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Abstract
We study the approximation of integrals of the form

∫
D
f(x>A) dµ(x), where

A is a matrix, by quasi-Monte Carlo (QMC) rules N−1∑N−1
k=0 f(x>k A). We are

interested in cases where the main computational cost in the approximation arises from
calculating the products x>k A. We design QMC rules for which the computation of
x>k A, k = 0, 1, . . . , N − 1, can be done in a fast way, and for which the approximation
error of the QMC rule is similar to the standard QMC error. We do not require that
the matrix A has any particular structure.

Problems of this form arise in some important applications in statistics and uncer-
tainty quantification. For instance, this approach can be used when approximating the
expected value of some function with a multivariate normal random variable with some
given covariance matrix, or when approximating the expected value of the solution of
a PDE with random coefficients.

The speed-up of the computation time of our approach is sometimes better and
sometimes worse than the fast QMC matrix-vector product from [Josef Dick, Frances Y.
Kuo, Quoc T. Le Gia, and Christoph Schwab, Fast QMC Matrix-Vector Multiplication,
SIAM J. Sci. Comput. 37 (2015), no. 3, A1436–A1450]. As in that paper, our approach
applies to lattice point sets and polynomial lattice point sets, but also applies to digital
nets (we are currently not aware of any approach which allows one to apply the fast
QMC matrix-vector paper from the aforementioned paper of Dick, Kuo, Le Gia, and
Schwab to digital nets).

The method in this paper does not make use of the fast Fourier transform, instead
we use repeated values in the quadrature points to derive a significant reduction in the
computation time. Such a situation naturally arises from the reduced CBC construction
of lattice rules and polynomial lattice rules. The reduced CBC construction has been
shown to reduce the computation time for the CBC construction. Here we show that it
can additionally be used to also reduce the computation time of the underlying QMC
rule. One advantage of the present approach is that it can be combined with random
(digital) shifts, whereas this does not apply to the fast QMC matrix-vector product
from the earlier paper of Dick, Kuo, Le Gia, and Schwab.

Keywords: Matrix-vector multiplication, quasi-Monte Carlo, high-dimensional integration,
lattice rules, polynomial lattice rules, digital nets, PDEs with random coefficients. 2020
MSC: 65C05, 65D30, 41A55, 11K38.

1 Introduction and problem setting
We are interested in approximating integrals of the form∫

D
f(x>A) dµ(x), (1)
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for a domain D ⊆ Rs, an s×τ -matrix A ∈ Rs×τ , and a function f : D → R, by quasi-Monte
Carlo (QMC) integration rules of the form

QN (f) = 1
N

N−1∑
k=0

f(x>k A), (2)

where we use deterministic cubature points x0,x1, . . . ,xN−1 ∈ D. We write xk =
(x1,k, x2,k, . . . , xs,k)> for 0 ≤ k ≤ N − 1. In most instances, D = [0, 1]s and the mea-
sure µ is the Lebesgue measure (or D = Rs and µ is the measure corresponding to the
normal distribution).

Furthermore, define the N × s-matrix

X =


x>0
x>1
...

x>N−1

 ∈ RN×s, (3)

whose N rows consist of the different cubature nodes. We are interested in situations where
the main computational cost of computing (2) arises from the vector-matrix multiplication
x>k A for all N points, i.e., we need to compute XA, which requires O(Ns t) operations.
Let A = (A1,A2, . . . ,Aτ ), where Ai ∈ Rs is the i-th column vector of A. The main idea is
to construct QMC rules for which the matrix X given in (3) has some structure such that
QMC matrix-vector product XAi can be computed very efficiently and the integration
error of the underlying QMC rule has similar properties as for other QMC rules. Note that
our approach works for any matrix A as we do not use any structure of the matrix A.

To motivate the problem addressed in this paper, note that such computational problems
arise naturally in certain settings. For instance, consider approximating the expected value

E(f) =
∫
Rs
f(y>)

exp
(
−1

2y
>Σ−1y

)
√

(2π)s det(Σ)
dy,

where Σ is symmetric and positive definite. Using the substitution y = A>x, where A
factorizes Σ, i.e. Σ = A>A, we arrive at the integral

E(f) =
∫
Rs
f(x>A)

exp
(
−1

2x
>x
)

(2π)s/2 dx︸ ︷︷ ︸
=: dµ(x)

.

Such problems arise for instance in statistics when computing expected values with respect
to a normal distribution, and in mathematical finance, e.g., for pricing financial products
whose payoff depends on a basket of assets.

