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A GENERALIZED WEAK GALERKIN METHOD FOR OSEEN

EQUATION

WENYA QI ∗, PADMANABHAN SESHAIYER † , AND JUNPING WANG ‡

Abstract. In this work, the authors introduce a generalized weak Galerkin (gWG) finite element
method for the time-dependent Oseen equation. The generalized weak Galerkin method is based on
a new framework for approximating the gradient operator. Both a semi-discrete and a fully-discrete
numerical scheme are developed and analyzed for their convergence, stability, and error estimates.
A generalized inf-sup condition is developed to assist the convergence analysis. The backward Euler
discretization is employed in the design of the fully-discrete scheme. Error estimates of optimal order
are established mathematically, and they are validated numerically with some benchmark examples.
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1. Introduction. Navier-Stokes equation has been used to describe incompress-
ible viscous flow and forms the backbone of fluid mechanics [25]. One of the difficulties
in the equation is the nonlinear convective acceleration term which involves the prod-
uct of the velocity with its gradient. One approximation to the Navier-Stokes equation
is the Stokes equation where this convective term is omitted. Oseen equation, in com-
parison to Stokes flow, includes a partial inclusion of the convective acceleration and a
reactive term in the momentum equations [11, 22]. Oseen equation is also considered
as an auxiliary problem to linearize Navier-Stokes equation [23, 15, 31, 26].

The research on the development, analysis and application of the finite element
method for the Oseen equation continues to receive attention in the computational sci-
ences community. In [16], the framework of finite element method for Oseen equation
was established and some stabilized schemes were analyzed. A general a posteriori er-
ror estimator was designed for problems with incompressibility constraint and shown
to be valid for the Oseen equation in [2]. The local discontinuous Galerkin method
using mixed setting has been introduced for the steady Oseen equation in [12], and
the optimal convergence was derived. A stabilized finite element method was derived
for Oseen equation in [5, 6] through the introduction of a stabilization parameter
and mesh dependent term. In [8], with the estimates independent of local Reynolds
number, the interior penalty finite element method was discussed for steady-state Os-
een equation. The space-time discontinuous Galerkin discretization was introduced
and analyzed for the evolutionary Oseen equation with time-dependent flow domain
in [27]. By using subgrid scale methods, a stabilized finite element formulation was
presented for Oseen equation in [13], which also proved the stability and optimal con-
vergence. For optimal control of the Oseen equation, SUPG/PSPG were analyzed in
[7], and a priori analysis was provided. In view of stabilization tensor, the hybridizable
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discontinuous Galerkin was provided for steady Oseen equation in [10]. A pressure
stabilized finite element scheme was estimated for the evolutionary Oseen equation in
[21]. Least-squares finite element method was presented in [9] where the convergence
in various norms was proved. Based on a residual type a posteriori error estimator and
pressure projection method, a stabilized finite volume method was analyzed in [20].
In [17], a divergence-conforming discontinuous method for steady Oseen equation was
established and a fully robust posteriori error estimator was derived. Based on the
skew-symmetry scheme and two grid discretizations, local and parallel finite element
algorithms were established for the evolutionary Oseen equation in [14], and error es-
timates for semi-discrete and fully-discrete were derived. A multiscale hybrid-mixed
method was presented for Oseen equation in [3], and a posteriori error estimator was
analyzed for the adaptive method.

Weak Galerkin method was first introduced for elliptic problem in [28, 29], and
weak function was presented for the definition of weak gradient operator. Weak
Galerkin method has been used for Stokes equation in [30] with the use of weak gradi-
ent and weak divergence. A weak Galerkin method with skew-symmetry scheme was
introduced in [18] for steady-state Oseen equation by using a weak convective opera-
tor. By introducing weak trilinear term, a skew-symmetry weak Galerkin method was
analyzed for Navier-Stokes equation in [19], and linearized Oseen approximation was
employed in numerical experiments. For extending the finite element piecewise poly-
nomial spaces to arbitrary finite dimensional spaces, the generalized weak Galerkin
method (gWG) has been introduced with new generalized weak gradient definition.
In particular, gWG has been established for steady Stokes equation in [24] with the
finite element spaces of arbitrary combination of polynomials. Based on the same
spaces as [24], we consider the steady and evolutionary Oseen equation by using gWG
scheme in this work. The main contribution of this work includes the development
of a scheme that is proposed from the equation directly without the skew-symmetry
terms, and the coercivity of bilinear form which is derived for the uniqueness and
existence of solutions.

This work is organized as follows. In Section 2, generalized weak gradient and
the related weak divergence are presented. The semi-discrete and fully-discrete gWG
schemes for the evolutionary Oseen equation are established with backward Euler for
time discretization. In Section 3, the gWG scheme is introduced for steady-state Oseen
equation firstly, and optimal convergence orders are obtained. Then, for evolutionary
case, the error estimate is presented by introducing an elliptic projection operator in
Section 4. Finally, numerical examples for benchmark problems are shown to verify
the theoretical results in Section 5.

In this article, we adopt the notations in [1] for Sobolev spaces and denote generic
nonnegative constants by C which is independent of the mesh size and time step.

2. gWG for Evolutionary Oseen Equation. We consider the evolutionary
Oseen equation that seeks the unknown fluid velocity u(t) := u(·, t) and the pressure
p(t) := p(·, t) such that

(2.1)

ρut − µ∆u+ ρ(β · ∇)u+∇p = f , in Ω× (0, T̄ ],

∇ · u = 0, in Ω× (0, T̄ ],

u = g, on ∂Ω× (0, T̄ ],

u(0) = g2, in Ω,
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where Ω is an open bounded polygonal or polyhedral domain in R
d, d = 2, 3. The

external force field f , the admitted flux g across ∂Ω and the initial velocity g2 are
given functions. β is a given convection field, µ > 0 is the constant kinematic viscosity
and ρ ≥ 0 is a given scalar function. When ρ = 0, (2.1) is steady-state Stokes equation
which has been analyzed with gWG in [24], and we consider ρ > 0 in this paper.

The weak form of problem (2.1) reads as follows: find u(t) ∈ [H1(Ω)]d and
p(t) ∈ L2

0(Ω) satisfying u(t) = g on ∂Ω and u(0) = g2 in Ω such that

(2.2)
ρ(ut,v) + µ(∇u,∇v) + ρ((β · ∇)u,v) − (p,∇ · v) = (f ,v), ∀v ∈ [H1

0 (Ω)]
d,

(∇ · u, q) = 0, ∀q ∈ L2
0(Ω).

Here, we denote the spaces

[H1
0 (Ω)]

d = {v ∈ [H1(Ω)]d, v = 0 on ∂Ω},

L2
0(Ω) =

{

q ∈ L2(Ω),

∫

Ω

qdx = 0
}

.

Denote the partition using polygon or polyhedra of domain Ω by Th which satisfy
the shape regular conditions in [29]. For each T ∈ Th, hT is its diameter and h =
maxT∈Th

hT is mesh size of the partition Th. Let ∂T be the edges of element T and EI
the set of interior edges. Denote by Pk(T ) the polynomials space of degree less than
or equal to k in all variables on element T . We consider the finite element spaces

Vh :={(v0,vb) : v0|T ∈ [Pk(T )]
d,vb|∂T ∈ [Pj(∂T )]

d, ∀T ∈ Th},

Wh :={q ∈ L2
0(Ω) : q|T ∈ Pn(T ), ∀T ∈ Th},

where k, j, n ≥ 0 are arbitrary non-negative integers. Denote the subspace of Vh with
vanishing boundary condition by V0

h, i.e. V
0
h = {v ∈ Vh, vb = 0 on ∂Ω}.

We define the local L2 projection operators Q0 : [L2(T )]d → [Pk(T )]
d and Qb :

[L2(∂T )]d → [Pj(∂T )]
d. Denote by Qh = {Q0, Qb} the projection operator to the

space of weak functions and by Qp
h the L2 projection operator onto Wh.

Next, based on the weak function and projection operators, we define a weak
gradient.

