
A PHASE FIELD MODEL FOR THE MOTION OF PRISMATIC
DISLOCATION LOOPS BY BOTH CLIMB AND SELF-CLIMB

XIAOHUA NIU∗ AND XIAODONG YAN†

Abstract. We study the sharp interface limit and well-posedness of a phase field model for
self-climb of prismatic dislocation loops in periodic settings. The model is set up in a Cahn-
Hilliard/Allen-Cahn framework featured with degenerate phase-dependent diffusion mobility with
an additional stablizing function. Moreover, a nonlocal climb force is added to the chemical po-
tential. We introduce a notion of weak solutions for the nonlinear model. The existence result is
obtained by approximations of the proposed model with nondegenerate mobilities. Lastly, the nu-
merical simulations are performed to validate the phase field model and the simulation results show
the big difference for the prismatic dislocation loops in the evolution time and the pattern with and
without self-climb contribution.

1. Introduction. In this paper, we present a phase field model for the motion
of prismatic dislocation loops by both climb and self-climb.

The self-climb of dislocations (line defects in crystalline materials) plays important
roles in the properties of irradiated materials [14]. The self-climb motion is driven by
pipe diffusion of vacancies along the dislocations, and is the dominant mechanism of
prismatic loop motion and coalescence at not very high temperatures [20, 16, 7, 30,
28, 25, 24, 13, 22, 26, 4]. Dislocations climb is the motion of dislocations out of their
slip planes with the assistance of vacancy diffusion over the bulk of the materials, and
it is an important mechanism in the plastic properties of crystalline materials at high
temperatures (e.g., in dislocation creep) [14, 11, 31, 32, 3, 23, 18, 12, 10, 35, 4]. Phase
field models (e.g., of the Cahn-Hilliard type [5] or the Allen-Cahn type [1]) have the
advantages of being able to handle topological changes of the interfaces automatically
with simple numerical implementation on a uniform mesh of the simulation domain.
We have proposed a phase field model for self-climb of prismatic dislocation loops [26].
There are also phase field models for dislocation climb coupled with vacancy bulk
diffusion [15, 17, 9, 10]. Recently, the importance of the cooperative effects of the
two mechanisms of self-climb by vacancy pipe diffusion and climb by vacancy bulk
diffusion has been realized [13, 4, 19]. To the best of our knowledge, a phase field
model that accounts for the combined effect of these two mechanisms is still not
available in the literature.

We propose the following modified Cahn-Hilliard Allen-Cahn type equation to
model the motion of prismatic dislocation loops by both climb and self-climb:

g(u)(∂tu + βµ) = ∇ ⋅ (M(u)∇
µ

g(u)
) for x ∈ Ω ⊂ R2, t ∈ [0,∞),(1.1)

µ = −∆u +
1

ε2
q′(u) +

1

ε
h(u)fcl.(1.2)

In this model, without the βµ term on the left-hand side, it describes the self-climb
of prismatic dislocation loops, and the dislocation climb by vacancy bulk diffusion
is incorporated by the βµ term. Here β > 0 is a constant that enables a correct
dislocation climb velocity, M(u) = M0(1 − u

2)2, M0 > 0, is the diffusion mobility,
q(u) = 2(1 − u2)2 is the double well potential which takes minimums at ±1, g(u) =
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(1−u2)2 is the stabilizing function which guarantees correct asymptotics in the sharp
interface limit, and ε is a small parameter controlling the width of the dislocation
core.

In this model, we assume prismatic dislocation loops lie and evolve by self-climb
in the xy plane and all dislocation loops have the same perpendicular Burgers vector
= (0,0, b). The local dislocation line direction is given by (b/b) × (∇u/∣∇u∣). The last
contribution fcl in the chemical potential µ in (1.2) is the total climb force, with

(1.3) fcl = f
d
cl + f

app
cl ,

where fdcl is the climb force generated by all the dislocations:

(1.4) fdcl(x, y, u) =
Gb2

8π(1 − ν)∫
Ω

(
x − x

R3
ux +

y − y

R3
uy)dxdy

with G being the shear modulus, ν the Poisson ratio, and R =
√

(x − x)2 + (y − y)2,
and fappcl is the applied force. The smooth cutoff factor h(u) = H0(1 − u

2)2 is to
guarantee the climb force acts only on the dislocations. The constant H0 > 0 is chosen
such that the phase field model generates accurate climb force of the dislocations [26]
(c.f. Sec. 2).

The chemical potential µ comes from variations of the classical Cahn-Hilliard
energy and the elastic energy due to dislocations, i.e.

(1.5) µ =
δECH
δu

+
1

ε
h(u)

δEel
δu

,

where

ECH(u) = ∫
Ω

(
1

2
∣∇u∣2 + q(u))dx,(1.6)

Eel = ∫
Ω

(
1

2
ufdcl + uf

app
cl )dx(1.7)

are the classical Cahn-Hilliard energy and elastic energy respectively. The climb force
generated by the dislocations can be expressed as

fdcl(x, y, u) =
Gb2

4(1 − ν)
(−∆)

1
2u.(1.8)

Here (−∆)su is the fractional operator defined by

F((−∆)
sf) = (ξ2

1 + ξ
2
2)

s
2F(f)(ξ),

where ξ is the frequency.
This model is obtained by incorporating the dislocation climb motion into our

phase field model for the self-climb motion of prismatic dislocation loops that we
proposed earlier [26] without the factor g(u) on the left-hand side in Eq. (1.1). This
factor is mainly for the wellposedness proof, and without it, the results of dislocation
velocity given by the sharp interface limit (see the remark at the end of Sec. 2) and
numerical simulations are similar. When g ≡ 1 and the climb force fcl is omitted, the
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model reduces to the Cahn-Hilliard/Allen-Cahn equation with degenerate mobility.
Such models have attracted lots of attentions in recent years [33].

In this paper, we are interested in the sharp interface limit and well-posedness for
(1.1)-(1.2). Numerical simulations are also performed using the obtained phase field
model.

We first derive a sharp interface limit equation for (1.1) and (1.2) via formal
asymptotic analysis. The following sharp interface equation is obtained as ε→∞,

(1.9) v = −λ∂ss (ακ −H0f
(0)
cl (s)) + η (ακ −H0f

(0)
cl (s)) .

Here λ, α and η are positive constants whose exact forms can be found in section 2.
For well-posedness of (1.1)-(1.2), we consider the following modified problem in

a periodic setting in general dimensions. Set Ω = [0,2π]n, we consider

g(u)(∂tu + βµ) = ∇ ⋅ (M(u)∇
µ

g(u)
) , for x ∈ Ω, t ∈ [0,∞)(1.10)

µ = −∆u + q′(u) + (−∆)
1
2u.(1.11)

Here g(u) = ∣1 − u2∣m for 2 ≤ m < ∞, M(u) = M0g(u) for some constant M0 > 0,
q(u) ∈ C2(R,R) and there exist constants Ci > 0, i = 1,⋯,10, and 1 ≤ r < ∞, such that
for all u ∈ R,

C1∣u∣
r+1

−C2 ≤ q(u) ≤ C3∣u∣
r+1

+C4,(1.12)

∣q′(u)∣ ≤ C5∣u∣
r
+C6(1.13)

Ct∣u∣
r−1

−C8 ≤ q
′′
(u) ≤ C9∣u∣

r−1
+C10.(1.14)

We see that the classical double well potential q(u) = (1 − u2)2 satisfies (1.12)-(1.14)
with r = 3.

In the proof, we consider approximations of the proposed model (1.10)-(1.11) with
positive mobilities. Given any θ > 0, we define

(1.15) gθ(u) ∶= {
∣1 − u2∣m if ∣1 − u2∣ > θ,
θm if ∣1 − u2∣ ≤ θ,

and

(1.16) Mθ(u) ∶=M0gθ(u).

Our first step is to find a sufficiently regular solution for (1.10)-(1.11) with mobil-
ity Mθ(u) and stablizing function gθ(u) together with a smooth potential q(u). Here
and throughout the paper, we use notation ΩT = [0, T ]×Ω. This result is summarized
in the following Proposition.

Proposition 1.1. Let Mθ, gθ be defined by (1.16) and (1.15), under the assump-
tions (1.12)-(1.14), for any u0 ∈H

1(Ω) and any T > 0, there exists a function uθ such
that

a) uθ ∈ L
∞(0, T ;H1(Ω))∩C([0, T ];Lp(Ω))∩L2(0, T ;W 3,s(Ω)), where 1 ≤ p < ∞,

1 ≤ s < 2,
b) ∂tuθ ∈ L

2(0, T ; (W 1,q(Ω))′) for q > 2,
c) uθ(x,0) = u0(x) for all x ∈ Ω,
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which satisfies (1.10)-(1.11) in the following weak sense

∫

T

0
< ∂tuθ, φ >((W 1,q(Ω))′,W 1,q(Ω)) dt

= −∫
ΩT

Mθ(uθ)∇
−∆uθ + q

′(uθ) + (−∆)
1
2uθ

gθ(uθ)
⋅ ∇

φ

gθ(uθ)
dxdt

−∫
ΩT

β(−∆uθ + q
′
(uθ) + (−∆)

1
2uθ)φdxdt(1.17)

for all φ ∈ L2(0, T ;W 1,q(Ω)) with q > 2. In addition, the following energy inequality
holds for all t > 0.

∫
Ω

(
1

2
∣∇uθ(x, t)∣

2
+ q(uθ(x, t)) + uθ(x, t)(−∆)

1
2uθ)dx

+∫

t

0
∫

Ω

Mθ(uθ(x, τ) ∣∇
−∆uθ(x, τ) + q

′(uθ(x, τ)) + (−∆)
1
2uθ(x, τ)

gθ(uθ(x, τ))
∣

2

dxdτ(1.18)

+∫

t

0
∫

Ω

β (−∆uθ(x, τ) + q
′
(uθ(x, τ)) + (−∆)

1
2uθ(x, τ))

2
dxdτ

≤ ∫
Ω

(
1

2
∣∇u0(x)∣

2
+ q(u0(x)) + u0(x)(−∆)

1
2u0)dx.

Proposition 1.1 is proved via Galerkin approximations. Due to the presence of
the stablizing function gθ, it is not obvious how to pass to the limit in the nonlinear
term of the Galerkin approximations. Our main observation in this step is strong
convergence of ∇uN in L2(ΩT ) which allows us to pass to the limit.

