
ar
X

iv
:2

11
2.

15
58

8v
1 

 [
m

at
h.

N
A

] 
 3

1 
D

ec
 2

02
1

Computing the dominant eigenpair of an essentially

nonnegative tensor via a homotopy method⋆

Xingbang Cui Liping Zhang∗

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Abstract

The theory of eigenvalues and eigenvectors is one of the fundamental and es-

sential components in tensor analysis. Computing the dominant eigenpair of

an essentially nonnegative tensor is an important topic in tensor computation

because of the critical applications in network resource allocations. In this

paper, we consider the aforementioned topic and there are two main contribu-

tions. First, we show that an irreducible essentially nonnegative tensor has a

unique positive dominant eigenvalue with a unique positive normalized eigenvec-

tor. Second, we present a homotopy method to compute the dominant eigenpair

and prove that it converges to the desired dominant eigenpair whether the given

tensor is irreducible or reducible based on an approximation technique. Finally,

we implement the method using a prediction-correction approach for path fol-

lowing and some numerical results are reported to illustrate the efficiency of the

proposed algorithm.

Keywords: Essentially nonnegative tensor, Dominant eigenvalue, Eigenvector,

Homotopy method

2010 MSC: 65F15, 65H17, 65H20

⋆This work was supported by the National Natural Science Foundation of China (Grant
No. 11771244).

∗Corresponding author. Email address: lipingzhang@tsinghua.edu.cn (Liping Zhang)

Preprint submitted to Elsevier January 3, 2022

http://arxiv.org/abs/2112.15588v1


1. Introduction

The purpose of this paper is to study the eigenvalue problem of a special

class of tensors. An mth order n-dimensional real tensor is a hypermatrix of

nm elements, which takes the form

A = (ai1i2...im), ai1i2...im ∈ R, ij ∈ [n], j ∈ [m],

where [n] = {1, 2, . . . , n}. When m = 2, A is a matrix in Rn×n. The set of

such all mth order n-dimensional real tensors is denoted as R[m,n]. A tensor

A ∈ R[m,n] is called nonnegative or positive if its entries ai1...im ≥ 0 or ai1...im > 0

for all ij ∈ [n] and j ∈ [m]. We use R
[m,n]
+ to denote the set of all nonnega-

tive tensors. A tensor A ∈ R[m,n] is called symmetric if its entries ai1...im are

invariant under any permutation of their indices {i1 . . . im} [16]. The set of all

mth order n-dimensional real symmetric tensors is denoted as S[m,n]. Various

properties and applications of tensors, nonnegative tensors in particular, can be

found in [10, 18].

The computation of tensor eigenvalues is of crucial importance in a variety of

practical problems in physics and engineering such as blind source separation [9]

and magnetic resonance imaging [17, 18]. Tensor eigenvalues and eigenvectors

have received much attention lately. Especially, finding the maximum eigenvalue

of a tensor is an important topic in tensor computation and multilinear algebra

[17, 18, 20]. The concept of tensor eigenvalues was independently proposed in

[11, 16]. More details on eigenvalues of tensors can be found in [6, 18, 21]. In

this paper, we specifically use the following definition of a tensor eigenpair.

Definition 1. Let A ∈ R
[m,n] and x ∈ C

n. We define two n-dimensional

column vectors

Axm−1 :=





n
∑

i2,...,im=1

aii2...imxi2 · · ·xim





1≤i≤n

and x[m−1] :=
(

xm−1
i

)

1≤i≤n
.
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If the polynomial system

Axm−1 = λx[m−1] (1)

has a solution (λ, x) ∈ C× (Cn\{0}), then λ is called an eigenvalue of A and x

its corresponding eigenvector.

We call ρ(A) the spectral radius of tensor A if

ρ(A) = max{|λ| : λ is an eigenvalue of A},

where |λ| denotes the modulus of λ.

Nonnegative tensors, arising from multilinear pagerank, spectral hypergraph

theory, and higher-order Markov chains, form a singularly important class of

tensors and have attracted more and more attention because they share some

intrinsic properties with those of the nonnegative matrices. One of those prop-

erties is the Perron-Frobenius theorem on eigenvalues. The generalization of the

Perron-Frobenius theorem to nonnegative tensors can be found in [2, 6, 21]. We

recall the concept of irreducibility of a tensor and the Perron-Frobenius theorem

for nonnegative tensors [18]. In the sequel, let R++ denote the set of all positive

real numbers and Rn
++ denote the set of all positive column vectors.