Definition 2.1. For each v ∈ Vh, a generalized discrete weak gradient operator
∇wv is defined as follows

∇wv = ∇v0 + δwv,

where δwv|T ∈ [Pl(T )]
d×d is given by

(δwv, φ)T = 〈vb −Qbv0, φ · n〉∂T , ∀φ ∈ [Pl(T )]
d×d,

where n denotes the unit outward normal to ∂T .
In order to present the numerical scheme for Oseen equation, we also need to

define a weak divergence operator.
Definition 2.2. For each v ∈ Vh, we define the weak divergence ∇w ·v ∈ Pm(T )

such that

(∇w · v, ψ)T = −(v0,∇ψ)T + 〈vb, ψ · n〉∂T , ∀ ψ ∈ Pm(T ).
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Based on the weak formulation (2.2) and the definition of weak differential oper-
ators, the semi-discrete gWG scheme for the evolutionary Oseen equation (2.1) reads
as follows: For t ∈ (0, T̄ ], find uh(t) ∈ Vh and ph(t) ∈ Wh satisfying ub(t) = Qbg on
∂Ω and uh(0) = Qhg2 in Ω such that

(2.3)

ρ(uht,vh) + µ(∇wuh,∇wvh) + ρ((β · ∇w)uh,v0)

− (ph,∇w · vh) + s1(uh,vh) = (f ,v0), ∀ vh ∈ V0
h,

(∇w · uh, qh) + s2(ph, qh) = 0, ∀ qh ∈Wh.

Here, the stabilization terms are defined as follows

s1(uh,vh) = ζ
∑

T∈Th

hγT 〈Qb(ub − u0), Qb(vb − v0)〉∂T ,

s2(ph, qh) = σ
∑

e∈EI

hαe 〈JphK, JqhK〉e,

where JqhK = qh|∂T1∩e − qh|∂T2∩e denotes the jump on interior edge e shared by the
elements T1 and T2. Assume that |γ| < ∞, |α| <∞. Here ζ is a positive parameter,
and σ is zero or one.

For simplicity, we consider uniform time stepping τ = T̄ /N with N being the
total time steps. Denote by tn̄ = n̄ ∗ τ the n̄-th time level.

By replacing the time derivative by backward difference quotient which is back-
ward Euler discretization, the fully-discrete gWG scheme seeks un̄+1 ∈ Vh and
pn̄+1 ∈ Wh satisfying the boundary condition un̄+1

b = Qbg on ∂Ω and initial con-
dition u0 = Qhg2 in Ω such that

(2.4)

ρ(∂̄tu
n̄+1,vh) + µ(∇wu

n̄+1,∇wvh) + ρ((β · ∇w)u
n̄+1,v0)

− (pn̄+1,∇w · vh) + s1(u
n̄+1,vh) = (f n̄+1,v0), ∀ vh ∈ V0

h,

(∇w · un̄+1, qh) + s2(p
n̄+1, qh) = 0, ∀ qh ∈Wh.

Here, the backward difference quotient is denoted by ∂̄tu
n̄+1 = u

n̄+1−u
n̄

τ
.

Before coming to the estimates of gWG schemes (2.4) and (2.3) for evolutionary
case, let us analyze the gWG for steady-state Oseen equation.

3. gWG for Steady-State Oseen Equation. The steady-state Oseen equa-
tion seeks an unknown velocity u and a pressure p such that

(3.1)

−µ∆u+ ρ(β · ∇)u+∇p = f , in Ω,

∇ · u = 0, in Ω,

u = g, on ∂Ω.

By a weak solution we mean a pair of u ∈ [H1(Ω)]d and p ∈ L2
0(Ω) satisfying u = g

on ∂Ω and the following equations

(3.2)
µ(∇u,∇v) + ρ((β · ∇)u,v) − (p,∇ · v) = (f ,v), ∀v ∈ [H1

0 (Ω)]
d,

(∇ · u, q) = 0, ∀q ∈ L2
0(Ω).

The gWG scheme for the steady-state Oseen equation (3.1) seeks uh ∈ Vh and ph ∈
Wh satisfying ub = Qbg on ∂Ω and the following equations

(3.3)
µ(∇wuh,∇wvh) + ρ((β · ∇w)uh,v0)− (ph,∇w · vh) + s1(uh,vh) = (f ,v0),

(∇w · uh, qh) + s2(ph, qh) = 0,
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for all vh ∈ V0
h and qh ∈Wh.

For convenience, we introduce the following energy semi-norm in Vh:

|||vh|||
2
:= (∇wvh,∇wvh) + s1(vh,vh), vh ∈ Vh.

Lemma 3.1. ||| · ||| defines a norm in the subspace V0
h consisting of functions with

vanishing boundary value.
Proof. For vh ∈ V0

h with |||vh||| = 0, we see that ∇wvh = ∇v0+ δwvh = 0 on each
element T and Qbv0 = vb on each ∂T . By using the definition of weak gradient, we
have

(δwvh, δwvh)T = 〈vb −Qbv0, δwvh · n〉∂T = 0.

It follows that δwvh = 0 and hence, ∇v0 = 0, which implies that v0 is a constant on
each element. Thus, we have Qbv0 = vb on each ∂T . Together with vb = 0 on ∂Ω,
we obtain vh ≡ 0.

In addition, for simplicity, we denote b(vh, qh) := (∇w · vh, qh).
Lemma 3.2. [24] Assume that n ≤ min{m, k + 1}. For each qh ∈ Wh, there

exists vh ∈ V0
h such that

(3.4)
b(vh, qh) ≥

1

2
‖qh‖

2 − Ch1−α
∑

e∈EI

hαe ‖JqhK‖2e,

|||vh||| ≤ C(1 + h
1+γ
2 )‖qh‖.

Next, we set s = min{j, l} and introduce a local L2 projection operator Qs :
[L2(T )]d×d → [Ps(T )]

d×d. From the construction of the generalized weak gradient
operator, we have the following results.

Lemma 3.3. [24] For any v ∈ Vh and w ∈ [H1(T )]d on the element T ∈ Th, one
has for each φ ∈ [Ps(T )]

d×d

(∇wv, φ)T = −(v0,∇ · φ)T + 〈vb, φ · n〉∂T ,

(∇wQhw, φ)T = (∇w, φ)T + ((I −Q0)w,∇ · φ)T .

The following is a useful result for the analysis on convergence and solution exis-
tence of the gWG scheme.

Lemma 3.4. Assume γ ≤ 0 and −∇·β
2 ≥ C0 ≥ 0. There exists a constant

ζ =
C‖β‖∞+‖β‖2

∞

2ρ such that

((β · ∇w)vh,v0) ≥ C0‖v0‖
2 −

1

2ρ
s1(vh,vh)− ǫ‖∇wvh‖

2,

for all vh ∈ V0
h.

Proof. From the definition of the weak gradient, we have for each wh ∈ V 0
h

((β · ∇w)vh,w0)T = (∇v0 + δwvh, β ·wt
0)T

=− (v0,∇ · (β ·wt
0))T + 〈v0, β ·wt

0 · n〉∂T + (δwvh, β ·wt
0)T

=− (v0,∇ · βw0)T − (β · vt
0,∇w0)T + 〈v0, β ·wt

0 · n〉∂T + (δwvh, β ·wt
0)T

=− (v0,∇ · βw0)T − (β · vt
0,∇wwh)T + (β · vt

0, δwwh)T

+ 〈v0, β ·wt
0 · n〉∂T + (δwvh, β ·wt

0)T .



6

From Definition 2.1 and 〈v0, β · vt
b · n〉∂T = 〈vb, β · vt

0 · n〉∂T , we have by taking
wh = vh in the above identity,

((β · ∇w)vh,v0)T =−
1

2
(v0,∇ · βv0)T + 〈Qs(β · vt

0) · n,vb −Qbv0〉∂T

+
1

2
〈v0, β · vt

0 · n〉∂T + ((I −Qs)β · vt
0, δwvh)T

=−
1

2
(v0,∇ · βv0)T − 〈Qs(β · vt

0) · n,v0 − vb〉∂T

+
1

2
〈v0, β · vt

0 · n〉∂T + ((I −Qs)β · vt
0, δwvh)T

=−
1

2
(v0,∇ · βv0)T + 〈(I −Qs)(β · vt

0) · n,v0 − vb〉∂T

+ ((I −Qs)β · vt
0, δwvh)T −

1

2
〈v0 − vb, β · (v0 − vb)

t · n〉∂T

+
1

2
〈vb, β · vt

b · n〉∂T .

By summing over all elements T ∈ Th and noticing
∑

T∈Th
〈vb, β · vt

b · n〉∂T = 0 we
obtain

((β · ∇w)vh,v0)Th
=−

1

2
(v0,∇ · βv0)Th

+ 〈(I −Qs)(β · vt
0) · n,v0 − vb〉∂T h

+ ((I −Qs)β · vt
0, δwvh)Th

−
1

2
〈v0 − vb, β · (v0 − vb)

t · n〉∂T h
.