In order to obtain the weak solution to (1.10), we consider the limit of uθ as θ → 0.
The main difficulty is how to pass to the limit in the nonlinear term in the approxima-
tion equation. In [6], the authors proved the existence of weak solutions for degenerate
Cahn-Hilliard equations by the following idea. The estimates for the positive mobil-
ity approximations yield uniform bounds for ∂tuθi in L2(0, T ; (H2(Ω))′), and uniform
bounds on uθi in L∞(0, T ;H1(Ω). Those uniform bounds yield strong convergence of
√
Mi(uθi) in C(0, T ;Ln(Ω)). By this and the weak convergence of

√
Mi(uθi)∇µθi in

L2(ΩT ), authors in [6] showed (up to a subsequence) that Mθi(uθi)∇µθi ⇀
√
M(u)ξ

weakly in L2(0, T ;L
2n
n+2 (Ω)) where ξ is the weak limit of

√
Mi(uθi)∇µθi . The main

task left is to show
√
M(u)ξ = M(u)(−∇∆u + q′′(u)∇u) and the limit equation be-

comes a weak form Cahn-Hilliard equation. Authors in [6] proved that this is almost
true in the set where u ≠ ±1. Their main idea is the following. For small num-
bers δj monotonically decreasing to 0, they consider the limit in a subset Bj of ΩT
where approximate solutions converges uniformly and ∣ΩT /Bj ∣ < δj . By decomposing

Bj = Dj ∪ D̃j where mobility is bounded from below uniformly in Dj and controlled

above in D̃j by suitable multiples of δj , they obtain the weak form equation for the
limit function by passing to the limit of uθi on Dj then letting j goes to ∞. Under
further regularity assumptions on ∇∆u, they obtained the explicit expression for ξ in
the weak form of the equation.

Due to the existence of the stablizing function g(u) in our model, it is much
more delicate to carry out a similar analysis. The first obtacle is the bound estimate
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on ∂tuθi blows up when θi goes to zero and secondly, it is more complicated to
derive an explicit expression of the weak limit of Mi(uθi)∇

µθi
gθi(uθi)

in terms of u in

the limit equation. We shall follow ideas in a recent work by the authors [27] by
which we derive convergence of gθi(uθi) (consequently Mθi(uθi) from convergence of
Gi(u) = ∫

u
0 gθi(s)ds . We then follow the idea in [6] to pass to the limit on the right

hand side of the approximation equation. Below is our main theorem.

Theorem 1.2. For any u0 ∈H
1(Ω) and T > 0, there exists a function u ∶ ΩT → R

satisfying
i) u ∈ L∞(0, T ;H1(Ω)) ∩C([0, T ];Ls(Ω)) ∩L2(0, T ;H2(Ω)), where 1 ≤ s < ∞,

ii) g(u)∂tu ∈ L
p(0, T ; (W 1,q(Ω))′) for 1 ≤ p < 2 and q > 2.

iii) u(x,0) = u0(x) for all x ∈ Ω,
which solves (1.10)-(1.11) in the following weak sense

a) There exists a set B ⊂ ΩT with ∣ΩT /B∣ = 0 and a function ζ ∶ ΩT → Rn

satisfying χB∩PM(u)ζ ∈ L
p
p−1 (0, T ;L

q
q−1 (Ω,Rn)) such that

∫

T

0
< g(u)∂tu,φ >(W 1,q(Ω))′,W 1,q(Ω) dt(1.19)

= ∫
B∩P

M(u)ζ ⋅ ∇φdxdt − ∫
ΩT

β [∇u ⋅ ∇φ + q′(u)φ + (−∆)
1
2 (u)φ]dxdt

for all φ ∈ Lp(0, T ;W 1,q(Ω)) with p, q > 2. Here P ∶= {(x, t) ∈ ΩT ∶ ∣1−u
2∣ ≠ 0}

is the set where M(u), g(u) are nondegenerate and χB∩P is the characteristic
function of set B ∩ P .

b) Assume u ∈ L2(0, T ;H2(Ω)). For any open set U ∈ ΩT on which g(u) > 0 and
∇∆u ∈ Lp(U) for some p > 1, we have
(1.20)

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u.

a.e. in U .
Moreover, the following energy inequality holds for all t > 0

∫
Ω

(
1

2
∣∇u(x, t)∣2 + q(u(x, t)) + u(−∆)

1
2u)dz(1.21)

+∫
Ωr∩B∩P

M(u(x, τ))∣ζ(x, τ)∣2dxdτ

+∫
Ωr∩B∩P

β (−∆u + q′(u) + (−∆)
1
2u)

2
dxdτ

≤ ∫
Ω

(
1

2
∣∇u0(x)∣

2
+ q(u0(x)))dx.

Lastly, we perform numerical simulations to validate our model. Using the pro-
posed phase field model, we did simulations of evolution of an elliptic prismatic loop
and interactions between two circular prismatic loops under the combined effect of
self-climb and non-conservative climb. Our numerial results indicate the self-climb
effect slows down the shrinking of loop for the evolution of an elliptic prismatic loop.
For interaction between two circular loops, the patterns in the two shrinking process
are quite different with or without the self-climb effect .
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The paper is organized as follows. We shall derive sharp interface limit for (1.1)
and (1.2) through formal asymptotic expansions in section 2. Section 3.1 is devoted
to the proof of Theorem 1.1 and Theorem1.2 is proved in section 3.2. Numerical
simulations are presented in section 4.

2. Sharp interface limit via asymptotic expansions. In this section, we
perform a formal asymptotic analysis to obtain the dislocation self-climb velocity of
the proposed phase field model (1.1) and (1.2) in the sharp interface limit ε→ 0.

2.1. Outer expansions. We first perform expansion in the region far from the
dislocations. Assume the expansion for u is

(2.1) u(x, y, t) = u(0)(x, y, t) + u(1)(x, y, t)ε + u(2)(x, y, t)ε2
+⋯

Correspondingly, we have

M(u) =M(u(0)) +M ′
(u(0))u(1)ε + (M ′

(u(0))u(2) +
1

2
M ′′ (u(0)) (u(1))

2
) ε2

+⋯,

g(u) = g(u(0)) + g′(u(0))u(1)ε + (g′(u(0))u(2) +
1

2
g′′(u(0)) (u(1))

2
) ε2

+⋯,

q′(u) = q′(u(0)) + q′′(u(0))u(1)ε + (q′′(u(0))u(2) +
1

2
q(3)(u(0)) (u(1))

2
) ε2

+⋯,

fdcl(x, y, u) = f
d
cl(x, y, u

(0)
) + fdcl(x, y, u

(1)
)ε + fdcl(x, y, u

(2)
)ε2

+⋯.

We also expand the chemical potential µ as

(2.2) µ =
1

ε2
(µ(0)

+ µ(1)ε + µ(2)ε2
+⋯) .

Rewrite equation (1.1) as

(2.3) g(u)(∂tu + βµ) =M0∇ ⋅ (∇µ − µ
g′(u)

g(u)
∇u),

and set

(2.4) w = −µ
g′(u)

g(u)
=

1

ε2
(w(0)

+w(1)ε +w(2)ε2
+⋯) .

Plugging the expansions into (2.3) and (1.2) and matching the coefficients of ε
powers in both equations, the O( 1

ε2
) equations of (2.3) and (1.2) yield

βg(u(0))µ(0)
=M0∇ ⋅ (∇µ(0)

+w(0)
∇u(0)) ,(2.5)

µ(0)
= q′(u(0)).(2.6)

Since

w(0)
= µ(0) g

′(u(0))

g(u(0))
,

then u(0) = 1 or u(0) = −1 satisfies equations (2.5)-(2.6). In particular, such choice of
u(0) implies µ(0) = 0.

The O( 1
ε
) equations of (2.3) and (1.2) yield

β (g(u(0))µ(1)
+ g′(u(0))u(1)µ(0)) =M0∇ ⋅ (∇µ(1)

+w(0)
∇u(1) +w(1)

∇u(0)) ,(2.7)

µ(1)
= q′′(u(0))u(1) + h(u(0))fdcl(x, y, u

(0)
).(2.8)
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Since u(0) = 1 or −1, u(1) = 0 satisfies (2.7)-(2.8). Moreover, such choice of u(1)

guarantees µ(1) = 0.
The O(1) equations of (2.3) and (1.2) are

u
(0)
t g(u(0)) + β (g(u(0))µ(2)

+ g′(u(0))u(1)µ(1)
+ µ(0)

(g′(u(0))u(2) +
1

2
g′′(u(0)) (u(1))

2
))

=M0∇ ⋅ (∇µ(2)
+w(0)

∇u(2) +w(1)
∇u(1) +w(2)

∇u(0)) ,

µ(2)
= −∆u(0) + q′′(u(0))u(2) +

1

2
q(3)(u(0))(u(1))2

+h(u(0))fdcl(x, y, u
(1)

) + h′(u(0))u(1)fdcl(x, y, u
(0)

).

Taking into account of the fact u(0) = ±1, u(1) = µ(0) = µ(1) = 0, the equations above
reduce to

0 = ∇ ⋅ (∇µ(2)
+w(0)

∇u(2)) ,(2.9)

µ(2)
= q′′(u(0))u(2) + h(u(0))fdcl(x, y, u

(1)
).(2.10)

Thus u(2) = 0 satisfies (2.9)-(2.10). Moreover, such choice of u(2) guarantees µ(2) = 0.
In general, if u(0) = ±1, u(1) = u(2) = ⋯ = u(k+1) = 0, the O(εk) of the k ≥ 1

equations of (2.3) and (1.2) yield

0 = ∇ ⋅ (∇µ(k+2)
+w(0)

∇u(k+2)) ,(2.11)

µ(k+2)
= q′′(u(0))u(k+2)

+ h(u(0))fdcl(x, y, u
(k+1)

).(2.12)

Thus u(k+2) = 0 satisfies (2.11) and (2.12).
In summary, we have u = 1 or u = −1 in the outer region.

2.2. Inner expansions. For the small inner regions near the dislocations, we
introduce local coordinates near the dislocations. Considering a dislocation C pa-
rameterized by its arc length parameter s. We denote a point on the dislocation by
r0(s) with tangent unit vector t(s) and inward normal vector n(s). A point near the
dislocation C is expressed as

(2.13) r(s, d) = r0(s) + dn(s),

where d is the signed distance from point r to the dislocation. Since the gradient
fields are of order O( 1

ε
), we introduce the variable ρ = d

ε
and use coordinates (s, ρ) in

the inner region. Under this setting, we write u(x, y, t) = U(s, ρ, t) and equation (1.1)
can be written as

g(U) (∂tU −
1

ε
vn∂ρU + βµ) =

M0

1 − ερκ
∂s (

1

1 − ερκ
(∂sµ − µ

g′(U)

g(U)
∂sU))(2.14)

+
1

ε2

M0

1 − ερκ
∂ρ ((1 − ερκ)(∂ρµ − µ

g′(U)

g(U)
∂ρU)) ,

µ = −
1

1 − ερκ
∂s (

1

1 − ερκ
∂sU) −

1

ε2

1

1 − ερκ
∂ρ ((1 − ερκ)∂ρU)(2.15)

+
1

ε2
q′(U) +

1

ε
h(U)fcl(s, ρ,U).

