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Abstract. We propose, analyze and test two novel fully discrete decoupled linearized algorithms for a nonlinearly
coupled reaction-diffusion N-species competition model with harvesting or stocking effort. The time-stepping algorithms
are first and second order accurate in time and optimally accurate in space. Stability and optimal convergence theorems
of the decoupled schemes are proven rigorously. We verify the predicted convergence rates of our analysis and efficacy of
the algorithms using numerical experiments and synthetic data for analytical test problems. We also study the effect of
harvesting or stocking and diffusion parameters on the evolution of species population density numerically, and observe
the co-existence scenario subject to optimal harvesting or stocking.

1. Introduction. In an environmental approach, one of the most significant concerns in population
dynamics is the effect of harvesting or stocking which plays a crucial role for optimal management of
limited resources to ensure the balance in ecology [9, 11, 19, 24, 29, 31]. Harvesting indicates reducing the
population size due to hunting, fishing, or capturing, which shrinks the population density. The study of
harvesting for one population was limited in [5, 17, 26], and in some situations, these are unable to explain
the actual situation better. More interesting situations are discovered when harvesting is implied for two
or more interacting population dynamics [10, 18, 21, 27] that represent either coexistence or competitive
exclusion by others. A global behaviour of predator-prey systems is analyzed under constant harvesting
or stocking of either or both species in [4]. To present the pattern and visualize the effects of harvesting,
reaction-diffusion equation is the constitutive equation of population dynamics, e.g., competition and
prey-predator models.

We consider the efficient and accurate numerical approximation of the population dynamics in a
reaction-diffusion N -species competition model with harvesting or stocking, which is governed by the
following system of nonlinear evolutionary equations [1, 6, 28]: For i = 1, 2, · · · , N

∂ui

∂t
= di∆ui + riui



1− µi −
1

K

N
∑

j=1

uj



+ fi, ∀(t,x) ∈ (0, T ]× Ω, (1.1)

together with known initial and boundary conditions (which are suppressed momentarily) where ui,
di, ri and µi represent the population density, diffusion rate, intrinsic growth rate and harvesting or
stocking coefficient of the ith competing species, respectively. N denotes the number of species in the
competition, if N = 1, the model (1.1) represents simple logistic growth model of a single species. Here,
K represents carrying capacity of the heterogeneous environment, fi the forcing, t the time, x ∈ Ω the
spatial variable, Ω the domain, and T the simulation end time. It is assumed that the harvesting rate
is proportional to the intrinsic growth rate in the model (1.1).

The difficultly in simulating equation (1.1) is that we need to solve a non-linearly coupled system of
partial differential equations at each time-step, where the intrinsic growth rates and carrying capacity all
depend on space and time. It is an open problem how to decouple the system in a stable way. A three-
species competition-diffusion model with constant intrinsic growth rate in a homogeneous environment
(K ≡ constant) without harvesting or stocking is given by Wong in [28]. The author presented one
first-order and another second-order decoupled time-stepping discrete schemes and their convergence
rates however only the first-order scheme in a finite element setting was analyzed, and no numerical
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experiments were given beyond the convergence rate verification. The optimal harvesting in controlling
species density in a two-species competition model with a heterogeneous environment is investigated in
[1], where a fully-discrete backward-Euler decoupled time-stepping algorithm is used without any anal-
ysis of the discrete algorithm. A Lotka–Volterra interactions model with no-flux boundary conditions in
the presence of prey-taxis and spatial diffusion is given in [2] and discussed the existence and uniqueness
of the weak solution. Kamrujjaman et al. studied the spatial-temporal effects for logistic and Gilpin-
Ayala growth function with starvation type diffusion for single species population with stocking [16, 30].
They studied the stability properties for the existence and extinction of species. Also, in the case of
space-dependent carrying capacity, they established the presence of optimal harvesting efforts. They
presented their outcomes analytically and computationally. The main interest focused on the analytical
approach instead of claiming any robust numerical algorithm.

1.1. Significance of the work. In this paper, we propose, analyze, and test two fully discrete
and decoupled linearized stable time-stepping algorithms of a non-linearly coupled system of reaction-
diffusion equations that describes an N -species competition model in a heterogeneous environment with
harvesting or stocking. We provide rigorous analysis of the existence and uniqueness of the solutions
of the algorithms together with the priori error estimates by proving their stability and convergence
theorems. We prove that the both algorithms are optimally accurate in time and space. The numerical
tests are presented showing their convergence rates on some known analytical test problems varying
number of species. The solution at each time-step can be computed simultaneously for each species
in the competition, which can reduce a huge computational cost when compared to coupled non-linear
algorithms. A series of numerical experiments are given that show the effect of exponentially varying
carrying capacity, non-stationary intrinsic growth rates, varying diffusion parameters, and harvesting
or stocking on the population density of the species in the competition.

To the best of our knowledge, the proposed efficient fully-discrete algorithms of the N -species
reaction-diffusion competition model in (1.1) with harvesting or stocking have not been investigated to
date. The proposed algorithms are expected to enable new tools for large-scale computing in population
dynamics.

The rest of the paper is organized as follows: In Section 2, we present some necessary notation
and preliminaries for a thorough analysis. We present two fully discrete decoupled schemes and analyze
them in Section 3. In Section 4, we perform several numerical experiments to support the theoretical
findings in Section 3. Finally, the conclusion and discussions of future research are given in Section 5.

2. Notation and preliminaries. Let Ω ⊂ R
d(d ∈ {1, 2, 3}) be a convex domain with boundary

∂Ω. For a given carrying capacity K : (0, T ]× Ω → R, we define

Kmin := inf
(t,x)∈(0,T ]×Ω

|K(t,x)|, (2.1)

and assume Kmin > 0. The usual L2(Ω) norm and inner product are denoted by ‖.‖ and (., .), respec-
tively. Similarly, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are ‖.‖Lp and ‖.‖Wk
p
, respectively for

k ∈ N, 1 ≤ p ≤ ∞. The Sobolev space W k
2 (Ω)

d is represented by Hk(Ω)d with norm ‖.‖k which are
Hilbert spaces.

For X being a normed function space in Ω, Lp(0, T ;X) is the space of all functions defined on
(0, T ]× Ω for which the following norm

‖u‖Lp(0,T ;X) =

(

∫ T

0

‖u‖pXdt

)
1

p

, p ∈ [1,∞)

is finite. For p = ∞, the usual modification is used in the definition of this space. We denote

‖u‖∞,∞ := ‖u‖
L∞

(

0,T ;L∞(Ω)d
).

The natural function spaces for our problem are

X : = H1
0 (Ω) =

{

v ∈ L2(Ω) : ∇v ∈ L2(Ω)d, v = 0 on ∂Ω
}

.

For an element f in the dual space of X , the norm is defined by

‖f‖−1 := sup
v∈X

(f, v)

‖∇v‖
.
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Recall the Poincaré inequality holds in X : There exists C depending only on Ω satisfying for all φ ∈ X ,

‖φ‖ ≤ C‖∇φ‖.

Multiplying both sides of (1.1) by vi ∈ X and integrating over Ω, we have the following continuous
weak form: For i = 1, 2, · · · , N

(

∂ui

∂t
, vi

)

+ di (∇ui,∇vi) = (1− µi)
(

ri(t,x)ui, vi
)

−





ri(t,x)ui

K(t,x)

N
∑

j=1

uj, vi



+ (fi, vi) . (2.2)

The conforming finite element space is denoted by Xh ⊂ X , and we assume a sufficiently regular
triangulation τh(Ω) for the inverse inequality to hold, where h is the maximum triangle diameter. We
have the following approximation properties typical of piecewise polynomials of degree k in Xh: [8, 20]

‖u− PL2

Xh
(u)‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω), (2.3)

‖∇(u− PL2

Xh
(u))‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω), (2.4)

where PL2

Xh
(u) is the L2 projection of u into Xh and | · |r denotes the Hr seminorm. Note that C > 0 is a

generic constant and changes in computation. The following lemma for the discrete Grönwall inequality
was given in [15].

Lemma 2.1. Let N denotes the set of all natural numbers and ∆t, D, an, bn, cn, dn be non-negative
numbers for n = 1, · · ·,M such that

aM +∆t

M
∑

n=1

bn ≤ ∆t

M−1
∑

n=1

dnan +∆t

M
∑

n=1

cn +D for M ∈ N,

then for all ∆t > 0,

aM +∆t
M
∑

n=1

bn ≤

(

∆t
M
∑

n=1

cn +D

)

exp

(

∆t
M−1
∑

n=1

dn

)

for M ∈ N.