Another setting where such problems arise naturally comes from PDEs with random
coefficients in the context of uncertainty quantification (see for instance [12] for more
details). Without stating all the details here, the main computational cost in this context
comes from computing

Dk =
s∑
j=1

xj,kCj , for k = 0, 1, . . . , N − 1, (4)
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where Cj ∈ RM×M are matrices (whose size depends on s and N). Let Cj = (cj,u,v)1≤u,v≤M
and define the column vectors cu,v = (c1,u,v, c2,u,v, . . . , cs,u,v)> ∈ Rs, for 1 ≤ u, v ≤ M .
Then we can compute the matrices given by (4) by computing

Xcu,v, for 1 ≤ u, v ≤M. (5)

In this approach we do not compute the matrices in (4) for each k separately, hence this
approach requires us to store the results of (5) first.

It was shown in [4] that when using particular types of QMC rules, such as (polynomial)
lattice rules or Korobov rules, the cost to evaluate QN (f), as given in (2), can be reduced
to only O(τ N logN) operations provided that logN � s. This drastic reduction in
computational cost is achieved by a fast matrix-matrix multiplication exploiting the fact
that for the chosen point sets the matrix X can be re-ordered to be of circulant structure.
The fast multiplication is then realized by the use of the fast Fourier transformation (FFT).

Here, we will explore a different method which can also drastically reduce the computa-
tion cost of evaluating QN (f), as given in (2). The reduction in computational complexity
is achieved by using point sets which possess a certain repetitiveness in their components.
In particular, the number of different values of the components xk,j (for 0 ≤ k ≤ N − 1) is
in general smaller than N and decreases when j ∈ {1, . . . , s} increases. As a particular type
of such QMC point sets, we will consider (polynomial) lattice point sets that have been
obtained by the so-called reduced CBC construction as in [2], and we will also consider
similarly reduced versions of digital nets obtained from digital sequences such as Sobol’
or Niederreiter sequences. The corresponding QMC point sets will henceforth be called
reduced (polynomial) lattice point sets or reduced digital nets.

The idea of our approach, which will be made more precise in the following sections,
works as follows.

Assume that we have N samples of the form (x1,k, x2,k, . . . , xs,k), 0 ≤ k ≤ N − 1. We
reduce the number of different values by choosing the number of samples differently for
each coordinate, say Nj for the j-th coordinate, where Nj divides Nj−1. E.g., if N1 = 4,
N2 = 2, and N3 = 1, then we generate the points

(y1,0, y2,0, y3,0), (y1,1, y2,1, y3,0), (y1,2, y2,0, y3,0), (y1,3, y2,1, y3,0). (6)

Here, there are 4 different values for the first coordinate, 2 different values for the second
coordinate, and the values for the last coordinate are all the same.

What is the advantage of this construction? The advantage can be seen when we
compute x>A. Let a1,a2, . . . ,as denote the rows of A. If all coordinates are different,
we need O(Ns) operations. For instance, in the example above we have 4 points in the
3-dimensional space, so we need to compute

x1,ka1 + x2,ka2 + x3,ka3, for k ∈ {1, 2, 3, 4}.

However, if we use the points (6) then we only need to compute

y1,ka1 + y2,bk/2ca2 + y3,0a3, for k ∈ {1, 2, 3, 4}.

The last computation can be done recursively, by first computing y3,0a3, then y2,0a2+y3,0a3
and y3,1a2 + y3,0a3, and then finally the remaining vectors. By storing and reusing these
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intermediate results, we only compute y3,0a3, and y2,0a2 + y3,0a3 and y2,1a2 + y3,0a3 once
(rather than recomputing the same result as in the straightforward computation).

By applying this idea in the general case, we obtain a similar cost saving as for the fast
QMC matrix-vector product in [4]. However, the present method behaves differently in
some situations which can be beneficial. One advantage is that it allows us to use random
shifts, which is not possible for the fast QMC matrix-vector product.

Before we proceed, we would like to introduce some notation. We will write Z to denote
the set of integers, Z∗ to denote the set of integers excluding 0, N to denote the positive
integers, and N0 to denote the nonnegative integers. Furthermore, we write [s] to denote
the index set {1, . . . , s}. To denote sets of components we use fraktur font, e.g., u ⊆ [s].
For a vector x = (x1, . . . , xs) ∈ [0, 1]s and for u ⊆ [s], we write xu = (xj)j∈u ∈ [0, 1]|u| and
(xu,0) ∈ [0, 1]s for the vector (y1, . . . , ys) with yj = xj if j ∈ u and yj = 0 if j 6∈ u. For
integer vectors h ∈ Zs, and u ⊆ [s], we analogously write hu to denote the projection of h
onto those components with indices in u.