Observe the following estimate from the property of L2 projections:

(3.5) ‖∇v0‖T ≤‖∇wvh‖T + ‖δwvh‖T ≤ ‖∇wvh‖T + Ch−
1
2 ‖vb −Qbv0‖∂T

and
(3.6)

‖vb − v0‖∂T ≤‖vb −Qbv0‖∂T + ‖Qbv0 − v0‖∂T ≤ ‖vb −Qbv0‖∂T + Ch
1
2 ‖∇v0‖T

≤C‖vb −Qbv0‖∂T + Ch
1
2 ‖∇wvh‖T .

From the Cauchy-Schwarz inequality, (3.5), (3.6), the construction of δwvh, and the
trace inequality, we obtain

∣

∣〈(I −Qs)(β · vt
0) · n,v0 − vb〉∂T h

+ ((I −Qs)β · vt
0, δwvh)Th

∣

∣

≤C‖β‖∞
∑

T∈Th

h
1
2 ‖∇v0‖T

(

‖v0 − vb‖∂T + ‖Qbv0 − vb‖∂T

)

≤Ch‖∇v0‖
2 + Ch‖∇wvh‖

2 + ‖β‖2∞‖Qbv0 − vb‖
2
∂T

≤Ch‖∇wvh‖
2 +

‖β‖2∞
ζ

h−γs1(vh,vh).

Next, using the Cauchy-Schwarz inequality and (3.6) again leads to

∣

∣〈v0 − vb, β · (v0 − vb)
t · n〉∂T h

∣

∣ ≤
∑

T∈Th

‖β‖∞‖vb − v0‖
2
∂T

≤Ch‖∇wvh‖
2 +

C‖β‖∞
ζ

h−γs1(vh,vh).
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By combining the above inequality with γ ≤ 0, we get

((β · ∇w)vh,v0) ≥ C0‖v0‖
2 − Ch‖∇wvh‖

2 − (C‖β‖∞ + ‖β‖2∞)
1

ζ
s1(vh,vh).

By choosing (C‖β‖∞ + ‖β‖2∞)1
ζ
= 1

2ρ , i.e ζ =
C‖β‖∞+‖β‖2

∞

2ρ , we arrive at

((β · ∇w)vh,v0) ≥ C0‖v0‖
2 − Ch‖∇wvh‖

2 −
1

2ρ
s1(vh,vh).

When h→ 0, we have ǫ = Ch → 0. This completes the proof of the lemma.

Using Lemmas 3.1, 3.2 and 3.4, we obtain the following theorem.
Theorem 3.5. Assume ∇ · β ≤ 0. The generlized weak Galerkin method (3.3)

has one and only one solution for sufficiently small meshsize h.
From the assumption, there exists C0 such that −∇·β

2 ≥ C0 ≥ 0. It follows that

(3.7)

µ(∇wvh,∇wvh) + ρ((β · ∇w)vh,v0) + s1(vh,vh)

≥(µ− ǫ)‖∇wvh‖
2 + C0ρ‖v0‖

2 +
1

2
s1(vh,vh)

≥C1‖∇wvh‖
2 + C0ρ‖v0‖

2 +
1

2
s1(vh,vh),

where C1 > 0 for sufficiently small meshsize h. The coercivity estimate (3.7) is a key
component behind the proof of Theorem 3.5. The proof of Theorem 3.5 is routine
and details are left to interested readers.

3.1. Error Equations of gWG for Steady-State Oseen Equation. In this
subsection, we shall derive the error equations for the velocity and pressure approx-
imations. Denote the velocity error by euh = Qhu − uh and the pressure error by
eph = Qp

hp− ph.
From the properties of projection and Lemma 3.3, we obtain the following identity

[24],

(3.8)

(∇wQhu,∇wvh) =− (∆u,v0)− 〈(I −Qs)∇u · n,vb − v0〉

+ ((Qs − I)∇u,∇v0) + ((I −Q0)u,∇ ·Qs∇wvh)

+ (∇wQhu, (I −Qs)∇wvh).

For each vh ∈ Vh, it follows from the definition of the generalized weak gradient and
Lemma 3.3 that

(3.9)

((β · ∇w)Qhu,v0) = (∇wQhu, βv
t
0)

=(∇wQhu,Qs(βv
t
0)) + (∇wQhu, (I −Qs)βv

t
0)

=(∇u,Qs(βv
t
0)) + ((I −Q0)u,∇ ·Qs(βv

t
0)) + (∇wQhu, (I −Qs)βv

t
0)

=(∇u, βvt
0)− (∇u, (I −Qs)βv

t
0) + ((I −Q0)u,∇ ·Qs(βv

t
0))

+ (∇wQhu, (I −Qs)βv
t
0).

With k − 1 ≤ n ≤ m, we note that [24]

(3.10) (Qp
hp,∇w · vh) = −(∇p,v0)−

∑

T∈Th

〈(I −Qp
h)p, (vb − v0) · n〉∂T ,
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Combining (3.8) -(3.10) leads to

(3.11)
µ(∇wQhu,∇wvh) + ρ((β · ∇w)Qhu,v0)− (Qp

hp,∇w · vh) + s1(Qhu,vh)

=(f ,v0) + L1
u,p(vh),

where

L1
u,p(vh) :=µ

(

〈(I −Qs)∇u · n,v0 − vb〉 − ((I −Qs)∇u,∇v0)

+ ((I −Q0)u,∇ ·Qs∇wvh) + (∇wQhu, (I −Qs)∇wvh)
)

+ ρ
(

− (∇u, (I −Qs)βv
t
0) + ((I −Q0)u,∇ ·Qs(βv

t
0))

+ (∇wQhu, (I −Qs)βv
t
0)
)

− 〈(I −Qp
h)p, (v0 − vb) · n〉+ s1(Qhu,vh).

From (3.3) and (3.11), we arrive at the following error equations

(3.12)
µ(∇we

u
h,∇wvh) + ((β · ∇w)e

u
h,v0)− (eph,∇w · vh) + s1(e

u
h,vh) = L1

u,p(vh),

(∇w · euh, qh) + s2(e
p
h, qh) = L2

u,p(qh)

for all vh ∈ V0
h and qh ∈Wh, where

L2
u,p(qh) = −〈(I −Qb)u, qh · n〉+ s2(Q

p
hp, qh).

3.2. Convergence of gWG for Steady-State Oseen Equation. In this sub-
section, our goal is to establish the error estimates in L2 norm and energy norm for
the gWG approximations for steady-state Oseen equation.

Lemma 3.6. Assume u ∈ [Hi(Ω)]d where i = max{s + 2, k + 1, j + 1} and
p ∈ Hn+1(Ω). There exists a constant C such that

(3.13)

∣

∣L1
u,p(vh)

∣

∣ ≤C
(

(1 + h
−γ−1

2 )(hs+1‖u‖s+2 + hk‖u‖k+1 + hn+1‖p‖n+1)

+ h
γ+1

2 hk‖u‖k+1

)

|||vh|||,

∣

∣L2
u,p(qh)

∣

∣ ≤C
(

hjh
1−α
2 ‖u‖j+1 + hn+1h

α−1

2 ‖p‖n+1

)

s
1
2

2 (qh, qh)

for all vh ∈ V0
h and qh ∈Wh,

Proof. From the Cauchy-Schwarz inequality, trace inequality, and approximation
properties of L2 projections, we have

|〈(I −Qs)∇u · n,v0 − vb〉| ≤ C
∑

T∈Th

‖(I −Qs)∇u‖∂T ‖v0 − vb‖∂T

≤ Chs+1(1 + h
−γ−1

2 )‖u‖s+2|||vh|||,

where we have used ‖v0 − vb‖∂T ≤ Ch
1
2 (1 + h

−γ−1

2 )|||vh|||. Analogously, we have

|((I −Qs)∇u,∇v0)| ≤ C‖(I −Qs)∇u‖‖∇v0‖ ≤ Chs+1(1 + h
−γ−1

2 )‖u‖s+2|||vh|||,

where we have used the following inequalities

‖δwvh‖
2 = 〈vb −Qbv0, δwvh〉 ≤ C

∑

T∈Th

h
γ
2 ‖vb −Qbv0‖∂Th

−γ−1

2 ‖δwvh‖T
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and ‖∇v0‖ ≤ ‖∇wvh‖+ ‖δwvh‖ ≤ C(1 + −γ−1
2 )|||vh|||.