Definition 2. A tensor A ∈ R[m,n] is said to be reducible, if there is a nonempty

proper index subset J ⊂ [n] such that

Ai1i2···im = 0, ∀i1 ∈ J, ∀i2, · · · , im ∈ [n]\J.

We say that A is irreducible if it is not reducible.

Theorem 1. Let A ∈ R[m,n] and λ∗ = ρ(A). If A ∈ R
[m,n]
+ , then λ∗ is an

eigenvalue of A and it has a nonnegative corresponding eigenvector x∗. If fur-

thermore A is irreducible, then the following hold:

(i) λ∗ > 0 and x∗ ∈ Rn
++.
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(ii) If λ is an eigenvalue with a nonnegative eigenvector, then λ = λ∗. More-

over, the nonnegative eigenvector is unique up to a constant multiple.

Under normalization xT
∗ x∗ = 1, the eigenvector x∗ is unique. By Theorem

1, if a tensor A ∈ R
[m,n]
+ is irreducible, then it has a unique positive eigenpair

(λ∗, x∗), which is called Perron pair. The Perron pair of a nonnegative tensor

A plays an important role in various applications, such as in the spectral hy-

pergraph theory, higher order Markov chains, and automatic control, to name

a few [18]. Several algorithms have been proposed for finding the Perron pair

of a nonnegative tensor in the literature. Ng, Qi, and Zhou [14] proposed a

power-type method. The convergence of this method is established in [3, 22].

Modified versions of this method have been proposed in [13, 23, 26]. To achieve

faster convergence, Ni and Qi [15] proposed Newton-type algorithm to solve a

polynomial system. Their algorithm is proved to be locally quadratically conver-

gent when the nonnegative tensor is irreducible. Liu, Guo, and Lin [12] recently

proposed an algorithm that combines Newton’s and Noda’s iterations for third

order nonnegative tensors. This algorithm preserves positivity and is shown

to be quadratically convergent to the Perron pair for irreducible nonnegative

tensors. Based on Definition 1, finding the eigenpair is equivalent to solving

polynomial system (1). Since the homopoty method is an attractive class of

methods for solving polynomial systems [5], Chen et al [4] proposed a homo-

topy method, based on the algorithm in [5], to compute the largest eigenvalue

and a corresponding eigenvector of a nonnegative tensor. They proved that it

converges to the desired eigenpair when the tensor is irreducible.

In this paper, we consider a new class of tensors called essentially nonnega-

tive tensors [24], which extends the nonnegative tensors. We focus on computing

the dominant eigenvalue of an essentially nonnegative tensor, which is closely

related to the largest eigenvalue of a nonnegative tensor. The dominant eigen-

value of an essentially nonnegative tensor has many important applications in

network resource allocation [19] and trace-preserving problems [24]. Zhang et

al [24] first introduced this class of tensors and studied its maximum real eigen-
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value, which is called dominant eigenvalue. They also proposed a power-type

method to compute the dominant eigenvalue of an essentially nonnegative tensor

in [24], which has linear convergence at most. Hu et al [8] proposed a semidef-

inite programming method to find the dominant eigenvalue of an essentially

nonnegative symmetric tensor via solving a sum of squares of polynomials opti-

mization problem. The method in [8] are not suitable for finding the dominant

eigenvalue of a large size essentially nonnegative tensor. In this paper, based

on the homotopy method in [4], we propose a homotopy method for computing

the dominant eigenvalue of an essentially nonnegative tensor. This method is

suitable for large size tensors.

This paper is organized as follows. In Section 2, we show that an irre-

ducible essentially nonnegative tensor has the unique dominant eigenvalue with

the corresponding unique positive eigenvector. In Section 3, we propose a ho-

motopy method and prove its convergence. We describe an implementation of

the method and give some numerical results in Section 4. Some conclusions are

given in Section 5.

2. Preliminaries and the unique dominant eigenpair

We start this section with some fundamental notions and properties on ten-

sors, see [18] for more details. We also introduce an important result for eigen-

values of an essentially nonnegative tensor.