3. Fully discrete scheme. In this section, we propose and analyze two fully discrete, decoupled,
and linearized time-stepping algorithms for approximating a solution of (1.1). The Decoupled Backward-
Euler (DBE) scheme is presented in Algorithm 1, which approximates the temporal derivative by first-
order backward-Euler formula and the non-linear term is linearized by the immediate previous time-step
solution. In Algorithm 2, we present Decoupled Backward Difference Formula 2 (DBDF-2) scheme,
which consists of second-order accurate time derivative approximation formula, and linearizes the non-
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linear term by second-order approximation of the unknown solution at the previous time-step.

Algorithm 1: DBE scheme

Given time-step ∆t > 0, end time T > 0, for i = 1, 2, · · · , N , initial conditions u0
i ∈ L2(Ω)d,

fi ∈ L∞
(

0, T ;H−1(Ω)d
)

, Kmin > 0, and ri ∈ L∞(0, T ;L∞(Ω)d). Set M = T/∆t and for

n = 0, 1, · · ·,M − 1, compute: Find un+1
i,h ∈ Xh satisfying, ∀vi,h ∈ Xh:

(

un+1
i,h − un

i,h

∆t
, vi,h

)

+ di

(

∇un+1
i,h ,∇vi,h

)

= (1− µi)
(

ri(t
n+1)un+1

i,h , vi,h

)

−





ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

un
j,h, vi,h



 +
(

fi(t
n+1), vi,h

)

. (3.1)

Algorithm 2: DBDF-2 scheme

Given time-step ∆t > 0, end time T > 0, for i = 1, 2, · · · , N , initial conditions
u0
i , u

1
i ∈ L2(Ω)d, fi ∈ L∞

(

0, T ;H−1(Ω)d
)

, Kmin > 0, and ri ∈ L∞(0, T ;L∞(Ω)d). Set

M = T/∆t and for n = 1, · · ·,M − 1, compute: Find un+1
i,h ∈ Xh satisfying, ∀vi,h ∈ Xh:

(

3un+1
i,h − 4un

i,h + un−1
i,h

2∆t
,vi,h

)

+ di

(

∇un+1
i,h ,∇vi,h

)

= (1− µi)
(

ri(t
n+1)un+1

i,h , vi,h

)

−





ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

(2un
j,h − un−1

j,h ), vi,h



 +
(

fi(t
n+1), vi,h

)

. (3.2)

These types of splitting algorithms are commonly used in magnetohydrodynamics [3, 14, 22].
Throughout the analysis of this paper, we will consider the following assumption:

Assumption 3.1. Let’s assume that there exists a constant C > 0 such that ‖un
i,h‖∞ ≤ C for

i = 1, 2, · · · , N .
We will prove the Assumption 3.1 holds true at the end of Section 3.2 in Lemma 3.5.

3.1. Stability analysis. In this section, we prove the stability theorems and well-posedness of
DBE and DBDF-2 schemes. For simplicity of our analysis, we define

αi := di − C‖ri‖∞,∞

(

|1− µi|+
1

Kmin

)

, (3.3)

for i = 1, 2, · · · , N .
Theorem 3.1. (Stability of DBE) For i = 1, 2, · · · , N , assume u0

i,h ∈ H1(Ω)d, fi ∈ L∞
(

0, T ;H−1(Ω)d
)

,

ri ∈ L∞(0, T ;L∞(Ω)d), Kmin > 0 and under the Assumption 3.1, if αi > 0, then for any ∆t > 0

‖uM
i,h‖

2 + 2αi∆t

M
∑

n=1

‖∇un
i,h‖

2 ≤ ‖u0
i,h‖

2 +
∆t

αi

M
∑

n=1

‖fi(t
n)‖−1. (3.4)

Proof. Taking vi,h = un+1
i,h in (3.1), and using the polarization identity

(b− a, b) =
1

2

(

‖b− a‖2 + ‖b‖2 − ‖a‖2
)

,

gives

1

2∆t

(

‖un+1
i,h − un

i,h‖
2 + ‖un+1

i,h ‖2 − ‖un
i,h‖

2
)

+ di‖∇un+1
i,h ‖2 = (1− µi)

(

ri(t
n+1)un+1

i,h , un+1
i,h

)

−





ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

un
j,h, u

n+1
i,h



+
(

fi(t
n+1), un+1

i,h

)

. (3.5)
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We apply Hölder’s inequality on the first two terms and Cauchy Schwarz’s inequality on the forcing
term on the right-hand-side of (3.5), we have

1

2∆t

(

‖un+1
i,h − un

i,h‖
2+‖un+1

i,h ‖2 − ‖un
i,h‖

2
)

+ di‖∇un+1
i,h ‖2 ≤ |1− µi|‖ri(t

n+1)‖∞‖un+1
i,h ‖2

+
∥

∥

∥

ri(t
n+1)

K(tn+1)

∥

∥

∥

∞

N
∑

J=1

‖un+1
i,h ‖2‖un

j,h‖∞ + ‖fi(t
n+1)‖−1‖∇un+1

i,h ‖. (3.6)

Using Poincaré inequality and the Assumption 3.1, we have

1

2∆t

(

‖un+1
i,h − un

i,h‖
2 + ‖un+1

i,h ‖2 − ‖un
i,h‖

2
)

+ di‖∇un+1
i,h ‖2 ≤ C|1− µi|‖ri‖

L∞

(

0,T ;L∞(Ω)d
)‖∇un+1

i,h ‖2

+
C‖ri‖

L∞

(

0,T ;L∞(Ω)d
)

inf
(t,x)∈(0,T ]×Ω

|K|
‖∇un+1

i,h ‖2 + ‖fi(t
n+1)‖−1‖∇un+1

i,h ‖. (3.7)

Grouping terms on the left-hand-side and using (3.3), and (2.1), yields

1

2∆t

(

‖un+1
i,h − un

i,h‖
2 + ‖un+1

i,h ‖2 − ‖un
i,h‖

2
)

+ αi‖∇un+1
i,h ‖2 ≤ ‖fi(t

n+1)‖−1‖∇un+1
i,h ‖. (3.8)

Assume αi > 0, use Young’s inequality, and hide term on left-hand-side to obtain

1

2∆t

(

‖un+1
i,h − un

i,h‖
2 + ‖un+1

i,h ‖2 − ‖un
i,h‖

2
)

+
αi

2
‖∇un+1

i,h ‖2 ≤
1

2αi
‖fi(t

n+1)‖−1. (3.9)

Now, multiply both sides by 2∆t, and sum over time steps from n = 0, 1, · · · ,M − 1, we have

‖uM
i,h‖

2 +

M−1
∑

n=0

‖un+1
i,h − u

n
i,h‖

2 + αi∆t

M
∑

n=1

‖∇un
i,h‖

2 ≤ ‖u0
i,h‖

2 +
∆t

αi

M−1
∑

n=0

‖fi(t
n+1)‖−1. (3.10)

Now, dropping non-negative terms from left-hand-side completes the proof.
Theorem 3.2. (Stability of DBDF-2) For i = 1, 2, · · · , N , assume u0

i,h, u
1
i,h ∈ L2(Ω)d, fi ∈

L∞
(

0, T ;H−1(Ω)d
)

, Kmin > 0, ri ∈ L∞(0, T ;L∞(Ω)d), and under the Assumption 3.1, if αi > 0, then
for any ∆t > 0

‖uM
i,h‖

2 + ‖2uM
i,h − uM−1

i,h ‖2 + 2αi∆t

M
∑

n=2

‖∇un
i,h‖

2 ≤ ‖u1
i,h‖

2 + ‖2u1
i,h − u0

i,h‖
2 +

2∆t

αi

M
∑

n=2

‖fi(t
n)‖−1.