Next, from the inverse inequality we have

|((I −Q0)u,∇ ·Qs∇wvh)| ≤ Chk‖u‖k+1|||vh|||.

By using the definition of generalized weak gradient, we obtain

(3.14)

|(∇wQhu, (I −Qs)∇wvh)| = |(∇Q0u+ δwQhu, (I −Qs)∇wvh)|

≤C
(

‖(I −Qs)∇Q0u‖+ ‖δwQhu‖
)

‖(I −Qs)∇wvh‖

≤C
(

hs+1‖u‖s+2 + h−1‖(I −Q0)u‖
)

|||vh|||

≤C
(

hs+1‖u‖s+2 + hk‖u‖k+1

)

|||vh|||,

where we have used the fact that ‖δwQhu‖ ≤ Ch−1‖(I −Q0)u‖.
Next, the following estimates hold true:

|(∇u, (I −Qs)β · vt
0)| = |((I −Qs)∇u, (I −Qs)β · vt

0)|

≤ Chs+1‖u‖s+2h‖∇v0‖

≤ Chs+1‖u‖s+2h(1 + h
−γ−1

2 )|||vh|||.

Similar to the above inequality and (3.14), we have

|((I −Q0)u,∇ ·Qsβv
t
0)| ≤ Chk+1‖u‖k+1(1 + h

−γ−1

2 )|||vh|||,

|(∇wQhu, (I −Qs)βv
t
0)| ≤ C(hs+1‖u‖s+2 + hk‖u‖k+1)h(1 + h

−γ−1

2 )|||vh|||.

From the construction of the stabilizer, we get

|〈(I −Qp
h)p, (v0 − vb) · n〉| ≤ C(1 + h

−γ−1

2 )hn+1‖p‖n+1|||vh|||,

|s1(Qhu,vh)| =

∣

∣

∣

∣

∣

∑

T∈Th

ζhγ〈Qb(I −Q0)u,vb −Qbv0〉∂T

∣

∣

∣

∣

∣

≤ Ch
γ+1

2 hk‖u‖k+1|||vh|||.

Based on the above inequalities, we obtain the desired estimate for L1
u,p(vh).

Finally, from the following estimates

|〈(I −Qb)u, qh · n〉| ≤ Chj‖u‖j+1h
−α+1

2 s2(qh, qh)
1
2 ,

|s2(Q
p
hp, qh)| ≤ Chn+1‖p‖n+1h

α−1

2 s2(qh, qh)
1
2 ,

we may deduce the desired estimate for L2
u,p(qh) as well. This completes the proof of

the lemma.
Theorem 3.7. Let (u, p) be the exact solution of (3.2) and (uh, ph) be its nu-

merical approximation arising from the gWG scheme (3.3). Assume that the velocity
u ∈ [Hi(Ω)]d, i = max{s + 2, k + 1, j + 1} and the pressure p ∈ Hn+1(Ω). Let
k − 1 ≤ n ≤ max{m, k + 1} be satisfied. Then we have

(3.15)
|||euh|||

2
≤ CR1,

‖eph‖
2 ≤ C(1 + hγ+1 + h2(1−α))R1,
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where

R1 =h2(s+1)(1 + h−γ−1)‖u‖2s+2 + h2k(1 + h−γ−1 + hγ+1)‖u‖2k+1

+ h2jh1−α‖u‖2j+1 + h2(n+1)(1 + h−γ−1 + hα−1)‖p‖2n+1.

Moreover, when γ = −1 and α = 1, optimal order of convergence is achieved.
Proof. By choosing vh = euh and qh = eph in (3.12), we have

µ‖∇we
u
h‖

2 + ρ((β · ∇w)e
u
h, e

u
h) + s1(e

u
h, e

u
h) + s2(e

p
h, e

p
h) = L1

u,p(e
u
h) + L2

u,p(e
p
h).

From Lemma 3.4 or the coercivity (3.7) and the estimate in (3.13), we have

C1‖∇we
u
h‖

2 + C0ρ‖e
u
h0‖

2 +
1

2
s1(e

u
h, e

u
h) + s2(e

p
h, e

p
h) ≤ CR1,

which gives rise to the error estimate for the velocity approximation in the energy
norm.

Next, by using Lemma 3.2 and (3.12), for eph, there exists a vh ∈ V0
h such that

‖eph‖
2 ≤ b(vh, e

p
h) + Ch1−αs2(e

p
h, e

p
h)

≤µ(∇we
u
h,∇wvh) + ρ((β · ∇w)e

u
h,v0) + s1(e

u
h,vh)− L1

u,p(vh) + Ch1−αs2(e
p
h, e

p
h).

Thus, from the estimate (3.13), we obtain the desired estimate for ‖eph‖ in the L2

norm.
In order to estimate the velocity in L2 norm, we consider the dual problem for

the steady-state Oseen equation (3.1): Seek (φ, ξ) such that

(3.16)

−µ∆φ− ρ(β · ∇)φ − ρ∇ · βφ+∇ξ = euh0, in Ω,

∇ · φ = 0, in Ω,

φ = 0, on ∂Ω.

Assume that the dual problem satisfies the following H2/H1 regularity assumption:

‖φ‖2 + ‖ξ‖1 ≤ C‖euh0‖.

Theorem 3.8. Let (u, p) be the exact solution of (3.2) and (uh, ph) be its nu-
merical approximation arising from the gWG scheme (3.3). Assume that the velocity
u ∈ [Hi(Ω)]d, i = max{s + 2, k + 1, j + 1} and the pressure p ∈ Hn+1(Ω). Let
k − 1 ≤ n ≤ max{m, k + 1} and j ≥ 1 be satisfied. Then there exists a constant such
that

(3.17) ‖euh0‖
2 ≤ C(h2 + h2α)(1 + hγ+1 + h2(1−α))R1.

Moreover, when γ = −1 and α = 1, the above error estimate yields the optimal order
of convergence in L2.

Proof. First, notice that

(Q0φ, (β · ∇w)vh) = (φ, (β · ∇w)vh)− ((I −Q0)φ, (β · ∇w)vh).

Next, from the definition of the generalized weak gradient we have

(φ, (β · ∇w)vh) = (βφt,∇wvh)

=(Qsβφ
t,∇wvh) + ((I −Qs)βφ

t,∇wvh)

=(Qsβφ
t,∇v0)− 〈Qsβφ

t · n,v0 − vb〉+ ((I −Qs)βφ
t,∇wvh)

=(βφt,∇v0)− ((I −Qs)βφ
t,∇v0)− 〈Qsβφ

t · n,v0 − vb〉

+ ((I −Qs)βφ
t,∇wvh).
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It follows that
(3.18)

(Q0φ, (β · ∇w)vh) = (βφt,∇v0)− ((I −Qs)βφ
t,∇v0)− 〈Qsβφ

t · n,v0 − vb〉

+ ((I −Qs)βφ
t,∇wvh)− ((I −Q0)φ, (β · ∇w)vh)

=− (∇ · (βφt),v0) + 〈βφt,v0 · n〉 − ((I −Qs)βφ
t,∇v0)− 〈Qsβφ

t · n,v0 − vb〉

+ ((I −Qs)βφ
t,∇wvh)− ((I −Q0)φ, (β · ∇w)vh).

From the property of L2 projections, (3.8), (3.10), and (3.18), we have
(3.19)
µ(∇wQhφ,∇wvh) + ρ(Q0φ, (β · ∇w)vh)− (Qp

hξ,∇w · vh) + s1(Qhφ,vh)

=(euh0,v0) + ρ〈βφt,v0 · n〉+ µ
(

〈(I −Qs)∇φ · n,v0 − vb〉 − ((I −Qs)∇φ,∇v0)

+ ((I −Q0)φ,∇ ·Qs∇wvh) + (∇wQhφ, (I −Qs)∇wvh)
)

− ρ
(

(∇v0, (I −Qs)βφ
t)

− (∇wvh, (I −Qs)βφ
t) + 〈v0 − vb,Qs(βφ

t) · n〉+ ((I −Q0)φ, (β · ∇w)vh)
)

− 〈(I −Qp
h)ξ, (v0 − vb) · n〉+ s1(Qhφ,vh)

=(euh0,v0) + L3
φ,ξ(vh),

where we have used 〈βφt,vb · n〉 = 0 and 〈βφt,v0 · n〉 = 〈v0, βφ
t · n〉. Here L3

φ,ξ(vh)
is defined as follows:

L3
φ,ξ(vh) = µ

(

〈(I −Qs)∇φ · n,v0 − vb〉 − ((I −Qs)∇φ,∇v0)

+ ((I −Q0)φ,∇ ·Qs∇wvh) + (∇wQhφ, (I −Qs)∇wvh)
)

− ρ
(

(∇v0, (I −Qs)βφ
t)

− (∇wvh, (I −Qs)βφ
t) + 〈v0 − vb, (Qs − I)(βφt) · n〉+ ((I −Q0)φ, (β · ∇w)vh)

)

− 〈(I −Qp
h)ξ, (v0 − vb) · n〉+ s1(Qhφ,vh).