The mth order n-dimensional unit tensor, denoted by I, is the tensor whose

entries are δi1...im with δi1...im = 1 if and only if i1 = · · · = im and otherwise

zero. The symbol A ≥ B means that A − B is a nonnegative tensor. We recall

the concept of an essentially nonnegative tensor which was first introduced in

[24].

Definition 3. Let A ∈ R[m,n]. We say that A is an essentially nonnegative

tensor if and only if its off-diagonal entries are all nonnegative.

From the definition, clearly any nonnegative tensor is essentially nonnega-

tive, while the converse may not be true in general. When the order m = 2, the
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definition collapses to the classical definition of essentially nonnegative matrices

[7]. Similar to the essentially nonnegative matrix, an essentially nonnegative

tensor A has a real eigenvalue with the property that it is greater than or equal

to the real part of every eigenvalue of A. The following result was given in [24].

Theorem 2. Let A ∈ R[m,n] be an essentially nonnegative tensor and

α = max
i∈[n]

|ai...i|+ 1. (2)

Then we have A + αI ∈ R
[m,n]
+ . Moreover, A has a real eigenvalue λ(A) with

corresponding nonnegative eigenvector and λ(A) ≥ Reλ for every eigenvalue λ

of A. Furthermore,

λ(A) = ρ(A+ αI)− α.

We call such an eigenvalue λ(A) in Theorem 2 the dominant eigenvalue of

an essentially nonnegative tensor A.

We also use the following results in the sequel, which can be found in [21,

24, 25].

Lemma 1. Let A ∈ R
[m,n]
+ and ε > 0 be a sufficiently small number. If Aε =

A+ E where E denotes the tensor with every entry being ε, then

lim
ε↓0

ρ(Aε) = ρ(A).

If furthermore A ∈ S
[m,n], then

0 ≤ ρ(Aε)− ρ(A) ≤ εnm−1.

Lemma 2. Let A,B ∈ R
[m,n]
+ . If B is irreducible, A ≤ B and A 6= B, then

ρ(A) < ρ(B).

By Lemma 2 and Theorems 1 and 2, we have the following theorem.

Theorem 3. Let A ∈ R[m,n] be an essentially nonnegative tensor and α be

defined by (2). Then A has a nonnegative eigenpair (λ(A), x). If furthermore
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A is irreducible, then every nonnegative eigenpair (λ(A), x) is positive. More-

over, A has a unique positive dominant eigenvalue λ(A), and the nonnegative

eigenvector is unique up to a constant multiple.

Proof. By Theorems 1 and 2, λ(A) ≥ 0 and it corresponds to a nonnegative

eigenvector. Let B = αI and C = A + αI. Then B ≤ C and B 6= C. Since A is

irreducible, C is also irreducible. By Lemma 2, we have

α = ρ(B) < ρ(C),

which implies that λ(A) > 0. By Theorem 1, A has a unique positive normal-

ized eigenpair. ✷

Theorem 3 shows that an irreducible essentially nonnegative tensor has a un-

qiue positive eigenpair. We call it dominant eigenpair, denoted as (λ(A), x(A)).

According to Theorem 2 and 3, eigenpair (λ(A)+α, x(A)) coincides with Perron

pair (ρ(A+αI), x) for nonnegative tensor A+αI with eigenvectors normalized,

which can be calculated via the homotopy method in [4]. This is the core of mo-

tivation of our paper. In the next section, we will propose a homotopy method

to compute the dominant eigenpair for an essentially nonnegative tensor.

3. A homotopy method

In this section, our goal is to compute the dominant eigenpair of an ir-

reducible essentially nonnegative tensor A by a homotopy method. We first

assume that A is irreducible and let T = A+ αI where α is defined by (2).

For the purpose of computing the dominant eigenpair of A, we will solve the

following problem

Q(λ, x) =





T xm−1 − λx[m−1]

xTx− 1



 = 0. (3)
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Choose a, b ∈ Rn
++ and define a positive tensor

S = a[m−1] ◦ b ◦ · · · ◦ b ∈ R
[m,n] (4)

with its entry si1i2...im = am−1
i1

bi2 · · · bim , where ◦ denotes the outer product.

Clearly,

λ0 = (aT b)m−1, x0 =
a

‖a‖2
(5)

is the Perron pair of S [4, Lemma 2.1]. For the positive tensor S, we give the

start system

P (λ, x) =





Sxm−1 − λx[m−1]

xTx− 1



 = 0. (6)

Thus, we construct the following homotopy

Hτ (λ, x) = (1− τ)P (λ, x) + τQ(λ, x) = 0, τ ∈ [0, 1], (7)

i.e.,

Hτ (λ, x) =





(τT + (1− τ)S)xm−1 − λx[m−1]

xTx− 1



 = 0.

