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Abstract

The remarkable successes of neural networks in a huge variety of inverse problems have fueled their
adoption in disciplines ranging from medical imaging to seismic analysis over the past decade. However,
the high dimensionality of such inverse problems has simultaneously left current theory, which predicts
that networks should scale exponentially in the dimension of the problem, unable to explain why the
seemingly small networks used in these settings work as well as they do in practice. To reduce this gap
between theory and practice, we provide a general method for bounding the complexity required for a
neural network to approximate a Hölder (or uniformly) continuous function defined on a high-dimensional
set with a low-complexity structure. The approach is based on the observation that the existence of
a Johnson-Lindenstrauss embedding A ∈ Rd×D of a given high-dimensional set S ⊂ RD into a low
dimensional cube [−M,M ]d implies that for any Hölder (or uniformly) continuous function f : S → Rp,
there exists a Hölder (or uniformly) continuous function g : [−M,M ]d → Rp such that g(Ax) = f(x) for
all x ∈ S. Hence, if one has a neural network which approximates g : [−M,M ]d → Rp, then a layer can be
added that implements the JL embedding A to obtain a neural network that approximates f : S → Rp.
By pairing JL embedding results along with results on approximation of Hölder (or uniformly) continuous
functions by neural networks, one then obtains results which bound the complexity required for a neural
network to approximate Hölder (or uniformly) continuous functions on high dimensional sets. The end
result is a general theoretical framework which can then be used to better explain the observed empirical
successes of smaller networks in a wider variety of inverse problems than current theory allows.

1 Introduction

At present various network architectures (NN, CNN, ResNet) achieve state-of-the-art performance for a
broad range of inverse problems including matrix completion [1–4], image-deconvolution [5–7], low-dose CT-
reconstitution [8], and electric and magnetic inverse Problems [9] (seismic analysis, electromagnetic scatter-
ing). However, since these problems are very high dimensional, classical universal approximation theory for
such networks provides very pessimistic estimates of the network sizes required to learn such inverse maps
(i.e., as being much larger than what standard computers can store, much less train). As a result, a gap still
exists between the widely observed successes of networks in practice and the network size bounds provided
by current theory in many inverse problem applications. The purpose of this paper is to provide a refined
bound on the size of networks in a wide range of such applications and to show that the network size is
indeed affordable in many inverse problem settings. In particular, the bound developed herein depends on
the model complexity of the domain of the forward map instead of the domain’s extrinsic input dimension,
and therefore is much smaller in a wide variety of model settings.

To be more specific, recall in most inverse problems one aims to recover some signal x from its mea-
surements y = F (x). Here y and x could both be high dimensional vectors, or even matrices and tensors,
and F , which is called the forward map/operator, could either be linear or nonlinear with various regularity
conditions depending on the application. In all cases, however, recovering x from y amounts to inverting
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F . In other words, one aims to find the operator F−1, that sends every measurement y back to the original
signal x. Depending on the specific application of interest, there are various commonly considered forms of
the forward map F . For example, F could be a linear map from high to low dimensions as in compressive
sensing applications; F could be a convolution operator that computes the shifted local blurring of an image
in an image deblurring setting; F could be a mask that filters out the unobserved entries of the data as in
the matrix completion application; or F could also be the source-to-solution map of a differential equation
as in ODE/PDE based inverse problems.

In most of these applications, the inverse operator F−1 does not possess a closed-form expression. As a
result, in order to approximate the inverse one commonly uses analytical approaches that involve solving,
e.g., an optimization problem. Take sparse recovery as an example. With prior knowledge that the true signal
x ∈ Rn is sparse, it is known that one can recover it from under-determined measurements, Rm ∋ y = Φx
with m < n, by solving the optimization problem

x̂ = argmin
z

∥z∥0, Φz = y.

As a result, one can see that linear measurement map F defined by F (x) = Φx = y, with its domain
restricted to the low-complexity domain of s-sparse vectors Σs ⊂ Rn, has an inverse, F−1 : Φ(Σs) → Σs.
And, the minimizer x̂ above satisfies x̂ = F−1(y) = F−1(Φx) = y for all x ∈ Σs.

Note that traditional optimization-based approaches could be extremely slow for large-scale problems (e.g.,
for n large above). Alternatively, we can approximate the inverse operator by a neural network. Amortizing
the initial cost of an expensive training stage, the network can later achieve unprecedented speed over time
at the test stage leading to better total efficiency over its lifetime. To realize this goal, however, we need to
first find a neural network architecture fθ, and train it to approximate F−1, so that the approximation error
maxy ∥fθ(y) − F−1(y)∥ = ∥fθ(y) − x∥ is small. The purpose of this paper is to provide a unified way to
give a meaningful estimation of the size of the network that one can use in situations where the domain of F
is low-complexity, as is the case in, e.g., compressive sensing, low-rank matrix completion, deblurring with
low-dimensional signal assumptions, etc..

2 Main Results

We begin by stating a few definitions. We say that a neural network ϵ-approximates a function f if the
function implemented by the neural network f̂ satisfies ∥f̂(x) − f(x)∥∞ ≤ ϵ for all x in the domain of f .
We say that a neural network architecture ϵ-approximates a function class F if for any function f ∈ F , there
exists a choice of edge weights and node bias parameters such that the function f̂ implemented by the neural
network with that choice of edge weights and node bias parameters satisfies ∥f̂(x) − f(x)∥∞ ≤ ϵ for all x
in the domain of f . For brevity, we refer to a feedforward neural network with at most N nodes, E edges1,
and L layers as a (N , E ,L)-FNN. We also refer to a feedforward neural network architecture with at most
N nodes, E edges, and L layers as a (N , E ,L)-FNN architecture. Similarly, we will refer to a convolutional
neural network with at most N nodes, P parameters, and L layers as a (N ,P,L)-CNN. And, we will also
refer to a convolutional neural network architecture with at most N nodes, P parameters, and L layers as a
(N ,P,L)-CNN architecture.

We say that a function ∆ : [0,∞) → [0,∞) is a modulus of continuity if it is non-decreasing and satisfies
limr→0+ ∆(r) = ∆(0) = 0. We say that a function f between Euclidean spaces admits a modulus of continuity
∆ if ∆ is a modulus of continuity, and if ∥f(x) − f(x′)∥2 ≤ ∆(∥x − x′∥2) holds for all x,x′ in the domain
of f . For brevity, we will refer to such a function as a C(∆(r))-function.

For any constants L > 0 and α ∈ (0, 1], we say that a function f between Euclidean spaces is (L,α)-
Hölder if f admits ∆(r) = Lrα as a modulus of continuity. We also say that a function f is α-Hölder if f is
(L,α)-Hölder for some constant L > 0.

Finally, for any positive integers d < D, any set S ⊂ RD, and any constant ρ ∈ (0, 1), we say that a
matrix A ∈ Rd×D is a ρ-JL (Johnson-Lindenstrauss) embedding of S into Rd if

(1− ρ)∥x− x′∥2 ≤ ∥Ax−Ax′∥2 ≤ (1 + ρ)∥x− x′∥2 holds for all x,x′ ∈ S.
1Throughout this paper, we use the term “edges” to denote the number of connections between nodes in a feedforward neural

network. Many papers refer to these as “weight parameters” or just “weights”.
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If we furthermore have A(S) := {Ax : x ∈ S} ⊂ T , we say that A is a ρ-JL embedding of S into T .
Intuitively, a ρ-JL embedding of S into Rd maps S from a high-dimensional space to a low-dimensional space
without significantly distorting the Euclidean distances between points.

Contributions and Related Work: Existing universal approximation theorems for various types of neural
networks are mainly stated for functions defined on an d-dimensional cube. Our main contribution is to
generalize these results to functions that admit a specified modulus of continuity (e.g., Hölder continuous
functions) that are defined on arbitrary JL-embeddable subsets of very high dimensional Euclidean space.
We then demonstrate how our results can be applied to various example inverse problems in order to obtain
reasonable estimates of the network sizes needed in each case we consider.

More explicitly, we show that if there exists a ρ-JL embedding of a high-dimensional set S ⊂ RD into a
low-dimensional cube [−M,M ]d, then we can use any neural network architecture which can ϵ-approximate

all
(

L
(1−ρ)α , α

)
-Hölder functions on [−M,M ]d to construct a new neural network architecture which can

ϵ-approximate all (L,α)-Hölder functions defined on S. To establish this, we show that if there exists a
ρ-JL embedding A ∈ Rd×D of S ⊂ RD into d-dimensions, then for any (L,α)-Hölder function f : S → Rp,

there exists a
(

L
(1−ρ)α , α

)
-Hölder function g : [−M,M ]d → Rp (where M = supx∈S ∥Ax∥∞) such that

g(Ax) = f(x) for all x ∈ S. Hence, if we have a neural network which can approximate g : [−M,M ]d → Rp,
then we can compose it with a neural network which implements the JL embedding A to obtain a neural
network which approximates f : S → Rp. By pairing JL embedding existence results along with results on
the approximation of Hölder functions by neural networks, we obtain results which bound the complexity
required for a neural network to approximate Hölder functions on low-complexity high-dimensional sets. We
can also generalize the above argument to extend results for functions with a specified modulus of continuity
to higher dimensions in an analogous fashion.

The expressive power of neural networks is important in applications as a means of both guiding network
architecture design choices, as well as for providing confidence that good network solutions exist in general
situations. As a result, numerous results about neural network approximation power have been established in
recent years (see, e.g., [10–14]). Most results concern the approximation of functions on all of RD, however,
and yield network sizes that increase exponentially with the input dimension D. As a result, the high
dimensionality of many inverse problems leads to bounds from most of the existing literature which are too
large to explain the observed empirical success of neural network approaches in such applications.