Taking vh = euh in (3.19) and using the error equation (3.12) lead to

(3.20)

‖euh0‖
2 = µ(∇wQhφ,∇we

u
h) + ρ(Q0φ, (β · ∇w)e

u
h)− (Qp

hξ,∇w · euh)

+ s1(Qhφ, e
u
h)− L3

φ,ξ(e
u
h)

=L1
u,p(Qhφ)− L2

u,p(Qhξ) + s2(e
p
h, Qhξ) + (eph,∇w ·Qhφ)− L3

φ,ξ(e
u
h)

=L1
u,p(Qhφ)− L2

u,p(Qhξ) + s2(e
p
h, Qhξ) + 〈(I −Qb)φ, e

p
h · n〉 − L3

φ,ξ(e
u
h),

where we also used the assumption of n ≤ k + 1. By employing ‖∇wQhφ‖1 ≤ C‖φ‖2,
we deduce

∣

∣L1
u,p(Qhφ)

∣

∣ ≤C(hs+1‖u‖s+2 + hk‖u‖k+1 + hn+1‖p‖n+1)h‖φ‖2,
∣

∣L2
u,p(Qhξ)

∣

∣ ≤C(hj+1‖u‖j+1 + hn+1hα‖p‖n+1)‖ξ‖1,

|〈(I −Qb)φ, e
p
h · n〉| ≤Ch‖φ‖2‖e

p
h‖,

|s2(e
p
h, Qhξ)| ≤Ch‖e

p
h‖‖ξ‖1.

Similar to the estimate in (3.13), we have

∣

∣L3
φ,ξ(e

u
h)
∣

∣ ≤Ch(‖φ‖2 + ‖ξ‖1)|||e
u
h|||.
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Thus, from the regularity of dual problem, we get

‖euh0‖ ≤C
(

hs+2‖u‖s+2 + hk+1‖u‖k+1 + hj+1‖u‖j+1 + hn+1(h+ hα)‖p‖n+1

+ (h+ hα)‖eph‖+ h|||euh|||
)

.

By combining the above inequality with Theorem 3.7, we obtain the desired error
estimate for the velocity approximation in L2 norm.

Remark 1. When n ≤ j, the parameter µ can be chosen as µ = 0; i.e. without
including the stability term s2 in the gWG scheme (3.3). It should be pointed out that
both the inf-sup condition and the convergence are established by assuming k − 1 ≤
n ≤ max{m, k + 1}. In particular, the velocity estimate in L2 norm holds true with
j ≥ 0. A proof for this last claim can be given by following the above process; interested
readers are referred to [24] for details.

4. gWG for Evolutionary Oseen Equation. Now, we return to consider the
evolutionary case. For simplicity, we introduce the following bilinear form

a(vh, χh) = µ(∇wvh,∇wχh) + ρ((β · ∇w)vh, χ0) + s1(vh, χh).

We further introduce the projection (Ehv, E
p
hq) defined by the following equations:

(4.1)
a(Ehv, χh)− (Ep

hq,∇w · χh) = (−µ∆v + ρ(β · ∇)v +∇q, χ0), ∀χh ∈ V0
h,

(∇w · Ehv, ψ) + s2(E
p
hq, ψ) = (∇ · v, ψ), ∀ψ ∈Wh.

It is easy to see that (4.1) is actually the generalized weak Galerkin scheme for the
following problem: Find (v, q) such that

(4.2)

−µ∇ · (∇v) + ρ(β · ∇)v +∇q = f∗, in Ω,

∇ · v = 0, in Ω,

v = g, on ∂Ω.

From Theorems 3.15 and 3.17, we have the following results.

Lemma 4.1. Let (Ehv, E
p
hq) be defined by (4.1). Then there exists a constant

such that

(4.3)

|||Qhv − Ehv|||
2 ≤ CR1,

‖Qp
hq − Ep

hq‖
2 ≤ C(1 + hγ+1 + h2(1−α))R1,

‖Qhv − Ehv‖
2 ≤ C(h2 + h2α)(1 + hγ+1 + h2(1−α))R1.

4.1. Convergence of Semi-discrete Scheme. To estimate the convergence
of the evolutionary case (2.3), we denote the error terms of semi-discrete scheme by
euh = Qhu − uh = ηuh + θuh and eph = Qp

hp − ph = ηph + θph, where η
u
h = Qhu − Ehu,

θuh = Ehu− uh and ηph = Qp
hp− Ep

hp, θ
p
h = Ep

hp− ph.

From the initial condition in gWG (2.3), we deduce euh(0) = 0.

Theorem 4.2. Let (uh, ph) and (u, p) be the numerical solution of gWG (2.3) and
exact solution of (2.2), respectively. Assume that the velocity u,ut,utt ∈ [Hi(Ω)]d,
i = max{s + 2, k + 1, j + 1} and the pressure p, pt, ptt ∈ Hn+1(Ω). Let k − 1 ≤ n ≤
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max{m, k + 1} and j ≥ 1. Then there exists a constant such that

(4.4)

‖euh(t)‖
2 ≤‖θuh(0)‖

2 + C(h2 + h2α)(1 + hγ+1 + h2(1−α))
(

R1(t) +

∫ t

0

R2(s̄)ds̄
)

,

|||euh(t)|||
2
≤|||θuh(0)|||

2
+ CR1(t)

+ C(h2 + h2α)(1 + hγ+1 + h2(1−α))

∫ t

0

(

R2(s̄) +R3(s̄)
)

ds̄,

‖eph(t)‖
2 ≤C(1 + hγ+1 + h2(1−α))

(

R1(t) + (1 + h1+γ + h1−α)(h2 + h2α)(R2(t)

+

∫ t

0

(R2(s̄) +R3(s̄))ds̄+ µ|||θuh(0)|||
2
+
ρ

2
‖θuht(0)‖

2
)

.

Here,

R1(t) =h
2(s+1)(1 + h−γ−1)‖u(t)‖2s+2 + h2k(1 + h−γ−1 + hγ+1)‖u(t)‖2k+1

+ h2(n+1)(1 + h−γ−1 + hα−1)‖p(t)‖2n+1 + h2jh1−α‖u(t)‖2j+1,

and

R2(s̄) =h
2(s+1)(1 + h−γ−1)‖ut(s̄)‖

2
s+2 + h2k(1 + h−γ−1 + hγ+1)‖ut(s̄)‖

2
k+1

+ h2(n+1)(1 + h−γ−1 + hα−1)‖pt(s̄)‖
2
n+1 + h2jh1−α‖ut(s̄)‖

2
j+1,

R3(s̄) =h
2(s+1)(1 + h−γ−1)‖utt(s̄)‖

2
s+2 + h2k(1 + h−γ−1 + hγ+1)‖utt(s̄)‖

2
k+1

+ h2(n+1)(1 + h−γ−1 + hα−1)‖ptt(s̄)‖
2
n+1 + h2jh1−α‖utt(s̄)‖

2
j+1.

Moreover, when γ = −1 and α = 1, optimal order of convergence is obtained.
Proof. Recall that we have obtained the estimate for ηuh and ηph in Lemma 4.1.

It remains to bound θuh and θph. To this end, note that for χh ∈ V0
h and ψ ∈ Wh, we

have

(4.5)
ρ(θuht, χ0) + a(θuh , χh)− (θph,∇w · χh) = −ρ(ηuht, χ0),

(∇w · θuh, ψ) + s2(θ
p
h, ψ) = 0.

By choosing χh = θuh and ψ = θph in (4.5), we have

ρ

2

d

dt
‖θuh‖

2 + µ‖∇wθ
u
h‖

2 + ρ((β · ∇w)θ
u
h , θ

u
h) + s1(θ

u
h , θ

u
h) + s2(θ

p
h, θ

p
h)

=− ρ(ηuht, θ
u
h),

Using the Cauchy-Schwarz inequality, Lemma 3.4, and integrating over (0, t), we arrive
at

(4.6)

ρ

2
‖θuh(t)‖

2 +

∫ t

0

(

C1‖∇wθ
u
h‖

2 + C0ρ‖θ
u
h‖

2 +
1

2
s1(θ

u
h , θ

u
h) + s2(θ

p
h, θ

p
h)
)

ds̄

≤
ρ

2
‖θuh(0)‖

2 + C

∫ t

0

‖ηuht‖
2ds̄.