(3.11)

Proof. Taking vi,h = un+1
i,h in (3.2) to obtain

(

3un+1
i,h − 4un

i,h + un−1
i,h

2∆t
,un+1

i,h

)

+ di‖∇un+1
i,h ‖2 = (1 − µi)

(

ri(t
n+1)un+1

i,h , un+1
i,h

)

−





ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

(2un
j,h − un−1

j,h ), un+1
i,h



+
(

fi(t
n+1), un+1

i,h

)

. (3.12)

Using the following identity

(3a− 4b+ c, a) =
a2 + (2a− b)2

2
−

b2 + (2b− c)2

2
+

(a− 2b+ c)2

2
, (3.13)

we write

1

4∆t

(

‖un+1
i,h ‖2 − ‖un

i,h‖
2 + ‖2un+1

i,h − un
i,h‖

2 − ‖2un
i,h − un−1

i,h ‖2 + ‖un+1
i,h − 2un

i,h + un−1
i,h ‖2

)

+di‖∇un+1
i,h ‖2 = (1 − µi)

(

ri(t
n+1)un+1

i,h , un+1
i,h

)

−





ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

(2un
j,h − un−1

j,h ), un+1
i,h





+
(

fi(t
n+1), un+1

i,h

)

. (3.14)



6 DECOUPLED ALGORITHMS FOR REACTION-DIFFUSION COMPETITION MODEL

We apply Hölder’s inequality on the first two terms and Cauchy Schwarz’s inequality on the forcing
term on the right-hand-side of (3.14), we have

1

4∆t

(

‖un+1
i,h ‖2 − ‖un

i,h‖
2 + ‖2un+1

i,h − un
i,h‖

2 − ‖2un
i,h − un−1

i,h ‖2 + ‖un+1
i,h − 2un

i,h + un−1
i,h ‖2

)

+di‖∇un+1
i,h ‖2 ≤ |1− µi|‖ri(t

n+1)‖∞‖un+1
i,h ‖2

+
∥

∥

∥

ri(t
n+1)

K(tn+1)

∥

∥

∥

∞

N
∑

J=1

‖un+1
i,h ‖2

(

2‖un
j,h‖∞ + ‖un−1

j,h ‖∞
)

+ ‖fi(t
n+1)‖−1‖∇un+1

i,h ‖. (3.15)

Using Poincaré inequality, the Assumption 3.1, and grouping terms on the left-hand-side to obtain

1

4∆t

(

‖un+1
i,h ‖2 − ‖un

i,h‖
2 + ‖2un+1

i,h − un
i,h‖

2 − ‖2un
i,h − un−1

i,h ‖2 + ‖un+1
i,h − 2un

i,h + un−1
i,h ‖2

)

+αi‖∇un+1
i,h ‖2 ≤ ‖fi(t

n+1)‖−1‖∇un+1
i,h ‖. (3.16)

Drop non-negative term from left-hand-side, assume αi > 0, use Young’s inequality, and hide term on
left-hand-side to obtain

1

4∆t

(

‖un+1
i,h ‖2 − ‖un

i,h‖
2 + ‖2un+1

i,h − un
i,h‖

2 − ‖2un
i,h − un−1

i,h ‖2
)

+
αi

2
‖∇un+1

i,h ‖2 ≤
1

2αi
‖fi(t

n+1)‖−1. (3.17)

Now, multiply both sides by 4∆t, and sum over time-steps from n = 1, · · · ,M − 1 finishes the proof.
Remark 3.1. The finite dimensional schemes Algorithm 1 and 2 are linear at each time-step and

the stability theorems provide their solutions are bounded continuously by the problem data, which is
sufficient for the well-posedness of the schemes. The linearity of the schemes provides the uniqueness
of the solution via their the stability theorem. Because of the finite dimensional and linearity features,
the uniqueness implies existence of the solution, therefore the solution to the Algorithm 1 and 2 exist
uniquely [14, 23].

3.2. Convergence analysis. In this section, we will provide apriori estimates of the errors in the
computed species density using the both DBE and DBDF-2 schemes.

Theorem 3.3. (Error estimate of DBE) Consider m = max{2, k+1}, and i = 1, 2, · · · , N , assume
ui solves (1.1) and satisfies

ui ∈ L∞
(

0, T ;Hm(Ω)d
)

, ui,t ∈ L∞
(

0, T ;L2(Ω)d
)

, ui,tt ∈ L∞
(

0, T ;L2(Ω)d
)

,

ri ∈ L∞
(

0, T ;L∞(Ω)d
)

, and Kmin > 0,

if αi > 0 then for ∆t > 0 the solution ui,h to the Algorithm 1 converges to the true solution with

N
∑

i=1

‖ui(T )− uM
i,h‖+

N
∑

i=1

{

αi∆t

M
∑

n=1

‖∇
(

ui(t
n)− un

i,h

)

‖2

}

1

2

≤ C
(

hk +∆t
)

. (3.18)

Proof. At first we build an error equation at the time level tn+1, the continuous variational formu-
lations can be written as ∀vi,h ∈ Xh
(

ui(t
n+1)− ui(t

n)

∆t
, vi,h

)

+ di
(

∇ui(t
n+1),∇vi,h

)

= (1 − µi)
(

ri(t
n+1)ui(t

n+1), vi,h
)

+
(

fi(t
n+1), vi,h

)

−





ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

uj(t
n+1), vi,h



+

(

ui(t
n+1)− ui(t

n)

∆t
− ui,t(t

n+1), vi,h

)

. (3.19)

Denote eni := ui(t
n+1)− un

i,h. Subtract (3.1) from (3.19) and then rearranging yields

(

en+1
i − eni

∆t
, vi,h

)

+ di
(

∇en+1
i ,∇vi,h

)

− (1− µi)
(

ri(t
n+1)en+1

i , vi,h
)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
en+1
i un

j,h, vi,h

)

= G(t, ui, vi,h), (3.20)
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where

G(t, ui, vi,h) =

(

ui(t
n+1)− ui(t

n)

∆t
− ui,t(t

n+1), vi,h

)

+





ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

{

un
j,h − uj(t

n+1)
}

, vi,h



 .

Now we decompose the errors as

eni : = ui(t
n)− un

i,h = (ui(t
n)− ũn

i )− (un
i,h − ũn

i ) := ηni − φn
i,h,

where ũn
i := PL2

Xh
(ui(t

n)) ∈ Xh is the L2 projections of uj(t
n) into Xh. Note that (ηni , vi,h) = 0 ∀vi,h ∈

Xh. Rewriting, we have for vi,h ∈ Xh

(

φn+1
i,h − φn

i,h

∆t
, vi,h

)

+ di

(

∇φn+1
i,h ,∇vi,h

)

− (1− µi)
(

ri(t
n+1)φn+1

i,h , vi,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h un

j,h, vi,h

)

= di
(

∇ηn+1
i ,∇vi,h

)

− (1 − µi)
(

ri(t
n+1)ηn+1

i , vi,h
)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i un

j,h, vi,h

)

−G(t, ui, vi,h). (3.21)

Choose vi,h = φn+1
i,h , and use the polarization identity in (3.21), to obtain

1

2∆t

(

‖φn+1
i,h − φn

i,h‖
2 + ‖φn+1

i,h ‖2 − ‖φn
i,h‖

2
)

+ di‖∇φn+1
i,h ‖2 − (1 − µi)

(

ri(t
n+1)φn+1

i,h , φn+1
i,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h un

j,h, φ
n+1
i,h

)

= di

(

∇ηn+1
i ,∇φn+1

i,h

)

− (1− µi)
(

ri(t
n+1)ηn+1

i , φn+1
i,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i un

j,h, φ
n+1
i,h

)

−G
(

t, ui, φ
n+1
i,h

)

. (3.22)

Now, we find the upper-bounds of terms in the above equation. Using Hölder’s, and Poincaré inequalities,
we have

(1 − µi)
(

ri(t
n+1)φn+1

i,h , φn+1
i,h

)

≤ |1− µi|‖ri(t
n+1)‖∞‖φn+1

i,h ‖2

≤ C|1− µi|‖ri‖∞,∞‖∇φn+1
i,h ‖2.

Next, using triangle, Hölder’s, and Poincaré inequalities together with the Assumption 3.1, we have

−

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h un

j,h, φ
n+1
i,h

)

≤

N
∑

j=1

‖ri(t
n+1)‖∞

inf
Ω

‖K(tn+1)‖

∣

∣

∣

(

φn+1
i,h un

j,h, φ
n+1
i,h

) ∣

∣

∣

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖un

j,h‖∞‖φn+1
i,h ‖2

≤
C‖ri‖∞,∞

Kmin
‖∇φn+1

i,h ‖2.

With the assumption αi > 0, use Cauchy-Schwarz, and Young’s inequalities, to obtain

di

(

∇ηn+1
i ,∇φn+1

i,h

)

≤ di‖∇ηn+1
i ‖‖∇φn+1

i,h ‖ ≤
αi

10
‖∇φn+1

i,h ‖2 +
5d2i
2αi

‖∇ηn+1
i ‖2.
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Using Hölder’s, Poincaré, and Young’s inequalities, we have

(1 − µi)
(

ri(t
n+1)ηn+1

i , φn+1
i,h

)

≤ |1− µi|‖ri(t
n+1)‖∞‖ηn+1

i ‖‖φn+1
i,h ‖

≤ C|1 − µi|‖ri‖∞,∞‖ηn+1
i ‖‖∇φn+1

i,h ‖

≤
αi

10
‖∇φn+1

i,h ‖2 +
C(1− µi)

2‖ri‖
2
∞,∞

αi
‖ηn+1

i ‖2,

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i un

j,h, φ
n+1
i,h

)

≤

N
∑

j=1

‖ri(t
n+1)‖∞

inf
Ω

‖K(tn+1)‖

∣

∣

∣

(

ηn+1
i un

j,h, φ
n+1
i,h

) ∣

∣

∣

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖ηn+1

i ‖‖un
j,h‖∞‖‖φn+1

i,h ‖

≤
C‖ri‖∞,∞

Kmin
‖ηn+1

i ‖‖∇φn+1
i,h ‖

≤
αi

10
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

‖ηn+1
i ‖2.

