integration by parts, Lemma 1.1, Cauchy Schwartz inequality and standard

inverse estimate that
ż

e
rrσhpvhqss ¨ β ds “

ż

T´YT`
σhpvhq : εpβq dx

“

ż

T´YT`
σhpvhq : εpβq dx`

ż

T´YT`
f ¨ β dx´

ż

T´YT`
σpuq : εpβq dx

ď
ÿ

TPTe

ˆ

|u ´ vh|H1pT q|β|H1pT q ` }f}L2pT q}β}L2pT q

˙

ď
ÿ

TPTe

`

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q

˘

}β}L2pT q

ď
ÿ

TPTe

`

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q

˘

h1{2
e }ξ1}L2peq.(4.10)

Since he „ hT , therefore, combining (4.9) and (4.10), we obtain

h1{2
e }rrσhpvhqss}L2peq ď

ÿ

TPTe

`

|u ´ vh|H1pT q ` hT }f}L2pT q

˘

.(4.11)

Squaring (4.11) and summing up over all the interior edges, we find
ÿ

ePEi
h

he}rrσhpvhqss}
2
L2peq ď

ÿ

TPTh

|u ´ vh|
2
H1pT q `

ÿ

TPTh

h2
T }f}

2
L2pT q

.
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Finally, (ii) follows with a use of (i).

(iii) Let e P EFh and let T be the triangle such that e Ď BT . We construct a bubble function

ξ P P2pT q that vanishes on BT ze and takes unit value at the midpoint of e. Define ξ1 P rP0pT qs
2 by

assigning ξ1 “ σhpvhqn´ ḡ on edge e. Define β “ ξξ1 on T and extend β by 0 outside of T and

hence it belongs to V . Now, using equivalence of norms on finite dimensional space, we obtain

}ξ1}
2
L2peq ď

ż

e
ξξ1 ¨ ξ1 ds

“

ż

e
β ¨ ξ1 ds.(4.12)

Using Lemma 1.1, we find
ż

e
β ¨ ξ1 ds “

ż

e
σhpvhqn ¨ β ds`

ż

e
pg ´ ḡq ¨ β ds´

ż

e
g ¨ β ds

“

ż

e
σhpvhqn ¨ β ds`

ż

e
pg ´ ḡq ¨ β ds´ apu, βq `

ż

T
f ¨ β dx.(4.13)

Now, the use of integration by parts, Cauchy Schwartz and standard inverse estimates in (4.13)

yields
ż

e
β ¨ ξ1 ds “

ż

T
σpvhq : εpβq dx´

ż

T
σpuq : εpβq dx`

ż

e
pg ´ ḡq ¨ β ds`

ż

T
f ¨ β dx.

ď |u ´ vh|H1pT q|β|H1pT q ` }f}L2pT q}β}L2pT q ` }g ´ ḡ}L2peq}β}L2peq

ď
`

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q ` h

´1{2
e }g ´ ḡ}L2peq

˘

}β}L2pT q

ď

ˆ

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q ` h

´1{2
e }g ´ ḡ}L2peq

˙

h1{2
e }ξ1}L2peq.(4.14)

Combining (4.12) and (4.14), we get,

h1{2
e }ξ1}L2peq ď |u ´ vh|H1pT q ` hT }f}L2pT q ` h

1{2
e }g ´ ḡ}L2peq.(4.15)

Squaring (4.15) and summing up over all e P EFh , we obtain
ÿ

ePEF
h

he}σhpvhqn´ ḡ}
2
L2peq ď

ÿ

TPTh

|u ´ vh|
2
H1pT q `

ÿ

TPTh

h2
T }f}

2
L2pT q `

ÿ

ePEF
h

he}g ´ ḡ}
2
L2peq.

hence, thereafter using triangle inequality piiiq follows from piq.