A similar high-dimensional scaling issue arises in many image classification tasks as well. Motivated by
this setting [15] refined previous approximation results for ReLU networks, and showed that input data that
is close to a low-dimensional manifold leads to network sizes that only grow exponentially with respect to
the intrinsic dimension of the manifold. However, this improved bound relies on the data fitting a mani-
fold assumption, which is quite strong in the setting of inverse problems. For example, even the “simple”
compressive sensing/sparse recovery problem discussed above does not have a domain/range that forms a
manifold (note that the intersections of s-dimensional subspaces in Σs prevent it from being a manifold).
Therefore, to study the expressive power of networks in the context of a class of inverse problems which is
at least large enough to include compressive sensing, one needs to remove such strict manifold assumptions.
Another mild issue with such manifold results is that the number of neurons also depends on the curvature
of the manifold in question which can be difficult to estimate. Furthermore, such curvature dependence is
unavoidable for manifold results and needs to be incorporated into any valid bounds.2

The idea of using a JL embedding to reduce the dimensionality of the input before feeding it into a neural
network was studied in [16]. There, the authors perform experiments on the webspam [17], url [18], KDD2010-
a, and KDD2010-b datasets [19], which have input data with millions of dimensions. They show that a deep
neural network with an untrained random projection layer that reduces the dimensionality down to 1000 can
improve on the state of the art results or achieve competitive performance on these datasets. Furthermore,
the dimensionality reduction allows the neural network to be trained efficiently. However, [16] did not provide

2To see why, e.g., curvature dependence is unavoidable, consider any discrete training dataset in a compact ball. There
always exists a 1-dimensional manifold, namely a curve, that goes through all the data points. Thus, the mere existence of the
1-dimensional manifold does not mean the data complexity is low. Curvature information and other manifold properties matter
as well!
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Figure 1: If there exists a ρ-JL embedding of S ⊂ RD into [−M,M ]d, then we can write the target function
f : S → Rp as f = g ◦ JL where g : [−M,M ]d → Rp. So, we can then construct a neural network
approximation of f by using a neural network approximation of g and adding a layer to implement the JL
embedding.

any theoretical guarantees for the performance of a neural network with a linear dimensionality reduction
layer.

We note that [20] have recently independently proposed a more general framework where a geometric deep
learning model first applies a continuous and injective map ϕ to transform the input space to a manifold, after
which a composition of exponential maps and DNNs is used to obtain the output. Applying a JL-transform
to x ∈ S as done herein is similar, but there are some key differences. In our work, the JL-embedding is
implemented by the first few layers of the neural network in order to compress the input data before it goes
through the rest of the network. Their more general map ϕ is focused on feature extraction, and it is not
implemented by a neural network. So, both ϕ and S must be known a priori in practice. More specifically, our
results only require an upper bound on the intrinsic dimensionality of S in order to utilize theory guaranteeing
the existence of linear JL-embeddngs with few rows. Thus, neither detailed a priori knowledge of S ⊂ RD

nor of the linear map is required herein. As a result, our approach is significantly simpler to implement and
apply in practice, and can often be utilized even when S is only partially and/or approximately known.

We now state our main technical theorems which allow us to prove our main results. First, we give a
theorem for extending feed-forward neural network approximation results from uniformly continuous functions
on a low-dimensional hypercube to a high-dimensional set. See Appendix A for the proof.

Theorem 1. Let d < D be positive integers, and let M > 0, ρ ∈ (0, 1), and ϵ > 0 be constants. Let ∆(r) be
a modulus of continuity. Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D

of S into [−M,M ]d.
(a) Suppose that any C(√p∆( r

1−ρ ))-function g : [−M,M ]d → Rp can be ϵ-approximated by a (N , E ,L)-
FNN. Then, any C(∆(r)) function f : S → Rp can be ϵ-approximated by a (N +D, E +Dd,L+ 1)-FNN.

(b) Furthermore, if there exists a single (N , E ,L)-FNN architecture that can ϵ-approximate every C(√p∆( r
1−ρ ))-

function g : [−M,M ]d → Rp, then there also exists another (N +D, E +Dd,L + 1)-FNN architecture that
can ϵ-approximate every C(∆(r))-function f : S → Rp.

We also provide a version of this theorem for extending approximation results for CNNs. See Appendix A
for the proof.

Theorem 2. Let d < D be positive integers, and let M > 0, ρ ∈ (0, 1), and ϵ > 0 be constants. Let ∆(r) be
a modulus of continuity. Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D

of S into [−M,M ]d which is of the form A = MD, where M is a partial circulant matrix, and D is a
diagonal matrix with ±1 on its diagonal.

(a) Suppose that any C(√p∆( r
1−ρ ))-function g : [−M,M ]d → Rp can be ϵ-approximated by a (N ,P,L)-

CNN. Then, any C(∆(r))-function f : S → Rp can be ϵ-approximated by a (N + 4D,P + 2D,L+ 4)-CNN.
(b) Furthermore, if there exists a single (N ,P,L)-CNN that can ϵ-approximate every C(√p∆( r

1−ρ ))-

function g : [−M,M ]d → Rp, then there also exists another (N + 4D,P + 2D,L + 4)-CNN that can ϵ-
approximate every C(∆(r))-function f : S → Rp.

4



We also provide improvements for both of the above theorems which state that for the special case of
Hölder functions, whose modulus of continuity is ∆(r) = Lrα, the

√
p factor in

√
p∆( r

1−ρ ) can be removed.
See Appendix B for the proofs.

Theorem 3. Let d < D be positive integers, and let L > 0, M > 0, α ∈ (0, 1], ρ ∈ (0, 1), and ϵ > 0 be
constants. Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into
[−M,M ]d.

(a) Suppose that any
(

L
(1−ρ)α , α

)
-Hölder function g : [−M,M ]d → Rp can be ϵ-approximated by a

(N , E ,L)-FNN. Then, any (L,α)-Hölder function f : S → Rp can be ϵ-approximated by a (N + D, E +
Dd,L+ 1)-FNN.

(b) Furthermore, if there exists a single (N , E ,L)-FNN architecture that can ϵ-approximate every
(

L
(1−ρ)α , α

)
-

Hölder function g : [−M,M ]d → Rp, then there also exists another (N +D, E +Dd,L+1)-FNN architecture
that can ϵ-approximate every (L,α)-Hölder function f : S → Rp.

Theorem 4. Let d < D be positive integers, and let L > 0, M > 0, α ∈ (0, 1], ρ ∈ (0, 1), and ϵ > 0 be
constants. Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into
[−M,M ]d which is of the form A = MD, where M is a partial circulant matrix, and D is a diagonal matrix
with ±1 on its diagonal.

(a) Suppose that any
(

L
(1−ρ)α , α

)
-Hölder function g : [−M,M ]d → Rp can be ϵ-approximated by a

(N ,P,L)-CNN. Then, any (L,α)-Hölder function f : S → Rp can be ϵ-approximated by a (N + 4D,P +
2D,L+ 4)-CNN.

(b) Furthermore, if there exists a single (N ,P,L)-CNN architecture that can ϵ-approximate every
(

L
(1−ρ)α , α

)
-

Hölder function g : [−M,M ]d → Rp, then there also exists another (N +4D,P+2D,L+4)-CNN architecture
that can ϵ-approximate every (L,α)-Hölder function f : S → Rp.

Remark 1. These theorems ensure that the network size for approximating f grows exponentially with the
compressed dimension d instead of growing exponentially with the input dimension D. The task now reduces
to making the compressed dimension d as small as possible while still ensuring that a ρ-JL embedding of S
into [−M,M ]d exists.

Remark 2. These theorems are quite general as parts (a) and (b) are not restricted to any particular type of
network or activation function. In Section 2.3, we provide three corollaries of these theorems which establish
the expressive power of the feedforward and convolutional neural networks.

Remark 3. If an inverse operator is Hölder continuous and there exists a ρ-JL embedding of the set of possible
observations S into d dimensions, then the theorem gives us a bound on the complexity of a neural network
architecture required to approximate the inverse operator.

Remark 4. A key ingredient in the above theorems is that for any uniformly (or Hölder) continuous function
f : S → Rp and any ρ-JL embedding A ∈ Rd×D of S into a hypercube [−M,M ]d, there exists a uniformly
(or Hölder) continuous function g : [−M,M ]d → Rp such that g(Ax) = f(x) for all x ∈ S. Unfortunately,
this is not the case if we replace uniform (or Hölder) continuity with differentiability. In Appendix C, we
provide an example of a set S ⊂ RD and a smooth function f : S → R for which there is no ρ-JL embedding
A ∈ Rd×D (with d < D) of S into a hypercube [−M,M ]d and differentiable function g : [−M,M ]d → Rp

such that g(Ax) = f(x) for all x ∈ S. As such, we are not able to use our main idea to extend approximation
results about differentiable functions.

2.1 JL embeddings, covering numbers and Gaussian width

As the existence of the JL map is a critical assumption of our theorem, in this section, we discuss the sufficient
conditions for this assumption to hold. In addition, we also care about the structures of the JL maps, as
they will end up being the first layer of the final neural network. For example, if the neural network is of
convolution type, we need to make sure that a circulant JL matrix exists.

Existence of ρ-JL maps: It is well-known that for finite sets S, the existence of a ρ-JL embed-
ding can be guaranteed by the Johnson-Lindenstrauss Lemma. For sets S with infinite cardinally, the
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Johnson-Lindenstrauss lemma cannot be directly used. In the following proposition, we extend the Johnson-
Lindenstrauss lemma from a finite set of n points to a general set S. See Appendix D for its proof.

Proposition 1. Let ρ ∈ (0, 1). For S ⊆ RD, define

US :=

{
x− x′

∥x− x′∥2
: x,x′ ∈ S s.t. x ̸= x′

}
to be the closure of the set of unit secants of S, and N (US , ∥ · ∥2, δ) to be the covering number of US with
δ-balls. Then, there exists a set S1 with |S1| = 2N (US , ∥ · ∥2, δ) points such that if a matrix A ∈ Rd×D is a
ρ-JL embedding of S1, then A is also a (ρ+ 2∥A∥2δ)-JL embedding of S.

The proposition guarantees that whenever we have a JL-map for finite sets, we can extend it to a JL-
map for infinite sets with similar level of complexity measured in terms of the covering numbers. There are
many known JL-maps for finite sets that we can extend from, including sub-Gaussian matrix [21], Gaussian
circulant matrices with random sign flip [22], etc. We present some of the related results here.

Proposition 2 ( [21]). Let x1, . . . ,xn ∈ RD. Let ρ ∈ (0, 1
2 ) and β ∈ (0, 1). Let A ∈ Rd×D be a random

matrix whose entries are i.i.d. from a subgaussian distribution with mean 0 and variance 1. Then, there
exists a constant C > 0 depending only on the subgaussian distribution such that if d ≥ Cρ−2 log n

β , then
1√
d
A will be a ρ-JL embedding of {x1, . . . ,xn} with probability at least 1− β.

Proposition 3 (Corollary 1.3 in [22]). Let x1, . . . ,xn ∈ RD. Let ρ ∈ (0, 1
2 ), and let d = O(ρ−2 log1+α n) for

some α > 0. Let A = 1√
d
MD where M ∈ Rd×D is a random Gaussian circulant matrix and D ∈ RD×D is

a random Rademacher diagonal matrix. Then, with probability at least 2
3

(
1− (D + d)e− logα n

)
, A is a ρ-JL

embedding of {x1, . . . ,xn}.