The rest of the paper is structured as follows. Below we introduce lattice rules and
polynomial lattice rules and the relevant function spaces. In Section 1.3 we state the
relevant results on the convergence of the reduced lattice rules. In Section 2 we outline
how to use reduced rules for computing matrix products efficiently. In Section 3 we discuss
a version of the fast reduced QMC matrix-vector multiplication for digital nets and prove
a bound on the weighted discrepancy. In Section 4 we explain how these ideas can also be
applied to the plain Monte Carlo algorithm. Numerical experiments in Section 5 conclude
the paper.

1.1 Lattice point sets and polynomial lattice point sets

In this section, we would like to give the definitions of the classes of QMC point sets
considered in this paper.

We start with (rank-1) lattice point sets. For further information, we refer to, e.g.,
[3, 5, 13,15] and the references therein.

For a natural number N ∈ N and a vector z ∈ {1, 2, . . . , N − 1}s, a lattice point set
consists of points x0,x1, . . . ,xN−1 of the form

xk =
{
k

N
z

}
for k = 0, 1, . . . , N − 1.

Here, for real numbers y ≥ 0 we write {y} = y − byc for the fractional part of y. For
vectors y we apply {·} component-wise.

In this paper, we assume that the number of points N is a prime power, i.e., N = bm,
with prime b and m ∈ N.

The second class of point sets considered here are so-called polynomial lattice point
sets, whose definition is similar to that of lattice point sets, but based on arithmetic over
finite fields instead of integer arithmetic. To introduce them, let b again be a prime, and
denote by Fb the finite field with b elements and by Fb[x] the set of all polynomials in x
with coefficients in Fb. We will use a special instance of polynomial lattice point sets over
Fb. For a prime power N = bm and g = (g1, . . . , gs) ∈ (Fb[x])s, a polynomial lattice point
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set consists of N points x0,x1, . . . ,xN−1 of the form

xk :=
(
ν

(
k(x) g1(x)

xm

)
, . . . , ν

(
k(x) gs(x)

xm

))
for k ∈ Fb[x] with deg(k) < m,

where for f ∈ Fb[x], f(x) = a0 + a1x+ · · ·+ arx
r, with deg(f) = r, the map ν is given by

ν

(
f(x)
xm

)
:=

amin(r,m−1)

bm−min(r,m−1) + · · ·+ a1
bm−1 + a0

bm
∈ [0, 1).

Note that ν(f(x)/xm) = ν((f(x) (mod xm))/xm). We refer to [7, Chapter 10] for further
information on polynomial lattice point sets.

Lattice point sets are used in QMC rules referred to as lattice rules, and analogously
for polynomial lattice point sets.

1.2 Korobov spaces and related Sobolev spaces

As pointed out above, lattice point sets are commonly used as node sets in lattice rules,
and they are frequently studied in the context of numerical integration of functions in
Korobov spaces and certain Sobolev spaces, which we would like to describe in the present
section. Let us consider first a weighted Korobov space with general weights as studied
in [8, 14].

In several applications, we may have the situation that different groups of variables
have different importance, and this can also be reflected in the function spaces under
consideration. Indeed, the importance of the different components or groups of components
of the functions in the Korobov space to be defined is specified by a set of positive real
numbers γ = {γu}u⊆[s], where we may assume that γ∅ = 1. In this context, larger values
of γu indicate that the group of variables corresponding to the index set u has relatively
stronger influence on the computational problem, whereas smaller values of γu mean the
opposite.

The smoothness of the functions in the space is described by a parameter α > 1/2.
Product weights are a common special case of the weights γ where γu = ∏

j∈u γj for
u ⊆ [s] and where (γj)j=1,2,...,s is a sequence of positive real numbers.

The weighted Korobov space, denoted by H(Ks,α,γ), is a reproducing kernel Hilbert
space with kernel function

Ks,α,γ(x,y) = 1 +
∑
∅6=u⊆[s]

γu
∏
j∈u

∑
h∈Z∗

exp(2πih(xj − yj))
|h|2α


= 1 +

∑
∅6=u⊆[s]

γu
∑

hu∈Z|u|∗

exp(2πihu · (xu − yu))∏
j∈u |hj |

2α .

The corresponding inner product is

〈f, g〉Ks,α,γ =
∑
u⊆[s]

γ−1
u

∑
hu∈Z|u|∗

∏
j∈u
|hj |2α

 f̂((hu,0))ĝ((hu,0)),
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where f̂(h) =
∫

[0,1]s f(t) exp(−2πih · t) dt is the h-th Fourier coefficient of f . For u = ∅,
the empty sum is defined as f̂(0)ĝ(0).