(iv) Let e P ECh be arbitrary and let T be the triangle such that e Ď BT . In order to estimate

}σhτ pvhq ` cτλτ }L2peq, we will make use of triangle inequality as follows:

}σhτ pvhq ` cτλτ }L2peq ď }σhτ pvhq ` c̄τλτ }L2peq ` }λτ pcτ ´ c̄τ q}L2peq.(4.16)

Also,

}σhτ pvhq ` c̄τλτ }L2peq ď }σhτ pvhq ` c̄τ λ̄τ }L2peq ` }c̄τ pλτ ´ λ̄τ q}L2peq.(4.17)
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Define a bubble function ξ P P2pT q which vanishes on BT ze and takes unit value at the midpoint

of e. Let ξ1 P rP0pT qs
2 such that ξ1n “ 0 and ξ1τ “ σhτ pvhq ` c̄τ λ̄τ on edge e. Define β “ ξξ1

on T whose extension by 0 outside of T belongs to V . Using the equivalence of norms on finite

dimensional space, we have

}ξ1}
2
L2peq ď

ż

e
ξξ1 ¨ ξ1 ds

“

ż

e
σhτ pvhq ¨ β ds`

ż

e
c̄τ λ̄τ ¨ β ds.(4.18)

as ξ1τ “ ξ1. A use of integration by parts yields
ż

T
σhpvhq : εpβq dx “

ż

T
´divσhpvhq ¨ β dx`

ż

BT
σhpvhqn ¨ β ds

“

ż

e
σhnpvhqβn ds`

ż

e
σhτ pvhq ¨ βτ ds

“

ż

e
σhτ pvhq ¨ βτ ds

“

ż

e
σhτ pvhq ¨ β ds.(4.19)

as βn “ 0. Now, it follows from (4.18), (4.19), Lemma 1.1, Cauchy Schwartz inequality and standard

inverse estimate that

}ξ1}
2
L2peq ď

ż

T
σhpvhq : εpβq dx`

ż

e
c̄τ λ̄τ ¨ β ds

“

ż

T
σhpvhq : εpβq dx´

ż

T
σpuq : εpβq dx´

ż

e
cτλτ ¨ β ds`

ż

T
f ¨ β dx`

ż

e
c̄τ λ̄τ ¨ β ds

“

ż

T
pσhpvhq ´ σpuqq : εpβq dx`

ż

T
f ¨ β dx`

ż

e
cτ pλ̄τ ´ λτ q ¨ β ds`

ż

e
λ̄τ pc̄τ ´ cτ q ¨ β ds

ď |u ´ vh|H1pT q|β|H1pT q ` }f}L2pT q}β}L2pT q ` }cτ }L8peq}λ̄τ ´ λτ }L2peq}β}L2peq

` }λ̄τ }L8peq}c̄τ ´ cτ }L2peq}β}L2peq

ď

ˆ

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q ` h

´1{2
e }cτ }L8peq}λ̄τ ´ λτ }L2peq

` h´1{2
e }λ̄τ }L8peq}c̄τ ´ cτ }L2peq

˙

}β}L2pT q

ď h1{2
e

ˆ

|u ´ vh|H1pT qh
´1
T ` }f}L2pT q ` h

´1{2
e }cτ }L8peq}λ̄τ ´ λτ }L2peq

` h´1{2
e }c̄τ ´ cτ }L2peq

˙

}ξ1}L2peq.
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Squaring the last equation and summing over all e P ECh , we obtain
ÿ

ePEC
h

he}σhτ pvhq ` c̄τ λ̄τ }
2
L2peq

ď Cp|||u ´ vh|||
2
h `Oscpfq

2 `Oscpcτ q
2 `Oscpλτ q

2(4.20)

Finally using (4.16), (4.17) and (4.20), we arrive at the desired estimate (iv).

(v) This term can not be estimated directly by using the standard techniques of bubble functions.

Since, in general due to the positive part of the function,

}σhnpvhq ` cnpvhn ´ gaq
mn
` }2L2peq ę

ż

e
pσhnpvhq ` cnpvhn ´ gaq

mn
` q2β ds

where β is an edge bubble function. We proceed to estimate it as follows: first using (1.8), we find

}σhnpvhq ` cnpvhn ´ gaq
mn
` }L2peq

“ }σhnpvhq ´ σnpuq ´ cnpun ´ gaq
mn
` ` cnpvhn ´ gaq

mn
` }L2peq

ď }σhnpvhq ´ σnpuq}L2peq ` }cnpvhn ´ gaq
mn
` ´ cnpun ´ gaq

mn
` }L2peq.(4.21)

where e P ECh . Again, we will consider two cases. For mn “ 1, using (1.11) in the above equation

(4.21), we find

}σhnpvhq ` cnpvhn ´ gaq
mn
` }L2peq ď }σhnpvhq ´ σnpuq}L2peq ` }cn}L8peq}vhn ´ un}L2peq

ď }σhnpvhq ´ σnpuq}L2peq ` }cn}L8peq}vh ´ u}1,h.