In designing a homotopy method for computing the dominant eigenpair,

the Jacobian matrix of Hτ (λ, x) plays an important role. We now focus on

computing this matrix. By [15, Lemma 2.1], using the semi-symmetric technique

given in [15], there exists the unique semi-symmetric tensor As ∈ R[m,n] for a

general tensor A ∈ R[m,n] such that Asx
m−1 = Axm−1 for all x ∈ Rn. By [15,

Lemma 3.3], the Jacobian matrix of Axm−1 is given by

JAxm−1 = (m− 1)Asx
m−2. (8)

Here, for a tensor A = (ai1...im) ∈ R
[m,n] and a vector x ∈ R

n, Axm−2 is a
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matrix in Rn×n whose (i, j)-th component is defined by

(

Axm−2
)

ij
=

n
∑

i3=1

· · ·

n
∑

im=1

aiji3...imxi3 · · ·xim .

Note that the tensor S is semi-symmetric. Thus, it follows from (8) that the

Jacobian matrix JHτ (λ, x) ∈ R(n+1)×(n+1) of Hτ (λ, x) is given by

JHτ (λ, x) =





−x[m−1] (m− 1)[τTs + (1− τ)S − λI]xm−2

0 2xT



 , (9)

where Ts is the corresponding semi-symmetric tensor of T . Hence, we have the

following theorem.

Theorem 4. Let A ∈ R[m,n] be an essentially nonnegative tensor and T =

A+ αI where α is defined by (2). Let a, b ∈ R++ and the positive tensor S be

defined by (4). Then, we have the following results.

(i) For any τ ∈ [0, 1), Hτ (λ, x) = 0, defined by (7), has a unique solution

(λ(τ), x(τ)) ∈ R++ ×Rn
++, which is the Perron pair of the positive tensor

τT +(1− τ)S. Moreover, the Jacobian matrix JHτ (λ(τ), x(τ)) defined as

(9), i.e.,

JHτ (λ(τ), x(τ)) =





−x(τ)[m−1] (m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−2

0 2x(τ)T



 ,

is nonsingular.

(ii) If furthermore A is irreducible, then H1(λ, x) = Q(λ, x) = 0 has a unique

solution (λ∗, x∗) = (λ(1), x(1)) ∈ R++ × Rn
++. Moreover, the Jacobian

matrix

JH1(λ∗, x∗) =





−x
[m−1]
∗ (m− 1)[Ts − λ∗I]x

m−2
∗

0 2xT
∗





is nonsingular, and (λ∗ −α, x∗) is the unique positive dominant eigenpair
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of A.

(iii) Let T = Aε + αI when A is reducible, where Aε is defined in Lemma

1. Then T is irreducible, H1(λ, x) = Q(λ, x) = 0 has a unique solution

(λε
∗, x

ε
∗) = (λε(1), xε(1)) ∈ R++ × Rn

++. Moreover, the Jacobian matrix

JHε
1(λ

ε
∗, x

ε
∗) =





−(xε
∗)

[m−1] (m− 1)[Ts − λε
∗I](x

ε
∗)

m−2

0 2(xε
∗)

T





is nonsingular, and (λε
∗ −α, xε

∗) is the unique positive dominant eigenpair

of Aε. Especially,

lim
ε↓0

λε
∗ − α = λ(A), lim

ε↓0
xε
∗ = x(A),

where (λ(A), x(A)) is a dominant eigenpair of A.

Proof. For part (i), since τT + (1 − τ)S is positive, it is irreducible. By

Theorem 1,

(τT + (1 − τ)S)xm−1 − λx[m−1] = 0

has a unique solution in R++ × Rn
++, up to a constant multiple of x. By

imposing the normalization condition xTx = 1, Hτ (λ, x) = 0 has a unique

solution (λ(τ), x(τ)) in R++ × Rn
++. Clearly, (λ(τ), x(τ)) is the Perron pair of

tensor τT + (1− τ)S.

In order to show the nonsingularity of JHτ (λ(τ), x(τ)), we set





−x(τ)[m−1] (m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−2

0 2x(τ)T









t

z



 = 0.