Note that the α in the proposition can be set to be any positive number making the probability of failure
less than 1. Combining the results of Propositions 2 and 3 with Proposition 1, we have the following existence
result for the JL map of an arbitrary set S. See Appendix E for its proof.

Proposition 4. Let ρ ∈ (0, 1
2 ) be a constant. For S ⊆ RD, let N (US , ∥ · ∥2, δ) to be the covering number

with δ-balls of the unit secant US of S defined in Proposition 1. Then
(a) If D ≥ d ≳ ρ−2 logN (US , ∥·∥2, ρ

4
√
3D

), then there exists a matrix A ∈ Rd×D which is a ρ-JL embedding

of S.
(b) If D ≥ d ≳ ρ−2 log(4D+4d) logN (US , ∥ · ∥2, ρ

4
√
3D

), then there exists a matrix A ∈ Rd×D in the form

of MD and of size d×D that works as ρ-JL map for S, where M is a partial circulant matrix and D is a
diagonal matrix with ±1 on its diagonal.

The above proposition characterizes the compressibility of a set S by a JL-mapping in terms of the
covering number. Alternatively, one can also characterize it using the Gaussian width. For example, in [23] it
is shown using methods from [24] that if the set of unit secants of S has a low Gaussian width, then with high
probability a subgaussian random matrix with provide a low-distortion linear embedding, and the dimension
d required scales quadratically with the Gaussian width of the set of unit secants of S.

Proposition 5 (Corollary 2.1 in [23]). Let ρ, β ∈ (0, 1) be constants. Let A ∈ Rd×D be a matrix whose rows
aT
1 , . . . ,a

T
d are independent, isotropic (E[aia

T
i ] = I), and subgaussian random vectors. Let S ⊂ RD, and let

ω(US) := E sup
u∈US

⟨u, z⟩ , z ∼ Normal(0, I)

be the Gaussian width of US . Then, there exists a constant C > 0 depending only on the distribution of the
rows of A such that if

d ≥ C

ρ2

(
ω(US) +

√
log 2

β

)2
,

then 1√
d
A is a ρ-JL embedding of S with probability at least 1− β.
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If S is known, one can use either the log-covering number (Proposition 2) or the Gaussian width (Propo-
sition 3) to compute a lower bound for d. If one only has samples from S, one may still estimate the covering
number. In [25], the authors demonstrate a practical method for estimating the intrinsic dimension of a
set by using a greedy algorithm to estimate the log-packing number for several different radii δ, and then
extrapolating the linear region of the graph of the log-packing number vs. log δ to estimate the packing
number at finer radii. Then using the fact that the covering numbers of a set may be bounded by its packing
numbers, one may in turn obtain bounds for the log-covering number.

2.2 Universal approximator neural networks for uniformly/Hölder continuous
functions on d-dimensional cubes

In Theorems 1 and 2, we showed that with the help of JL, approximation rate of neural networks for func-
tions defined on an arbitrary set S can be derived from their approximation rates for functions defined on
the cube [−M,M ]d. In this section, we review known results for the latter, so that they can be used in
combination with Theorems 1 and 2 to provide useful approximation results for network applications to
various inverse problems. Specifically, we review two types of universal approximation results for functions
defined on the cube [−M,M ]d. One is for Feedforward ReLU networks and the other is for Resnet type CNNs.

Feedforward ReLU network: The fully connected feedforward neural network with ReLU activation is
known to be a universal approximator of any uniformly continuous function on the box [−M,M ]d. Moreover,
for such networks, the non-asymptotic approximation error has also been established, allowing us to get an
estimate of the network size. The proposition below is a variant of Proposition 1 in [13], and the proof uses
an approximating function that uses the same ideas as in [13]. See Appendix F for its proof.

Proposition 6. Let d and p be positive integers, and let M > 0 be a constant. Let ∆(r) be a modulus of
continuity. Then, for any positive integer N , there exists a ReLU NN architecture with at most

(p+ C1)(2N + 1)d edges, C2(2N + 1)d + p nodes, and ⌈log2(d+ 1)⌉+ 2 layers

that can ∆(M
√
d

N )-approximate the class of C(∆(r))-functions g : [−M,M ]d → Rp. Here, C1, C2 > 0 are
universal constants. Also for each edge of the ReLU NN, the corresponding weight is either independent of
g, or is of the form gi(y) for some fixed y ∈ [−M,M ]d and coordinate i = 1, . . . , p.

By setting ∆(r) = Lrα for some constants L > 0 and α ∈ (0, 1], and setting N =
⌈

M
√
d

(ϵ/L)1/α

⌉
for some

ϵ > 0, we get the following corollary for approximating Hölder functions.

Corollary 1. Let d and p be positive integers, and let L,M, ϵ > 0 and α ∈ (0, 1] be constants. Then, there
exists a ReLU NN architecture with at most

(p+ C1)

(
2

⌈
M

√
d

(ϵ/L)1/α

⌉
+ 1

)d

edges, C2

(
2

⌈
M

√
d

(ϵ/L)1/α

⌉
+ 1

)d

+ p nodes, and ⌈log2(d+ 1)⌉+ 2 layers

that can ϵ-approximate the class of (L,α)-Hölder functions g : [−M,M ]d → Rp. Again, C1, C2 > 0 are
universal constants. Also for each edge of the ReLU NN, the corresponding weight is either independent of
g, or is of the form gi(y) for some fixed y ∈ [−M,M ]d and coordinate i = 1, . . . , p.

Convolutional Neural Network: As many successful network applications on inverse problems result from
the use of filters in the CNN architectures [26], we are particularly interested in the expressive power of CNN
in approximating the Hölder functions. Currently, known non-asymptotic results for CNNs include [10–12],
but they are all established under stricter assumptions about f than mere Lipschitz continuity. On the other
hand, the ResNet-based CNN with the following architecture has been shown to possess a good convergence
rate for even Hölder continuous functions:

CNNσ
θ := FCW,b ◦ (ConvσωM,bM

+ id) ◦ · · · ◦ (Convσω1,b1
+ id) ◦ P, (1)

7



where σ is the activation function, each Convωm,bm is a convolution layer with Lm filters ω1
m,...,ωLm

m stored
in ωM and Lm bias b1m, ..., bLm

m stored in bm. The addition by the identity map, ConvσωM,bM
+ id, makes it

a residual block. Here FCW,b represents a fully connected layer appended to the final layer of the network,
and P : Rd → Rd×C : x → (x, 0, · · · 0) is a padding operation that adds zeros to align the number of channels
in the first and second layers. One can see that the ResNet-based CNN is essentially a normal CNN with
skip connections.

The following asymptotic result is proven in [27].

Proposition 7 (Corollary 4 from [27]). Let f : [−1, 1]d → R be an α-Hölder function. Then, for any
K ∈ {2, ..., d}, there exists a CNN f (CNN) with O(N) residual blocks, each of which has depth O(logN) and

O(1) channels, and whose filter size is at most K, such that ∥f − f (CNN)∥∞ ≤ Õ(N−α/d), where the Õ
denotes that logN factors have been suppressed.

2.3 Our Main results

We can now pair results guaranteeing the existence of a ρ-JL embedding of S ⊂ RD into [−M,M ]d with
results for approximating functions on [−M,M ]d to obtain results for approximating functions on S ⊂ RD.

By combining Proposition 6 with Propositions 4(a) and 5, we obtain the following result for approximating
continuous functions on a high-dimensional set by a feedforward ReLU NN. The proof of this theorem is given
in Appendix G.

Theorem 5. Let d < D be positive integers, and let ρ ∈ (0, 1
2 ) be a constant. Let ∆(r) be a modulus of

continuity. Let S ⊂ RD be a bounded set and US be its set of unit secants. Suppose that

d ≳ min
{
ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3D

), ρ−2 (ω(US))
2
}
,

where N (US , ∥ · ∥2, ρ

4
√
3D

) is the covering number and ω(US) is the Gaussian width of US . Then, for any

positive integer N , there exists a ReLU neural network architecture with at most

(p+ C1)(2N + 1)d +Dd edges,

C2(2N + 1)d + p+D nodes,

and ⌈log2(d+ 1)⌉+ 3 layers

that can
√
p∆( M

√
d

(1−ρ)N )-approximate the class of C(∆(r))-functions f : S → Rp, where M = supx∈S ∥Ax∥∞.

By applying Corollary 1 instead of Proposition 6, we obtain a variant of the previous theorem for approx-
imating Hölder functions on a high-dimensional set by a feedforward ReLU NN. The proof of this theorem
is given in Appendix H.

Theorem 6. Let d < D be positive integers, and let L > 0, α ∈ (0, 1], and ρ ∈ (0, 1
2 ) be constants. Let

S ⊂ RD be a bounded set and US be its set of unit secants. Suppose that

d ≳ min
{
ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3D

), ρ−2 (ω(US))
2
}
,

where N (US , ∥ · ∥2, ρ

4
√
3D

) is the covering number and ω(US) is the Gaussian width of US . Then, there exists

a ReLU neural network architecture with at most

(p+ C1)

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

+Dd edges,

C2

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

+ p+D nodes,

and ⌈log2(d+ 1)⌉+ 3 layers

that can ϵ-approximate the class of (L,α)-Hölder functions f : S → Rp, where M = supx∈S ∥Ax∥∞.
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By combining Proposition 7 with Proposition 4(b), we obtain the following result for approximating
Hölder functions on a high-dimensional set by a ResNet type CNN. The proof of this theorem is given in
Appendix I.

Theorem 7. Let d < D be positive integers, and let α ∈ (0, 1] and ρ ∈ (0, 1
2 ) be constants. Let S ⊂ RD be a

bounded set and US be its set of unit secants. Suppose that

d ≳ ρ−2 log(4D + 4d) logN (US , ∥ · ∥2, ρ

4
√
3D

).

Then, for any α-Hölder function f : S → Rp, there exists a ResNet type CNN f (CNN) in the form of (1) with
O(N) residual blocks, each of which has a depth O(logN) and O(1) channels, and whose filter size is at most

K such that ∥f − f (CNN)∥∞ ≤ Õ(N−α/d), where the Õ denotes that logN factors have been suppressed.