Otherwise for mn ą 1, a use of Cauchy Hölder’s inequality and identity |am ´ bm| ď m |a ´

b| p|a|m´1 ` |b|m´1q where a, b ě 0, m ě 1 yields

}σhnpvhq ` cnpvhn ´ gaq
mn
` }L2peq

ď mn}cn}L8peq}pvhn ´ unqp|vhn ´ ga|
mn´1 ` |un ´ ga|

mn´1q}L2peq

` }σhnpvh ´ uq}L2peq

ď mn}cn}L8peq}vhn ´ un}Lppeq}|vhn ´ ga|
mn´1 ` |un ´ ga|

mn´1}Lqpeq

` }σhnpvh ´ uq}L2peq

ď C}vhn ´ un}Lppeq

ˆ

}vhn ´ ga}
mn´1
Lqpmn´1qpeq

` }un ´ ga}
mn´1
Lqpmn´1qpeq

˙

` }σhnpvh ´ uq}L2peq.(4.22)

where, p
2 and q

2 are Hölder conjugates satisfying 1
p `

1
q “

1
2 and qpmn ´ 1q ě 1. Further, using

(1.11) and Lemma 1.2, we obtain

}un ´ ga}
mn´1
Lqpmn´1qpeq

ď }un ´ ga}
mn´1
Lqpmn´1qpΓCq

ď C.(4.23)

Also,

}vhn ´ ga}Lqpmn´1qpeq ď }vhn ´ un}Lqpmn´1qpΓCq
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ď }vhn ´ un}Lqpmn´1qpΓCq
` }un ´ ga}Lqpmn´1qpΓCq

ď }vh ´ u}1,h ` C.(4.24)

where C is constant depending on }f}L2pΩq, }g}L2pΓF q
and }ga}

mn´1
Lqpmn´1qpΓCq

. Using (4.23), (1.11) and

(4.24) in (4.22) we obtain,

}σhnpvhq ` cnpvhn ´ gaq
mn
` }L2peq ď }vh ´ u}1,h

`

}vh ´ u}
mn´1
1,h ` C

˘

` }σhnpvh ´ uq}L2peq.

Thus, we have

he
1{2}σhnpvhq ` cnpvhn ´ gaq

mn
` }L2peq ď h1{2

e C}vh ´ u}1,h ` h
1{2
e }vh ´ u}

mn
1,h(4.25)

` h1{2
e }σhnpvh ´ uq}L2peq.

Squaring (4.25) and summing over all e P ECh and finally using the identity
ř

ePEC
h
|he| “ |ΓC |, we

obtain
ÿ

ePEC
h

he}σhnpvhq ` cnpvhn ´ gaq
mn
` }2L2peq ď C|||vh ´ u|||

2
h ` }vh ´ u}

2mn
1,h `

ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq.

This completes the proof of this lemma. �

The following theorem ensures the efficiency of the error estimator ηh.

Theorem 4.3. Let u P V and uh P Vh be the solution of continuous problem (1.10) and discrete

problem (3.1), respectively. Then, the following results hold.

η2
h ď |||uh ´ u|||

2
h `

ÿ

ePEC
h

he}σhnpuh ´ uq}
2
L2peq `

ÿ

ePEC
h

he}cτ }
2
L8peq}λhτ ´ λτ }

2
L2peq

`Oscpfq2 `Oscpcτ q
2 `Oscpλτ q

2.

Proof. As η2
h “ η2

1 ` η
2
2 ` η

2
3 ` η

2
4 ` η

2
5 ` η

2
6. Now η1, η2, η5 are bounded above by the terms on the

right hand side by using previous lemma with vh “ uh.