Then we have

− tx(τ)[m−1] +
(

(m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−2
)

z = 0 (10)
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and

2x(τ)T z = 0. (11)

Multiplying (10) by x(τ) in left-side, we have

(

(m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−1
)T

z − tx(τ)T (x(τ)[m−1]) = 0,

which, together with [τTs + (1 − τ)S − λ(τ)I]x(τ)m−1 = 0 and x(τ) ∈ R
n
++,

implies that t = 0. Hence, (10) reduces to

(

(m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−2
)

z = 0.

Since the semi-symmetric tensor Ts of T is also nonnegative and S is positive, by

the proof of [15, Lemma 4.1], the matrix
(

(m− 1)[τTs + (1− τ)S − λ(τ)I]x(τ)m−2
)

is irreducible. Therefore, z = 0 follows from (11). Hence, the Jacobian matrix

JHτ (λ(τ), x(τ)) is nonsingular.

The proof of part (ii) is similar. By Theorems 2 and 3, we show that (λ∗ −

α, x∗) is the unique positive dominant eigenpair of A.

For part (iii), by the definition of Aε, Aε + αI is positive and so it is irre-

ducible. Similar to the proof of part (ii), we prove part (iii) from Lemma 1. ✷

Analogous to Lemmas 2.3 and 2.4 in [4], we have the following lemma.

Lemma 3. Let A ∈ R[m,n] be an essentially nonnegative tensor and T = A+αI

where α is defined by (2). Let a, b ∈ Rn
++ and the positive tensor S be defined

by (4). Then the set

Ω = {(λ, x, τ) ∈ R++ × R
n
++ × [0, 1) | Hτ (λ, x) = 0}

is a one-dimensional smooth manifold and is uniformly bounded for τ ∈ [0, 1).

By (i) and (ii) of Theorem 4, it is reasonable that we can find the unique

positive dominant eigenpair of an irreducible essentially nonnegative tensor by

following the curve (λ(τ), x(τ)) with τ ↑ 1. When the given tensor is reducible,
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by Theorem 4, we also can find a ε-approximal dominant eigenpair with τ ↑ 1

and then a dominant eigenpair can be found from Lemma 1. The following

theorem shows that the homotopy (7) works well.

Theorem 5. Let A ∈ R[m,n] be an essentially nonnegative tensor and T =

A+ αI where α is defined by (2). Let a, b ∈ Rn
++ and the positive tensor S be

defined by (4). Starting from the Perron pair (λ0, x0) of S as defined in (5),

solve the homotopy Hτ (λ, x) = 0 in R++ × Rn
++ × [0, 1), and let (λ(τ), x(τ))

be the generated solution curve. Then every limit point of (λ(τ) − α, x(τ)) is a

nonnegative dominant eigenpair of A.

If A is irreducible, then

lim
τ↑1

λ(τ) − α = λ(A), lim
τ↑1

x(τ) = x(A),

where (λ(A), x(A)) is the unique positive dominant eigenpair of A.

If A is reducible, let T = Aε + αI, where Aε is defined in Lemma 1, in

the homotopy Hτ (λ, x) = 0. Let (λε(τ), xε(τ)) be the solution curve obtained by

solving this homotopy in R++ × Rn
++ × [0, 1). Then

lim
ε↓0

lim
τ↑1

λε(τ)− α = λ(A), lim
ε↓0

lim
τ↑1

xε(τ) = x(A),

where (λ(A), x(A)) is a nonnegative dominant eigenpair of A.

Proof. By Lemma 3, the sequence {(λ(τ), x(τ))} is in R++ × Rn
++ and is

uniformly bounded for τ ∈ [0, 1). Hence, {(λ(τ), x(τ))} has at least a limit

point as τ ↑ 1. Let (λ∗, x∗) be an any limit point of {(λ(τ), x(τ))} as τ ↑ 1.

Then (λ∗, x∗) ∈ R+ × Rn
+ and satisfies

(A+ αI)xm−1
∗ − λ∗x

[m−1]
∗ = 0, xT

∗ x∗ = 1, (12)

which, together with Theorem 2, implies that (λ∗ − α, x∗) is a nonnegative

dominant eigenpair of A.