For h ∈ Z∗, we define ρα(h) = |h|−2α, and for h = (h1, . . . , hs) ∈ Zs∗ let ρα(h) =∏s
j=1 ρα(hj).
It is known (see, e.g., [8]) that the squared worst-case error of a lattice rule generated

by a vector z ∈ Zs in the weighted Korobov space H(Ks,α,γ) is given by

e2
N,s,γ(z) =

∑
∅6=u⊆[s]

γu
∑
hu∈Du

ρα(hu), (7)

where
Du = Du(z) :=

{
hu ∈ Z|u|∗ : hu · zu ≡ 0 (modN)

}
is called the dual lattice of the lattice generated by z.

The worst-case error of lattice rules in a Korobov space can be related to the worst-case
error in certain Sobolev spaces. Indeed, consider a tensor product Sobolev space Hsob

s,γ of
absolutely continuous functions whose mixed partial derivatives of order 1 in each variable
are square integrable, with norm (see [10])

‖f‖Hsob
s,γ

=

∑
u⊆[s]

γ−1
u

∫
[0,1]|u|

(∫
[0,1]s−|u|

∂|u|

∂xu
f(x) dx[s]\u

)2

dxu

1/2

,

where ∂|u|f/∂xu denotes the mixed partial derivative with respect to all variables j ∈ u.
As pointed out in [5, Section 5], the root mean square worst-case error êN,s,γ for QMC
integration in Hsob

s,γ using randomly shifted lattice rules (1/N)∑N−1
k=0 f

({
k
N z + ∆

})
, i.e.,

êN,s,γ(z) =
(∫

[0,1]s
e2
N,s,γ(z,∆) d∆

)1/2

,

where eN,s,γ(z,∆) is the worst-case error of QMC integration in Hsob
s,γ using a shifted

integration lattice, is essentially the same as the worst-case error e(1,kor)
N,s,γ in the weighted

Korobov space H(Ks,1,γ) using the unshifted version of the lattice rules. In fact, we have

êN,s,2π2γ(z) = e
(1,kor)
N,s,γ (z), (8)

where 2π2γ denotes the weights ((2π2)|u|γu)∅6=u⊆[s]. For a connection to the so-called
anchored Sobolev space see, e.g., [11, Section 4].

In a slightly different setting, the random shift can be replaced by the tent transformation
φ(x) = 1− |1− 2x| in each variable. For a vector x ∈ [0, 1]s let φ(x) be defined component-
wise. Let ẽN,s,γ(z) be the worst-case error in the unanchored weighted Sobolev space Hsob

s,γ

using the QMC rule (1/N)∑N−1
k=0 f

(
φ
({

k
N z
}))

. Then it is known due to [6] and [1] that

ẽN,s,π2γ(z) ≤ e(1,kor)
N,s,γ (z), (9)

where π2γ = (π2|u|γu)∅6=u⊆[s], and that the CBC construction with the quality criterion
given by the worst-case error in the Korobov space H(Ks,1,γ) can be used to construct
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tent-transformed lattice rules which achieve the almost optimal convergence order in the
space Hsob

s,π2γ under appropriate conditions on the weights γ (see [1, Corollary 1]). Hence
we also have a direct connection between integration in the Korobov space using lattice
rules and integration in the unanchored Sobolev space using tent-transformed lattice rules.

Thus, results shown for the integration error in the Korobov space can, by a few simple
modifications, be carried over to results that hold for anchored and unanchored Sobolev
spaces, respectively, by using Equations (8) and (9).

1.3 Reduced (polynomial) lattice point sets

In [2], the authors introduced so-called reduced lattice point sets and reduced polynomial
lattice point sets. The original motivation for these concepts was to make search algorithms
for excellent QMC rules faster for situations where the dependence of a high-dimensional
integration problem on its variable j decreases fast as the index j increases. Such a situation
might occur in various applications and is modelled by assuming that the weights in the
weighted spaces, such as those introduced in Section 1.2, decay at a certain speed.

The “reduction” in the search for good lattice point sets is achieved by shrinking the
sizes of the sets that the different components of the generating vector z are chosen from.
In the present paper, we will make use of the same idea, but with a different aim, namely
that of increasing the speed of computing the matrix product XA, as outlined above.

Recall that we assume N to be a prime power, N = bm. A reduced rank-1 lattice point
set is obtained by introducing an integer sequence w = (wj)sj=1 ∈ Ns0 with 0 = w1 ≤ w2 ≤
· · · ≤ ws. We will refer to the integers wj as reduction indices. Additionally, for integer
w ≥ 0, we introduce the set

Ubm−w :=
{
{z ∈ {1, 2, . . . , bm−w − 1} : gcd(z, b) = 1} if w < m,
{1} if w ≥ m.