3 Applications to Inverse Problems

Now we focus on inverse problems and demonstrate how the main theorems can be used to provide a rea-
sonable estimate of the size of the neural networks needed to solve some classical inverse problems in signal
processing. The problems we consider here are sparse recovery, blind deconvolution, and matrix completion.
In all these inverse problems, we want to recover some signal x ∈ S from its forward measurement y = F (x),
where the forward map F is assumed to be known. The minimal assumption we have to impose on F is that
it has an inverse with a known modulus of continuity. As we shall see, however, in the following examples
we can in fact assume Lipschitz continuity of the inverse.

Assumption 1 (invertibility of the forward map): Let S be the domain of the forward map F , and Y = F (S)
be the range. Assume that the inverse operator F−1 : Y → S exists and is Lipschitz continuous with constant
L, so that

∥F−1(y1)− F−1(y2)∥2 ≤ L∥y1 − y2∥2, for all y1,y2 ∈ Y.

For any inverse problems satisfying Assumption 1, Theorems 6 and 7 provide ways to estimate the size
of the universal approximator networks for the inverse map. When applying the theorems to each problem,
we need to first estimate the covering number of UY . Depending on the problem, one may estimate the
covering number either numerically or theoretically. If the domain Y of the inverse map is irregular and
discrete, then it may be easier to compute the covering number numerically. If the domain has a nice
mathematical structure, then we may be able to estimate it theoretically. In the three examples below we
will use theoretical estimation. From them, we see that it is quite common for inverse problems to have a
small intrinsic complexity. As a result, Theorems 6 and 7 can significantly reduce the required size of the
network below the sizes provided by previously known results.

We begin by emphasizing that the covering number that the theorems use is for the unit secants of Y,
which can be appreciably larger than the covering number of Y itself.

Sparse recovery: Sparsity is now one of the most commonly used priors in inverse problems as signals in
many real applications possess a certain level of sparsity with respect to a given basis. For simplicity, we
consider strictly sparse signals that have a small number of nonzero entries. Let ΣN

s be the set of s−sparse
vectors of length N . Assume a sparse vector is measured linearly y = Φx ≡ F (x), where Φ ∈ Rm×N . The
inverse problem amounts to recovering x from y. Now that we want to use a network to approximate the
inverse map F−1 : Φ(ΣN

s ) → ΣN
s , and estimate the size of the network through the theorems, we need to

estimate the covering number of the unit secant UΦ(ΣN
s ).

Proposition 8. Suppose Φ satisfies the restricted isometry property so that the inverse map F−1 : Φ(ΣN
s ) →

ΣN
s is Lipschitz continuous with Lipschitz constant L. Then, for any ρ ∈ (0, 1

2 ), there exists a ρ-JL embedding
A ∈ Rd×m of the set of possible observations

Y = {y = Φx : x ∈ ΣN
s },
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into Rd, provided that

d ≳ ρ−2s log
N
√
m

sρ
.

For such choice of d, we have that for any bounded subset S ⊂ Y, there exists a ReLU neural network
architecture with at most

(N + C1)

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+md edges,

C2

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+m+N nodes,

and ⌈log2(d+ 1)⌉+ 3 layers

which can ϵ-approximate the inverse map F−1 over the set S. Here M = maxy∈S ∥Ay∥2.

Blind deconvolution: Blind deconvolution concerns the recovery of a signal x from its blurry measurements

y = k ⊗ x (2)

when the kernel k is also unknown. Here ⊗ denotes the convolution operator. Note that blind-deconvolution
is an ill-posed problem due to the existence of a scaling ambiguity between x and k, namely, if (k,x) is a
solution, then (αk, 1

αx) with α ̸= 0 is also a solution. To resolve this issue, we focus on recovering the outer

product xkT , where x and k here are both column vectors.
The recovery of the outer product xkT from the convolution y = k ⊗ x can be well-posed in various

settings [28,29]. For example, [29] showed that if we assume x = Φu and k = Ψv, where Φ ∈ RN×n(n < N)
is i.i.d. Gaussian matrix and Ψ ∈ RN×m(m < N) is a matrix of small coherence, then for large enough N ,
the outer-product xkT can be stably recovered from y in the following sense. For any two signal-kernel pairs
(x,k), (x̃, k̃) and their corresponding convolutions y, ỹ, we have∥∥∥xkT − x̃k̃

T
∥∥∥ ≤ L∥y − ỹ∥2 (3)

for some L. To determine the size of a neural network to approximate the inverse map by F−1 : y → xkT ,
we need to estimate the covering number of the unit secant cone of Y = {y = x⊗ k,x ∈ ΦΣN

s ,k ∈ spanΨ},
which is done in the following proposition. The proof of this proposition is given in Appendix K.

Proposition 9. Suppose the inverse map F−1 : y → xkT is Lipschitz continuous with Lipschitz constant L.
Then, for any ρ ∈ (0, 1

2 ), there exists a ρ-JL embedding A ∈ Rd×N of the set of possible observations

Y = {y = x⊗ k,x ∈ span(Φ),k ∈ span(Ψ)},

into Rd, provided that

d ≳ ρ−2 max{m,n} log L
√
N

ρ
.

For such choice of d, we have that for any bounded subset S ⊂ Y, there exists a ReLU neural network
architecture with at most

(N2 + C1)

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+Nd edges,

C2

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+N2 +N nodes,

and ⌈log2(d+ 1)⌉+ 3 layers

which can ϵ-approximate the inverse map F−1 over the set S. Here M = maxy∈S ∥Ay∥2
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Matrix completion: Matrix Completion is a central task in machine learning where we want to recover
a matrix from its partially observed entries. It arises from a number of applications including image super
resolution [30,31], image/video denoising [32], recommender systems [1,2], and gene-expression prediction [33],
etc.. Recently neural network models have achieved state-of-the-art performance [1–4], but a general existence
result in the non-asymptotic regime is still missing.

In this setting, the measurements Y = PΩ(X) consists of a set of observed entries of the unknown low-
rank matrix X, where Ω is the index set of the observed entries and PΩ is the mask that sets all but entries
in Ω to 0. Let Mn,m

r be the set of n × m matrices with rank at most r, and X ∈ Mn,m
r . If the mask is

random, and the left and right eigenvectors U ,V of X are incoherent in the sense that

max
1≤i≤n

∥∥∥UTei

∥∥∥
2
≤
√

µ0r

n
, max

1≤i≤m

∥∥∥V Tei

∥∥∥
2
≤
√

µ0r

m
, and (4)

max
1≤i≤n,1≤j≤m

∣∣∣(UV T )i,j

∣∣∣ ≤√µ1r

nm

all hold, then it is known (see, e.g., [34]) that the inverse map F−1 : Y → X exists and is Lipschitz continuous
with overwhelming probability provided that the number of observations

|Ω| ≳ µ0rmax{m,n} log2 max{m,n}.

Let us denote the set of low-rank matrices satisfying (4) by C. To estimate the complexity of the inverse
map, we wiil now compute the covering numbers of UY for Y = {Y = PΩ(X) : X ∈ Mm,n

r ∩C}. This is done
using the following proposition, which is proven in Appendix L.

Proposition 10. Suppose the mask is chosen so that the inverse map F−1 : Y = PΩ(X) → X is Lipschitz
continuous with Lipschitz constant L. Then, for any ρ ∈ (0, 1

2 ), there exists a ρ-JL embedding A : Rm×n → Rd

of the set of possible observations
Y = {PΩ(X) : X ∈ Mm,n

r ∩ C},

into Rd provided that

d ≳ ρ−2r(m+ n) log
L
√
mn

ρ
.

For such choice of d, we have that for any bounded subset S ⊂ Y, there exists a ReLU neural network
architecture with at most

(mn+ C1)

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+mnd edges,

C2

(
2

⌈
LM

√
d

(1− ρ)ϵ

⌉
+ 1

)d

+ 2mn nodes,

and ⌈log2(d+ 1)⌉+ 3 layers

which can ϵ-approximate the inverse map F−1 over the set S. Here M = maxY ∈S ∥vec(A(Y ))∥∞

Remark 5. In each of Propositions 8, 9, and 10, it is shown that the number of nodes and edges in a neural
network to solve a matrix completion problem scale (with respect to ϵ) exponentially with the intrinsic
dimension of the problem d and not the much larger ambient dimension.

Remark 6. One can also get bounds on the size of a ResNet CNN needed for each of these inverse problems by
enlarging d by a factor of the logarithm of the ambient dimension (which ensures a circulant ρ-JL embedding
exists), and then applying Theorem 7 instead of Theorem 6.
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4 Conclusions, Limitations, and Discussion

The main message of this paper is that when neural networks are used to approximate Hölder continuous
functions, the size of the network only needs to grow exponentially with respect to the intrinsic complexity
of the input set measured using either its Gaussian width or its covering numbers. Therefore, it is often more
optimistic than previous estimates that require the size of the network to grow exponentially with respect to
the extrinsic input dimension.

We note that when the domain of the input is a manifold, our techniques would yield results that are
slightly worse than optimal. Specifically, [23,35] both show that a k-dimensional manifold has a ρ-JL embed-

ding into d = Õ(k/ρ2) dimensions. As such, our results for the size of a neural network that approximates

α-Hölder functions on a manifold would scale with respect to ϵ like O(ϵ−d/α) where d = Õ(k/ρ2) as com-
pared to the O(ϵ−k/α log 1

ϵ ) scaling in [15]. This is of course to be expected as the neural network in [15] is
constructed carefully with respect to the structure of the manifold, while our construction is more oblivious
to the domain of the function. In addition, as explained in Section C, our result only holds for Hölder indices
0 < α ≤ 1 as opposed to all α > 0 in [15]. However, the use of the JL embedding allows our result to be
stated under a more general (non-manifold) assumption of the input set and for a much broader class of neural
networks – although we only stated it for feedforward neural networks and the ResNet type of convolutional
neural networks, the same idea naturally applies to other types of networks as long as an associated JL-map
exists.

The estimates the results herein provide for the network size ultimately depend on the complexity of the
input set, measured by either the covering numbers, or by the Gaussian width, of its set of unit secants.
The computation of these quantities varies case by case, and in some cases might be rather difficult. This
is a possible limitation of the proposed method. In particular, if the estimation of the input set complexity
is not tight enough, the results herein may again become overly pessimistic. Having said that, for many
classical inverse problems, the covering numbers and the Gaussian width estimates are not too difficult to
calculate. As we demonstrated in Section 4, there are many known properties that one can use to facilitate the
calculation. And, when a training dataset is given, one can even approximate covering numbers numerically
with off-the-shelf algorithms.