To bound η3, we have
ÿ

ePE0
h

η

he
}rruhss}

2
L2peq ď

ÿ

ePE0
h

η

he
}rru ´ uhss}

2
L2peq `

ÿ

ePE0
h

η

he
}rruss}2L2peq

ď |||u ´ uh|||
2
h.

Further to bound η4, we have
ÿ

ePEC
h

he}σhτ puhq ` cτλhτ }
2
L2peq

ď
ÿ

ePEC
h

he}σhτ puhq ` cτλτ }
2
L2peq

`
ÿ

ePEC
h

he}cτ pλhτ ´ λτ q}
2
L2peq

ď
ÿ

ePEC
h

he}σhτ puhq ` cτλτ }
2
L2peq

`
ÿ

ePEC
h

he}cτ }
2
L8peq}λhτ ´ λτ }

2
L2peq,

therein, a use of last lemma will yield the desired bound.
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In order to bound η6, let e P ECh be arbitrary. Now, using (1.8) and triangle inequality, we have

}σhnpuhq ` cnpuhn ´ gaq
mn
` }L2peq ď }σhnpuh ´ uq}L2peq ` }cnpuhn ´ gaq

mn
` ´ cnpun ´ gaq

mn
` }L2peq.

A use of (4.4) yields

}σhnpuhq ` cnpuhn ´ gaq
mn
` }L2peq ď C}u ´ uh}1,h ` }σhnpuh ´ uq}L2peq,(4.26)

where C is a constant depending on load vectors. Therefore, squaring (4.26) and summing over all

e P ECh and using the identity
ř

ePEC
h
|he| “ |ΓC |, we find

ÿ

ePEC
h

he}σhnpuhq ` cnpuhn ´ gaq
mn
` }2L2peq ď |||u ´ uh|||

2
h `

ÿ

ePEC
h

he}σhnpuh ´ uq}
2
L2peq(4.27)

This completes the proof. �

5. Medius Analysis

In this section, a priori error bounds are derived with minimal regularity assumption on the exact

solution u of (1.10), say u P Hp1`sqpΩq for s P p0, 1s. The name medius analysis indicates that

both a priori and a posteriori techniques are employed in this analysis [31].

Theorem 5.1. Let u and uh be the solution of continuous problem(1.10) and discrete problem

(3.1), respectively. Then, for any vh P Vh, we have

|||u ´ uh|||
2
h ď inf

vhPVh

´

|||vh ´ u|||
2
h `

ÿ

ePEC
h

h1{2
e }cτ }L8peq}u ´ vh}L2peq

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq

¯

`Oscpfq2 `Oscpcτ q
2 `Oscpλτ q

2.

Proof. Let vh be any arbitrary element in Vh. Using triangle inequality and identity pa ` bq2 ď

2pa2 ` b2q, we get

|||u ´ uh|||
2
h ď 2p|||u ´ vh|||

2
h ` |||vh ´ uh|||

2
hq.(5.1)

Setting φ “ vh ´ uh, and using coercivity of bilinear form Bhp¨, ¨q w.r.t. |||¨|||h, Lemma 1.1 and

equation (3.1), we find

α|||vh ´ uh|||
2
h ď Bhpvh ´ uh, vh ´ uhq

ď Bhpvh, φq ` jnpuh, φq ` jτ pvhq ´ jτ puhq ´ pf ,φq

ď Bhpvh,φ´ Ehφq `Bhpvh, Ehφq ´ pf ,φ´ Ehφq ´ pf , Ehφq ` jnpuh, φq

` jτ pvhq ´ jτ puhq

“ Bhpvh,φ´ Ehφq `Bhpvh, Ehφq ´ pf ,φ´ Ehφq ` jnpuh, φq ` jτ pvhq

´ jτ puhq ´ apu, Ehφq ´ gpλτ , Ehφq ´ jnpu, Ehφq
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“ Bhpvh,φ´ Ehφq ´ pf ,φ´ Ehφq ` gpλτ , φ´ Ehφq ` jnpvh, φ´ Ehφq

`Bhpvh, Ehφq ´ apu, Ehφq ` jτ pvhq ´ jτ puhq ´ gpλτ , φq ` jnpuh, φq

´ jnpu, Ehφq ´ jnpvh, φ´ Ehφq

“ R1 `R2 `R3 `R4,

where,

R1 “ Bhpvh,φ´ Ehφq ´ pf ,φ´ Ehφq ` gpλτ , φ´ Ehφq ` jnpvh, φ´ Ehφq,

R2 “ Bhpvh, Ehφq ´ apu, Ehφq,

R3 “ jτ pvhq ´ jτ puhq ´ gpλτ , φq,

R4 “ jnpuh, φq ´ jnpu, Ehφq ´ jnpvh, φ´ Ehφq.