The error estimate for velocity in L2 norm is obtained at once from (4.6) and Theorem
4.2,

‖euh(t)‖
2 ≤ ‖ηuh(t)‖

2 + ‖θuh(t)‖
2

≤ ‖θuh(0)‖
2 + ‖ηuh(t)‖

2 + C

∫ t

0

‖ηuht‖
2ds̄.



14

To estimate the velocity in energy norm, we have the following error equation by
differentiating the equation (4.5)

ρ(θuhtt, χ0) + a(θuht, χh)− (θpht,∇w · χh) = −ρ(ηuhtt, χ0),

(∇w · θuht, ψ) + s2(θ
p
ht, ψ) = 0.

Taking χh = θuht and ψ = θpht in the above equation yields

ρ

2

d

dt
‖θuht‖

2 + µ‖∇wθ
u
ht‖

2 + ρ((β · ∇w)θ
u
ht, θ

u
ht) + s1(θ

u
ht, θ

u
ht) + s2(θ

p
ht, θ

p
ht)

=− ρ(ηuhtt, θ
u
ht).

By integrating over (0, t), we have

(4.7)

ρ

2
‖θuht(t)‖

2 +

∫ t

0

(

C1‖∇wθ
u
ht‖

2 + C0ρ‖θ
u
ht‖

2 +
1

2
s1(θ

u
ht, θ

u
ht) + s2(θ

p
ht, θ

p
ht)

)

ds̄

≤
ρ

2
‖θuht(0)‖

2 + C

∫ t

0

‖ηuhtt‖
2ds̄.

Note the following equation

1

2

d

dt

(

µ‖∇wθ
u
h‖

2 + s1(θ
u
h , θ

u
h) + s2(θ

p
h, θ

p
h)
)

=(µ∇wθ
u
ht,∇wθ

u
h) + s1(θ

u
ht, θ

u
h) + s2(θ

p
ht, θ

p
h).

Then, it follows from (4.6) and (4.7) that
(4.8)

µ‖∇wθ
u
h(t)‖

2 + s1(θ
u
h(t), θ

u
h(t)) + s2(θ

p
h(t), θ

p
h(t))

≤µ‖∇wθ
u
h(0)‖

2 + s1(θ
u
h(0), θ

u
h(0)) + s2(θ

p
h(0), θ

p
h(0)) +

∫ t

0

(

µ‖∇wθ
u
ht‖

2

+ s1(θ
u
ht, θ

u
ht) + s2(θ

p
ht, θ

p
ht)

)

ds̄+

∫ t

0

(

µ‖∇wθ
u
h‖

2 + s1(θ
u
h , θ

u
h) + s2(θ

p
h, θ

p
h)
)

ds̄

≤µ‖∇wθ
u
h(0)‖

2 + s1(θ
u
h(0), θ

u
h(0)) + s2(θ

p
h(0), θ

p
h(0))

+ ρ‖θuh(0)‖
2 + C

∫ t

0

‖ηuht‖
2ds̄+ ρ‖θuht(0)‖

2 + C

∫ t

0

‖ηuhtt‖
2ds̄,

which, together with (4.8), leads to the error estimate for the velocity in energy norm:

|||euh(t)|||
2 ≤|||ηuh(t)|||

2 + |||θuh(t)|||
2

≤|||ηuh(t)|||
2
+ |||θuh(0)|||

2

+ ρ‖θuh(0)‖
2 + C

∫ t

0

‖ηuht‖
2ds̄+ ρ‖θuht(0)‖

2 + C

∫ t

0

‖ηuhtt‖
2ds̄.

In the following, we shall estimate the pressure in L2 by using the inf-sup condition
in Lemma 3.2 and the equations (4.5):

‖θph(t)‖
2 ≤ 2b(vh, θ

p
h(t)) + Ch1−αs2(θ

p
h(t), θ

p
h(t))

=2ρ(θuht(t),v0) + 2a(θuh(t),vh)− 2ρ(ηuht(t),v0) + Ch1−αs2(θ
p
h(t), θ

p
h(t))

≤C
(

‖θuht(t)‖ + ‖ηuht(t)‖+ |||θuh(t)|||
)

|||vh|||+ Ch1−αs2(θ
p
h(t), θ

p
h(t))

≤C
(

‖θuht(t)‖ + ‖ηuht(t)‖+ |||θuh(t)|||
)

(1 + h
1−γ
2 )‖θph(t)‖ + Ch1−αs2(θ

p
h(t), θ

p
h(t)).
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Here we have used the fact ‖v0‖ ≤ C|||vh|||. Hence, from the Cauchy-Schwarz inequal-
ity and (4.7), (4.6), (4.8) we have
(4.9)

‖θph(t)‖
2 ≤ C(1 + h1+γ)

(

‖θuht(t)‖
2 + ‖ηuht(t)‖

2 + |||θuh(t)|||
2
)

+ Ch1−αs2(θ
p
h(t), θ

p
h(t))

≤C(1 + h1+γ + h1−α)
(

∫ t

0

(‖ηuhtt‖
2 + ‖ηuht‖

2)ds̄+ ‖ηuht(t)‖
2

+ µ|||θuh(0)|||
2
+
ρ

2
‖θuht(0)‖

2
)

.

Similar to the estimate for the velocity, we have

‖eph(t)‖
2 ≤ ‖ηph(t)‖

2 + ‖θph(t)‖
2,

which, together with the estimates in Theorem 4.2, completes the convergence proof
for the semi-discrete scheme.

4.2. Convergence of Fully-discrete Scheme. Now, we turn our attention to
the fully-discrete scheme (2.4). The error term is denoted by

en̄u = Qhu(t
n̄)− un̄ = ηn̄u + θn̄u ,

where ηn̄u = Qhu(t
n̄) − Ehu(t

n̄) and θn̄u = Ehu(t
n̄) − un̄. Similarly, we write en̄p =

Qp
hp(t

n̄)− pn̄ = ηn̄p + θn̄p , and η
n̄
p = Qp

hp(t
n̄)− Ep

hp(t
n̄), θn̄p = Ep

hp(t
n̄)− pn̄.

Theorem 4.3. Let (un̄+1, pn̄+1) and (u, p) be the numerical solution of gWG
(2.4) and exact solution of (2.2), respectively. Assume that the velocity u,ut,utt ∈
[Hi(Ω)]d, i = max{s + 2, k + 1, j + 1} and the pressure p, pt, ptt ∈ Hn+1(Ω). Let
k − 1 ≤ n ≤ max{m, k + 1} and j ≥ 1. Then there exists a constant such that
(4.10)

‖eN+1
u ‖2 ≤ ‖θ0u‖

2 + Cτ2
∫ tN+1

t0
‖utt‖

2ds̄+ C(h2 + h2α)(1 + hγ+1 + h2(1−α))

(

R1(t
N+1) +

∫ tN+1

t0
R2(s)ds̄

)

,

|||eN+1
u |||

2
≤ µ‖∇wθ

0
u‖

2 + s1(θ
0
u, θ

0
u) + s2(θ

0
p, θ

0
p) + ρ‖∂̄tθ

1
u‖

2 + ρ‖θ0u‖
2 + CR1(t

N+1)

+ C(h2 + h2α)(1 + hγ+1 + h2(1−α))

∫ tN+1

t0
R2(s̄) +R3(s̄)ds̄

+ Cτ2
∫ tN+1

t0
‖utt‖

2 + ‖uttt‖
2ds̄,

and
(4.11)

‖eN+1
p ‖2 ≤ C(1 + h1+γ + h1−α + h2(1−α))

(

|||θ0u|||
2
+ s2(θ

0
p, θ

0
p) + ρ‖∂̄tθ

1
u‖

2 + ρ‖θ0u‖
2

+R1(t
N+1) +

∫ tN+1

t0
R2(s̄) +R3(s̄)ds̄+ τ2

∫ tN+1

t0
‖utt‖

2 + ‖uttt‖
2ds̄

+
1

τ ′

∫ tN+1

tN
R2(s̄)ds̄+ τ ′

∫ tN+1

tN
‖utt‖

2ds̄
)

,

where τ ′ = tN+1 − tN .
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Moreover, when γ = −1 and α = 1, optimal order of convergence is obtained.