Finally, although the applications of neural networks to inverse problems are seeing a lot of current success,
there are also failed attempts that don’t work for unknown reasons. One common explanation is that the size
of the network in use is not large enough for the targeted application. Since inverse problems models usually
have a much higher intrinsic dimensionality than, say, image classification models, the required network
sizes might indeed be much larger. Classical universal approximation theorems only guarantee small errors
when the network size approaches infinity, therefore are not very helpful in the non-asymptotic regime where
one has to choose the network size. And, such parameter choices are now known to be critical to good
performance. We hope the presented results provide more insight in this regard.
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[16] Piotr Iwo Wójcik and Marcin Kurdziel. Training neural networks on high-dimensional data using random
projection. Pattern Analysis and Applications, 22:1221–1231, 2019.

[17] Steve Webb, James Caverlee, and Calton Pu. Introducing the webb spam corpus: Using email spam to
identify web spam automatically. In CEAS, 2006.

[18] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying suspicious urls: an
application of large-scale online learning. In Proceedings of the 26th annual international conference on
machine learning, pages 681–688, 2009.

[19] Hsiang-Fu Yu, Hung-Yi Lo, Hsun-Ping Hsieh, Jing-Kai Lou, Todd G McKenzie, Jung-Wei Chou, Po-
Han Chung, Chia-Hua Ho, Chun-Fu Chang, Yin-Hsuan Wei, et al. Feature engineering and classifier
ensemble for kdd cup 2010. In KDD cup, 2010.

[20] Anastasis Kratsios and Leonie Papon. Universal approximation theorems for differentiable geometric
deep learning. Journal of Machine Learning Research, 23(196):1–73, 2022.

13
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Bulletin of the American Mathematical Society, 76(2):334–339, 1970.

[38] Jacob T Schwartz. Nonlinear functional analysis, volume 4. CRC Press, 1969.

14



[39] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural
networks with rectified linear units. arXiv preprint arXiv:1611.01491, 2016.
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A Proof of Theorems 1 and 2

First, we prove the following lemma.

Lemma 1. Let d < D and p be positive integers, and let M > 0 and ρ ∈ (0, 1) be constants. Let S ⊂ RD

be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into [−M,M ]d. Let ∆(r) be
a modulus of continuity. Then, for any function f : S → Rp that admits ∆(r) as a modulus of continuity,
there exists a function g : [−M,M ]d → Rp that admits

√
p∆( r

1−ρ ) as a modulus of continuity such that

g(Ax) = f(x) for all x ∈ S.

Proof. For any x,x′ ∈ S, if Ax = Ax′ then since A is a ρ-JL embedding of S, we have that ∥x − x′∥2 ≤
1

1−ρ∥Ax−Ax′∥2 = 1
1−ρ∥0∥2 = 0, and so, ∥x− x′∥2 = 0, i.e., x = x′. Therefore, the map x 7→ Ax from S

to A(S) := {Ax : x ∈ S} is invertible. We define A−1 : A(S) → S to be the inverse of the map x 7→ Ax.
Now, for any function f : S → Rp which admits ∆(r) as a modulus of continuity, we define g̃ : A(S) → Rp

by g̃ = f ◦A−1. Then, for any y,y′ ∈ A(S), we have

∥g̃(y)− g̃(y′)∥2 =
∥∥f(A−1(y))− f(A−1(y′))

∥∥
2

since g = f ◦A−1

≤ ∆
(∥∥A−1(y)−A−1(y′)

∥∥
2

)
since f admits ∆(r) as a M.O.C.

≤ ∆
(

1
1−ρ

∥∥AA−1(y)−AA−1(y′)
∥∥
2

)
since A is a ρ-JL embedding of S

= ∆
(

1
1−ρ ∥y − y′∥2

)
. since A−1 is the inverse of x 7→ Ax

Therefore, g̃ : A(S) → Rp admits ∆( r
1−ρ ) as a modulus of continuity. Then, since A(S) ⊂ [−M,M ]d, we

can extend g̃ to a function g : [−M,M ]d → Rp via the definition

gi(y) := inf
z∈A(S)

[
g̃i(z) + ∆

(
1

1−ρ∥y − z∥2
)]

for i = 1, . . . , p.

Since g̃ admits a modulus of continuity of ∆( r
1−ρ ), so does each coordinate g̃i. The above extension formula

preserves the modulus of continuity of each coordinate gi, and so g admits modulus of continuity
√
p∆( r

1−ρ ).

Also, this extension satisfies g(y) = g̃(y) for all y ∈ A(S). Finally, for any x ∈ S, we have Ax ∈ A(S), and
so, g(Ax) = g̃(Ax) = f(A−1(Ax)) = f(x), as required.

With Lemma 1, we can now prove each of the parts of Theorems 1 and 2. As a reminder, we assume that
S ⊂ RD is a bounded set for which there exists a ρ-JL embedding A ∈ Rd×D of S into [−M,M ]d.

1a) Let f : S → Rp be a function that admits ∆(r) as a modulus of continuity. By Lemma 1, there exists
a function g : [−M,M ]d → Rp that admits

√
p∆( r

1−ρ ) as a modulus of continuity such that f(x) = g(Ax)
for all x ∈ S. By assumption, g can be ϵ-approximated by a feedforward neural network with at most N
nodes, E edges, and L layers. In other words, there exists a function ĝ such that ∥ĝ(y)− g(y)∥∞ ≤ ϵ for all
y ∈ [−M,M ]d, and ĝ can be implemented by a feedforward neural network with at most N nodes, E edges,
and L layers.

Define another function f̂ = ĝ ◦ A, i.e., f̂(x) = ĝ(Ax) for all x ∈ S. Since A(S) ⊂ [−M,M ]d by

assumption, we have that Ax ∈ [−M,M ]d for all x ∈ S. Then, ∥f̂(x)− f(x)∥∞ = ∥ĝ(Ax)− g(Ax)∥∞ ≤ ϵ

for all x ∈ S, i.e., f̂ is an ϵ-approximation of f .
Furthermore, we can construct a feedforward neural network to implement f̂ = ĝ ◦A by having a linear

layer to implement the map x 7→ Ax, and then feeding this into the neural network implementation of ĝ.
The map x 7→ Ax can be implemented with D nodes for the input layer, and Dd edges between the input
nodes and the first hidden layer. By assumption, ĝ can be implemented by a feedforward neural network
with at most N nodes, E edges, and L layers. Hence, f̂ = ĝ ◦A can be implemented by a feedforward neural
network with at most N +D nodes, E +Dd edges, and L+ 1 layers, as desired.

1b) If the same feedforward neural network architecture ϵ-approximates every function g : [−M,M ]d 7→ Rp

that admits
√
p∆( r

1−ρ ) as a modulus of continuity, then our construction of a feedforward neural network

that implements f̂ = ĝ ◦A has the same architecture for every function f : S → Rp that admits ∆(r) as a
modulus of continuity. Hence, the same bounds on the number of nodes, edges, and layers hold.
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2a) In a similar manner as 1a), we form a CNN that can approximate f = g ◦A by first implementing
the linear map x 7→ Ax with a CNN and feeding this into a CNN that approximates g.

The JL matrix A = MD can be represented by a Resnet-CNN structure as follows. Let x be the input
of the network, then Dx, the random sign flip of the input can be realized by setting the weight/kernel w1 of
the first two layers to be the delta function, and the bias vectors to take large values at the location where D
has a 1, and small values where D has a −1. Then with the help of the ReLU activation, we can successfully
flip the signs. More explicitly, set T = supx∈S ∥x∥∞ so that x ∈ [−T, T ]D for all x ∈ S. Let bi be the bias
to be added to the ith coordinate of the input. We design a 2 layer Resnet-CNN, ℓ(x), as follows

ℓ(x)i = ReLU(2xi + bi)− ReLU(bi)− xi, i = 1, ..., D.

The bias bi is chosen to realize the sign flip as follows. If Dii contains a 1, then we set bi = 2T , which will
make ℓ(x)i = xi. If Dii contains a −1, then we set bi = −2T , which will make ℓ(x)i = −xi, thus realizing the
sign-flip. A similar architecture can also be used to realize the application of M to Dx, which is a convolution
followed by a mask (i.e., setting certain entries of x to 0). Specifically, we let m ∈ RD denote the first row of
the partial circulant matrix M , and we set T ′ = supx∈S ∥m⊗Dx∥∞ so that m⊗Dx ∈ [−T ′, T ′]D. Then,
we let b′ ∈ RD be a bias vector whose first d entries are T ′ and whose last D − d entries are −T ′. Then, we
pass Dx = ℓ(x) through the following Resnet-CNN

ℓ′(Dx) = ReLU(m⊗Dx+ b′)− ReLU(b′).

This convolves Dx with m and then sets the last D − d entries to 0.
This Resnet-CNN that implements x 7→ Ax requires 2D nodes, D parameters, and 2 layers to apply D

to x, and an additional 2D nodes, D parameters, and 2 layers to apply M to Dx. By adding this to the N
nodes, P parameters, and L layers needed for a CNN to approximate the function g : [−M,M ]d → Rp that
admits

√
p∆( r

1−ρ ) as a modulus of continuity, we obtain that the function f : S → Rp that admits ∆(r) as a
modulus of continuity can be approximated by a Resnet-CNN with N + 4D nodes, P + 2D parameters, and
L+ 4 layers.

2b) If the same convolutional neural network architecture ϵ-approximates every function g : [−M,M ]d 7→
Rp that admits

√
p∆( r

1−ρ ) as a modulus of continuity, then our construction of a convolutional neural network

that implements f̂ = ĝ ◦A has the same architecture for every function f : S → Rp that admits ∆(r) as a
modulus of continuity. Hence, the same bounds on the number of nodes, parameters, and layers hold.

B Proofs of Theorems 3 and 4

We can strengthen Lemma 1 for the special case where ∆(r) = Lrα for some constants L > 0 and α ∈ (0, 1],
(f is (L,α)-Hölder) in a way that removes the

√
p factor. This is done by using a theorem which allows us

to extend an Rp-valued Hölder function instead of extending each coordinate separately.

Lemma 2. Let d < D and p be positive integers, and let L,M > 0, α ∈ (0, 1], and ρ ∈ (0, 1) be constants. Let
S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into [−M,M ]d. Then,
for any (L,α)-Hölder function f : S → Rp, there exists an ( L

(1−ρ)α , α)-Hölder function g : [−M,M ]d → Rp

such that g(Ax) = f(x) for all x ∈ S.