Now we want to find the upper-bound of

G(t, ui, φ
n+1
i,h ) =

(

ui(t
n+1)− ui(t

n)

∆t
− ui,t(t

n+1), φn+1
i,h

)

+





ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

{

un
j,h − uj(t

n+1)
}

, φn+1
i,h



 . (3.23)

For some t∗ ∈ [tn, tn+1], we use Taylor’s series expansion, Poincaré, Cauchy-Schwarz, and Young’s
inequalities to obtain the following bound for the first term on the right-hand-side of (3.23)

(

ui(t
n+1)− ui(t

n)

∆t
− ui,t(t

n+1), φn+1
i,h

)

=
∆t

2

(

ui,tt(t
∗), φn+1

i,h

)

≤
C∆t

2

(

ui,tt(t
∗),∇φn+1

i,h

)

≤
C∆t

2
‖ui,tt(t

∗)‖‖∇φn+1
i,h ‖

≤
αi

10
‖∇φn+1

i,h ‖2 +
C(∆t)2

αi
‖ui,tt(t

∗)‖2.

We can find the upper-bound of the last term on the right-hand-side of (3.23) using Taylor’s series
expansion, Poincaré, Hölder’s, triangle, and Young’s inequalities together with the regularity assumption
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as
(

ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

{

un
j,h − uj(t

n+1)
}

, φn+1
i,h

)

≤
C‖ri(t

n+1)‖∞
inf
Ω

‖K(tn+1)‖

N
∑

j=1

(

|ui(t
n+1)

{

un
j,h − uj(t

n+1)
}

φn+1
i,h |

)

≤
C‖ri‖∞,∞

Kmin
‖ui(t

n+1)‖∞

N
∑

j=1

‖un
j,h − uj(t

n+1)‖‖∇φn+1
i,h ‖

≤

N
∑

j=1

C‖ri‖∞,∞

Kmin
‖un

j,h − uj(t
n+1)‖‖∇φn+1

i,h ‖

≤

N
∑

j=1

(

αi

10N
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

‖un
j,h − uj(t

n+1)‖2

)

≤
αi

10
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

N
∑

j=1

(

‖un
j,h − uj(t

n)‖2 + ‖uj(t
n)− uj(t

n+1)‖2
)

≤
αi

10
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

N
∑

j=1

(

2‖ηnj ‖
2 + 2‖φn

j,h‖
2 + (∆t)2‖uj,t(s

∗)‖2
)

≤
αi

10
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

(

h2k+2 + (∆t)2
)

+
C‖ri‖

2
∞,∞

αiK2
min

N
∑

j=1

‖φn
j,h‖

2,

with s∗ ∈ [tn, tn+1]. Thus, we have

|G(t, ui, φ
n+1
i,h )| ≤

αi

5
‖∇φn+1

i,h ‖2 + C
(

h2k+2 + (∆t)2
)

+ C

N
∑

j=1

‖φn
j,h‖

2.

Now, using the above bounds, we can rewrite (3.22) as

1

2∆t

(

‖φn+1
i,h − φn

i,h‖
2 + ‖φn+1

i,h ‖2 − ‖φn
i,h‖

2
)

+
αi

2
‖∇φn+1

i,h ‖2 ≤
5d2i
2αi

‖∇ηn+1
i ‖2 + C

N
∑

j=1

‖φn
j,h‖

2

+
C(1− µi)

2‖ri(t
n+1)‖2

∞

αi
‖ηn+1

i ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

‖ηn+1
i ‖2 + C

(

h2k+2 + (∆t)2
)

. (3.24)

Using the regularity assumption again, we obtain

1

2∆t

(

‖φn+1
i,h − φn

i,h‖
2 + ‖φn+1

i,h ‖2 − ‖φn
i,h‖

2
)

+
αi

2
‖∇φn+1

i,h ‖2 ≤ C
(

h2k + (∆t)2
)

+ C

N
∑

j=1

‖φn
j,h‖

2. (3.25)

Dropping non-negative term from left-hand-side, multiplying both sides by 2∆t, use ‖φ0
i,h‖ = 0, ∆tM =

T , and summing over time-steps n = 0, 1, · · · ,M − 1 to find

‖φM
i,h‖

2 + αi∆t

M
∑

n=1

‖∇φn
i,h‖

2 ≤ ∆t

M−1
∑

n=1

C





N
∑

j=1

‖φn
j,h‖

2



+ C
(

h2k + (∆t)2
)

. (3.26)

Sum over i = 1, 2, · · · , N , we have

N
∑

i=1

‖φM
i,h‖

2 +∆t

M
∑

n=1

(

N
∑

i=1

αi‖∇φn
i,h‖

2

)

≤ ∆t

M−1
∑

n=1

C

(

N
∑

i=1

‖φn
i,h‖

2

)

+ C
(

h2k + (∆t)2
)

. (3.27)
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Applying the discrete Grönwall Lemma 2.1, we have

N
∑

i=1

‖φM
i,h‖

2 +∆t

M
∑

n=1

(

N
∑

i=1

αi‖∇φn
i,h‖

2

)

≤ C
(

h2k + (∆t)2
)

, (3.28)

which gives

‖φM
i,h‖

2 + αi∆t

M
∑

n=1

‖∇φn
i,h‖

2 ≤ C
(

h2k + (∆t)2
)

for i = 1, 2, · · · , N. (3.29)

Use of triangle and Young’s inequalities allows us to write

‖eMi ‖2 + αi∆t

M
∑

n=1

‖∇eni ‖
2 ≤ 2

(

‖φM
i,h‖

2 + αi∆t

M
∑

n=1

‖∇φn
i,h‖

2 + ‖ηMi ‖2 + αi∆t

M
∑

n=1

‖∇ηni ‖
2

)

. (3.30)

Using regularity assumptions and bound in (3.29), we have

‖ui(T )− uM
i,h‖

2 + αi∆t

M
∑

n=1

‖∇
(

ui(t
n)− un

i,h

)

‖2 ≤ C
(

h2k + (∆t)2
)

for i = 1, 2, · · · , N. (3.31)

Now, summing over i = 1, 2, · · · , N completes the proof.
Theorem 3.4. (Error estimate of DBDF-2) For i = 1, 2, · · · , N , assume ui solves (1.1) and

satisfies

ui ∈ L∞
(

0, T ;Hk+1(Ω)d
)

,ui,tt ∈ L∞
(

0, T ;L2(Ω)d
)

, ui,ttt ∈ L∞
(

0, T ;L2(Ω)d
)

,

ri ∈ L∞
(

0, T ;L∞(Ω)d
)

, and Kmin > 0,

if αi > 0 then for ∆t > 0 the solution ui,h to the Algorithm 2 converges to the true solution with

‖ui(T )− uM
i,h‖+

{

αi∆t

M
∑

n=2

‖∇(ui(t
n)− un

i,h)‖
2
}1/2

≤ C(hk +∆t2). (3.32)

Proof. At first we build an error equation at the time level tn+1, the continuous variational formu-
lations can be written as ∀vi,h ∈ Xh

(

3ui(t
n+1)− 4ui(t

n) + ui(t
n−1)

2∆t
, vi,h

)

+ di
(

∇ui(t
n+1),∇vi,h

)

= (1− µi)
(

ri(t
n+1)ui(t

n+1), vi,h
)

−





ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

uj(t
n+1), vi,h



+

(

3ui(t
n+1)− 4ui(t

n) + ui(t
n−1)

2∆t
− ui,t(t

n+1), vi,h

)

+
(

fi(t
n+1), vi,h

)

. (3.33)

Subtract (3.2) from (3.33) and then rearranging yields
(

3en+1
i − 4eni + en−1

i

2∆t
, vi,h

)

+ di
(

∇en+1
i ,∇vi,h

)

− (1 − µi)
(

ri(t
n+1)en+1

i , vi,h
)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
en+1
i (2un

j,h − un−1
j,h ), vi,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2enj − en−1
j ), vi,h

)

= G(t, ui, vi,h), (3.34)

where

G(t, ui, vi,h) =

(

3ui(t
n+1)− 4ui(t

n) + ui(t
n−1)

2∆t
− ui,t(t

n+1), vi,h

)

−





ri(t
n+1)ui(t

n+1)

K(tn+1)

N
∑

j=1

{

uj(t
n+1)− 2uj(t

n) + uj(t
n−1)

}

, vi,h



 .
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Now we decompose the errors as

eni : = ui(t
n)− un

i,h = (ui(t
n)− ũn

i )− (un
i,h − ũn

i ) := ηni − φn
i,h,

where ũn
i := PL2

Xh
(ui(t

n)) ∈ Xh is the L2 projections of uj(t
n) into Xh. Note that (ηni , vi,h) = 0 ∀vi,h ∈