Assume that µ takes the same form expansion as (2.2). The following expansions
hold for U and the climb force fcl within dislocation core region:

(2.16) U(s, ρ, t) = U (0)
(ρ) + εU (1)

(s, ρ, t) + ε2U (2)
(s, ρ, t) +⋯,
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and

(2.17) fcl(s, ρ,U) =
1

ε
f
(−1)
cl (ρ,U) + f

(0)
cl (s) +O(ε),

where

f
(−1)
cl (ρ,U) =

Gb2

4π(1 − ν)∫

+∞

−∞

∂ρU(τ)

ρ − τ
dτ,(2.18)

f
(0)
cl (s) = fdcl(s) + f

app
cl (s),(2.19)

fdcl(s) =
Gb2

4π(1 − ν)
κ ln ε +O(1).(2.20)

Here we assume the leading order solution U (0), which describe the dislocation core
profile, remains the same at all points on the dislocation at any time. The term
1
ε
f
(−1)
cl (ρ,U) in the climb force expansion is due to the singular stress field near the

dislocation and vanishes on the dislocation (i.e. f
(−1)
cl (ρ,U (0)) = 0). The climb force

fdcl(s) is generated by the dislocations and has asymptotic expansions (2.20). This
asymptotic expansion of climb force fcl in the phase field model was obtained in [26]
based on dislocation theories [14, 8, 34].

Letting

(2.21) W = µ
g′(U)

g(U)
=

1

ε2
(W (0)

+W (1)ε +W (2)ε2
+⋯) ,

the leading orders of equations (2.14) and (2.15) are O( 1
ε4

) and O( 1
ε2

), respectively,
which yield

0 = ∂ρ (∂ρµ
(0)

−W (0)∂ρU
(0)) ,(2.22)

µ(0)
= −∂ρρU

(0)
+ q′(U (0)

) + h(U (0)
)f

(−1)
cl (ρ,U (0)

).(2.23)

Integrating Eq. (2.22), we have

(2.24) ∂ρµ
(0)

−W (0)∂ρU
(0)

= C0(s).

Since µ(0) = 0, u(0) = 1 or −1 in the outer region, we must have µ(0) → 0 and ∂ρU
(0) → 0

as ρ→ ±∞. Therefore C0(s) = 0. Dividing (2.24) by µ(0) and taking integration, using

W (0) = µ(0) g
′
(U(0))

g(U(0)) , we have µ(0) = C̃0(s)g(U
(0)). Since µ(0)/g(u(0)) is ∞ in the outer

region, we must have C̃0(s) = 0. Thus

(2.25) µ(0)
= −∂ρρU

(0)
+ q′(U (0)

) + h(U (0)
)f

(−1)
cl (ρ,U (0)

) = 0.

Solution U (0) to (2.25) subject to far field condition U (0)(+∞) = −1 and U (0)(−∞) = 1
can be found numerically (see [26]). In particular, ∂ρU

(0) < 0 for all ρ.
Next, the O( 1

ε3
) equation of (2.14) and O( 1

ε
) equation of (2.15) yield, using

µ(0) = 0, that

0 = ∂ρ (∂ρµ
(1)

−W (1)∂ρU
(0)) ,(2.26)

µ(1)
= −∂ρρU

(1)
+ κ∂ρU

(0)
+ q′′(U (0)

)U (1)
+ h′(U (0)

)f (−1)
(ρ,U (0)

)U (1)(2.27)

+h(U (0)
)f

(0)
cl (s).
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Similar to the calculation from Eq. (2.22) to Eq. (2.24) given above, by matching
with the outer solutions, we have ∂ρµ

(1) −W (1)∂ρU
(0) = 0. When µ(0) = 0, we have

W (1) = µ(1) g
′
(U(0))

g(U(0)) , the obtained equation becomes

(2.28) ∂ρµ
(1)

− µ(1)∂ρ ln g(U (0)
) = 0.

Dividing (2.28) by µ(1) and integrating, we have µ(1) = C̃1(s)g(U
(0)). Thus equation

(2.27) can be rewritten as

(2.29) LU (1)
= −κ∂ρU

(0)
− h(U (0)

)f
(0)
cl (s) + C̃1(s)g(U

(0)
),

where L = −∂ρρ+q
′′(U (0))+h′(U (0))f (−1)(ρ,U (0)). Multiplying both sides of Eq. (2.29)

by ∂ρU
(0) and integrate with respect to ρ over (−∞,+∞), we have

∫

+∞

−∞
(−κ∂ρU

(0)
− h(U (0)

)f
(0)
cl (s) + C̃1(s)g(U

(0)
))∂ρU

(0)dρ = 0.

From this, we conclude

C̃1(s) = −ακ +H0f
(0)
cl (s),

where α > 0 is given by

α = −
∫
+∞

−∞
(∂ρU

(0))
2
dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

.

Therefore

(2.30) µ(1)
= g(U (0)

) (−ακ +H0f
(0)
cl (s)) .

Letting µ =
µ

g(U)
, (2.14) can be written as

g(U) (∂tU −
1

ε
vn∂ρU + βµ)

=
M0

1 − ερκ
∂s (

g(U)

1 − ερκ
(∂sµ)) +

1

ε2

M0

1 − ερκ
∂ρ ((1 − ερκ) g(U)∂ρµ)(2.31)

Using µ(0) = 0, ∂ρµ
(1) = ∂ρ

µ(1)

g(U(0)) = 0, the O( 1
ε2

) order equation of (2.31) reduces to

∂ρ (g(U
(0)

)∂ρµ
(2)) = 0.

Integrating with respect to ρ, we have g(U (0))∂ρµ
(2) = C2(s). Matching with outer

solutions, we must have C2(s) = 0. Thus ∂ρµ
(2) = 0 which gives µ(2) = C̃2(s).

Next we look at the O( 1
ε
) equation of (2.31). Using µ(0) = 0, ∂ρµ

(1) = 0 and

∂ρµ
(2) = 0, we have

g(U (0)
)(−vn∂ρU

(0)
+ βµ(1)

) =M0∂s (g(U
(0)

)∂sµ
(1)) +M0∂ρ (g(U

(0)
)∂ρµ

(3)) .

Integrating this equation with respect to ρ and matching with outer solutions yields

(2.32) vn = λ∂ssµ
(1)

− ηµ(1)
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where we used the fact that g(U (0)) is independent of s, µ(1) = −ακ +H0f
(0)
cl (s) by

(2.30), and

(2.33) λ = −
M0 ∫

+∞

−∞
g(U (0))dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

> 0, η = −
β ∫

+∞

−∞
g(U (0))dρ

∫
+∞

−∞
g(U (0))∂ρU (0)dρ

> 0.

Substitute µ(1) = −ακ +H0f
(0)
cl (s) into (2.32), the sharp interface limit equation is

(2.34) vn = −λ∂ss (ακ −H0f
(0)
cl (s)) + η (ακ −H0f

(0)
cl (s)) .

Remark 2.1. The velocity in the obtained sharp interface limit equation (2.34) is
a combination of the dislocation self-climb velocity [25, 24, 26] (the first term), and
the dislocation climb velocity by mobility law [31, 32, 2] (the second term). The coeffi-
cients of these two contributions are determined through Eq. (2.33) by the parameters
M0 and β, respectively, in the phase field model in (1.1) based on the physics. Note
that the curvature term in both contributions is a correction to the dislocation self-
force to fix the problem of larger numerical dislocation core size in the phase field
model than the actual dislocation core size [26]. We have mentioned previously that
the factor g(U) on the left-hand side in Eq. (1.1) is mainly for the wellposedness proof,
and without it, the dislocation velocity given by the sharp interface limit is similar,
with λ = M0

2 ∫
+∞

−∞
g(U (0))dρ and η = β

2 ∫
+∞

−∞
g(U (0))dρ.

3. Weak solution for phase field model.

3.1. Weak solution for phase field model with positive mobilities. In this
subsection, we prove existence of weak solutions for phase field model with positive
mobilities summarized in Proposition 1.1.

Let Z+ be the set of nonnegative integers and Ω = [0,2π]n with n ≤ 2. We choose
an orthonormal basis for L2(Ω) as

{φj ∶ j = 1,2,⋯} = {(2π)−n/2,Re (π−n/2eiξ⋅x) , Im (π−n/2eiξ⋅x) ∶ ξ ∈ Zn+/{0,⋯,0}} .

Observe {φj} is also orthogonal in Hk(Ω) for any k ≥ 1.

3.1.1. Galerkin approximations. Define

uN(x, t) =
N

∑
j=1

cNj (t)φj(x), µN(x, t) =
N

∑
j=1

dNj (t)φj(x),

where {cNj , d
N
j } satisfy

∫
Ω

∂tu
Nφjdx = −∫

Ω

Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

φj

gθ(uN)
dx − β ∫

Ω
µNφjdx(3.1)

∫
Ω

µNφjdx = ∫
Ω

(∇uN ⋅ ∇φj + q
′
(uN)φj + φj(−∆)

1
2uN)dx,(3.2)

uN(x,0) =
N

∑
j=1

(∫
Ω
u0φjdx)φj(x).(3.3)

(3.1)-(3.3) is an initial value problem for a system of ordinary equations for {cNj (t)}.

Since right hand side of (3.1) is continuous in cNj , the system has a local solution.
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Define energy functional

E(u) = ∫
Ω

{
1

2
∣∇u∣2 + q(u) + ∣(−∆)

1
4u∣2}dx.

Direct calculation using (3.1) and (3.2) yields

d

dt
E(uN(x, t)) = −∫

Ω

Mθ(u
N
) ∣∇

µN

gθ(uN)
∣

2

dx − β ∫
Ω
(µN)

2
dx,

integration over t gives the following energy identity.

∫
Ω

(
1

2
∣∇uN(x, t)∣2 + q(uN(x, t)) + uN(−∆)

1
2uN)dx

+∫

t

0
∫

Ω

⎡
⎢
⎢
⎢
⎢
⎣

Mθ(u
N
(x, τ)) ∣∇

µN(x, τ)

gθ(uN(x, τ))
∣

2

+ β (µN)
2
⎤
⎥
⎥
⎥
⎥
⎦

dxdτ

= ∫
Ω

(
1

2
∣∇uN(x,0)∣2 + q(uN(x,0)) + uN(x,0)(−∆)

1
2uN(x,0))dx(3.4)

≤ XXX∇u0
XXX

2
L2(Ω) +C (XXXu0

XXX
r+1
H1Ω + ∣Ω∣) +

1

2
XXXu0

XXX
2
L2(Ω) ≤ C < ∞

Here and throughout the paper, C represents a generic constant possibly depend-
ing only on β, T , Ω, u0 but not on θ. Since Ω is bounded region, by growth as-
sumption (1.12) and Poincare’s inequality, the energy identity (3.4) implies uN ∈

L∞(0, T ;H1(Ω)) and µN ∈ L2(ΩT ) with

(3.5) XXXXX
µNXXXXXL2(ΩT )

,XXXXXu
NXXXXXL∞(0,T ;H1(Ω))

≤ C for all N,

and

(3.6)
XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

≤ C for all N.