Proof. For any (L,α)-Hölder function f : S → Rp, we can use the same argument as in the proof of Lemma 1
to show that the function g̃ : A(S) → Rp defined by g̃ = f ◦A−1 satisfies

∥g̃(y)− g̃(y′)∥2 =
∥∥f(A−1(y))− f(A−1(y′))

∥∥
2

since g = f ◦A−1

≤ L
∥∥A−1(y)−A−1(y′)

∥∥α
2

since f is (L,α)-Hölder

≤ L

(1− ρ)α
∥∥AA−1(y)−AA−1(y′)

∥∥α
2

since A is a ρ-JL embedding of S

=
L

(1− ρ)α
∥y − y′∥α2 . since A−1 is the inverse of x 7→ Ax

17



for all y,y′ ∈ A(S). Therefore, g̃ : A(S) → Rp is ( L
(1−ρ)α , α)-Hölder. Then, since A(S) ⊂ [−M,M ]d, by

Theorem 1(ii) in [37] (which is a generalization of the Kirszbraun theorem [38]), there exists a ( L
(1−ρ)α , α)-

Hölder extension of g̃ to [−M,M ]d, i.e., a function g : [−M,M ]d → Rp which is ( L
(1−ρ)α , α)-Hölder on

[−M,M ]d and satisfies g(y) = g̃(y) for all y ∈ S. Finally, for any x ∈ S, we have Ax ∈ A(S), and so,
g(Ax) = g̃(Ax) = f(A−1(Ax)) = f(x), as required.

The proofs of each of the parts of Theorems 3 and 4 are identical to the proofs of the corresponding parts
of Theorems 1 and 2 respectively, except they use Lemma 2 instead of Lemma 1.

C Theorems 1-4 cannot be generalized to differentiable functions

Fix positive integers D ≥ 3 and d < D. Define a set S ⊂ RD by S = {x ∈ [−2, 2]D : ∥x∥0 ≤ 2}, define the
function f : S → R given by f(x) = ∥x∥22, which is smooth. Now, suppose there exists a ρ-JL embedding
A ∈ Rd×D of S into some hypercube [−M,M ]d (with d < D) and a differentiable function g : [−M,M ]d → R
which satisfies g(Ax) = f(x) for all x ∈ S.

Then, for any differentiable path ϕ(t) ∈ S, we must have

g(Aϕ(t)) = f(ϕ(t)) = ∥ϕ(t)∥22

and thus,
∇g(Aϕ(t))TAϕ′(t) = 2ϕ(t)Tϕ′(t).

Let e1, . . . , eD ∈ RD be the Euclidean basis vectors. For any indices i, j ∈ {1, . . . , D}, we can apply the
above result for the differentiable path ϕ(t) = ei + tej and evaluate at t = 0 to obtain

∇g(Aϕ(0))TAϕ′(0) = 2ϕ(0)Tϕ′(0)

∇g(Aei)
TAej = 2eTi ej

Since this holds for all indices i, j ∈ {1, . . . , D}, we have that

∇g(Aei)
TA = 2eTi ,

for all indices i ∈ {1, . . . , D}, which implies that 2ei is in the rowspace of A for all i ∈ {1, . . . , D}. However,
this is impossible since A has d < D rows. Hence, there cannot exist a ρ-JL embedding A ∈ Rd×D of S
into some hypercube [−M,M ]d (with d < D) and a differentiable function g : [−M,M ]d → R which satisfies
g(Ax) = f(x) for all x ∈ S.

D Proof of Proposition 1

Consider a covering of US by N (US , ∥ · ∥2, δ) balls of radius δ. Each ball must intersect US as otherwise we
could remove that ball from the covering and obtain a covering of US with only N (US , ∥ · ∥2, δ)− 1 balls of
radius δ, which contradicts the definition of N (US , ∥ · ∥2, δ). Enumerate these balls i = 1, . . . ,N (US , ∥ · ∥2, δ).
For each i, pick a point ui ∈ US which is also in the i-th ball, and then pick points xi,x

′
i ∈ S with xi ̸= x′

i

such that
xi−x′

i

∥xi−x′
i∥2

= ui. Then, set S1 = {xi}i ∪ {x′
i}i so |S1| ≤ 2N (US , ∥ · ∥2, δ).

Suppose A ∈ Rd×D is a ρ-JL embedding of S1. Then, by definition of a ρ-JL embedding,

(1− ρ)∥xi − x′
i∥2 ≤ ∥Axi −Ax′

i∥2 ≤ (1 + ρ)∥xi − x′
i∥2, for i = 1, . . . ,N (US , ∥ · ∥2, δ)

Now, for any two points y,y′ ∈ S with y ̸= y′, there exists an index i such that y−y′

∥y−y′∥2
∈ US lies in the i-th

ball of our covering of US . Since
xi−x′

i

∥xi−x′
i∥2

is also in the i-th ball, we have that∥∥∥∥ xi − x′
i

∥xi − x′
i∥2

− y − y′

∥y − y′∥2

∥∥∥∥
2

≤ 2δ.
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For simplicity of notation, we set a = ∥xi − x′
i∥2, b = ∥y − y′∥2. Then we immediately have

∥A(y − y′)∥2 =

∥∥∥∥ baA(xi − x′
i) +A(y − y′)− b

a
A(xi − x′

i)

∥∥∥∥
2

≤ b

a
∥A(xi − x′

i)∥2 +
∥∥∥∥A(y − y′ − b

a
(xi − x′

i))

∥∥∥∥
2

≤ b

a
(1 + ρ)∥xi − x′

i∥2 + ∥A∥2
∥∥∥∥y − y′ − b

a
(xi − x′

i)

∥∥∥∥
2

≤ (1 + ρ)b+ 2∥A∥2δb = (1 + ρ+ 2∥A∥2δ)∥y − y′∥2,

where the second inequality used the previous two formulae. The other side of the bi-Lipschitz formula can
be proved similarly. Hence, A is also a (ρ+ 2∥A∥2δ)-JL embedding of S.

E Proof of Proposition 4

a) By Proposition 1, there exists a finite set S1 with at most |S1| ≤ 2N (US , ∥ · ∥2, ρ

4
√
3D

) points such that

any ρ
2 -JL embedding of S1 is also a (ρ2 + ∥A∥2 ρ

2
√
3D

)-JL embedding of S.
We now show that there exists a matrix A ∈ Rd×D with ∥A∥2 ≤

√
3D which is ρ

2 -JL embedding of S1

by generating a random A and showing that the probability of ∥A∥2 ≤
√
3D and A is a ρ

2 -JL embedding of
S1 both occurring is greater than zero.

Let A ∈ Rd×D be a random matrix whose entries are i.i.d. from a subgaussian distribution with mean 0
and variance 1

d . Since

E∥A∥2F =

d∑
i=1

D∑
j=1

EA2
i,j =

d∑
i=1

D∑
j=1

1

d
= D,

we have that

P
{
∥A∥2F ≥ 3D

}
≤ E∥A∥2F

3D
=

1

3
.

Furthermore, since

d ≳ ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3D

) ≳
(ρ
2

)−2

log(3|S1|),

by Proposition 2, A is a ρ
2 -JL embedding of S1 with probability at least 1− 1

3 = 2
3 . Therefore, A is both a

ρ
2 -JL embedding of S1 and satisfies ∥A∥2 ≤ ∥A∥F ≤

√
3D with probability at least 2

3 − 1
3 = 1

3 > 0.

Hence, there exists a matrix A ∈ Rd×D such that A is a ρ
2 -JL embedding of S1 and satisfies ∥A∥2 ≤

√
3D.

Finally, by Proposition 1, since A is a ρ
2 -JL embedding of S1, it is also a (ρ2 + ∥A∥2 ρ

2
√
3D

)-JL embedding of

S. Since ∥A∥2 ≤
√
3D, we have ρ

2 + ∥A∥2 ρ

2
√
3D

≤ ρ, and thus, A is a ρ-JL embedding of S, as desired.
b) Again, by Proposition 1, there exists a finite set S1 with at most |S1| ≤ 2N (US , ∥ · ∥2, ρ

4
√
3D

) points

such that any ρ
2 -JL embedding of S1 is also a (ρ2 + ∥A∥2 ρ

2
√
3D

)-JL embedding of S.
Let A ∈ Rd×D be a random matrix of the form MD where D ∈ RD×D is a diagonal matrix whose

entries are independent Rademacher random variables, and M ∈ Rd×D is a random circulant matrix whose
entries are Gaussian random variables with mean 0 and variance 1

d and entries in different diagonals are
independent. Again, we can show that

E∥A∥2F =

d∑
i=1

D∑
j=1

EA2
i,j =

d∑
i=1

D∑
j=1

EM2
i,jD

2
j,j =

d∑
i=1

D∑
j=1

EM2
i,j =

d∑
i=1

D∑
j=1

1

d
= D,

and so,

P
{
∥A∥2F ≥ 3D

}
≤ E∥A∥2F

3D
=

1

3
.
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Now, set α = log(log(4D + 4d))/ log(log |S1|) so that logα |S1| = log(4D + 4d). Then, since

d ≳ ρ−2 log(4D + 4d) logN (US , ∥ · ∥2, ρ

4
√
3D

) ≳
(ρ
2

)−2

log1+α |S1|,

by Proposition 3, A is a ρ
2 -JL embedding of S1 with probability at least

2

3

(
1− (D + d)e− logα |S1|

)
=

2

3

(
1− (D + d)e− log(4D+4d)

)
=

2

3

(
1− 1

4

)
=

1

2
.

Therefore, A is both a ρ
2 -JL embedding of S1 and satisfies ∥A∥2 ≤ ∥A∥F ≤

√
3D with probability at least

1
2 − 1

3 = 1
6 > 0.

Hence, there exists a matrix A ∈ Rd×D such that A is a ρ
2 -JL embedding of S1 and satisfies ∥A∥2 ≤

√
3D.

Again, by Proposition 1, since A is a ρ
2 -JL embedding of S1, it is also a (ρ2 + ∥A∥2 ρ

2
√
3D

)-JL embedding of

S. Since ∥A∥2 ≤
√
3D, we have ρ

2 + ∥A∥2 ρ

2
√
3D

≤ ρ, and thus, A is a ρ-JL embedding of S, as desired.

F Proof of Proposition 6

We first construct a function ĝ that is an ϵ-approximation of g. To do this, we first define a compactly
supported “spike” function ϕ : Rd → [0, 1] by

ϕ(z) = max {1 + min {z1, . . . ,zd, 0} −max {z1, . . . ,zd, 0} , 0} .

Then, for any positive integer N , define an approximation ĝ : [−M,M ]d → Rp to g by

ĝ(y) :=
∑

n∈{−N,...,N}d

g(Mn
N )ϕ(Ny

M − n).