Xh. Rewriting, we have for vi,h ∈ Xh

(

3φn+1
i,h − 4φn

i,h + φn−1
i,h

2∆t
, vi,h

)

+ di

(

∇φn+1
i,h ,∇vi,h

)

− (1− µi)
(

ri(t
n+1)φn+1

i,h , vi,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), vi,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ), vi,h

)

= di
(

∇ηn+1
i ,∇vi,h

)

− (1− µi)
(

ri(t
n+1)ηn+1

i , vi,h
)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i (2un

j,h − un−1
j,h ), vi,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2ηnj − ηn−1
j ), vi,h

)

−G(t, ui, vi,h). (3.35)

Choose vi,h = φn+1
i,h , and use the identity in (3.13), to obtain

1

4∆t

(

‖φn+1
i,h ‖2 − ‖φn

i,h‖
2 + ‖2φn+1

i,h − φn
i,h‖

2 − ‖2φn
i,h − φn−1

i,h ‖2 + ‖φn+1
i,h − 2φn

i,h + φn−1
i,h ‖2

)

+ di‖∇φn+1
i,h ‖2 − (1− µi)

(

ri(t
n+1)φn+1

i,h , φn+1
i,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), φn+1

i,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ), φn+1
i,h

)

= di

(

∇ηn+1
i ,∇φn+1

i,h

)

− (1− µi)
(

ri(t
n+1)ηn+1

i , φn+1
i,h

)

+

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i (2un

j,h − un−1
j,h ), φn+1

i,h

)

+
N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2ηnj − ηn−1
j ), φn+1

i,h

)

−G
(

t, ui, φ
n+1
i,h

)

. (3.36)

Now, we find the upper-bounds of terms in (3.36). Using Hölder’s, and Poincaré inequalities, we have

(1− µi)
(

ri(t
n+1)φn+1

i,h , φn+1
i,h

)

≤ |1− µi|‖ri(t
n+1)‖∞‖φn+1

i,h ‖2 ≤ C|1− µi|‖ri‖∞,∞‖∇φn+1
i,h ‖2.

Next, using triangle, Hölder’s, and Poincaré inequalities together with the Assumption 3.1, we have

−
N
∑

j=1

(

ri(t
n+1)

K(tn+1)
φn+1
i,h (2un

j,h − un−1
j,h ), φn+1

i,h

)

≤
N
∑

j=1

∥

∥

∥

ri(t
n+1)

K(tn+1)

∥

∥

∥

∞

‖2un
j,h − un−1

j,h ‖∞‖φn+1
i,h ‖2

≤
C‖ri‖∞,∞

Kmin
‖∇φn+1

i,h ‖2.
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With the assumption αi > 0, use Hölder’s inequality, Sobolev embedding theorem, Poincaré and Young’s
inequalities, and regularity assumption, we obtain

−
N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2φn
j,h − φn−1

j,h ),φn+1
i,h

)

≤
N
∑

j=1

‖ri‖∞,∞

Kmin
‖ui(t

n+1)‖L6‖φn+1
i,h ‖L3‖2φn

j,h − φn−1
j,h ‖

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖ui(t

n+1)‖H1‖φn+1
i,h ‖

1

2 ‖∇φn+1
i,h ‖

1

2 ‖2φn
j,h − φn−1

j,h ‖

≤
N
∑

j=1

(

αi

14N
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

‖2φn
j,h − φn−1

j,h ‖2

)

≤
αi

14
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

N
∑

j=1

‖2φn
j,h − φn−1

j,h ‖2.

Use Cauchy-Schwarz, and Young’s inequalities, to obtain

di

(

∇ηn+1
i ,∇φn+1

i,h

)

≤ di‖∇ηn+1
i ‖‖∇φn+1

i,h ‖ ≤
αi

14
‖∇φn+1

i,h ‖2 +
7d2i
2αi

‖∇ηn+1
i ‖2.

Using Hölder’s, Sobolev embedding theorem, Poincaré, and Young’s inequalities, we have

(1− µi)
(

ri(t
n+1)ηn+1

i , φn+1
i,h

)

≤ |1− µi|‖ri(t
n+1)‖∞‖ηn+1

i ‖‖∇φn+1
i,h ‖

≤
αi

14
‖∇φn+1

i,h ‖2 +
7(1− µi)

2‖ri‖
2
∞,∞

2αi
‖ηn+1

i ‖2.

Using Hölder’s inequality, and triangle inequality, Assumption 3.1, Poincaré, and Young’s inequalities,
we have

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ηn+1
i

(

2un
j,h − un−1

j,h

)

, φn+1
i,h

)

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖ηn+1

i ‖‖2un
j,h − un−1

j,h ‖∞‖φn+1
i,h ‖

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖ηn+1

i ‖
(

2‖un
j,h‖∞ + ‖un−1

j,h ‖∞

)

‖∇φn+1
i,h ‖

≤
C‖ri‖∞,∞

Kmin
‖ηn+1

i ‖‖∇φn+1
i,h ‖

≤
αi

14
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

αiK2
min

‖ηn+1
i ‖2.

Using Hölder’s inequality, Sobolev embedding theorem,, Poincaré inequality, regularity assumption, and
Young’s inequality, we have

N
∑

j=1

(

ri(t
n+1)

K(tn+1)
ui(t

n+1)(2ηnj − ηn−1
j ), φn+1

i,h

)

≤

N
∑

j=1

‖ri‖∞,∞

Kmin
‖ui(t

n+1)‖L6‖2ηnj − ηn−1
j ‖‖φn+1

i,h ‖L3

≤
N
∑

j=1

‖ri‖∞,∞

Kmin
‖ui(t

n+1)‖H1‖2ηnj − ηn−1
j ‖‖φn+1

i,h ‖1/2‖∇φn+1
i,h ‖1/2

≤

N
∑

j=1

C‖ri‖∞,∞

Kmin
‖ui‖

L∞

(

0,T ;H1(Ω)d
)‖2ηnj − ηn−1

j ‖‖∇φn+1
i,h ‖

≤
αi

14
‖∇φn+1

i,h ‖2 +
C‖ri‖

2
∞,∞

K2
min

N
∑

j=1

‖2ηnj − ηn−1
j ‖2.



M. MOHEBUJJAMAN, C. BUENROSTRO, M. KAMRUJJAMAN, AND T. KHAN 13

Using Taylor’s series, Cauchy-Schwarz and Young’s inequalities the last term is evaluated as

∣

∣

∣−G
(

t, ui, φ
n+1
i,h

) ∣

∣

∣ ≤ ∆t2
C‖ri‖∞,∞

Kmin
‖ui‖

L∞

(

0,T ;H1(Ω)d
)

N
∑

j=1

‖uj,tt‖
L∞

(

0,T ;L2(Ω)d
)‖∇φn+1

i,h ‖

+ C∆t2‖ui,ttt‖
L∞

(

0,T ;L2(Ω)d
)‖∇φn+1

i,h ‖

≤
αi

7
‖∇φn+1

i,h ‖2 +
C∆t4‖ri‖

2
∞,∞

αiK2
min

.

Using these estimates in (3.36) and reducing yields

1

4∆t

(

‖φn+1
i,h ‖2 − ‖φn

i,h‖
2 + ‖2φn+1

i,h − φn
i,h‖

2 − ‖2φn
i,h − φn−1

i,h ‖2 + ‖φn+1
i,h − 2φn

i,h + φn−1
i,h ‖2

)

+
αi

2
‖∇φn+1

i,h ‖2 ≤
C‖ri‖

2
∞,∞

αiK2
min

N
∑

j=1

‖2φn
j,h − φn−1

j,h ‖2 +
7d2i
2αi

‖∇ηn+1
i ‖2 +

7(1− µi)
2‖ri‖

2
∞,∞

2αi
‖ηn+1

i ‖2

+
C‖ri‖

2
∞,∞

αiK2
min

‖ηn+1
i ‖2 +

C‖ri‖
2
∞,∞

K2
min

N
∑

j=1

‖2ηnj − ηn−1
j ‖2 +

C∆t4‖ri‖
2
∞,∞

αiK2
min

≤ C

N
∑

j=1

‖2φn
j,h − φn−1

j,h ‖2 + Ch2k + Ch2k+2 + C∆t4. (3.37)

Dropping non-negative term from left-hand-side, multiplying both sides by 4∆t, using ‖φ0
i,h‖ = ‖φ1

i,h‖ =
0, and summing over the time-steps n = 1, 2, · · · ,M − 1, we have

‖φM
i,h‖

2 + ‖2φM
i,h − φM−1

i,h ‖2 + 2αi∆t

M
∑

n=2

‖∇φn
i,h‖

2

≤ C∆t

M−1
∑

n=1

N
∑

j=1

‖2φn
j,h − φn−1

j,h ‖2 + C(h2k +∆t4). (3.38)

Sum over i = 1, 2, · · · , N , drop non-negative terms from left-hand-side, and reducing, gives

N
∑

i=1

‖φM
i,h‖

2 + 2αi∆t

M
∑

n=2

N
∑

i=1

‖∇φn
i,h‖

2 ≤ C∆t

M−1
∑

n=2

N
∑

i=1

‖φn
i,h‖

2 + C(h2k +∆t4).