By (3.5), the coefficients {cNj (t)} are bounded in time, thus the system (3.1)-(3.3) has
a global solution. In addition, by Sobolev embedding theorem and growth assumption
(1.13) on q′(u), we have

q′(uN) ∈ L∞(0, T ;Lp(Ω)), Mθ(u
N
) ∈ L∞(0, T ;Lp(Ω))

for any 1 ≤ p < ∞ with

XXXXX
q′(uN)

XXXXXL∞(0,T ;Lp(Ω))
≤ C for all N,(3.7)

XXXXX
Mθ(u

N
)
XXXXXL∞(0,T ;Lp(Ω))

≤ C for all N.(3.8)

3.1.2. Convergence of uN . Given q > 2 and any φ ∈ L2(0, T ;W 1,q(Ω)), let
ΠNφ(x, t) = ∑

N
j=1 (∫Ω φ(x, t)φj(x)dx)φj(x) be the orthogonal projection of φ onto
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span{φj}
N
j=1. Then

RRRRRRRR
∫

Ω
∂tu

Nφdx
RRRRRRRR
=
RRRRRRRR
∫

Ω
∂tu

NΠNφdx
RRRRRRRR

=

RRRRRRRRRRRR
∫

Ω

[Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

ΠNφ

gθ(uN)
− βµNΠNφ]dx

RRRRRRRRRRRR

≤

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(Ω)

XXXXXXXXX

√
Mθ(uN)∇

ΠNφ

gθ(uN)

XXXXXXXXXL2(Ω)

+ β∣∣µN ∣∣L2(Ω)∣∣φ∣∣L2(Ω).

Since

∇
ΠNφ

gθ(uN)
=

1

gθ(uN)
∇ΠNφ −ΠNφ

g′θ(u
N)

g2
θ(u

N)
∇uN ,

we have

∫
Ω

Mθ(u
N
)
RRRRRRRRR
∇

ΠNφ

gθ(uN)

RRRRRRRRR

2

dx

≤ 2M0∫
Ω

(
1

gθ(uN)

RRRR∇ΠNφ
RRRR
2
+

∣g′θ(u
N)∣2

g3
θ(u

N)
∣ΠNφ∣

2
∣∇uN ∣

2
)dx

≤ C(M0, θ) (
XXXX∇ΠNφ

XXXX
2
L2(Ω) +

XXXXΠNφ
XXXX

2
L∞(Ω)

XXXXX
∇uNXXXXX

2

L2(Ω)
)

≤ C(M0, θ) (
XXXXΠNφ

XXXX
2
W 1,q(Ω)) ≤ C(M0, θ)

XXXXφ
XXXX

2
W 1,q(Ω) .

Therefore

(3.9) XXXXX
∂tu

NXXXXXL2(0,T ;(W 1,q(Ω))′) ≤ C(M0, θ) for all N.

For 1 ≤ s < ∞, since n ≤ 2, by Sobolev embedding theorem and Aubin-Lions
Lemma (see [29] and Remark 3.1) , the following embeddings are compact :

{f ∈ L2
(0, T ;H1

(Ω)) ∶ ∂tf ∈ L2
(0, T ; (W 1,q

(Ω))
′} ↪ L2

(0, T ;Ls(Ω)),

and

{f ∈ L∞(0, T ;H1
(Ω)) ∶ ∂tf ∈ L2

(0, T ; (W 1,q
(Ω))

′} ↪ C([0, T ];Ls(Ω)).

From this and the boundedness of {uN} and {∂tu
N}, we can find a subsequence, and

uθ ∈ L
∞(0, T ;H1(Ω)) such that as N →∞, for 1 ≤ s < ∞.

uN ⇀ uθ weakly-* in L∞(0, T ;H1
(Ω)),(3.10)

uN → uθ strongly in C([0, T ];Ls(Ω)),(3.11)

uN → uθ strongly in L2
(0, T ;Ls(Ω)) and a.e. in ΩT ,(3.12)

∂tu
N
⇀ ∂tuθ weakly in L2

(0, T ; (W 1,q
(Ω))

′
).(3.13)

In addition

XXXuθXXXL∞(0,T ;H1(Ω)) ≤ C,
XXXX∂tuθ

XXXXL2(0,T ;(W 1,q(Ω))′) ≤ C(M0, θ).
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By (3.11), growth assumption (1.13) on q′(uN), and general dominated conver-
gence Theorem, we have

Mθ(u
N
) →Mθ(uθ) strongly in C([0, T ];Ls(Ω))(3.14)

√
Mθ(uN) →

√
Mθ(uθ) strongly in C([0, T ];Ls(Ω))(3.15)

q′(uN) → q′(uθ) strongly in C([0, T ];Ls(Ω))(3.16)

for 1 ≤ s < ∞. By (3.7) and (3.16), we have

(3.17) q′(uN) ⇀ q′(uθ) weakly-* in L∞([0, T ];Ls(Ω)).

Remark 3.1. Let X, Y , Z be Banach spaces with compact embedding X ↪ Y
and continuous embedding Y ↪ Z. Then the embeddings

(3.18) {f ∈ Lp(0, T ;X);∂tf ∈ L1
(0, T ;Z)} ↪ Lp(0, T ;Y )

and

(3.19) {f ∈ L∞(0, T ;X);∂tf ∈ Lr(0, T ;Z)} ↪ C([0, T ];Y )

are compact for any 1 ≤ p < ∞ and r > 1 (Corollary 4, [29], see also [21]) . For
convergence of uN , we apply this for p = 2 = r with X = H1(Ω), Y = Ls(Ω) for
1 ≤ s < ∞ and Z =W 1,q(Ω)′.

3.1.3. Weak solution. By (3.2), we have

∫
Ω
µNuNdx = ∫

Ω
(∣∇uN ∣

2dx + q′(uN)uN + uN(−∆)
1
2uN)dx.

Integration with respect to t from 0 to T gives

∫
ΩT

µN(x, τ)uN(x, τ)dxdτ

= ∫
ΩT

(∇uN(x, τ)∣2dx + q′(uN(x, τ))uN(x, τ) + uN(−∆)
1
2uN)dxdτ.

By (3.5). there exists a subsequence of µN , not relabeled, converges weakly to
µθ ∈ L

2(ΩT ). Passing to the limit in the equation above, by (3.12), (3.16), we have

∫
ΩT

µθuθdxdτ = lim
N→∞

∫
ΩT

∣∇uN ∣
2dxdτ + ∫

ΩT
q′(uθ)uθdxdτ(3.20)

+∫
ΩT

uθ(−∆)
1
2uθdxdτ

On the other hand,

∫
ΩT

µN(x, τ)uθ(x, τ)dxdτ = ∫
ΩT

µN(x, τ)ΠNuθ(x, τ)dxdτ(3.21)

= ∫
ΩT

(∇uN ⋅ ∇ΠNuθ(x, τ) + q
′
(uN)ΠNuθ(x, τ) +ΠNuθ(x, τ)(−∆)

1
2uN)dxdτ

= ∫
ΩT

(∇uN ⋅ ∇uθ(x, τ) + q
′
(uN)ΠNuθ(x, τ) + uθ(−∆)

1
2uN)dxdτ.
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Since ΠNuθ → uθ strongly in L2(ΩT ), µ
N ⇀ µθ in L2(ΩT ), by (3.10),(3.17), passing

to the limit in (3.21) yields

(3.22) ∫
ΩT

µθuθdxdτ = ∫
ΩT

(∣∇uθ ∣
2
+ q′(uθ))uθ + uθ(−∆)

1
2uθ)dxdτ.

(3.20) and (3.22) gives

(3.23) lim
N→∞

∫
ΩT

∣∇uN ∣
2dxdτ = ∫

ΩT
∣∇uθ ∣

2dxdτ.

By (3.5), ∇uN ⇀ ∇uθ weakly in L2(ΩT ), thus (3.23) implies

(3.24) ∇uN → ∇uθ strongly in L2
(ΩT ).

By (3.6) and the lower bound on Mθ, we have

XXXXXXXXXX

∇
µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

≤ Cθ−
m
2 .

By (3.2), (3.5) and (3.7)we have

RRRRRRRRRR
∫

Ω

µNφ1

gθ(uN)

RRRRRRRRRR

dx =
RRRRRRRRRR
∫

Ω
µNΠN (

φ1

gθ(uN)
)

RRRRRRRRRR

dx

≤

RRRRRRRRRR
∫

Ω
∇uN ⋅ ∇ΠN (

φ1

gθ(uN)
)dx + ∫

Ω
q′(uN)ΠN (

φ1

gθ(uN)
)dx

RRRRRRRRRR

(3.25)

+

RRRRRRRRRR
∫

Ω
(−∆)

1
2uNΠN (

φ1

gθ(uN)
)dx

RRRRRRRRRR

=

RRRRRRRRRR
∫

Ω
∇uN ⋅ ∇(

φ1

gθ(uN)
)dx + ∫

Ω
q′(uN)ΠN (

φ1

gθ(uN)
)dx

RRRRRRRRRR

+

RRRRRRRRRR
∫

Ω
(−∆)

1
2uN (

φ1

gθ(uN)
)dx

RRRRRRRRRR

≤ Cθ−m−1 XXXXX
∇uNXXXXX

2

L2(Ω)
+Cθ−m XXXXX

q′(uN)
XXXXXL2(Ω)

XXXXφ1
XXXXL2(Ω)

+Cθ−m XXXXX
∇uNXXXXXL2(Ω)

XXXXφ1
XXXXL2(Ω)

≤ Cθ−m−1.

Poincare’s inequality yields

XXXXXXXXXX

µN

gθ(uN)

XXXXXXXXXXL2(0,T ;H1(Ω))

≤ C(θ−m−1
+ 1).

Thus there exists a wθ ∈ L
2(0, T ;H1(Ω)) and a subsequence of µN

gθ(uN )
, not relabeled,

such that

(3.26)
µN

gθ(uN)
⇀ wθ weakly in L2

(0, T ;H1
(Ω)).

Therefore by (3.14), (3.26) and Sobolev embedding theorem, we have

(3.27) µN = gθ(u
N
) ⋅

µN

gθ(uN)
⇀ µθ = gθ(uθ)wθ weakly in L2

(0, T ;W 1,s
(Ω))
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for any 1 ≤ s < 2. Combining (3.15), (3.26)and (3.27), we have

(3.28)
√
Mθ(uN)∇

µN

gθ(uN)
⇀

√
Mθ(uθ)∇

µθ
gθ(uθ)

weakly in L2
(0, T ;Lq(Ω))

for any 1 ≤ q < 2. By (3.6), we can improve this convergence to

(3.29)
√
Mθ(uN)∇

µN

gθ(uN)
⇀

√
Mθ(uθ)∇

µθ
gθ(uθ)

weakly in L2
(0, T ;L2

(Ω)).

Since gθ ≥ θ
m, (3.12) implies

(3.30)
g′(uN)

g
3
2

θ (uN)

→
g′θ(uθ)

g
3
2

θ (uθ)
a.e in ΩT .

In addition, g′(uN )

g
3
2
θ
(uN )

is bounded by

(3.31)

RRRRRRRRRRRR

g′(uN)

g
3
2

θ (uN)

RRRRRRRRRRRR

≤ Cθ−1−m2 .

It follows from (3.24), (3.30), (3.31) and generalized dominated convergence the-
orem (see Remark 3.2) that

(3.32)
g′(uN)

g
3
2

θ (uN)

∇uN →
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ strongly in L2

(ΩT ).

Let

fN(t) =

XXXXXXXXXXXX

g′(uN(x, t))

g
3
2

θ (uN(x, t))
∇uN(x, t) −

g′θ(uθ(x, t))

g
3
2

θ (uθ(x, t))
∇uθ(x, t)

XXXXXXXXXXXXL2(Ω)

,

by (3.32), we can extract a subsequence of fN , not relabeled, such that fN(t) → 0
a.e. in (0,T). By Egorov’s theorem, for any given δ > 0, there exists Tδ ⊂ [0, T ] with
∣Tδ ∣ < δ such that fN(t) converges to 0 uniformly on [0, T ]/Tδ.