IfA is irreducible, by Theorem 3, A has a unique positive dominant eigenpair

12



(λ(A), x(A)). Hence, combining Theorem 4 (ii) and (12), we have

lim
τ↑1

λ(τ) − α = λ(A), lim
τ↑1

x(τ) = x(A).

IfA is reducible, then it has a nonnegative dominant eigenpair from Theorem

2, denoted as (λ(A), x(A)), too. Since Aε+αI is positive and so it is irreducible.

Hence, by Theorem 1, Aε + αI has a unique positive Perron pair, denoted as

(λε
∗, x

ε
∗). Therefore, the obtained sequence {(λε(τ), xε(τ))} converges to (λε

∗, x
ε
∗)

as τ ↑ 1, i.e.,

lim
τ↑1

λε(τ) = λε
∗, lim

τ↑1
xε(τ) = xε

∗.

By Theorem 4 (iii), we have

lim
ε↓0

λε
∗ − α = λ(A), lim

ε↓0
xε
∗ = x(A).

So we complete the proof. ✷

Theorems 4 and 5 show that the homotopy method (7) works well. For

computing the dominant eigenpair of an essentially nonnegative tensor, we will

propose a detailed algorithm to implement the homotopy method (7).

4. Algorithm description and numerical experiments

We now present an algorithm that implements the homotopy method (7) for

computing the unique positive dominant eigenpair of an irreducible essentially

nonnegative tensor A ∈ R[m,n]. In order to follow the curve in the homotopy

method, we differentiate Hτ (λ, x) = 0 with respect to τ . Then,

DλHτ ·
dλ

dτ
+DxHτ ·

dx

dτ
+DτHτ = 0,

i.e.,

JHτ ·





dλ
dτ

dx
dτ



 = −DτHτ . (13)
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By Theorem 4, JHτ is nonsingular for all τ ∈ [0, 1), the system of differential

equations (13) is well defined. Similar to the algorithmic framework in [4], we

follow the curve obtained by solving the system of differential equations (13),

where an Euler-Newton type predication-correction approach is utilized. Then

let (λ(0), x(0)) = (λ0, x0) with (λ0, x0) defined in (5). Thus, we can obtain an

approximation (λ̄, x̄) to (λ(τ), x(τ)):





λ̄

x̄



 =





λ

x



+∆τ





dλ
dτ

dx
dτ



 ,

where ∆τ is a step size such that τ increases to 1.

Algorithm 1. INPUT. Given an essentially nonnegative tensor A ∈ R[m,n].

Let α be defined by (2) and T = A+αI if A is irreducible, T = Aε +αI

otherwise, where Aε is given in Lemma 1.

Initialization. Choose positive vectors a, b ∈ Rn
++ and construct the positive

tensor S as (4). Choose initial step size ∆τ0 > 0, tolerances ǫ1 > 0 and

ǫ2 > 0. Let τ0 = 0, λ0 and x0 be defined by (5). Choose β ∈ (0, 1) that is

close to 1. Set k = 0.

Path following. For k = 0, 1, . . . until τN < β and τN+1 ≥ β for some N :

Set τk+1 = τk +∆τk. If τk < β and τk+1 ≥ β, then set N = k and reset

τN+1 = β and ∆τN = β − τN .

Let u = (λ, x) and uk = (λk, xk). We employ the following Euler-Newton

prediction-correction strategy to find the next point on the path Hτ (u) =

0:

• Prediction Step: Compute the tangent vector g = du
dτ to Hτ (u) = 0

at τk by solving the linear system

JHτk(uk) · g = −DτHτk(uk).
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Then compute the approximation ū to uk+1 by

ū = uk +∆τk · g.

• Correction Step: Use Newton’s iterations. Initialize v0 = ū. For

i = 0, 1, 2, . . ., compute

vi+1 = vi − [JHτk+1
(vi)]

−1Hτk+1
(vi)

until ‖Hτk+1
(vJ )‖2 ≤ ǫ1. Then set uk+1 = vJ . If k = N , go to

Endgame.

• Adaptively updating the step size ∆τk: If more than three steps

of Newton iterations were required to converge within the desired

accuracy, then set ∆τk+1 = 0.5∆τk. If ∆τk+1 ≤ 10−6, set ∆τk+1 =

10−6. If two consecutive steps were not cut, then set ∆τk+1 = 2∆τk.

If ∆τk+1 ≥ 0.4, set ∆τk+1 = 0.4. Otherwise, ∆τk+1 = ∆τk.