Similarly to what was done in [13], it can be shown that the scaled and shifted spike functions {ϕ(Ny
M −

n)}n∈{−N,...,N}d form a partition of unity, i.e.∑
n∈{−N,...,N}d

ϕ(Ny
M − n) = 1 for all y ∈ [−M,M ]d.

Trivially, ϕ(y) ≥ 0 for all y ∈ Rd. Also, one can check that supp(ϕ) ⊆ [−1, 1]d, and thus, ϕ(Ny
M −n) = 0 for

all n such that ∥Ny
M − n∥∞ > 1. Furthermore, for any n such that ∥Ny

M − n∥∞ ≤ 1, we have∥∥g(y)− g(Mn
N )
∥∥
2
≤ ∆

(
∥y − Mn

N ∥2
)
≤ ∆

(√
d∥y − Mn

N ∥∞
)
= ∆

(
M

√
d

N ∥Ny
M − n∥∞

)
≤ ∆

(
M

√
d

N

)
.

Hence, we can bound the approximation error for any y ∈ [−M,M ]d as follows:
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∥ĝ(y)− g(y)∥2 =

∥∥∥∥∥∥
∑

n∈{−N,...,N}d

g(Mn
N )ϕ(Ny

M − n)− g(y)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

n∈{−N,...,N}d

(
g(Mn

N )− g(y)
)
ϕ(Ny

M − n)

∥∥∥∥∥∥
2

≤
∑

n∈{−N,...,N}d

∥∥g(Mn
N )− g(y)

∥∥
2
ϕ(Ny

M − n)

=
∑

∥∥∥∥Ny
M −n

∥∥∥∥
∞

≤1

∥∥g(Mn
N )− g(y)

∥∥
2
ϕ(Ny

M − n)

≤
∑

∥∥∥∥Ny
M −n

∥∥∥∥
∞

≤1

∆
(

M
√
d

N

)
ϕ(Ny

M − n)

≤
∑

n∈{−N,...,N}d

∆
(

M
√
d

N

)
ϕ(Ny

M − n)

= ∆
(

M
√
d

N

)
.

So ∥ĝ(y)− g(y)∥∞ ≤ ∥ĝ(y)− g(y)∥2 ≤ ∆
(

M
√
d

N

)
for all y ∈ [−M,M ]d, i.e., ĝ is a ∆

(
M

√
d

N

)
-approximation

of g.
We now focus on constructing a ReLU NN architecture which can implement the ϵ-approximation ĝ for

any function g that admits ∆(r) as a modulus of continuity. We do this by first constructing a ReLU NN

that is independent of g which implements the map Φ : Rd → R(2N+1)d defined by (Φ(y))n = ϕ(Ny
M − n).

Then, we add a final layer which outputs the appropriate linear combination of the ϕ(Ny
M − n)’s.

Lemma 3. For any integers N, d ≥ 1, the maps md : Rd → R(2N+1)d and Md : Rd → R(2N+1)d defined by

(md(y))n := min
{

Ny1

M − n1, . . . ,
Nyd

M − nd, 0
}

for n ∈ {−N, . . . , N}d

and
(Md(y))n := max

{
Ny1

M − n1, . . . ,
Nyd

M − nd, 0
}

for n ∈ {−N, . . . , N}d,

can both be implemented by a ReLU NN with O((2N + 1)d) weights, O((2N + 1)d) nodes, and ⌈log2(d+ 1)⌉
layers.

Proof. First, we note that we can write

(md(y))n =min
{
min{Ny1

M − n1, . . . ,
Ny⌈d/2⌉

M − n⌈d/2⌉},

min{Ny⌈d/2⌉+1

M − n⌈d/2⌉+1, . . . ,
Nyd

M − nd, 0}
}

and

(Md(y))n =max
{
max{Ny1

M − n1, . . . ,
Ny⌈d/2⌉

M − n⌈d/2⌉},

max{Ny⌈d/2⌉+1

M − n⌈d/2⌉+1, . . . ,
Nyd

M − nd, 0}
}

In [39], it is shown that for any positive integer k, the maps (z1, . . . ,zk) 7→ min{z1, . . . ,zk} and
(z1, . . . ,zk) 7→ max{z1, . . . ,zk} can be implemented by a ReLU NN with at most c1k edges, c2k nodes,
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and ⌈log2 k⌉ layers, where c1, c2 > 0 are universal constants. So to construct the map md, we first implement
the (2N + 1)⌈d/2⌉ maps

(y1, . . . ,y⌈d/2⌉) 7→ min{Ny1

M − n1, . . . ,
Ny⌈d/2⌉

M − n⌈d/2⌉} (5)

for (n1, . . . ,n⌈d/2⌉) ∈ {−N, . . . , N}⌈d/2⌉. Implementing each of these maps requires c1
⌈
d
2

⌉
edges, c2

⌈
d
2

⌉
nodes, and

⌈
log2

⌈
d
2

⌉⌉
layers. Next, we implement the (2N + 1)⌊d/2⌋ maps

(y⌈d/2⌉+1, . . . ,yd) 7→ min{Ny⌈d/2⌉+1

M − n⌈d/2⌉+1, . . . ,
Nyd

M − nd, 0} (6)

for (n⌈d/2⌉+1, . . . ,nd) ∈ {−N, . . . , N}⌊d/2⌋. Implementing each of these maps requires c1(
⌊
d
2

⌋
+ 1) edges,

c2(
⌊
d
2

⌋
+1) nodes, and

⌈
log2(

⌊
d
2

⌋
+ 1)

⌉
layers. After placing these (2N+1)⌈d/2⌉+(2N+1)⌊d/2⌋ maps in parallel,

we construct one final layer as follows. For each n = (n1, . . . ,nd) ∈ {−N, . . . , N}d, we combine the output
of the (n1, . . . ,n⌈d/2⌉)-th map of the form in Equation 5 and the output of the (n⌈d/2⌉+1, . . . ,nd)-th map of
the form in Equation 6 by using them as inputs to a ReLU NN that implements the map (a, b) 7→ min{a, b}.
Each of these requires at most 2c1 edges and 2c2 nodes.

The total number of edges used to implement md is

c1
⌈
d
2

⌉
(2N + 1)⌈d/2⌉ + c1(

⌊
d
2

⌋
+ 1)(2N + 1)⌊d/2⌋ + 2c1(2N + 1)d

≤c1(
⌈
d
2

⌉
+
⌊
d
2

⌋
+ 1)(2N + 1)⌈d/2⌉ + 2c1(2N + 1)d

=c1(d+ 1)(2N + 1)⌈d/2⌉ + 2c1(2N + 1)d

=c1

(
(d+ 1)(2N + 1)−⌊d/2⌋ + 2

)
(2N + 1)d

≤c1

(
(d+ 1) · 3−⌊d/2⌋ + 2

)
(2N + 1)d

≤4c1(2N + 1)d,

where we have used the fact that N ≥ 1 by definition, and the easily verifiable inequality (d+1) ·3−⌊d/2⌋ ≤ 2
for all positive integers d.

A nearly identical calculation shows that the total number of nodes used to implement md is at most
4c2(2N + 1)d. Finally, since the (2N + 1)⌈d/2⌉ maps of the form in Equation 5 and the (2N + 1)⌊d/2⌋ maps
of the form in Equation 6 are in parallel, the total number of layers used to implement md is

max
{⌈

log2
⌈
d
2

⌉⌉
,
⌈
log2(

⌊
d
2

⌋
+ 1)

⌉}
+ 1 = ⌈log2(d+ 1)⌉ .

Hence, the map md can be implemented by a ReLU NN with at most C1(2N + 1)d edges, C2(2N + 1)d

nodes, and ⌈log2(d+ 1)⌉ layers, as desired. The proof for Md is identical, except with min replaced by
max.

Next, we note that

(Φ(y))n = ϕ(Ny
M − n) = max {1 + (md(y))n − (Md(y))n, 0} for all n ∈ {−N, . . . , N}d.

So to construct a ReLU NN which implements Φ, we first place a ReLU NN that implements md in parallel
with a ReLU NN that implements Md. Then, we add an extra layer which has (2N + 1)d nodes, where the
n-th node of this layer has two edges, one from the n-th node of md and one from the n-th node of Md.
Since md and Md are in parallel and each can each be implemented with ReLU NNs with O((2N+1)d) edges,
O((2N + 1)d) nodes, and ⌈log2(d+ 1)⌉ layers, and the last layer has 2(2N + 1)d edges and (2N + 1)d nodes,
the ReLU NN which implements Φ has O((2N+1)d) edges, O((2N+1)d) nodes, and ⌈log2(d+ 1)⌉+1 layers.

Finally, we can construct a ReLU NN which implements

ĝ(x) :=
∑

n∈{−N,...,N}d

g(Mn
N )ϕ(Nx

M − n)

by using the ReLU NN which implements Φ, followed by a linear layer which computes the weighted sum for
ĝ. This last layer has p nodes, and p(2N+1)d edges. So the ReLU NN that implements ĝ has (p+C1)(2N+1)d

edges, C2(2N + 1)d + p nodes, and ⌈log2(d+ 1)⌉+ 2 layers, as desired.
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G Proof of Theorem 5

By combining Proposition 4a and Proposition 5, we have that there exists a ρ-JL embedding A ∈ Rd×D of
S with

d ≳ min
{
ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3D

), ρ−2 (ω(US))
2
}
.

Let M = supx∈S ∥Ax∥∞ so that A(S) ⊂ [−M,M ]d, and so, A is a ρ-JL embedding of S into [−M,M ]d. By
Proposition 6, there exists a ReLU NN architecture with at most

E = (p+ C1)(2N + 1)d edges,

N = C2(2N + 1)d + p nodes,

and L = ⌈log2(d+ 1)⌉+ 2 layers,

which can
√
p∆( M

√
d

(1−ρ)N )-approximate any function g : [−M,M ]d → Rp which admits a modulus of continuity
√
p∆( r

1−ρ ). Finally, by applying Theorem 1b, we have that there exists a a ReLU NN architecture with at
most

E +Dd = (p+ C1)(2N + 1)d +Dd edges,

N +D = C2(2N + 1)d + p+D nodes,

and L+ 1 = ⌈log2(d+ 1)⌉+ 3 layers,

which can
√
p∆( M

√
d

(1−ρ)N )-approximate any function f : S → Rp that admits a modulus of continuity of ∆(r),

as desired.

H Proof of Theorem 6

By combining Proposition 4a and Proposition 5, we have that there exists a ρ-JL embedding A ∈ Rd×D of
S with

d ≳ min
{
ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3D

), ρ−2 (ω(US))
2
}
.