Given α(t) ∈ L2(0, T ), for any ε > 0, there exists Tδ ⊂ [0, T ] with ∣Tδ ∣ < δ such
that

(3.33) ∫
Tδ
α2

(t)dt < ε.

Multiplying (3.1) by α(t) and integrating in time yield

∫

T

0
α(t)∫

Ω
∂tu

Nφjdxdt(3.34)

= −β ∫
ΩT

α(t)µNφjdxdt − ∫
ΩT

α(t)Mθ(u
N
)∇

µN

gθ(uN)
⋅ ∇

φj

gθ(uN)
dxdt

= −β ∫
ΩT

µNα(t)φjdxdt − ∫
ΩT

M0α(t)∇
µN

gθ(uN)
⋅ ∇φjdxdt

+∫
ΩT

α(t)
√
M0φj

g′θ(u
N)

g
3
2

θ (uN)

∇uN ⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= −AN − IN + IIN .



16 NIU, XIANG, YAN

Since α(t)φj ∈ L
2(0, T ;H1(Ω)), by (3.26) and (3.27), we have

(3.35) AN = β ∫
ΩT

µNα(t)φjdxdt→ β ∫
ΩT

µθα(t)φjdxdt,

and

(3.36) IN = ∫
ΩT

M0α(t)∇
µN

gθ(uN)
⋅ ∇φjdxdt→ ∫

ΩT
M0α(t)∇

µθ
gθ(uθ)

⋅ ∇φjdxdt.

To find the limit of IIN , since

(3.37)

∫
ΩT

α(t)φj
⎛

⎝

g′θ(u
N)

g
3
2

θ (uN)

∇uN
√
Mθ(uN)∇

µN

gθ(uN)
−
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

√
Mθ(uθ)∇

µθ
gθ(uθ)

⎞

⎠

= ∫
ΩT

α(t)φj
⎛

⎝

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

+∫
ΩT

α(t)φj
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ ⋅ (

√
Mθ(uN)∇

µN

gθ(uN)
−
√
Mθ(uθ)∇

µθ
gθ(uθ)

)dxdt

= IIN1 + IIN2

From bound

∫
ΩT

RRRRRRRRRRRR

α(t)φj
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

RRRRRRRRRRRR

2

dxdt

≤ Cθ−2−m XXX∇uθXXX
2
L∞(0,T ;L2(Ω)) ∫

T

0
α2

(t)2dt,

we conclude that α(t)φj
g′θ(uθ)

g
3
2
θ
(uθ)

∇uθ ∈ L
2(ΩT ). By (3.29), we can pass to the limit in

IIN2 and conclude

IIN2 = ∫
ΩT

α(t)φj
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ ⋅ (

√
Mθ(uN)∇

µN

gθ(uN)
−
√
Mθ(uθ)∇

µθ
gθ(uθ)

)dxdt→ 0.

To pass to the limit in IIN1 , we write

IIN1 = ∫
ΩT

α(t)φj
⎛

⎝

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= ∫
Tδ
∫

Ω
α(t)φj

⎛

⎝

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

+∫
[0,T ]/Tδ

∫
Ω
α(t)φj

⎛

⎝

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

⎞

⎠
⋅
√
Mθ(uN)∇

µN

gθ(uN)
dxdt

= IIN11 + II
N
12.
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We bound IIN11 by

∣IIN11∣ ≤ ∫
Tδ

∣α(t)∣

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

XXXXXXXXXXXXL2(Ω)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(Ω)

dt

≤ XXXXα(t)
XXXXL2(Tδ)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(ΩT )

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

XXXXXXXXXXXXL∞(0,T ;L2(Ω))

≤ C(θ)ε.

For IIN12, we have

∣IIN12∣ ≤ ∫
[0,T ]/Tδ

∣α(t)∣

XXXXXXXXXXXX

g′θ(u
N)

g
3
2

θ (uN)

∇uN −
g′θ(uθ)

g
3
2

θ (uθ)
∇uθ

XXXXXXXXXXXXL2(Ω)

XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(Ω)

dt

= ∫
[0,T ]/Tδ

∣α(t)∣fN(t)∣
XXXXXXXXXX

√
Mθ(uN)∇

µN

gθ(uN)

XXXXXXXXXXL2(Ω)

dt.

Since fN(t) converges to 0 uniformly, α(t) ∈ L2(0, T ) and
XXXXXXX

√
Mθ(uN)∇

µN

gθ(uN )

XXXXXXXL2(ΩT )
≤

C, letting N → ∞ in IIN12 yields IIN12 → 0. Letting ε → 0, we conclude IIN1 → 0 as
N →∞. Passing to the limit in (3.34), we have

∫

T

0
α(t)∫

Ω
⟨∂tuθ, φj⟩(W 1,q(Ω))′,W 1,q(Ω))

dt

= −β ∫
ΩT

α(t)µθφjdxdt − ∫
ΩT

α(t)Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇

φj

gθ(uθ)
dxdt.(3.38)

Fix q > 2, given any φ ∈ L2(0, T ;W 1,q(Ω)), its Fourier series∑
∞
j=1 aj(t)φj(x) converges

strongly to φ in L2(0, T ;W 1,q(Ω)). Hence

∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇
φ −ΠNφ

gθ(uθ)
dxdt

= ∫
ΩT

M0∇
µθ

gθ(uθ)
⋅ ∇(φ −ΠNφ)dxdt

−∫
ΩT

(φ −ΠNφ)
√
M0

g′θ(uθ)

g
3
2

θ (uθ)
∇uθ ⋅

√
Mθ(uθ)∇

µθ
gθ(uθ)

dxdt

= JN1 − JN2 ,

where by(3.26), (3.27) and strong convergence of ΠNφ to φ in L2(0, T ;H1(Ω)), we
conclude

JN1 = ∫
ΩT

M0∇
µθ

gθ(uθ)
⋅ ∇(φ −ΠNφ)dxdt→ 0
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We can bound JN2 by

∣JN2 ∣ =

RRRRRRRRRRR
∫

ΩT
(φ −ΠNφ)

√
M0

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ ⋅
√
Mθ(uθ)∇

µθ
gθ(uθ)

dxdt
RRRRRRRRRRR

≤
√
M0 ∫

T

0

XXXXφ −ΠNφ
XXXXL∞(Ω)

XXXXXXXXXXX

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ

XXXXXXXXXXXL2(Ω)

XXXXXXXXX

√
Mθ(uθ)∇

µθ
gθ(uθ)

XXXXXXXXXL2(Ω)

≤
√
M0

XXXXXXXXXXX

g′θ(uθ)

g
3/2
θ (uθ)

∇uθ

XXXXXXXXXXXL∞(0,T ;L2(Ω))

XXXXXXXXX

√
Mθ(uθ)∇

µθ
gθ(uθ)

XXXXXXXXXL2(ΩT )

XXXXφ −ΠNφ
XXXXL2(0,T ;W 1,q(Ω))

→ 0 as N →∞.

Consequently (3.38) implies

∫

T

0
⟨∂tuθ, φ⟩(W 1,q(Ω))′,W 1,q(Ω)) dt

= −β ∫
ΩT

µθφdxdt − ∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇

φ

gθ(uθ)
dxdt(3.39)

for all φ ∈ L2(0, T ;W 1,q(Ω)) with q > 2. Moreover, since uN(x,0) = ΠNu0(x) → u0(x)
in H1(Ω), we see that uθ(x,0) = u0(x) by (3.11).

Remark 3.2. (Generalized dominated convergence theorem) Assume E ⊂ Rn is
measurable. gn → g strongly in Lq(E) for 1 ≤ q < ∞ and fn, f : E → Rn are
measurable functions satisfying

fn → f a.e. in E; ∣fn∣
p
≤ ∣gn∣

q a.e. in E

with 1 ≤ p < ∞, then fn → f in Lp(E).

3.1.4. Regularity of uθ. We now consider the regularity of uθ. Given any
aj(t) ∈ L

2(0, T ), aj(t)φj ∈ L
2(0, T ;C(Ω)). Integrating (3.2) from 0 to T , by (3.17),(3.27)

and (3.24), we have

∫
ΩT

µθ(x, t)aj(t)φj(x)dxdt

= ∫
ΩT

(∇uθ ⋅ aj(t)∇φj + q
′
(uθ)aj(t)φj + aj(t)φj(−∆)

1
2uθ)dxdt

for all j ∈ N. Given any φ ∈ L2(0, T ;H1(Ω)), its Fouirier series strongly converges to
φ in L2(0, T ;H1(Ω)), therefore

∫
ΩT

µθ(x, t)φ(x)dxdt = ∫
ΩT

(∇uθ ⋅ ∇φ + q
′
(uθ)φ + φ(−∆)

1
2uθ)dxdt.(3.40)

Recall µθ ∈ L
2(0, T ;Lp(Ω)) and q′(uθ) ∈ L

∞(0, T ;Lp(Ω)) for any 1 ≤ p < ∞, regularity
theory implies uθ ∈ L

2(0, T ;H2(Ω)). Hence

(3.41) µθ = −∆uθ + q
′
(uθ) + (−∆)

1
2uθ a.e. in ΩT .

By Sobolev embedding theorem, uθ ∈ L∞(0, T ;H1(Ω)) ↪ L∞(0, T ;Lp(Ω)) for any
1 ≤ p < ∞. Since growth assumption on q implies ∣q′′(u)∣ ≤ C(1 + ∣u∣r−1), pick p > 2,
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we have

∫
Ω
∣∇q′(uθ)∣

2dx = ∫
Ω
∣q′′(uθ)∣

2
∣∇uθ ∣

2dx

≤ XXXXq
′′
(uθ)

XXXX
2

L
2p
p−2 (Ω)

XXX∇uθXXX
2
Lp(Ω)

≤ C (1 + XXXuθXXX
2(r−1)

L
2p
p−2 (r−1)(Ω)

)XXX∇uθXXX
2
Lp(Ω)

≤ C (1 + XXXuθXXX
2(r−1)

L∞(0,T ;H1(Ω))
)XXX∇uθXXX

2
Lp(Ω)

≤ C (1 + XXXuθXXX
2(r−1)

L∞(0,T ;H1(Ω))
)XXX∇uθXXX

2
H1(Ω) .

Therefore ∇q′(uθ) = q
′′(uθ)∇uθ ∈ L

2(ΩT ) with

∫
ΩT

∣∇q′(uθ)∣
2dxdt ≤ C (1 + XXXuθXXX

2(r−1)

L∞(0,T ;H1(Ω))
)XXX∇uθXXX

2
L2(0,T ;H1(Ω)) .

Hence q′(uθ) ∈ L
2(0, T ;H1(Ω)), combined with µθ ∈ L

2(0, T ;W 1,s(Ω)) for any 1 ≤ s <

2 and (−∆)
1
2uθ ∈ L

2(0, T ;H1(Ω)), we have uθ ∈ L
2(0, T ;W 3,s(Ω)) and

(3.42) ∇µθ = −∇∆uθ + q
′′
(uθ)∇uθ +∇(−∆)

1
2uθ a.e. in ΩT .