Set k = k + 1.

Endgame. Set ∆τ = 1 − β. First compute the tangent vector g = du
dτ to

Hτ (u) = 0 at β by solving the linear system

JHβ(uN+1) · g = −DτHβ(uN+1),

and compute the prediction ū by

ū = uN+1 +∆τ · g.

Then use Newton’s method to compute the correction. Initialize v0 = ū.

For i = 0, 1, . . ., compute

vi+1 = vi − [JH1(vi)]
−1H1(vi).

15



until ‖Q(vJ)‖2 ≤ ǫ2. Stop, and set (λ∗, x∗) = vJ . Output (λ∗ − α, x∗) as

the dominant eigenpair of A.

Note that H1(vi) = Q(vi) from (3) and (7) in Endgame of Algorithm 1. By

Theroems 4 and 5, Algorithm 1 is well-defined. We now report some numerical

results testing Algorithm 1. We compare it with the power-type algorithm

proposed in [24], denoted as PTA for convenience. All the experiments were

done using MATLAB R2015a on a laptop computer with Intel Core i5-6300HQ

at 2.3 GHz and 4 GB memory running Microsoft Windows 10. The tensor

toolbox of [1] was used to compute tensor-vector products and to compute the

semi-symmetric tensor Ts.

In our experiments, we used a = b = (1, . . . , 1)T and ∆τ0 = 0.1, ǫ1 = 10−5,

ǫ2 = 10−10, and β = 0.9999 in Algorithm 1. We also used x0 defined in (5) as the

initial vector in PTA. PTA was terminated if one of the following conditions

was met:

(a) ‖Q(λk, xk)‖2 ≤ 10−10, where Q(λ, x) is defined as (3).

(b) The number of iterations exceeds 50000.

Note that regular termination condition (a) is the same as the one used in

Algorithm 1 at regular termination. We also set the maximal allowed number

of prediction-correction steps for Algorithm 1 as 50000. We set ε = 10−9 in Aε

if required.

We first test Algorithm 1 on the following four examples.

Example 1. This example was given in [24, Example 5.1]. Consider the fol-
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lowing essentially nonnegative tensor A ∈ R[3,3] defined by

A(:, :, 1) =











−1.51 8.35 1.03

4.04 3.72 1.45

6.71 6.43 1.35











,

A(:, :, 2) =











9.02 0.78 6, 89

9.71 −5.32 1.85

2.09 4.17 2.98











,

A(:, :, 3) =











9.55 1.57 6.91

5.63 5.55 1.43

5.76 8.29 −0.15











.

Example 2. This example was given in [24, Example 5.2]. Consider the fol-

lowing essentially nonnegative tensor A ∈ R[3,3] defined by A133 = A233 =

A311 = A322 = 1, A111 = A222 = −1, and zero otherwise.

Example 3. Let A ∈ R[3,100] be a randomly generated tensor. Its diagonal

elements are within [−1, 0] and off-diagonal elements are within [0, 1].

Example 4. Let A ∈ R[4,50] be a randomly generated tensor. Its diagonal ele-

ments are within [−1, 0] and off-diagonal elements are within [0, 1].

Clearly, the tensors in Examples 1 and 2 are irreducible. The tensors defined

in Examples 3 and 4 are randomly generated large-scale essentially nonnegative

tensors. We summarize the numerical results for Examples 1-4 in Table 1. In

order to show the efficiency of Algorithm 1, we report the number of prediction-

correction steps (iter), the total number of Newton iterations (nwtiter), the

elapsed CPU time in seconds (time), and the dominant eigenvalue λ(A) in

Table 1.

From Table 1, we can see that Algorithm 1 performs very well even for the

large-scale essentially nonnegative tensors in Examples 3 and 4. This shows that

the homotopy method (7) is very effective.
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Table 1: Performance of Algorithm 1 on Examples 1-4

Example iter nwtiter time λ(A)
1 11 18 0.6382 36.2757
2 11 19 0.1599 1.0000
3 11 13 1.7922 5.0021× 103

4 11 13 6.2493 6.2482× 104

In the following example, we compare Algorithm 1 with the power-type

algorithm PTA proposed in [24].