Let M = supx∈S ∥Ax∥∞ so that A(S) ⊂ [−M,M ]d, and so, A is a ρ-JL embedding of S into [−M,M ]d. By
Corollary 1, there exists a ReLU NN architecture with at most

E = (p+ C1)

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

edges,

N = C2

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

+ p nodes,

and L = ⌈log2(d+ 1)⌉+ 2 layers,

which can ϵ-approximate any ( L
(1−ρ)α , α)-Hölder function g : [−M,M ]d → Rp. Finally, by applying Theo-

rem 3b, we have that there exists a ReLU NN architecture with at most

E +Dd = (p+ C1)

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

+Dd edges,

N +D = C2

(
2

⌈
M

√
d

(1− ρ)(ϵ/L)1/α

⌉
+ 1

)d

+ p+D nodes,

and L+ 1 = ⌈log2(d+ 1)⌉+ 3 layers,

which can ϵ-approximate any (L,α)-Hölder function f : S → Rp, as desired.
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I Proof of Theorem 7

Let f : S → Rp be the α-Hölder target function to approximate. By Proposition 4b, we have that there exists
a matrix A ∈ Rd×D in the form MD where M is a partial circulant matrix and D is a diagonal matrix with
±1 entries such that A is a ρ-JL embedding of S with

d ≳ ρ−2 log(4D + 4d) logN (US , ∥ · ∥2, ρ

4
√
3D

).

Let M = supx∈S ∥Ax∥∞ so that A(S) ⊂ [−M,M ]d, and so, A is a ρ-JL embedding of S into [−M,M ]d.
By Lemma 2, there exists an α-Hölder function g : [−M,M ]d → Rp such that g(Ax) = f(x) for all x ∈ S.

Let gi : [−M,M ]d → R be the i-th coordinate of g. Let g̃i : [−1, 1]d → R be defined by g̃i(y) = gi(My) for
all y ∈ [−1, 1]d. Note that each gi is α-Hölder, and so, each g̃i is also α-Hölder.

Then, by Proposition 7, for each g̃i, there exists a CNN g̃
(CNN)
i with O(N) residual blocks, each of which

has depth O(logN) and O(1) channels, and whose filter size is at most K such that ∥g̃i − g̃
(CNN)
i ∥∞ ≤

Õ(N−α/d).
Now, we construct a CNN to approximate f as follows. First, we implement the map x 7→ 1

MAx using
the same 4 layer ResNet CNN described in the proof of Theorem 4c. Then, we pass the output of that Resnet

CNN into p parallel CNNs which implement g̃
(CNN)
i for i = 1, . . . , p. The output of the i-th of these parallel

CNNs is g̃
(CNN)
i ( 1

MAx), which is an Õ(N−α/d)-approximation of g̃i(
1
MAx) = gi(Ax) = fi(x). Hence, the

constructed CNN is a Õ(N−α/d)-approximation of f .
The CNN which implements the map x 7→ 1

MAx needs O(1) residual blocks, each of which has depth

O(1) and O(1) channels. Each of the p parallel CNNs which implement the g̃
(CNN)
i ’s have O(N) residual

blocks, each of which has depth O(logN) and O(1) channels. So the overall network to approximate f has
O(pN) residual blocks, each of which has depth O(logN) and O(1) channels.

J Proof of Proposition 8

Proof. By definition, the unit secants of Y = Φ(ΣN
s ) are defined to be

UY =

{
y1 − y2

∥y1 − y2∥2
, y1,y2 ∈ Φ(ΣN

s )

}
which contains all unit vectors that are linear combinations of 2s columns of Φ. Letting T with |T | = 2s be
a fixed support set, the covering number of span(ΦT ) ∩ SN−1 is ( 3δ )

2s, so the covering number of UY is at

most
(
N
2s

)
( 3δ )

2s ≤ ( eN2s )
2s( 3δ )

2s. Therefore,

logN (UY , ∥ · ∥2, δ) ≲ s log
N

sδ
.

Now, let S be any bounded subset of Y. Note that the inverse map F−1 is L-Lipschitz (i.e. (L,α)-Hölder
for α = 1). Since S ⊂ Y, we have that US ⊂ UY , and thus, N (US , ∥ · ∥2, δ) ≤ N (UY , ∥ · ∥2, δ) for any δ > 0.
Therefore, the choice of d in this proposition yields

d ≳ ρ−2s log
N
√
m

sρ
≳ ρ−2 logN (UY , ∥ · ∥2, ρ

4
√
3m

) ≥ ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3m

).

Therefore, the conditions of Theorem 6 are satisfied for α = 1, and the result follows.

K Proof of Proposition 9

We first bound the logarithm of the covering number of the set of unit secants of Y. Then, we apply Theorem 6
for the case of α = 1, i.e. Lipschitz continuous functions.
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By the sinΘ theorem [40], we have∥∥∥∥ x1

∥x1∥2
− x2

∥x2∥2

∥∥∥∥
2

≤ ∥x1k
T
1 − x2k

T
2 ∥

∥x1∥2∥k1∥2
(7)

and ∥∥∥∥ k1

∥k1∥2
− k2

∥k2∥2

∥∥∥∥
2

≤ ∥x1k
T
1 − x2k

T
2 ∥

∥x2∥2∥k2∥2
. (8)

Let us find a set whose covering number is easy to compute while containing the unit secant UY as a subset{
y1 − y2

∥y1 − y2∥2
, y1,y2 ∈ Y

}
=

{
x1 ⊗ k1 − x2 ⊗ k2

∥x1 ⊗ k1 − x2 ⊗ k2∥2
, xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2

}

=

x1 ⊗ k1 − (∥x1∥2

∥x2∥2
x2)⊗ k1

∥x1 ⊗ k1 − x2 ⊗ k2∥2
+

(∥x1∥2

∥x2∥2
x2)⊗ k1 − x2 ⊗ k2

∥x1 ⊗ k1 − x2 ⊗ k2∥2
, xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2


⊆

x1 ⊗ k1 − (∥x1∥2

∥x2∥2
x2)⊗ k1

∥x1 ⊗ k1 − x2 ⊗ k2∥2
, xi = Φui,ki = Ψvi, i = 1, 2


+

 (∥x1∥2

∥x2∥2
x2)⊗ k1 − x2 ⊗ k2

∥x1 ⊗ k1 − x2 ⊗ k2∥2
, xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2

 .

For the first set in the sum, by using (3) and (7), we havex1 ⊗ k1 − (∥x1∥2

∥x2∥2
x2)⊗ k1

∥x1 ⊗ k1 − x2 ⊗ k2∥2
, xi = Φui,ki = Ψvi, i = 1, 2


⊆

t ·
x1 ⊗ k1 − (∥x1∥2

∥x2∥2
x2)⊗ k1

∥x1k
T
1 − x2k

T
2 ∥2

, t ∈ [0, L], xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2


⊆

t ·
x1 ⊗ k1 − (∥x1∥

∥x2∥x2)⊗ k1

∥x1 − ∥x1∥2

∥x2∥2
x2∥∥k1∥

, t ∈ [0, L], xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2


⊆


√

t ·
x1 − ∥x1∥2

∥x2∥2
x2

∥x1 − ∥x1∥2

∥x2∥2
x2∥2

⊗
(√

t · k1

∥k1∥2

)
, t ∈ [0, L], xi = Φui,ki = Ψvi,xi ⊗ ki ∈ Y, i = 1, 2


The covering number with ϵ balls of the set

{√
t ·

x1⊗k1−(
∥x1∥2
∥x2∥2

x2)

∥x1⊗k1−(
∥x1∥2
∥x2∥2

x2)∥2

, t ∈ [0, L]

}
is
(

3
√
L

ϵ

)n
, and that for

the set {
√
t · k1

∥k1∥2
, t ∈ [0, L]} is

(
3
√
L

ϵ

)m
. So the covering number with ϵ balls of S is(

6L

ϵ

)n

+

(
6L

ϵ

)m

.

The same argument holds for the second set in the sum. Therefore,

logN (UY , ∥ · ∥2, δ) ≲ max{m,n} log L

δ
.

Now, let S be any bounded subset of Y. Note that the inverse map F−1 is L-Lipschitz (i.e. (L,α)-Hölder
for α = 1). Since S ⊂ Y, we have that US ⊂ UY , and thus, N (US , ∥ · ∥2, δ) ≤ N (UY , ∥ · ∥2, δ) for any δ > 0.
Therefore, the choice of d in this proposition yields

d ≳ ρ−2 max{m,n} log L
√
N

ρ
≳ ρ−2 logN (UY , ∥ · ∥2, ρ

4
√
3N

) ≥ ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3N

).

Therefore, the conditions of Theorem 6 are satisfied for α = 1, and the result follows.
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L Proof of Proposition 10

By definition,

UY =

{
y1 − y2

∥y1 − y2∥2
,y1,y2 ∈ Y

}
=

{
PΩ(X1 −X2)

∥PΩ(X1 −X2)∥F
,X1,X2 ∈ Y

}
Since y1 − y2 = PΩ(X1 −X2) and X{

PΩ(X1 −X2)

∥PΩ(X1 −X2)∥F
,X1,X2 ∈ Y

}
⊆
{
t · PΩ

(
X1 −X2

∥X1 −X2∥F

)
, t ∈ [0, L],X1,X2 ∈ Y

}
Notice that X1−X2

∥X1−X2∥F
are matrices of unit Frobenius norm with rank at most 2r. By Lemma 3.1 in [41],

they form a set whose covering number is at most
(
9
δ

)r(m+n+1)
. Hence, by dilating the set by a factor of L,

the covering number is at most
(
9L
δ

)r(m+n+1)
. Therefore,

logN (UY , ∥ · ∥2, δ) ≲ r(m+ n) log
L

δ
.

Now, let S be any bounded subset of Y. Note that the inverse map F−1 is L-Lipschitz (i.e. (L,α)-Hölder
for α = 1). Since S ⊂ Y, we have that US ⊂ UY , and thus, N (US , ∥ · ∥2, δ) ≤ N (UY , ∥ · ∥2, δ) for any δ > 0.
Therefore, the choice of d in this proposition yields

d ≳ ρ−2r(m+ n) log
L
√
mn

ρ
≳ ρ−2 logN (UY , ∥ · ∥2, ρ

4
√
3mn

) ≥ ρ−2 logN (US , ∥ · ∥2, ρ

4
√
3mn

).

Therefore, the conditions of Theorem 6 are satisfied for α = 1, and the result follows.
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