Proof. Observe that the estimate for ηn̄+1
u and ηn̄+1

p has been established in
Lemma 4.1. Thus, it suffices to handle θn̄+1

u and θn̄+1
p . Note the following equations

for all χh ∈ V0
h and ψ ∈ Wh

(4.12)

ρ(∂̄tθ
n̄+1
u , χ0) + a(θn̄+1

u , χh)− (θn̄+1
p ,∇w · χh)

=ρ(∂̄tη
n̄+1
u , χ0) + ρ(∂̄tu(t

n̄+1)− ut(t
n̄+1), χ0),

(∇w · θn̄+1
u , ψ) + s2(θ

n̄+1
p , ψ) = 0.

By choosing χh = θn̄+1
u and ψ = θn̄+1

p in (4.12) and using Lemma 3.4, we obtain

ρ

2τ
(‖θn̄+1

u ‖2 − ‖θn̄u‖
2) + C1‖∇wθ

n̄+1
u ‖2 + C0ρ‖θ

n̄+1
u ‖2

+
1

2
s1(θ

n̄+1
u , θn̄+1

u ) + s2(θ
n̄+1
p , θn̄+1

p )

≤C‖∂̄tη
n̄+1
u ‖2 + C‖∂̄tu(t

n̄+1)− ut(t
n̄+1)‖2

≤C‖
1

τ

∫ tn̄+1

tn̄
ηuhtds̄‖

2 + C‖
1

τ

∫ tn̄+1

tn̄
(tn̄ − s̄)uttds̄‖

2

≤C
1

τ

∫ tn̄+1

tn̄
‖ηuht‖

2ds̄+ Cτ

∫ tn̄+1

tn̄
‖utt‖

2ds̄.

Thus, summing the above inequality from 0 to N yields

(4.13)

ρ‖θN+1
u ‖2 + τ

N
∑

n̄=0

(

2C1‖∇wθ
n̄+1
u ‖2 + 2C0ρ‖θ

n̄+1
u ‖2 + s1(θ

n̄+1
u , θn̄+1

u )

+ 2s2(θ
n̄+1
p , θn̄+1

p )
)

≤ρ‖θ0u‖
2 + C

∫ tN+1

t0
‖ηuht‖

2ds̄+ Cτ2
∫ tN+1

t0
‖utt‖

2ds̄.

Thus,

‖eN+1
u ‖2 ≤ ‖ηN+1

u ‖2 + ‖θN+1
u ‖2

≤ ‖ηN+1
u ‖2 + ‖θ0u‖

2 + C

∫ tN+1

t0
‖ηuht‖

2ds̄+ Cτ2
∫ tN+1

t0
‖utt‖

2ds̄.

Combining (4.13) with Lemma 4.1 yields the estimate for the velocity in L2 norm.

In order to estimate the velocity in energy norm, we rewrite (4.12) as follows

ρ(∂̄ttθ
n̄+1
u , χ0) + a(∂̄tθ

n̄+1
u , χh)− (∂̄tθ

n̄+1
p ,∇w · χh)

=ρ(∂̄ttη
n̄+1
u , χ0) + ρ(∂̄ttu(t

n̄+1)− ∂̄tut(t
n̄+1), χ0),

(∇w · ∂̄tθ
n̄+1
u , ψ) + s2(∂̄tθ

n̄+1
p , ψ) = 0,

where ∂̄ttθ
n̄+1
u =

∂̄tθ
n̄+1
u −∂̄tθ

n̄
u

τ
. Taking χh = ∂̄tθ

n̄+1
u and ψ = ∂̄tθ

n̄+1
p in the above
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identity leads to

ρ

2τ
(‖∂̄tθ

n̄+1
u ‖2 − ‖∂̄tθ

n̄
u‖

2) + C1‖∇w∂̄tθ
n̄+1
u ‖2 + C0ρ‖∂̄tθ

n̄+1
u ‖2

+
1

2
s1(∂̄tθ

n̄+1
u , ∂̄tθ

n̄+1
u ) + s2(∂̄tθ

n̄+1
p , ∂̄tθ

n̄+1
p )

≤C‖∂̄ttη
n̄+1
u ‖2 + C‖∂̄ttu(t

n̄+1)− ∂̄tut(t
n̄+1)‖2

≤C
1

τ

∫ tn̄+1

tn̄−1

‖ηuhtt‖
2ds̄+ Cτ

∫ tn̄+1

tn̄−1

‖uttt‖
2ds̄.

Here, we have used

‖∂̄ttη
n̄+1
u ‖2 ≤

1

τ

∫ tn̄+1

tn̄−1

‖ηuhtt‖
2ds̄

and

‖∂̄ttu(t
n̄+1)− ∂̄tut(t

n̄+1)‖2 ≤ τ

∫ tn̄+1

tn̄−1

‖uttt‖
2ds̄.

Summing n̄ from 0 to N gives rise to

(4.14)

ρ(‖∂̄tθ
N+1
u ‖2 − ‖∂̄tθ

1
u‖

2) + τ
N
∑

n̄=0

(

2C1‖∇w∂̄tθ
n̄+1
u ‖2 + 2C0ρ‖∂̄tθ

n̄+1
u ‖2

+ s1(∂̄tθ
n̄+1
u , ∂̄tθ

n̄+1
u ) + 2s2(∂̄tθ

n̄+1
p , ∂̄tθ

n̄+1
p )

)

≤C

∫ tN+1

t0
‖ηuhtt‖

2ds+ Cτ2
∫ tN+1

t0
‖uttt‖

2ds.

On the other side, we have by using the Cauchy-Schwarz inequality

1

2τ

(

µ‖∇wθ
n̄+1
u ‖2 − µ‖∇wθ

n̄
u‖

2 + s1(θ
n̄+1
u , θn̄+1

u )− s1(θ
n̄
u , θ

n̄
u)

+ s2(θ
n̄+1
p , θn̄+1

p )− s2(θ
n̄
p , θ

n̄
p )
)

≤µ(∇w∂̄tθ
n̄+1
u ,∇wθ

n̄+1
u ) + s1(∂̄tθ

n̄+1
u , θn̄+1

u ) + s2(∂̄tθ
n̄+1
p , θn̄+1

p )

≤
1

2

(

µ‖∇wθ
n̄+1
u ‖2 + s1(θ

n̄+1
u , θn̄+1

u ) + s2(θ
n̄+1
p , θn̄+1

p )
)

+
1

2

(

µ‖∇w∂̄tθ
n̄+1
u ‖2 + s1(∂̄tθ

n̄+1
u , ∂̄tθ

n̄+1
u ) + s2(∂̄tθ

n̄+1
p , ∂̄tθ

n̄+1
p )

)

.

Summing the above inequality from 0 to N leads to

µ‖∇wθ
N+1
u ‖2 − µ‖∇wθ

0
u‖

2 + s1(θ
N+1
u , θN+1

u )− s1(θ
0
u, θ

0
u)

+ s2(θ
N+1
p , θN+1

p )− s2(θ
0
p, θ

0
p)

≤τ

N
∑

n̄=0

(

µ‖∇wθ
n̄+1
u ‖2 + s1(θ

n̄+1
u , θn̄+1

u ) + s2(θ
n̄+1
p , θn̄+1

p )
)

+ τ

N
∑

n̄=0

(

µ‖∇w∂̄tθ
n̄+1
u ‖2 + s1(∂̄tθ

n̄+1
u , ∂̄tθ

n̄+1
u ) + s2(∂̄tθ

n̄+1
p , ∂̄tθ

n̄+1
p )

)

.
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Together with (4.13) and (4.14), we obtain

(4.15)

µ‖∇wθ
N+1
u ‖2 + s1(θ

N+1
u , θN+1

u ) + s2(θ
N+1
p , θN+1

p )

≤µ‖∇wθ
0
u‖

2 + s1(θ
0
u, θ

0
u) + s2(θ

0
p, θ

0
p) + ρ‖∂̄tθ

1
u‖

2 + ρ‖θ0u‖
2

+ C

∫ tN+1

t0
‖ηuht‖

2 + ‖ηuhtt‖
2ds̄+ Cτ2

∫ tN+1

t0
‖utt‖

2 + ‖uttt‖
2ds̄.