Regularity of uθ implies ∇uθ ∈ L
∞(0, T ;L2(Ω)) ∩L2(0, T ;L∞(Ω)). A simple interpo-

lation shows ∇uθ ∈ L
2s
s−2 (0, T ;Ls(Ω)) for any s > 2. Given any φ ∈ Lp(0, T ;W 1,q(Ω))

with p > 2 and q > 2, we have gθ(uθ)φ ∈ L2(0, T ;W 1.r(Ω)) for any r < q. Picking
gθ(uθ)φ as a test function in (3.39), we have
(3.43)

∫
ΩT

∂tuθgθ(uθ)φdxdt = −β ∫
ΩT

gθ(uθ)µθφdxdt − ∫
ΩT

Mθ(uθ)∇
µθ

gθ(uθ)
⋅ ∇φdxdt

for any φ ∈ Lp(0, T ;W 1,q(Ω)) with p, q > 2.

Remark 3.3. In fact, since Mθ(uθ) ∈ L∞(0, T ;Lp(Ω)) for 1 ≤ p < ∞, the right
hand side of (3.43) is well defined for any φ ∈ L2(0, T,W 1,q(Ω)) and we can extend
(3.43) to hold for all φ ∈ L2(0, T,W 1,q(Ω)).

3.1.5. Energy Inequality. Since uN and µN satisfies energy identity (3.4),
passing to the limit as N → ∞ and using the weak convergence of uN , q′(uN) and
√
Mθ(uN)∇

µN

gθ(uN )
, the energy inequality (1.18) follows.

This finishes the proof of Proposition 1.1.

3.2. Phase field model with degenerate mobility. In this subsection, we
prove Theorem 1.2.

Fix initial data u0 ∈ H
1(Ω). We pick a montone decreasing positive sequence θi

with limi→∞ θi = 0. By Proposition 1.1 and (3.43), for each θi, there exists

ui ∈ L
∞
(0, T ;H1

(Ω)) ∩L2
(0, T ;W 3,s

(Ω)) ∩C([0, T ];Lp(Ω))

with weak derivative
∂tui ∈ L

2
(0, T ; (W 1,q

(Ω))
′
),

where 1 ≤ p < ∞, 1 ≤ s < 2, q > 2 such that uθi(x,0) = u0(x) and for all φ ∈

L2(0, T ;W 1,q(Ω)),

∫
ΩT

∂tuiφdxdt = −β ∫
ΩT

µiφdxdt − ∫
ΩT

Mi(ui)∇
µi

gi(ui)
∇

φ

gi(ui)
dxdt,(3.44)

µi = −∆ui + q
′
(ui) + (−∆)

1
2ui.(3.45)
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Moreover, for all φ ∈ Lp(0, T ;W 1,q(Ω)) with p, q > 2, the following holds:

(3.46) ∫
ΩT

gi(ui)∂tuiφdxdt = −β ∫
ΩT

gi(ui)µiφdxdt − ∫
ΩT

Mi(ui)∇
µi

gi(ui)
∇φdxdt.

Here we write ui = uθi , Mi(ui) =Mθi(uθi), gi(ui) = gθi(uθi) for simplicity of notations.
Noticing the bound in (3.5) and (3.6) only depends on u0, we can find a constant C,
independent of θi such that

XXXXµi
XXXXL2(ΩT ) ,

XXXuiXXXL∞(0,T ;H1(Ω)) ≤ C,(3.47)
XXXXXXXXX

√
Mi(ui)∇

µi
gi(ui)

XXXXXXXXXL2(ΩT )

≤ C.(3.48)

Growth condition on q′, and Sobolev embedding theorem gives

XXXXq
′
(ui)

XXXXL∞(0,T ;Lp(Ω)) ≤ C,
XXXXMi(ui)

XXXXL∞(0,T ;Lp(Ω)) ≤ C

for any 1 ≤ p < ∞. By (3.46), for any φ ∈ Lp(0, T ;W 1,q(Ω)) with p, q > 2,

RRRRRRRRRRRR
∫

ΩT

gi(ui)∂tuiφdxdt

RRRRRRRRRRRR

=

RRRRRRRRRRRR
∫

ΩT

[βgi(ui)µiφ +Mi(ui)∇
µi

gi(ui)
∇φ]dxdt

RRRRRRRRRRRR

≤ β∫

T

0

(XXXXµi
XXXXL2(Ω)

XXXXgi(ui)
XXXXL

2q
q−2 (Ω)

XXXXφ
XXXXLq(Ω))dt

+∫

T

0

⎛

⎝

XXXXXXXXX

√
Mi(ui)∇

µi
gi(ui)

XXXXXXXXXL2(Ω)

XXXXXX

√
Mi(ui)

XXXXXXL
2q
q−2 (Ω)

XXXX∇φ
XXXXLq(Ω)

⎞

⎠
dt

≤ β XXXXgi(ui)
XXXXL

2p
p−2 (0,T ;L

2q
q−2 (Ω))

XXXXµi
XXXXL2(ΩT )

XXXXφ
XXXXLp(0,T ;Lq(Ω))

+XXXXMi(ui)
XXXX

1
2

L
p
p−2 (0,T ;L

q
q−2 (Ω))

XXXXXXXXX

√
Mi(ui)∇

µi
gi(ui)

XXXXXXXXXL2(ΩT )

XXXX∇φ
XXXXLp(0,T ;Lq(Ω))

≤ C XXXXφ
XXXXLp(0,T ;W 1,q(Ω)) .

Let

(3.49) Gi(ui) = ∫
ui

0
gi(a)da.

Then ∂tGi(ui) = gi(ui)∂tui ∈ L
p′(0, T ; (W 1,q(Ω))′) with p′ = p

p−1
and

(3.50) XXXX∂tGi(ui)
XXXXLp′(0,T ;(W 1,q(Ω))′) ≤ C for all i.

Moreover, by growth assumption on g and estimates on ui, we have

(3.51) XXXXGi(ui)
XXXXL∞(0,T ;W 1,s(Ω)) ≤ C.

for 1 ≤ s < 2. By (3.47), (3.48)-(3.51) and Remark 3.1 we can find a subsequence,
not relabeled, a function u ∈ L∞(0, T ;H1(Ω)), a function µ ∈ L2(ΩT ), a function
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ξ ∈ L2(ΩT ) and a function η ∈ L∞(0, T ;W 1,s(Ω)) such that as i→∞,

ui ⇀ u weakly-* in L∞(0, T ;H1
(Ω)),(3.52)

µi ⇀ µ weakly in L2
(ΩT ),(3.53)

√
Mi(ui)∇

µi
gi(ui)

⇀ ξ weakly in L2
(ΩT ),(3.54)

Gi(ui) ⇀ η weakly-* in L∞(0, T ;W 1,s
(Ω))(3.55)

Gi(ui) → η strongly in Lα(0, T ;Lβ(Ω)) and a.e. in ΩT ,(3.56)

Gi(ui) → η strongly in C(0, T ;Lβ(Ω)),(3.57)

∂tGi(ui) ⇀ ∂tη weakly in Lp
′
(0, T ; (W 1,qΩ))

′
).(3.58)

where 1 ≤ α,β < ∞. By (3.57) and (3.66) from Remark 3.4, we have

XXXXGi(ui(x, t + h)) −Gi(ui(x, t))
XXXXC([0,T ];Lβ(Ω)) → 0 uniformly in i as h→ 0.

Thus given any ε > 0, there exists hε > 0 such that for all 0 < h < hε and all i,

XXXXGi(ui(x, t + h)) −Gi(ui(x, t))
XXXX
β
C([0,T ];Lβ(Ω))

< ε.

Given any δ > 0, let Iδ = (1 − δ,1 + δ) ∪ (−1 − δ,−1 + δ). Consider the interval having
ui(x, t) and ui(x, t+h) as end points. Denote this interval by Ji(x, t;h). We consider
three cases.

Case I: Ji(x, t;h) ∩ Iδ = ∅.
In this case, gi(s) ≥ max{θmi , δ

m} for any s ∈ Ji(x, t;h) and

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ = ∣∫

ui(x,t+h)

ui(x,t)
gi(s)ds∣ ≥ δ

m
∣ui(x, t + h) − ui(x, t)∣.

Case II: Ji(x, t;h) ∩ Iδ ≠ ∅ and ∣ui(x, t + h) − ui(x, t)∣ ≥ 3δ .
In this case, we have

∣Ji(x, t;h) ∩ I
c
δ ∣ ≥

1

3
∣Ji(x, t;h)∣

and

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ ≥ ∣∫
Ji(x,t;h)∩Icδ

gi(s)ds∣

≥
δm

3
∣ui(x, t + h) − ui(x, t)∣.

Case III: Ji(x, t;h) ∩ Iδ ≠ ∅ and ∣ui(x, t + h) − ui(x, t)∣ < 3δ
In this case, we have

gi(s) ≤ max{(8δ + 16δ2
)
m, θmi } for any s ∈ Ji(x, t;h).

Thus

∣Gi(ui(x, t + h)) −Gi(ui(x, t))∣ ≤ 3δmax{(8δ + 16δ2
)
m, θmi }.

Pick δ = ε
1

2mβ and fix t. Let

Ωi = {x ∈ Ω ∶ Ji(x, t ∶ h) satisfies case I or II}.
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Then

∫
Ω

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

= ∫
Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx + ∫

Ω/Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

≤ 3βε−
1
2 ∫

Ωi

RRRRGi(ui(x, t + h)) −Gi(ui(x, t))
RRRR
β
dx + ∫

Ω/Ωi

RRRRui(x, t + h) − ui(x, t)
RRRR
β
dx

≤ 3βε
1
2 +Cε

1
2m

Taking maximum over t ∈ [0, T ] on the left side, we have for all i, any h < hε,

XXXX(ui(x, t + h) − ui(x, t)
XXXX
β
C([0,T ];Lβ(Ω))

< ε
1
2 +Cε

1
2m .

Thus

XXXXui(x, t + h) − ui(x, t)
XXXX
β
C([0,T ];Lβ(Ω))

→ 0 uniformly as h→ 0.

In addition, for any 0 < t1 < t2 < T , (3.47) implies

∫

t2

t1
ui(x, t)dt is relatively compact in Lβ(Ω).

Therefore we conclude from Remark 3.4 that

(3.59) ui → u(x, t) strongly in C([0, T ];Lβ(Ω)) for 1 ≤ β < ∞.

Similarly. we can prove

(3.60) ui → u(x, t) strongly in Lα(0, T ;Lβ(Ω)) for 1 ≤ α,β < ∞ and a.e. in ΩT .