Example 5. Consider an essentially nonnegative tensor A ∈ R[m,n], the di-

agonal entries of A are randomly generated from the interval [−1, 0] and the

off-diagonal elements are in [0, 1]. For the sake of comparison, all entries of A

are adjusted as follows:

ai1...im = ai1...im × 10−d, ij ∈ [n], j ∈ [m], (14)

where d is a positive integer. After this modification, we randomly generate 100

such tensors A ∈ R
[m,n] and use this two algorithms to show their performances.

In both algorithms, we set the test tensor T = Aε+αI, where Aε is defined

in Lemma 1. Clearly, T is positive so it is irreducible. Hence, the algorithm

PTA has linear convergence [24, 22, 18] and its rate of convergence from [18,

Theorem 3.88] is

1−
mini,j∈[n] tij...j

maxi∈[n]

∑n

i2,...,im=1 tii2...im
. (15)

Clearly, after the modification in (14), the off-diagonal elements of T are very

small when d is large. Thus, the rate of convergence is close to 1 and hence the

algorithm PTA will converge very slow. On the other hand, the last correction

step in Algorithm 1 is Newton’s method. Therefore, it is quadratically conver-

gent in the step. This modification in (14) will not affect the performance of

Algorithm 1.

The numerical results are reported in the following table. For Algorithm

1, Aiter denotes the average number of prediction-correction steps, Anwtiter
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denotes the average total number of Newton iterations and Atime denotes the

average elapsed CPU time in seconds. For the algorithm PTA, Aiter denotes

the average number of iterations and Atime denotes the average elapsed CPU

time in seconds.

Table 2: Performances of Algorithm 1 and PTA on Example 5

Algorithm 1 PTA

(m,n) d Aiter Anwtiter Atime Aiter Atime
(3,10) 3 11 14.05 0.0294 524.51 0.0272
(3,10) 4 11 14.05 0.0298 5121.9 0.2382
(3,10) 5 11 14.06 0.0299 49832 2.3989
(3,10) 6 11 14.18 0.0303 > 50000
(4,10) 4 11 14 0.0380 540.07 0.0426
(4,10) 5 11 13.99 0.0373 5296.2 0.3353
(4,10) 6 11 13.97 0.0371 > 50000
(3,20) 4 11 14 0.0347 1321.6 0.0745
(3,20) 5 11 14 0.0345 13146 0.6725
(3,20) 6 11 14 0.0343 > 50000
(4,20) 5 11 13.98 0.1945 706.8 0.1146
(4,20) 6 11 13.66 0.1909 > 50000
(4,20) 7 11 14.21 0.1955 > 50000

Table 2 compares the average CPU time and the average number of iterations

of these algorithms. From Table 2, we know that the algorithm PTA performs

well when the parameter d is small. Algorithm 1 is more efficient than the

algorithm PTA when d is large, in terms of number of iterations. The reason

for this is because the algorithm PTA is linearly convergent and its rate of

convergence depends on the ratio in (15). When d is large, the ratio is close

to 0 and the rate of convergence (15) is close to 1. Thus the algorithm PTA

becomes slow. Numerical results show that the ratio in (15) does not affect the

performance of Algorithm 1. Algorithm 1 is better than the algorithm PTA for

large-scale problems.

5. Conclusion

The dominant eigenpair of an essentially nonnegative tensor plays an impor-

tant role in network resource allocations. In this paper, we first show that an
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irreducible essentially nonnegative tensor has a unique positive dominant eigen-

pair with the eigenvector normalized. On the other hand, according to Theorem

2 and 3, eigenpair (λ(A) + α, x(A)) coincides with Perron pair (ρ(A + αI), x)

for nonnegative tensor A + αI with the eigenvectors normalized, which moti-

vates us to find the dominant eigenpair via the homotopy method in [4]. Based

on the algorithmic framework of the homotopy method in [4], we propose a

homotopy method for computing the dominant eigenpair. The convergence of

the proposed homotopy method has been established for both irreducible and

reducible cases in Theorems 4 and 5. We have designed a concrete algorithm (Al-

gorithm 1) using the Newton type prediction-correction strategy to implement

the homotopy method. We have provided some numerical results to illustrate

the efficiency of Algorithm 1. Numerical experiments show that the homotopy

method is promising, particularly when the value of (15) is close to 1, while the

power-type method in [24] becomes slow for this case. Algorithm 1 shows that

the homotopy techniques are very useful for computing the dominant eigenpair

of an essentially nonnegative tensor.
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