Now, we will estimate R1, R2, R3 and R4 one by one. In order to estimate R1, let ξ “ φ ´ Ehφ

and thereafter using integration by parts in the first term and gather the resulting terms, we find

R1 “ ahpvh, ξq ` bhpvh, ξq ´ pf , ξq ` gpλτ , ξq ` jnpvh, ξq

“
ÿ

TPTh

ż

T
σpvhq : εpξq dx` bhpvh, ξq ´ pf , ξq ` gpλτ , ξq ` jnpvh, ξq

“
ÿ

ePEi
h

ż

e
rrσhpvhqss ¨ ttξuu ds`

ÿ

ePE0
h

ż

e
ttσhpvhquu : rrξss ds`

ÿ

ePEF
h YE

C
h

ż

e
σhpvhqne ¨ ξ ds

` bhpvh, ξq ´ pf , ξq ` gpλτ , ξq ` jnpvh, ξq

“ ´
ÿ

TPTh

ż

T
f ¨ ξ dx`

ÿ

ePEF
h

ż

e
pσhpvhqne ´ gq ¨ ξ ds`

ÿ

ePEi
h

ż

e
rrσhpvhss ¨ ttξuu ds

`
ÿ

ePE0
h

ż

e
ttσhpvhquu : rrξss ds` bhpvh, ξq `

ÿ

ePEC
h

ż

e
pσhnpvhq ` cnpvhn ´ gaq

mn
` q ¨ ξn ds

`
ÿ

ePEC
h

ż

e
pσhτ pvhq ` cτλτ q ¨ ξτ ds.

It can be observed that the following estimate holds for all the DG methods introduced in Section

3

ÿ

ePE0
h

ż

e
ttσhpvhquu : rrξss ds` bhpvh, ξq ď

ˆ

ÿ

ePE0
h

ż

e

1

he
rrvhss

2 ds

˙1{2

|||φ|||h.(5.2)

Using (5.2) and the similar arguments used in Theorem 4.1, we obtain

R1 ď ηpvhq|||φ|||h,
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where,

ηpvhq
2 “

ÿ

TPTh

h2
T }f}

2
L2pT q `

ÿ

ePEi
h

he}rrσhpvhqss }
2
L2peq `

ÿ

ePE0
h

η

he
}rrvhss}

2
L2peq

`
ÿ

ePEC
h

he}σhτ pvhq ` cτλτ }
2
L2peq `

ÿ

ePEF
h

he}σhpvhqn´ g}
2
L2peq

`
ÿ

ePEC
h

he}σhnpvhq ` cnpvhn ´ gaq
mn
` }2L2peq.

A use of Young’s inequality and Lemma 4.2 yields

R1 ď
1

β
p|||vh ´ u|||

2
h ` }vh ´ u}

2mn
1,h `Oscpfq2 `Oscpcτ q

2 `Oscpλτ q
2

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peqq ` β|||φ|||

2
h.

where β ą 0 is arbitrary. Using the definition of ap¨, ¨q and ahp¨, ¨q, (3.2), Lemma 2.4 and Young’s

inequality, the bound on R2 can be obtained as follows:

R2 “ Bhpvh, Ehφq ´ apu, Ehφq

“ ahpvh, Ehφq ` bhpvh, Ehφq ´ apu, Ehφq

“
ÿ

TPTh

|u ´ vh|H1pT q|Ehφ|H1pT q `

ˆ
ż

E0
h

h´1
e rrvh ´ uss

2 ds

˙1{2

|Ehφ|H1pΩq

ď |||u ´ vh|||h |Ehφ|H1pΩq

ď |||u ´ vh|||h |||φ|||h

ď
1

β1
|||u ´ vh|||

2
h ` β1|||φ|||

2
h,

where β1 ą 0 is arbitrary. In order to estimate R3, we will use uτ ¨λτ “ |uτ | and |λτ | ď 1 a.e. on