Applying the discrete Grönwall Lemma 2.1, we have

N
∑

i=1

‖φM
i,h‖

2 + 2αi∆t

M
∑

n=2

N
∑

i=1

‖∇φn
i,h‖

2 ≤ C(h2k +∆t4), (3.39)

for i = 1, 2, · · · , N , which gives

‖φM
i,h‖

2 + 2αi∆t

M
∑

n=2

‖∇φn
i,h‖

2 ≤ C(h2k +∆t4). (3.40)

Use of triangle and Young’s inequalities, and regularity assumption completes the proof.

Now we proof the assumption ‖un
i,h‖∞ ≤ C that was used in stability Theorems 3.1-3.2 and in

convergence Theorems 3.3-3.4 by principle of mathematical induction. The strategy of this proof is
adopted from the idea of Wong in the analysis of three-species competition model [28].

Lemma 3.5. ‖un
i,h‖∞ ≤ C, ∀n ∈ N.

Proof. Basic step: u0
i,h = Ih(ui(0,x)), where Ih is an appropriate interpolation operator. If ui(0,x)

is sufficiently regular for x ∈ Ω, we have ‖u0
i,h‖∞ ≤ C, for some constant C > 0.
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Inductive step: Assume for some L ∈ N, ‖uL
i,h‖∞ ≤ C holds true. Then we have

‖uL+1
i,h ‖∞ ≤ Ch−

3

2 ‖uL+1
i,h ‖ (Agmon’s inequality [25] and discrete inverse inequality)

= Ch−
3

2 ‖uL+1
i,h − ui(t

L+1) + ui(t
L+1)‖

≤ Ch−
3

2

(

‖uL+1
i,h − ui(t

L+1)‖+ ‖ui(t
L+1)‖

)

(Triangle inequality)

≤ Ch−
3

2

(

‖φL+1
i,h ‖+ ‖ηL+1

i ‖+ ‖ui(t
L+1)‖

)

(Triangle inequality).

Using inductive hypothesis in (3.29), and regularity assumption, the above bound can be written as

‖uL+1
i,h ‖∞ ≤ C

(

hk− 3

2 + h−
3

2∆t+ hk− 1

2 + h−
3

2

)

. (3.41)

Therefore, ‖uL+1
i,h ‖∞ ≤ C holds also true. Hence, by the principle of mathematical induction, ‖un

i,h‖∞ ≤
C holds true ∀n ∈ N ∪ {0}.

4. Numerical tests. In this section, we perform several numerical experiments to support theo-
retical results and to explain the harvesting or stocking effect on population density from the simulated
outcomes. In all the experiments, we consider a domain Ω = (0, 1)× (0, 1); we also use P2 element for
the finite element computation, and structured triangular meshes. We define the average energy density
corresponding to a species density ui at time t = tn as

ūn
i =

1

|Ω|

∫

τh

ui(t
n,x)dx.

The experiment that involves the second-order accurate DBDF-2 scheme uses the first-order accurate
DBE scheme at the first time-step to generate the required number of initial conditions.

In the first experiment, we numerically verified the predicted convergence rates. We observed the
evolution of population density with an exponentially varying carrying capacity in the second experi-
ment. In the third experiment, we observed the effect of diffusion parameters on population density.
The effect of harvesting and stocking on the evolution of species density is presented in the fourth and
fifth experiments, respectively. The numerical experiments were done in the finite element platform
Freefem++ [13] using the direct solver UMFPACK [12].

Test Description Carrying
Capacity

Growth
Rate

Additional Parameters

1 Verify the convergence
rates

Periodic Periodic

N = 2, µ1 = 0.001, µ2 = 0.0006,
d1 = d2 = 1
N = 3, µ1 = 0.001, µ2 = 0.0006,
µ3 = 0.0, d1 = d2 = d3 = 1

Effect on population density of varying
2 spatio-temporal car-

rying capacity
Gaussian-
periodic

Constant N = 3, µ1 = 0.0009, µ2 = 0.0015,
µ3 = 0.0027, d1 = d2 = d3 = 1

3 diffusion speed Gaussian-
periodic

Periodic N = 3, µ1 = µ2 = µ3 = 0.0

4 harvesting parameters Gaussian-
periodic

Periodic
N = 3, d1 = 0.1, d2 = 0.02,
d3 = 0.01

5 stocking parameters Gaussian-
periodic

Periodic

Table 4.1: A brief summary of the numerical experiments where µi is the harvesting coefficient and di
is the diffusion speed of the ith competing species.

4.1. Test 1: Convergence rate verification. We define the global error ei := ui − ui,h and
its L2-H1 norm as ‖ei‖2,1 := ‖ei‖

L2

(

0,T ;H1(Ω)d
). We have seen from the convergence analysis that the
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predicted error of the Algorithm 1 and 2 and for P2 finite element are

‖ui − ui,h‖2,1 ≤ C(h2 +∆t), and (4.1)

‖ui − ui,h‖2,1 ≤ C(h2 +∆t2), i = 1, 2, · · · , N, (4.2)

respectively. To verify the above convergence rates, we plugin the following carrying capacity and
intrinsic growth rates

K(t,x) = ((2.1 + cos(x) cos(y))(1.1 + cos(t)), and ri(t,x) = (1.5 + sin(x) sin(y))(1.2 + sin(t)),

respectively, in

fi(t,x) =
∂ui

∂t
− di∆ui − riui



1− µi −
1

K

N
∑

j=1

uj



 , (4.3)

to obtain the forcing fi(t,x), for i = 1, 2, · · · , N . For this experiment, we consider known analytical
solution as the Dirichlet boundary condition on the boundary of the unit square, the diffusion coefficients
are di = 1, for i = 1, 2, · · · , N . To observe the spatial convergence rates, we keep fixed, a small simulation
end time T , successively reduce mesh size h and run the simulations, and record the errors. On the
other hand, to exhibit the temporal convergence, we use a fixed small mesh size h, successively refined
time-step size ∆t and run the simulation, and record the errors.

4.1.1. Two-species competition model. In this case, we haveN = 2, and consider the following
analytical solution

u1(t,x) =
(

1.1 + sin(t)
)

(2.0 + sin(y)),

u2(t,x) =
(

2.0 + cos(t)
)(

1.1 + cos(x)
)

,

together with the harvesting coefficients µ1 = 0.001, and µ2 = 0.0006. To compute the spatial errors
and convergence rates, we consider end time T = 0.0001, and time-step size ∆t = T/8. The spatial
errors and convergence rates for both the DBE and DBDF-2 schemes are given in Table 4.2. We observe
second order spatial convergence in both species from both the algorithms, which are consistent with
(4.1) and (4.2), since we have used P2 element. For the temporal convergence rate, we keep fixed T = 1,
and h = 1/64, and present the temporal errors and convergence rates in Table 4.3. It is observed the first
order temporal convergence rate from the DBE scheme, which is optimal rate for the backward-Euler
time-stepping algorithm, and is an excellent agreement with the error estimate in (4.1). Recall that we
used the backward-Euler formula to approximate the time derivative. Whereas, we observe a second
order temporal convergence rate for the DBDF-2 scheme, which is also optimal as we approximate the
temporal derivative by the BDF-2 formula, and is consistent with (4.2).

Errors and convergence rates (fixed T = 0.0001, ∆t = T/8)

DBE scheme DBDF-2 scheme

h ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e1‖2,1 rate ‖e2‖2,1 rate

1/4 2.1868e-05 3.6307e-05 2.0456e-05 3.3962e-05

1/8 5.4640e-06 2.00 9.1106e-06 1.99 5.1111e-06 2.00 8.5221e-06 1.99

1/16 1.3658e-06 2.00 2.2798e-06 2.00 1.2776e-06 2.00 2.1325e-06 2.00

1/32 3.4144e-07 2.00 5.7009e-07 2.00 3.1939e-07 2.00 5.3327e-07 2.00

1/64 8.5360e-08 2.00 1.4253e-07 2.00 7.9848e-08 2.00 1.3333e-07 2.00

Table 4.2: Two-species model: Spatial errors and convergence rates with µ1 = 0.001, and µ2 = 0.0006.