Growth condition on M(u) and (3.59), (3.60) yield

Mi(ui) →M(u) strongly in C([0, T ];Lβ(Ω)) for 1 ≤ β < ∞,(3.61)

Mi(ui) →M(u) strongly in Lα(0, T ;Lβ(Ω)) for 1 ≤ α,β < ∞,(3.62)
√
Mi(ui) →

√
M(u) strongly in C([0, T ];Lγ(Ω)) for 1 ≤ γ < ∞.(3.63)

Hence Gi(ui) converges to G(u) a.e. in ΩT and η = G(u). Passing to the limit in
(3.46), by (3.47), (3.54), (3.58), (3.61) and (3.63), we have

∫

T

0
⟨g(u)∂tu,φ⟩((W 1,q(Ω))′,W 1,q(Ω)) dt(3.64)

= −β ∫
ΩT

g(u)µφdxdt − ∫
ΩT

√
M(u)ξ ⋅ ∇φdxdt

for any φ ∈ Lp(0, T ;W 1,q(Ω)) with p, q > 2.

Remark 3.4. (Compactness in Lp(0, T ;B) Theorem 1 in [29]) Assume B is a
Banach space and F ⊂ Lp(0, T ;B). F is relatively compact in Lp(0, T ;B) for 1 ≤ p <
∞, or in C([0, T ],B) for p = ∞ if and only if

(3.65) {∫

t2

t1
f(t)dt ∶ f ∈ F} is relatively compact in B,∀0 < t1 < t2 < T

(3.66) XXXXτhf − f
XXXXLp(0,T ;B) → 0 as h→ 0 uniformly for f ∈ F.

Here τhf(t) = f(t + h) for h > 0 is defined on [−h,T − h].
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3.2.1. Weak convergence of ∇ µi
gi(ui)

. We now look for relation between ξ and

u. Following the idea in [6], we decompose ΩT as follows. Let δj be a positive sequence
monotonically decreasing to 0. By (3.54) and Egorov’s theorem, for every δj > 0, there
exists Bj ⊂ ΩT satisfying ∣Ωt/Bj ∣ < δj such that

(3.67) ui → u uniformly in Bj .

We can pick

(3.68) B1 ⊂ B2 ⊂ ⋯ ⊂ Bj ⊂ Bj+1 ⊂ ⋯ ⊂ ΩT .

Define
Pj ∶= {(x, t) ∈ ΩT ∶ ∣1 − u

2
∣ > δj}.

Then

(3.69) P1 ⊂ P2 ⊂ ⋯ ⊂ Pj ⊂ Pj+1 ⊂ ⋯ ⊂ ΩT .

Let B = ∪∞j=1Bj and P = ∪∞j=1Pj . Then ∣ΩT /B∣ = 0 and each Bj can be split into two
parts:

Dj = Bj ∩ Pj , where ∣1 − u2
∣ > δj , and ui → u uniformly,

D̃j = Bj/Pj , where ∣1 − u2
∣ ≤ δj , and ui → u uniformly .

(3.68) and (3.69) imply

(3.70) D1 ⊂D2 ⊂ ⋯ ⊂Dj ⊂Dj+1 ⊂ ⋯ ⊂D ∶= B ∩ P.

For any Ψ ∈ Lp(0, T ;Lq(Ω,Rn)) with p, q > 2, we have

∫
ΩT

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt

= ∫
ΩT /Bj

Mi(ui)∇
µi

gi(ui)
⋅Ψdxdt + ∫

Dj
Mi(ui)∇

µi
gi(ui)

⋅Ψdxdt

+∫
D̃j
Mi(ui)∇

µi
gi(ui)

⋅Ψdxdt(3.71)

The left hand side of (3.71) converges to ∫ΩT

√
M(u)ξ ⋅Ψdxdt. We analyze the three

terms on the right hand side separately. To estimate the first term on the right hand
side of (3.71), noticing ∣ΩT /Bj ∣ → 0 and

lim
i→∞
∫

ΩT /Bj
Mi(ui)∇

µi
gi(ui)

⋅Ψdxdt = ∫
ΩT /Bj

√
M(u)ξ ⋅Ψdxdt,

we have

lim
j→∞

lim
i→∞
∫

ΩT /Bj
Mi(ui)∇

µi
gi(ui)

⋅Ψdxdt = 0.

By uniform convergence of ui to u in Bj , we introduce subsequence uj,k such that
uj,k → u uniformly in Bj and there exists Nj such that for all k ≥ Nj ,

(3.72) ∣1 − u2
j,k ∣ >

δj

2
in Dj , ∣1 − u2

j,k ∣ ≤ 2δj in D̃j .
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Thus the third term on the right hand side of (3.71) can be estimated by

lim
j→∞

lim
k→∞

RRRRRRRRRR
∫
D̃j
Mj,k(uj,k)∇

µj,k

gj,k(uj,k)
⋅Ψdxdt

RRRRRRRRRR

≤ lim
j→∞

lim
k→∞

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝
sup
D̃j

√
Mj,k(uj,k)

⎞

⎠

XXXXΨXXXXL2(D̃j)

XXXXXXXXXX

√
Mj,k(uj,k)∇

µj,k

gj,k(uj,k)

XXXXXXXXXXL2(D̃j)

⎫⎪⎪
⎬
⎪⎪⎭

≤
⎛

⎝
sup
D̃j

√
Mj,k(uj,k)

⎞

⎠
∣Ω∣

q−2
2q XXXXΨXXXXL2(0,T ;Lq(Ω)

XXXXXXXXXX

√
Mj,k(uj,k)∇

µj,k

gj,k(uj,k)

XXXXXXXXXXL2(D̃j)

≤ C lim
j→∞

lim
k→∞

max{(2δj)
m/2, θ

m/2
j,k }

= 0.

For the second term, we see that

(
δj

2
)

m

∫
Dj

∣∇
µj,k

gj,k(uj,k)
∣
2dxdt

≤ ∫
Dj
Mj,k(uj,k)∣∇

µj,k

gj,k(uj,k)
∣
2dxdt

≤ ∫
ΩT

Mj,k(uj,k)∣∇
µj,k

gj,k(uj,k)
∣
2dxdt ≤ C.

Therefore ∇
µj,k

gj,k(uj,k)
is bounded in L2(Dj) and we can extract a further subsequence,

not relabeled, which converges weakly to some ξj ∈ L
2(Dj). Since Dj is an increasig

sequence of sets with limj→∞Dj =D, we have ξj = ξj−1 a.e. in Dj−1. By setting ξj = 0

outside Dj , we can extend ξj to a L2 function ξ̃j defined in D. Therefore for a.e.

x ∈ D, there exists a limit of ξ̃j(x) as j → ∞. Let ξ(x) = limj→∞ ξ̃j(x), we see that
ξ(x) = ξj(x) for a.e x ∈Dj and for all j.

By a standard diagonal argument, we can extract a subsequnce such that

(3.73) ∇
µk,Nk

gk,Nk(uk,Nk)
⇀ ζ weakly in L2

(Dj) for all j.

By strong convergence of
√
Mi(ui) to

√
M(u) in C([0, T ];Lβ(Ω)) for 1 ≤ β < ∞,

we obtain
χDj

√
Mk,Nk(uk,Nk)∇

µk,Nk
gk,Nk(uk,Nk)

⇀ χDj
√
M(u)ζ

weakly in L2(0, T ;Lq(Ω)) for 1 ≤ q < 2 and all j. Recall
√
Mi(ui)∇

µi
gi(ui)

→ ξ weakly

in L2(ΩT ), we have ξ =
√
M(u)ζ in Dj for all j. Hence ξ =

√
M(u)ζ in D and

consequently

χDMk,Nk(uk,Nk)∇
µk,Nk

gk,Nk(uk,Nk)
⇀ χDM(u)ζ

weakly in L2(0, T ;Lq(Ω)) for 1 ≤ q < 2.
Replacing ui by subsequence uk,Nk in (3.71) and letting k → ∞ then j → ∞, we

have

∫
ΩT

√
M(u)ξ ⋅Ψdxdt = lim

j→∞
∫
Dj
M(u)ζ ⋅Ψdxdt(3.74)

= ∫
D
M(u)ζ ⋅Ψdxdt.
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It follows from (3.64) and (3.74) that

∫

T

0
⟨g(u)∂tu,φ⟩((W 1,q(Ω))′,W 1,q(Ω)) dt(3.75)

= −β ∫
ΩT

g(u)µφdxdt − ∫
D
M(u)ζ ⋅ ∇φdxdt

for all φ ∈ Lp(0, T ;W 1,q(Ω)) where p, q > 2.

3.2.2. Relation between ζ and u. The desired relation between ζ and u is

ζ =
1

g(u)
∇µ − µ

g′(u)

g2(u)
∇u(3.76)

µ = −∆u + q′(u) + (−∆)
1
2u.(3.77)

Given the known regularity u ∈ L∞(0, T ;H1(Ω)) and degeneracy of g(u), the right
hand side of (3.76) might not be defined as a function. We can, however, under
suitable assumptions on integrability of ∇∆u, find an explicit expression of ζ in the
form of (3.76)-(3.77) in suitable subset of ΩT .

Claim I: If for some j, the interior of Dj, denoted by (Dj)
○, is not empty, then

∇∆u ∈ L1
((Dj)

○
)

and

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

a.e. in (Dj)
○.

Proof of the claim I. Since

(3.78) µk,Nk = −∆uk,Nk + q
′
(uk,Nk) + (−∆)

1
2uk,Nk in ΩT ,

The right hand side of (3.78) converges to −∆u + q′(u) + (−∆)
1
2u in distributional

sense while the left side converges weakly to µ in L2(ΩT ). Hence

µ = −∆u + q′(u) + (−∆)
1
2u in L2

(ΩT ).

Therefore u ∈ L2(0, T ;H2(Ω)). On the other hand, using uk,Nk and u as test functions
in (3.40) yield

∫
ΩT

µk,Nkuk,Nkdxdt = ∫
ΩT

(RRRR∇uk,Nk
RRRR
2
+ q′(uk,Nk)uk,Nk + uk,Nk(−∆)

1
2uk,Nk)dxdt

∫
ΩT

µk,Nkudxdt = ∫
ΩT

(∇uk,Nk ⋅ ∇u + q
′
(uk,Nk)u + u(−∆)

1
2uk,Nk)dxdt.

Passing to the limit, by (3.60), growth assumptions on q′ and (3.53), we have

lim
k→∞
∫

ΩT

RRRR∇uk,Nk
RRRR
2
= ∫

ΩT

RRR∇uRRR
2 .

Therefore
∇uk,Nk → ∇u strongly in L2

(ΩT ).
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Since uk,Nk ∈ L
2(0, T ;W 3,s(Ω)), we can differentiate (3.78) and get

(3.79) ∇µk,Nk = −∇∆uk,Nk + q
′′
(uk,Nk)∇uk,Nk +∇(−∆)

1
2uk,Nk ,

and

(3.80) ∇
µk,Nk

gk,Nk(uk,Nk)
=

1

gk,Nk(uk,Nk)
∇µk,Nk − µk,Nk

g′k,Nk(uk,Nk)

g2
k,Nk

(uk,Nk)
∇uk,Nk

on D○
j . Thus

(3.81) ∇µk,Nk = gk,Nk(uk,Nk)∇
µk,Nk

gk,Nk(uk,Nk)
+

µk,Nk
gk,Nk(uk,Nk)

g′k,Nk(uk,Nk)∇uk,Nk .