ΓC and find

R3 “ jτ pvhq ´ jτ puhq ´ gpλτ , φq

“

ż

ΓC

cτ |vhτ | ds´

ż

ΓC

cτ |uhτ | ds´

ż

ΓC

cτλτ ¨ vhτ ds`

ż

ΓC

cτλτ ¨ uhτ ds

ď

ż

ΓC

cτ |vhτ | ds´

ż

ΓC

cτλτ ¨ vhτ ds

“

ż

ΓC

cτ
`

|vhτ | ´ |uτ |
˘

ds`

ż

ΓC

cτλτ ¨
`

uτ ´ vhτ q ds

ď 2

ż

ΓC

cτ |uτ ´ vhτ | ds
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ď 2
ÿ

ePEC
h

}cτ }L8peqh
1{2
e }u ´ vh}L2peq.

A use of monotoncity argument [37], Cauchy Holder’s inequality, identity |paqm` ´ pbq
m
` | ď m|a ´

b|
`

|a|m´1 ` |b|m´1
˘

a, b P R,m ě 1, (1.11) and Lemma 2.4 in R4 yields

R4 “ jnpuh, φq ´ jnpu, Ehφq ´ jnpvh, φ´ Ehφq

“ jnpuh, vh ´ uhq ´ jnpu, Ehφq ´ jnpvh, φ´ Ehφq ` jnpvh, vh ´ uhq

´ jnpvh, vh ´ uhq

ď jnpvh, vh ´ uhq ´ jnpvh, φ´ Ehφq ´ jnpu, Ehφq

“ jnpvh, φq ´ jnpvh, φ´ Ehφq ´ jnpu, Ehφq

“ jnpvh, Ehφq ´ jnpu, Ehφq

“

ż

ΓC

ppcnpvhn ´ gaq
mn
` ´ cnpun ´ gaq

mn
` qpEhφqn ds

ď }cnpvhn ´ gaq
mn
` ´ cnpun ´ gaq

mn
` }L2pΓCq

}pEhφqn}L2pΓCq

ď }cn}L8pΓCq
}pvhn ´ gaq

mn
` ´ pun ´ gaq

mn
` }L2pΓCq

}Ehφ}H1pΩq

ď }cn}L8pΓCq
}pvhn ´ gaq

mn
` ´ pun ´ gaq

mn
` }L2pΓCq

|||φ|||h.

Following the similar arguments, used in proving pvq of Lemma 4.2, we obtain

R4 ď C

ˆ

}vh ´ u}
mn
1,h ` }vh ´ u}1,h

˙

|||φ|||h.

Further, Young’s inequality yields

R4 ď C

ˆ

}vh ´ u}
2mn
1,h ` }vh ´ u}

2
1,h

˙

` β2|||φ|||
2
h.

where β2 ą 0 is arbitrary. Combining the bounds on R1, R2, R3 and R4, and choosing β, β1 and

β2 sufficiently small, we obtain

|||vh ´ uh|||
2
h ď C

ˆ

}pvh ´ uq}
2mn
1,h ` |||vh ´ u|||

2
h `

ÿ

ePEC
h

h1{2
e }cτ }L8peq}u ´ vh}L2peq

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq `Oscpfq

2 `Oscpcτ q
2 `Oscpλτ q

2

˙

.(5.3)

Thus, using (5.3) in (5.1), we obtain

|||u ´ uh|||
2
h ď C

ˆ

}pvh ´ uq}
2mn
1,h ` |||vh ´ u|||

2
h `

ÿ

ePEC
h

h1{2
e }cτ }L8peq}u ´ vh}L2peq

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq `Oscpfq

2 `Oscpcτ q
2 `Oscpλτ q

2

˙
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ď C inf
vhPVh

´

}vh ´ u}
2mn
1,h ` |||vh ´ u|||

2
h `

ÿ

ePEC
h

h1{2
e }cτ }L8peq}u ´ vh}e

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq

¯

`Oscpfq2 `Oscpcτ q
2 `Oscpλτ q

2.