4.1.2. Three-species competition model. In this case, we have N = 3, and consider the fol-
lowing manufactured analytical solution

u1(t,x) =
(

1.1 + sin(t)
)

(2.0 + sin(y)),

u2(t,x) =
(

2.0 + cos(t)
)(

1.1 + cos(x)
)

,

u3(t,x) =
(

1.1 + sin(t)
)(

1.1 + cos(y)
)

,
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Errors and convergence rates (fixed T = 1, h = 1/64)

DBE scheme DBDF-2 scheme

∆t ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e1‖2,1 rate ‖e2‖2,1 rate
T

4
4.9154e-02 6.5044e-02 2.3061e-01 3.3998e-01

T

8
2.3436e-02 1.07 3.2022e-02 1.02 5.1569e-02 2.16 8.3617e-02 2.02

T

16
1.1468e-02 1.03 1.5931e-02 1.01 1.2773e-02 2.01 2.1564e-02 1.96

T

32
5.6853e-03 1.01 7.9691e-03 1.00 3.2627e-03 1.97 5.6131e-03 1.94

T

64
2.8339e-03 1.00 3.9917e-03 1.00 8.3346e-04 1.97 1.4477e-03 1.96

T

128
1.4155e-03 1.00 1.9989e-03 1.00 2.1203e-04 1.97 3.6976e-04 1.97

Table 4.3: Two-species model: Temporal errors and convergence rates with µ1 = 0.001, and µ2 = 0.0006.

together with the harvesting coefficients µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0. We then compute
the solution using the both Algorithm 1 and 2 and compare them with the manufactured analytical
solution.

DBE scheme Errors and convergence rates (fixed T = 0.0001, ∆t = T/8)

h ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e3‖2,1 rate
1

4
2.1868e-05 3.6307e-05 1.3313e-05

1

8
5.4640e-06 2.00 9.1106e-06 1.99 3.3407e-06 1.99

1

16
1.3658e-06 2.00 2.2798e-06 2.00 8.3597e-07 2.00

1

32
3.4144e-07 2.00 5.7009e-07 2.00 2.0904e-07 2.00

1

64
8.5364e-08 2.00 1.4254e-07 2.00 5.2268e-08 2.00

Table 4.4: Three-species model: Spatial errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBDF-2 scheme Errors and convergence rates (fixed T = 0.001, ∆t = T/16)

h ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e3‖2,1 rate
1

4
6.6986e-05 1.1115e-04 4.0774e-05

1

8
1.6738e-05 2.00 2.7893e-05 1.99 1.0233e-05 1.99

1

16
4.1839e-06 2.00 6.9804e-06 2.00 2.5608e-06 2.00

1

32
1.0460e-06 2.00 1.7457e-06 2.00 6.4041e-07 2.00

1

64
2.6174e-07 2.00 4.3698e-07 2.00 1.6034e-07 2.00

Table 4.5: Three-species model: Spatial errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

DBE scheme Temporal convergence (fixed h = 1/64)

∆t ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e3‖2,1 rate
T

4
2.1742e-01 3.1934e-01 1.6932e-01

T

8
9.9975e-02 1.12 1.5053e-01 1.09 7.7848e-02 1.12

T

16
4.8267e-02 1.05 7.3538e-02 1.03 3.7585e-02 1.05

T

32
2.3770e-02 1.02 3.6446e-02 1.01 1.8510e-02 1.02

T

64
1.1805e-02 1.01 1.8163e-02 1.00 9.1929e-03 1.01

T

128
5.8844e-03 1.00 9.0705e-03 1.00 4.5823e-03 1.00

Table 4.6: Three-species model: Temporal errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

The spatial errors and convergence rates for the Algorithm 1, and Algorithm 2 are given in Table
4.4 in Table 4.5, respectively. We observe second order spatial convergence in both algorithms for all
species, which is consistent with both (4.1) and (4.2). The temporal errors and convergence rates for
the Algorithm 1, and Algorithm 2 are presented in Table 4.6 and in Table 4.7, respectively. From Table
4.6 we see, the DBE scheme exhibits first order temporal convergence rate, which is optimal rate as a
backward-Euler time-stepping algorithm, and is an excellent agreement with the error estimate in (4.1).
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DBDF-2 scheme Temporal convergence (fixed h = 1/128)

∆t ‖e1‖2,1 rate ‖e2‖2,1 rate ‖e3‖2,1 rate
T

4
4.2702e-01 6.4799e-01 3.3294e-01

T

8
8.8706e-02 2.27 1.5471e-01 2.07 6.8771e-02 2.28

T

16
2.1412e-02 2.05 3.9362e-02 1.97 1.6557e-01 2.05

T

32
5.4327e-03 1.98 1.0206e-02 1.95 4.1909e-03 1.98

T

64
1.3844e-03 1.97 2.6272e-03 1.96 1.0655e-03 1.98

T

128
3.5123e-04 1.98 6.6970e-04 1.97 2.6976e-04 1.98

Table 4.7: Three-species model: Temporal errors and convergence rates with µ1 = 0.001, µ2 = 0.0006, and µ3 = 0.0.

On the other hand, DBDF-2 scheme displays second order temporal convergence for all three species
in Table 4.7, which is also optimal for the second order time-stepping algorithm and is consistent with
the error estimate in (4.2). Therefore, for both two and three species, we observe optimal convergence
rates.

In all the experiments henceforward, we consider the carrying capacity

K(t,x) ≡
(

1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2
)(

1.0 + 0.3 cos(t)
)

,

initial population density u0
i = 1.6, forcing functions fi ≡ 0 for i = 1, 2, 3, and solve (1.1) using

the DBDF-2 scheme given in Algorithm 2 with time-step size ∆t = 0.1 along with no-flux boundary
condition. The no-flux boundary condition ensures the competing species live in a closed environment.

4.2. Test 2: Evolution of population density with exponentially varying carrying ca-
pacity. For this experiment, we consider constant intrinsic growth rates ri ≡ 1, diffusion rates di = 1,
for i = 1, 2, 3, and the harvesting coefficients µ1 = 0.0009, µ2 = 0.0015, and µ3 = 0.0027. When carrying
capacity K is time periodic, as it is realistic to assume where there is seasonal variation, we display
the space averaged profile as a function of time to show its approach to a periodic state, and display
the instantaneous contour plot of u1, u2, and u3 for t = T , where T is chosen large enough for time
periodicity of ui, (i = 1, 2, 3) to emerge.

In Figures 4.1, the average density of each species versus time is plotted for time t = 0 to 80, and
the population density contour plot of each of the species at time t = 80. From the average density plot,
we observe periodic population densities for all species, where the density of u3 is decreasing because of
its higher harvesting coefficient (Figure 4.1(a)). It is predicted that the species u3 will die out if time is
too large, and we consider the extinction scenario in a later experiment.

From the contour plots, it is observed that the highest population density is at the point (0.5, 0.5)
and there is a coexistence of all species, though the population density of the species u1 remains bigger
than the species u2, and u3 over the domain (Figure 4.1(b)-(d)). This happens because of different
harvesting parameters, and the optimal value of the carrying capacity function is achieved at the point
(0.5, 0.5), which shows the symmetric distribution of the population.

In all the experiments henceforward unless otherwise stated, we will use the intrinsic growth rates
ri(t,x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

4.3. Test 3: Diffusion speed and evolution of population density. In this example, we
consider the problem for three species populations in absence of harvesting (e.g., µi = 0). We want
to see how the average population density of a species varies with the diffusion parameter. We plot
the average density versus time in Figure 4.2 for all three species varying the diffusion parameters as
di = 0.01, 0.02, and 0.1 for i = 1, 2, 3. Figure 4.2 suggests that the initial value is unimportant to
the final state due to the global convergence of solutions. It is also remarked that the same is true in
other experiments. From all three plots in Figure 4.2 (a)-(c), we observe that as the diffusion parameter
increases, the species density increases over time. The species with higher diffusion rate will converge
to the stable solution faster [7]. Figure 4.2 (c)-(d) are plotted for the same data, but for short and
long time scenarios. We observe that the species with the highest diffusion rate is extinct, whereas the
species with the lowest diffusion rate is the winner over the other species. In summary, the slow diffuser
is the sole winner for multiple population competition and is independent of any choice of equal intrinsic
growth rate and the initial population size.
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Figure 4.1: (a) Average density of each species, (b) contour plot of species density u1, (c) contour
plot of species density u2, and (d) contour plot of species density u3 with the harvesting coefficients
µ1 = 0.0009, µ2 = 0.0015, and µ3 = 0.0027 at t = 80.

4.4. Test 4: Effect of harvesting on the evolution of population density. In this experi-
ment, we consider N = 3, a three species competition model with varying diffusion rates as d1 = 0.1,
d2 = 0.02, and d3 = 0.01. That is, the spreading rate of the first and third species is the highest and
lowest, respectively. Consequently, without stocking, their population density at any time must be the
lowest and highest, respectively as investigated and presented in Figure 4.2.