Since

gk,Nk(uk,Nk) → g(u) uniformly in D○
j ,

g′k,Nk(uk,Nk)

gk,Nk(uk,Nk)
→
g′(u)

g(u)
uniformly in D○

j ,

∇
µk,Nk

gk,Nk(uk,Nk)
⇀ ζ weakly in L2

(D○
j),

µk,Nk ⇀ µ weakly in L2
(ΩT ),

∇uk,Nk → ∇u strongly in L2
(ΩT ),

we have, for any φ ∈ L∞(D○
j),

∫
D○
j

φ(gk,Nk(uk,Nk)∇
µk,Nk

gk,Nk(uk,Nk)
+

µk,Nk
gk,Nk(uk,Nk)

g′k,Nk(uk,Nk)∇uk,Nk)dxdt

→ ∫
D○
j

φ(g(u)ζ +
g′(u)

g(u)
µ∇u)dxdt,

i.e.

∇µk,Nk ⇀ η ∶= g(u)ζ +
g′(u)

g(u)
µ∇u weakly in L1

(D○
j).

Passing to the limit in (3.79), we obtain, in the sense of distribution, that

η = −∇∆u + q′′(u)∇u +∇(−∆)
1
2u.

Since q′′(u)∇u +∇(−∆)
1
2u ∈ L2(ΩT ), we have −∇∆u ∈ L1(D○

j), hence

(3.82) η = −∇∆u + q′′(u)∇u +∇(−∆)
1
2u a.e. in D○

j

Since 1
gk,Nk (uk,Nk )

→ 1
g(u)

uniformly in Dj , we have

1

gk,Nk(uk,Nk)
∇µk,Nk ⇀

1

g(u)
η weakly in L1

(D○
j).

Since
g′k,Nk (uk,Nk )
g2
k,Nk

(uk,Nk )
→

g′(u)
g2(u)

uniformly in Dj , we have

g′k,Nk(uk,Nk)

g2
k,Nk

(uk,Nk)
µk,Nk∇uk,Nk ⇀

g′(u)

g2(u)
µ∇u weakly in L1

(D○
j).
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Passing to the limit in (3.80), we have

ζ =
1

g(u)
η − µ

g′(u)

g2(u)
∇u

=
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

on (Dj)
○. Noticing the value of ζ on ΩT /D doesn’t matter since it does not appear

on the right hand side of (3.74).
Claim II: For any open set U ∈ ΩT in which ∇∆u ∈ Lp(U) for some p > 1 and

g(u) > 0, we have

(3.83) ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u.

in U .
To prove this, since

(3.84) ∇µk,Nk = −∇∆uk,Nk + q
′′
(uk,Nk)∇uk,Nk +∇(−∆)

1
2uk,Nk in ΩT

and

(3.85) ∇
µk,Nk

gk,Nk(uk,Nk)
=

1

gk,Nk(uk,Nk)
∇µk,Nk + µk,Nk ⋅ ∇

1

gk,Nk(uk,Nk)
on Dj .

The right hand side of (3.84) converges weakly to −∇∆u + q′′(u)∇u + ∇(−∆)
1
2u

in Lq(U) for q = min{p,2} > 1. Hence

∇µk,Nk ⇀ η = −∇∆u + q′′(u)∇u +∇(−∆)
1
2u weakly in Lq(U).

The right hand side of (3.85) converges weakly to

η

g(u)
−
g′(u)

g2(u)
µ ⋅ ∇u

in L1(U ∩Dj) for each j and therefore

ζ =
−∇∆u + q′′(u)∇u +∇(−∆)

1
2u

g(u)
−
g′(u)

g2(u)
(−∆u + q′(u) + (−∆)

1
2u)∇u

a.e. in U ∩D. and the definition of ζ can be extended to U/D by our integrability
assumption on u. Define

Ω̃T = {U ⊂ ΩT ∶ ∇∆u ∈ Lp(U) for some p > 1; g(u) > 0 on U depending on U}.

Then Ω̃T is open and ζ is defined by (3.83) on Ω̃T . Since ∣ΩT /B∣ = 0 , M(u) = 0 on
ΩT /P and

ΩT /{D ∪ Ω̃T } ⊂ {ΩT /B} ∪ {ΩT /P},

we can take the value of ζ to be zero outside D ∪ΩT , sand it won’t affect the integral
on the right side of (1.19).

Lastly the energy inequality (1.21) follows by taking limit in the energy inequality
for uk,Nk .

This finishes the proof of Theorem 1.2.
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4. Simulations. In this section, we use the proposed phase field model to sim-
ulate the climb motions of prismatic dislocation loops, incorporating the conservative
motion and nonconservative motion. We use the evolution equation in Eqs. (1.1)
without the factor g(u) on the right-hand side, i.e.,

∂tu + βµ = ∇ ⋅ (M(u)∇
µ

g(u)
) ,(4.1)

together with Eqs. (1.2) and (1.4). Recall that the nonconservative climb motion
will result into the shrinking and growing of the dislocation loops [14], whereas the
self-climb is a conservative motion, which will keep the enclosed area of a prismatic
loop unchanged [20, 25, 24].

In the simulations, we choose the simulation domain Ω = [−π,π]2 and mesh
size dx = dy = 2π/M with M = 64. Periodic boundary conditions are used for the
simulation domain. The small parameter in the phase field model ε = dx. The
simulation domain corresponds to a physical domain of size (300b)2, i.e., b = 2π/300.
Under this setting, the parameter H0 in the phase field model calculated in the paper
[26] is H0 = 52.65 (2(1 − ν)/µb2). The prismatic loops are in the counterclockwise
direction meaning vacancy loops, unless otherwise specified.

In the numerical simulations, we use the pseudospectral method: All the spa-
tial partial derivatives are calculated in the Fourier space using FFT. For the time
discretization, we use the forward Euler method. The climb force generated by dis-
locations fd

cl is calculated by FFT using Eq. (1.4). We regularize the function g(u)

in the denominator in Eq. (4.1) as
√
g(u)2 + e2

0 with small parameter e0 = 0.005. In
the initial configuration of a simulation, φ in the dislocation core region is set to be a
tanh function with width 3ε. The location of the dislocation loop is identified by the
contour line of u = 0.

4.1. Evolution of an elliptic prismatic loop under the combined climb
effect. In the first numerical example, we simulate evolution of an elliptic prismatic
loop using the phase field model, see Fig. 1 and Fig. 2. The two axes of the initial
elliptic profile are l1 = 80b and l2 = 40b. Fig. 1(a) shows the elliptic prismatic loop
will not directly shrink, due to the self-climb effect, and there is a trend to evolve to
a circle in the shrinking process. Fig. 1(b) shows that without the self-climb effect,
the elliptic loop directly shrink until vanishing. The time of shrinking of loop with
self-climb is much more than the time without self-climb. The shapes are also totally
different in the process. These will influence the pattern of the interactions of two
loops, see details in the simulations; see Sec.(4.2). Moreover, we show the evolution
of an elliptic prismatic loop only by self-climb using the phase field model, seeing
Fig. 2, to illustrate the effect of the self-climb effect. Red ellipse is the initial state,
and the loop converges to the equilibrium shape of a circle (green circle) under its
self-stress. The area enclosed by a prismatic loop is conserved during the self-climb
motion. More simulation information about the self-climb effect can be found in our
previous papers [25, 24, 26].

4.2. The interactions between the circular prismatic loops under the
combined climb effect. In this subsection, we use our phase field model to simulate
the interaction of two circular prismatic loops for three conditions: with self-climb,
without self-climb and only with self-climb. The detailed shrinking process obtained
by our simulations are shown in Fig. 3, Fig. 4 and Fig. 5. The two loops are attracted
to each other by self-climb under the elastic interaction between them for all these
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Fig. 1. shrinking of an elliptic prismatic loops by climb with/without self-climb.

three conditions, but the later change of the shapes are totally different. For the
simulation of dislocation climb with the self-climb effect, firstly, the two loops are
attracted to each other by self-climb. When the two loops meet, they quickly combine
into a single loop; see Fig. 3(a-b). The combined single loop eventually evolves into
a circular shape; see Fig. 3(c)-(e). Finally the circular loops shrink and vanish; see
Fig. 3(f). For the simulation of dislocation climb without the self-climb effect, see
Fig. 4. Firstly, the two loops are attracted to each other under self-stress; see Fig. 4(a)-
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Fig. 2. Evolution of an elliptic prismatic loop only by self-climb effect using the phase field
model. Red ellipse is the initial state, and green circle is the final state.

(c), but quickly they separate due to the non-conservative climb effect; see Fig. 4(d).
The small loop vanishes first in the shrinking process; see Fig. 4(e). Finally the larger
loop shrinks and vanishes; see Fig. 4(f). Comparing these two climb interaction
processes with and without self-climb effect, we conclude that even though both
loops will vanish eventually, the processes are quite different. With the effect of
self-climb, these two close loop will coalescence first when they shrink. Without the
self-climb, these two loops will shrink directly and simply after the quick connecting
and separation. The total time for the shrinking of these two loops differs greatly.
It takes longer time for the loops to shrink with the self-climb effect than without
the self-climb effect. Fig. 3 and Fig. 4 give details of the patterns in these two
shrinking process and show the great difference, which will help us to understand
the formation process of the patterns and predict the stable state of the patterns
in the physics experiments. Moreover, for understanding the self-climb effect in the
interactions of the two loop, we show the detailed coalescence process only by self-
climb in Fig. 5. Firstly, the two loops are attracted to each other by self-climb under
the elastic interaction. They quickly combine into a single loop after meeting; see
Fig. 5(a-c). The combined single loop eventually evolves into a stable, circular shape;
see Fig. 5(d)-(f). It is noteworthy that the area of the final circle are equal to the
total area of the initial two circles theoretically, and these two areas also agree well in
numerical simulation. More simulation information about the self-climb effect of the
interactions of loops can be found in our previous papers [25, 24, 26].

5. Conclusions and discussion. We have performed asymptotic analysis to
show that our phase field model yields the correct climb velocity in the sharp interface
limit including the self-climb contribution.

we have validated our phase field model by numerical simulations and compared
the evolutions of the elliptic loops with and without self-climb, the interactions of two
loops with and without self-climb. The simulation results show the big difference
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Fig. 3. The interaction of two circular prismatic loops by climb with self-climb.

in the evolution time and the pattern with and without self-climb contribution.
Self-climb by vacancy pipe diffusion is the dominant dislocation climb mechanism

at not very high temperature in irradiated materials. At high temperature, dislocation
climb by vacancy bulk diffusion also becomes important, the contribution portion of
both climb motions can be adjusted by the parameter β depending on the physical
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Fig. 4. The interaction of two circular prismatic loops by climb without self-climb.

material and situation, and these increase the applicability of the phase field model in
physics. This phase field model combines these two climb motions in a single evolution
equation, which can simulate the combined climb motion of interactions of many loops.
This model can be easily generalized to many loops and the interactions of loops in 3-
dimension space. It also provides a convenient base to simulate dislocation climb-glide
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motion.
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Fig. 5. Coalescence of two prismatic loops only by self-climb under their elastic interaction
obtained by the phase field model.
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