Since mn ě 1 which implies 2mn ě 2, therefore

inf
vhPVh

}vh ´ u}
2mn
1,h ď C inf

vhPVh

}vh ´ u}
2
1,h.

Hence,

|||u ´ uh|||
2
h ď inf

vhPVh

´

|||vh ´ u|||
2
h `

ÿ

ePEC
h

h1{2
e }cτ }L8peq}u ´ vh}L2peq

`
ÿ

ePEC
h

he}σhnpvh ´ uq}
2
L2peq

¯

`Oscpfq2 `Oscpcτ q
2 `Oscpλτ q

2.

�

The following result is a consequence of the last theorem with the choice of vh as in Lemma 2.1.

Theorem 5.2. Suppose u P Hp1`sqpΩq for some s P p0, 1s. Then, there exists a constant C ą 0,

depending in the shape regularity of Th such that

|||u ´ uh|||h ď Chs.

Remark 5.3. If the regularity of the continuous solution u is rH2pΩqs2, then from Theorem 5.2 the

error term |||u ´ uh|||h converges with linear rate which is optimal. If u P rH1pΩqs2, one can easily

show that |||u ´ vh|||h Ñ 0 as hÑ 0 using the density argument [24]. Hence, whenever hÑ 0, then

|||u ´ uh|||h Ñ 0.

Remark 5.4. The abstract error estimate in Theorem 5.1 also holds for mn “ 0.

6. Numerical Experiments

In this section, we carry out the numerical experiments to illustrate the performance of a poste-

riori estimator derived in the Section 4 as well as the convergence behaviour of error on uniform

meshes. In order to perform numerical experiments we have implemented the codes in Matlab 9.8.0

(R2020a). Uzawa algorithm [30] is used to solve the discrete problem, therein we set 10´8 to be

the relative error tolerance in the maximum norm.

For illustrating the behaviour of error estimator, we use the following algorithm:

SOLVE ÝÑ ESTIMATE ÝÑ MARK ÝÑ REFINE
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In the step SOLVE, the discrete problem is solved for uh. Then, the error estimator ηh is computed

on each element in the step ESTIMATE and D:orfler marking scheme [25] with parameter θ “ 0.3

is used in the step MARK. Finally in the last step REFINE, the marked elements undergo

refinement using the newest vertex bisection algorithm and the above algorithm is repeated.

Now, we present numerical results for two test examples solved by SIPG and NIPG method. As the

exact solution u is unknown in both examples, error on uniform mesh is computed by calculating the

difference between the discrete solutions uh obtained on the consecutive mesh. In these examples

the Lamé parameters µ and λ are computed by

µ “
E

2p1` νq
and λ “

Eν

p1` νqp1´ 2νq

where, E and ν denote the Young’s modulus and the Poisson ratio, respectively. For both the

examples the penalty parameter η is chosen to be 30µ.

Example 6.1. In this example, we consider the domain Ω as p0, 1qˆ p0.05, 1.05q and the following

data (the unit daN{mm2 stands for “decaNewtons per square millimeter”):

ΓD “ t1u ˆ p0.05, 1.05q,

ΓF “ pt0u ˆ p0.05, 1.05qq Y pp0, 1q ˆ t1.05uq,

ΓC “ p0, 1q ˆ t0.05u,

E “ 2000daN{mm2, ν “ 0.4 ,f “ p0, 0qdaN{mm2, g “ p200p5´ yq,´190qdaN{mm2,

cτ “ 450, cn “ 1, mn “ 1, ga “ 0.05 mm.

The convergence behavior of error for SIPG and NIPG methods on the uniform mesh is shown

in Table 6.1. Figure 6.1 describes the behavior of the residual estimators for SIPG and NIPG

methods, respectively on adaptive meshes. We observe that the estimator converges optimally on

the adaptive mesh. Figure 6.2 show the adaptive mesh refinement at a certain level for SIPG and

NIPG method. We observe the mesh is refined more near the intersection of the boundaries and

near the contact edge, as it is evident that the body undergoes deformation under the action of

traction. Hence, the singular behavior of the discrete solution is well captured by the estimator.