In Figure 4.3, we plot the average density of each species versus time with varying harvesting
parameters over the time interval [1000, 1080]. We choose the time interval [1000, 1080] to exhibit the
long-range behavior of the solutions. In Figure 4.3 (a), we plot the long-range behavior of the average
density of each of the species in absence of harvesting or stocking effort (µ1 = µ2 = µ3 = 0.0). We
observe a periodic behavior in the average density of all the species, and the third species dominates the
other species in competition. The periodic behavior is inherited from periodic system carrying capacity
of the system. The lowest diffusion rate plays a key role for the third species in becoming the winner.
For time periodic parameters in Figure 4.3 (a), we notice the average density of u1 approaches zero in
an oscillatory fashion.

Figure 4.3 (b) represents the average density of each of the three species on the time interval
[1000, 1080], where only the third species is affected by harvesting with coefficient µ3 = 0.001. The
sequential map presented the results based on the combined effects of harvesting and diffusion coefficient.
Comparing Figure 4.3 (a) and Figure 4.3 (b), it is clear that due to the non-zero harvesting parameter
µ3 = 0.001, the density of the third species has been reduced. On the other hand, clearly, the second
species is also impacted by the harvesting of the third species. Because of the reduction in the population
density of the third species, the other species get more resources to grow, and a significant boost is
observed in the second species’ density and a considerable amount of density increment is observed in
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Figure 4.2: The effect of diffusion rate on the average population density (a) ū1, (b) ū2, (c) ū3, and (d) ū3

on long-range without harvesting or stocking effort for K(t,x) ≡
(

1.2+ 2.5π2e−(x−0.5)2−(y−0.5)2
)(

1.0+

0.3 cos(t)
)

, µi = 0 and ri(t,x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

the first species.
If we further increase the harvesting coefficients as µ2 = 0.001, and µ3 = 0.002, but keep µ1 = 0 (no

harvesting) and plot the average density curves versus time for each species in Figure 4.3 (c), we observe
an evolutionary population density feature, especially for the first species. The harvesting in the second
and third species provides an advantage to the first species, and thus an apparent co-existence of all three
species is visible over the time [1000, 1080]. It is noted that Figure 4.3 reveals the effects of harvesting
levels on the scaled average population density on periodic time-dependent functions as happens for
seasonal changes. Though the considered values of the harvesting parameters are not corresponding to
the optimal co-existence, it is possible to estimate optimal (µ1, µ2, µ3) [1].

4.5. Test 5: Effect of stocking on the evolution of population density. In this experiment,
we observed how the evolution of population density is affected by the variation in stocking parameters.
We plot the average density corresponding to each species versus time varying the stocking parameters
in Figure 4.4 on the time interval [1000, 1080]. Because of the periodic resource function, we observe
periodic behavior in all the population densities (Figure 4.4). We consider the same diffusion rates,
d1 = 0.1, d2 = 0.02, and d3 = 0.01 as in the case of Figure 4.3 (a), where no harvesting or stocking is
considered.

We reduce the stocking parameter µ1 = 0.0 to µ1 = −0.002 for u1 since the diffusion rate is higher
for the first species. The results are displayed in Figure 4.4 (a). Comparing Figure 4.3 (a) and Figure
4.4 (a), we observe that the population density of the first species increases while for the second and
third species decrease. It provides the increased population of the first species consumes more resources
from the environment, which reduces the productivity of the other two species.

Next, we decrease the stocking parameter of the first species to µ1 = −0.0025 and for the second



20 DECOUPLED ALGORITHMS FOR REACTION-DIFFUSION COMPETITION MODEL

1000 1020 1040 1060 1080
Time

0

5

10

15

20
A

ve
ra

ge
 d

en
si

ty

(a)

1000 1020 1040 1060 1080
Time

0

5

10

15

A
ve

ra
ge

 d
en

si
ty

(b)

1000 1020 1040 1060 1080
Time

0

5

10

15

A
ve

ra
ge

 d
en

si
ty

(c)

Figure 4.3: The effect of harvesting parameters on the average density with diffusion parameters d1 =
0.1, d2 = 0.02, and d3 = 0.01 for K(t,x) ≡

(

1.2 + 2.5π2e−(x−0.5)2−(y−0.5)2
)(

1.0 + 0.3 cos(t)
)

, and
ri(t,x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3. with (a) No harvesting, (b) third population
harvested and (c) u2, u3 are harvesting.

species to µ2 = −0.001, keeping no harvesting or stocking to the third species, and plot the average
density in Figure 4.4 (b). We observe that the density of the third species decreases while the first
and second species increase, and there is a transparent co-existence of all the species. Therefore, the
harvesting and stocking parameters can be a controlling tool in population dynamics to optimize the
limited resources.

5. Conclusion and Future Research. Time evolutionary reaction-diffusion equation is the basis
of harvesting and/or stocking model in population dynamics. In this paper, we propose a time-dependent
system of non-linear coupled partial differential equations representing the dynamics of an N -species
competition model with harvesting and/or stocking effect. We also propose, analyze and test two fully
discrete decoupled stable algorithms for numerical computation. We have proven the first scheme is
first-order accurate and the second scheme is second-order accurate in time and both are optimally
accurate in space. Numerical tests verify the predicted convergence rates with some analytical test
problems for both two- and three-species competition models. The linearized decoupled algorithms are
efficient as at each time-step the solution for each species can be computed simultaneously, which can
save a huge computational time in large-scale computing with complex problems.

Numerical experiments exhibit (a) if the diffusion rate increases the population density decreases
and faster the process of extinction, (b) if the harvesting parameter of a species increases, its density
decreases, and other species get benefit in the competition, and (c) if the stocking effect of a species
intensify, the population density increases and tends to win over the other species in the competition,
that is, the survival period of the species increases. For a particular competition model, a set of values of
the harvesting or stocking parameters can be found for which co-existence of all species will be ensured.
The harvesting and/or stocking parameter can be a useful controlling tool in the population dynamics
with limited natural resources.
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Figure 4.4: Effect of stocking parameters on the system energy corresponding to each species den-
sity with the diffusion parameters d1 = 0.1, d2 = 0.02, and d3 = 0.01 for K(t,x) ≡

(

1.2 +

2.5π2e−(x−0.5)2−(y−0.5)2
)(

1.0 + 0.3 cos(t)
)

, and ri(t,x) ≡ (1.5 + sin(x) sin(y))(1.2 + sin(t)), i = 1, 2, 3.

As a future research, we will propose, analyze and test an efficient decoupled algorithm for this
N -species competition model following the works in [22, 23] so that at each time-step each species
solver shares a common system matrix which will further save computer memory and assembling time
of system matrix.
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Appendix. Here we find the restriction on the time-step size to have the stability of the Algorithm
1. We consider the following linear system:

a(un+1
i,h , vi,h) = F (vi,h) , ∀vi,h ∈ Xh, i = 1, 2, · · · , N, (5.1)

where the linear form

F (vi,h) :=
1

∆t

(

un
i,h, vi,h

)

+
(

fi(t
n+1), vi,h

)

, (5.2)

and the bilinear form

a
(

un+1
i,h , vi,h

)

: =
1

∆t

(

un+1
i,h , vi,h

)

+ di

(

∇un+1
i,h ,∇vi,h

)

− (1 − µi)
(

ri(t
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)

−


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ri(t
n+1)un+1

i,h

K(tn+1)

N
∑

j=1

un
j,h, vi,h



 . (5.3)

Now, substitute vi,h = un+1
i,h in (5.3) to give

a
(

un+1
i,h , un+1

i,h

)

=
1

∆t
‖un+1

i,h ‖2 + di‖∇un+1
i,h ‖2 − (1 − µi)
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≥
1
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i,h ‖2 − |1− µi|‖ri(t
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i,h ‖2 −

C‖ri(t
n+1)‖∞

inf
Ω

‖K(tn+1)‖
‖un+1

i,h ‖2. (5.4)

The last term in the above inequality is derived as the lower bound subject to the Assumption 3.1.
Rearranging

a
(

un+1
i,h , un+1

i,h

)

≥





1

∆t
− |1− µi|‖ri‖

L∞

(

0,T ;L∞(Ω)d
) −

C‖ri‖
L∞
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0,T ;L∞(Ω)d
)

inf
(t,x)∈(0,T ]×Ω

|K|



 ‖un+1
i,h ‖2 + di‖∇un+1

i,h ‖2.

(5.5)
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To have the coercivity condition, we must have

1

∆t
− |1− µi|‖ri‖∞,∞ −

C‖ri‖∞,∞

Kmin
≥ 0,

which gives the following restriction on the time-step size

∆t ≤
Kmin

|1− µi|‖ri‖∞,∞Kmin + C‖ri‖∞,∞
. (5.6)

In a similar approach, we can find the time-step restriction on the stability of the Algorithm 2.