Note that |||eN+1
u |||2 ≤ |||ηN+1

u |||2 + |||θN+1
u |||2. Thus, by combining the above inequality

and Lemma 4.1 we obtain the desired estimate for the velocity in energy norm.
To estimate the pressure in L2 norm , we first use Lemma 3.2 and (4.12) to obtain

‖θN+1
p ‖2 ≤ 2b(vh, θ

N+1
p ) + Ch1−αs2(θ

N+1
p , θN+1

p )

=ρ(∂̄tθ
N+1
u ,v0) + a(θN+1

u ,vh)− ρ(∂̄tη
N+1
u ,v0)− ρ(∂̄tu(t

N+1)− ut(t
N+1),v0)

+ Ch1−αs2(θ
N+1
p , θN+1

p ).

Next from the Cauchy-Schwarz inequality and (4.13), (4.14), (4.15), we have

‖θN+1
p ‖2 ≤C(1 + h1+γ)

(

‖∂̄tθ
N+1
u ‖2 + |||θN+1

u |||
2
+ ‖θN+1

u ‖2

+
1

τ ′

∫ tN+1

tN
‖ηuht‖

2ds̄+ τ ′
∫ tN+1

tN
‖utt‖

2ds̄
)

+ Ch1−αs2(θ
N+1
p , θN+1

p )

≤C(1 + h1+γ + h1−α)
(

µ‖∇wθ
0
u‖

2 + s1(θ
0
u, θ

0
u) + s2(θ

0
p, θ

0
p) + ρ‖∂̄tθ

1
u‖

2

+ ρ‖θ0u‖
2 +

∫ tN+1

t0
‖ηuht‖

2 + ‖ηuhtt‖
2ds̄+ τ2

∫ tN+1

t0
‖utt‖

2 + ‖uttt‖
2ds̄

+
1

τ ′

∫ tN+1

tN
‖ηuht‖

2ds̄+ τ ′
∫ tN+1

tN
‖utt‖

2ds
)

,

where τ ′ = tN+1 − tN . This completes the desired estimate for the pressure ap-
proximation by using Lemma 4.1 and the inequality ‖eN+1

p ‖2 ≤ ‖ηN+1
p ‖2 + ‖θN+1

p ‖2.

Remark 2. For the case of n ≤ j, the gWG scheme (2.4) for the evolutionary
equation can be formulated without including the stabilizer s2; i.e. σ = 0. The
corresponding error estimate can be obtained without any difficulty by following the
above procedure.

5. Numerical Experiments. In this section, we will present two computational
examples to verify the convergence theory established in previous sections. One of the
two examples is a steady-state Oseen equation and the other is an evolutionary one.
We employ the elements ([P1]

2, [P0]
2, [P1]

2×2, P0, P0) and ([P2]
2, [P1]

2, [P1]
2×2, P1, P1)

in the numerical implementation. The parameters are set as follows: µ = 1, ρ = 1 and
ζ = 1. The numerical experiments are based on a regular family Th of triangulations
for the domain.

Example 1. Consider the steady-state Oseen equation in domain Ω = (0, 1)2.
The exact solution is given by u = [x2y;−xy2] and p = (2x−1)(2y−1). The convective
vector is set as β = [−x+ sinx sin y; cosx cos y] so that ∇ · β = −1.

The results are shown in Tables 5.1 and 5.2. For the ([P1]
2, [P0]

2, [P1]
2×2, P0, P0)

element, we observe a convergence of order O(h) for the velocity in energy norm and
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the pressure in L2 norm. The convergence is shown to be of order O(h2) for the
velocity in L2 norm in Table 5.1. For the ([P2]

2, [P1]
2, [P1]

2×2, P1, P1) element, we
obtained the expected order of convergence for both the velocity and the pressure
in various norms, as demonstrated in Table 5.2. The numerical results are in great
consistency with the convergence theory developed in previous sections.

h |||euh||| ||euh || ||eph||

error order error order error order

1/8 9.5305e-02 4.6205e-03 1.3175e-01
1/16 4.9781e-02 0.93 1.3090e-03 1.81 6.4353e-02 1.03
1/32 2.5309e-02 0.97 3.4292e-04 1.93 3.0501e-02 1.07
1/64 1.2727e-02 0.99 8.7119e-05 1.97 1.4586e-02 1.06

Table 5.1: Example 1: Convergence with elements ([P1]2, [P0]2, [P1]2×2, P0, P0): γ = 1 and σ = 0,
i.e. without the stabilizer s2

h |||euh||| ||euh || ||eph||

error order error order error order

1/8 8.4499e-03 3.3478e-04 1.1235e-02
1/16 2.1246e-03 1.99 4.1883e-05 2.99 2.8109e-03 1.99
1/32 5.3256e-04 1.99 5.2382e-06 2.99 7.0305e-04 1.99
1/64 1.3331e-04 1.99 6.5497e-07 2.99 1.7581e-04 1.99

Table 5.2: Example 1: Convergence with elements ([P2]2, [P1]2, [P1]2×2, P1, P1): γ = 1 and σ = 0,
i.e. without the stabilizer s2

Example 2. Consider the evolutionary Oseen equation with domain (0, 1)2 ×
(0, T̄ ]. The exact solution is chosen as u = e−t[x2y;−xy2] and p = sin t(2x−1)(2y−1).
The convective vector is set as β = [−x+ sinx sin y; cosx cos y] and T̄ = 1.

For the evolutionary case, the convergence depends on the mesh size h and the
time step τ . Tables 5.3 and 5.4 illustrate the order of convergence in terms of the mesh
size h. It can be seen that the expected convergence order of O(h) is illustrated for the
velocity in energy norm and the pressure in L2 norm. For the velocity in L2 norm,
Table 5.3 shows a clear convergence of O(h2). For the ([P2]

2, [P1]
2, [P1]

2×2, P1, P1)
element, Table 5.4 shows a convergence order of O(h2) for the velocity in energy
norm and the pressure in L2 norm. The optimal order of convergence O(h3) was
clearly seen in Table 5.4 for the velocity in L2 norm.

Table 5.5 demonstrates the convergence of the numerical scheme in time dis-
cretization. As the backward Euler scheme was implemented in the fully-discrete
scheme, the table shows a convergence of order O(τ) in time with expectation. All
the results are consistent with the theory developed in this paper.

6. Conclusions. In this paper, a gWG method was introduced and analyzed
for the evolutionary Oseen equation by using generalized weak gradient for velocity.
This new numerical scheme was designed without using the usual skew-symmetric
formulation for the convective term. Error estimates of optimal order were established
for the new scheme with arbitrary combination of polynomials. The backward Euler
discretization was employed in the fully discrete scheme. Numerical experiments were
conducted to validate the theory developed in this paper.
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h |||euh||| ||euh || ||eph||

error order error order error order

1/8 5.6155e-02 2.9496e-03 1.0792e-01
1/16 3.0217e-02 0.89 8.7776e-04 1.74 5.3055e-02 1.02
1/32 1.5530e-02 0.96 2.3377e-04 1.90 2.5267e-02 1.07
1/64 7.8384e-03 0.98 5.9719e-05 1.96 1.2118e-02 1.06

Table 5.3: Example 2: Convergence with elements ([P1]2, [P0]2, [P1]2×2, P0, P0): τ = h2, γ = 1 and
σ = 0, i.e. without the stabilizer s2

h |||euh||| ||euh || ||eph||

error order error order error order

1/4 2.6240e-02 2.0985e-03 3.7737e-02
1/8 6.6697e-03 1.97 2.6389e-04 2.99 9.4291e-03 2.00
1/16 1.6786e-03 1.99 3.3072e-05 2.99 2.3582e-03 1.99
1/32 4.2090e-04 1.99 4.1448e-06 2.99 5.8976e-04 1.99

Table 5.4: Example 2: Convergence with elements ([P2]2, [P1]2, [P1]2×2, P1, P1): τ = h2, γ = 1 and
σ = 0, i.e. without the stabilizer s2

τ |||euh||| ||euh || ||eph||

error order error order error order

1/4 5.9875e-04 7.6289e-05 3.2232e-03
1/8 2.8739e-04 1.05 3.6495e-05 1.06 1.5441e-03 1.06
1/16 1.4248e-04 1.01 1.7854e-05 1.03 7.5657e-04 1.02
1/32 7.4106e-05 0.94 8.8315e-06 1.01 3.7568e-04 1.00

Table 5.5: Example 2: Convergence with elements ([P2]2, [P1]2, [P1]2×2, P1, P1): h = 1/128, γ = 1
and σ = 0, i.e. without the stabilizer s2
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