Example 6.2. Therein, we consider the domain Ω as p0, 1q ˆ p0, 1q together with the following

data:

ΓD “ p0, 1q ˆ t1u,

ΓF “ pt0u ˆ p0, 1qq Y pt1u ˆ p0, 1qq,

ΓC “ p0, 1q ˆ t0u,

E “ 2500daN{mm2, ν “ 0.2 ,f “ p0, 0qdaN{mm2,

g “ p880, 0qdaN{mm2, cτ “ 250, cn “ 1, ga “ 0.00mm, mn “ 1.
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h error order of conv.
2´1 4.7518 ˆ 10´1 -
2´2 2.9620 ˆ 10´1 0.6818
2´3 1.7708 ˆ 10´1 0.7421
2´4 1.0731 ˆ 10´1 0.7502
2´5 6.7152 ˆ 10´2 0.7913

h error order of conv.
2´1 4.8844 ˆ 10´1 -
2´2 3.0242 ˆ 10´1 0.6916
2´3 1.807 ˆ 10´1 0.7427
2´4 1.0732 ˆ 10´1 0.7519
2´5 6.7186 ˆ 10´2 0.7934

Table 6.1. Errors and orders of convergence for SIPG and NIPG methods on
uniform mesh for Example 1

Figure 6.1. Estimator for SIPG and NIPG method for Example 1

Figure 6.2. Adaptive mesh for SIPG and NIPG methods for Example 1 at level
28

Table 6.2 depicts the errors and orders of convergence behavior of SIPG and NIPG methods on

uniform mesh for Example 2. Figure 6.3 describes the behaviour of the residual estimators for
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h error order of conv.
2´1 6.7573 ˆ 10´1 -
2´2 4.1330 ˆ 10´1 0.7091
2´3 2.4171 ˆ 10´1 0.7735
2´4 1.4053 ˆ 10´1 0.7824
2´5 8.235 ˆ 10´2 0.7901

h error order of conv.
2´1 6.7731 ˆ 10´1 -
2´2 4.1610 ˆ 10´1 0.7028
2´3 2.4403 ˆ 10´1 0.7698
2´4 1.4197 ˆ 10´1 0.7814
2´5 8.241 ˆ 10´2 0.7896

Table 6.2. Errors and orders of convergence for SIPG and NIPG methods on
uniform mesh for Example 2

SIPG and NIPG methods, with the increasing degree of freedom on adaptive meshes. Clearly, the

estimator converges optimally on the adaptive mesh. Figure 6.4 show the adaptive mesh refinement

at level 23 for the SIPG and NIPG method. We observe that the mesh refinement is high near the

contact edge due to the effect of traction and near the corners due to the intersection of boundaries.

Figure 6.3. Estimator for SIPG and NIPG method for Example 2

7. Conclusions

In this paper, we have derived residual based a posteriori error estimators for a class of DG methods

for frictional contact problem with reduced normal compliance. The reliability and the efficiency

of a posteriori error estimator has been discussed. An abstract a priori error estimate has been

derived assuming minimal regularity on the exact solution u. Numerical results are presented to

demonstrate the convergence behaviour over uniform as well as adaptive mesh. The results of this

article are also valid for conforming finite element methods. The case with mt ą 0 will be addressed

in future.
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Figure 6.4. Adaptive mesh for SIPG and NIPG methods for Example 2 at level
23
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[45] A. Klarbring, A. Mikelić and M. Shillor. Frictional contact problems with normal compliance. Int. J. Eng. Sci.,

26:811–832, 1988.

[46] A. Klarbring, A. Mikelić and M. Shillor. On friction problems with normal compliance. Nonlinear Anal., 13:935–

955, 1989.

[47] C.Y. Lee and J.T. Oden. A priori error estimation of hp-finite element approximations of frictional contact

problems with normal compliance. Int. J. Engng. Sci., 31:927–952, 1993.

[48] J.T. Martins and J.T. Oden. Existence and uniqueness results for dynamics contact problems with nonlinear

normal and friction interface laws. Nonlinear Anal., 11:407–428, 1987.

[49] R. Nochetto, T. V. Petersdorff and C. S. Zhang. A posteriori error analysis for a class of integral equations and

variational inequalities. Numer. Math., 116:519–552, 2010.

[50] D. Pietro, D. Antonio and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Mathématiques
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