Note that Ubm−w is the group of units of integers modulo bm−w for w < m, and in this case
the cardinality of the set Ubm−w equals (b− 1)bm−w−1. For the given sequence w we then
define s∗ as s∗ := max{j ∈ N : wj < m}.

The generating vector z ∈ Zs of a reduced lattice rule as in [2] is then of the form

z = (bw1z1, b
w2z2, . . . , b

wszs) = (z1, b
w2z2, . . . , b

wszs),

where zj ∈ Ubm−wj for all j = 1, . . . , s. Note that for j > s∗ we have wj ≥ m and zj = 1.
In this case the corresponding components of z are multiples of N . The resulting bm points
of the reduced lattice point set are given by

xk =
({

kz1b
w1

N

}
,

{
kz2b

w2

N

}
, . . . ,

{
kzsb

ws

N

})
=

(
kz1 mod bm−min(w1,m)

bm−min(w1,m) ,
kz2 mod bm−min(w2,m)

bm−min(w2,m) , . . . ,
kzs mod bm−min(ws,m)

bm−min(ws,m)

)

with k = 0, 1, . . . , N−1. Therefore it is obvious that the components xk,j , k = 0, 1, . . . , N−1
belong to the set {0, 1/bm−min(wj ,m), . . . , (bm−min(wj ,m) − 1)/bm−min(wj ,m)} and each of the
values is attained exactly bmin(wj ,m) times for all j = 1, . . . , s. In particular, all xk,j equal
0 for j > s∗.
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Regarding the performance of reduced lattice rules for numerical integration in the
Korobov space H(Ks,α,γ), the following result was shown in [2]. For a proof of this result
and further background information, we refer to the original paper [2].

Theorem 1. Let w = (wj)sj=1 ∈ Ns0 be a sequence of reduction indices, let α > 1/2,
and consider the Korobov space H(Ks,α,γ). Using a computer search algorithm, one can
construct a generating vector z = (z1b

w1 , . . . , zsb
ws) ∈ Zs such that, for any d ∈ [s] and

any λ ∈ (1/(2α), 1], the following estimate on the squared worst-case error of integration
in H(Kd,α,γ) holds.

e2
N,s,γ((z1b

w1 , . . . , zdb
wd)) ≤

 ∑
∅6=u⊆[d]

γλu
2(2ζ(2αλ))|u|

bmax{0,m−maxj∈u wj}

 1
λ

.

Let us briefly illustrate the motivation for introducing the numbers w1, w2, . . . , ws.
Assume we have product weights γ1 ≥ γ2 ≥ · · · ≥ γs > 0. We have

∑
∅6=u⊆[d]

γλu
2(2ζ(2αλ))|u|

bmax{0,m−maxj∈u wj}
≤b−m

−1 + 2
d∏
j=1

(
1 + γλj 2ζ(2αλ)bmin{m,wj}

) .
Further assume that we want to have a bound independent of the dimension. In the
non-reduced (classical) case we have w1 = w2 = · · · = ws = 0 and hence

d∏
j=1

(
1 + γλj 2ζ(2αλ)

)
= exp

 d∑
j=1

log
(
1 + γλj 2ζ(2αλ)

) ≤ exp

2ζ(2αλ)
d∑
j=1

γλj

 ,
where we used log(1 + z) ≤ z for z ≥ 0. If ∑∞j=1 γ

λ
j < ∞, we get a bound which is

independent of the dimension d.
For illustration, say γ1/(2α)

j = j−4, then the infinite sum is finite and we get a bound
independent of the dimension. However, a significantly slower converging sequence would
still be enough to give us a bound independent of the dimension. So if we introduce
w1 ≤ w2 ≤ · · · , where wj = logb j2 for instance, then we still have

∞∑
j=1

γλj b
wj <∞.

In [2] we have shown how the wj can be used to reduce the construction cost of the CBC
construction by reducing the size of the search space from bm to bmax{0,m−wj} in component
j. In this paper we show that the wj can also be used to reduce the computation cost of
computing XA, where the rows of X are the lattice points of a reduced lattice rule. The
speed-up which can be achieved this way will depend on the weights {γu}u⊆[s] (and the
w1 ≥ w2 ≥ · · · ). This is different from the fast QMC matrix-vector product in [4], which
works independently of the weights and does not influence tractability properties.

It is natural to expect that one can use an analogous approach for polynomial lattice
rules leading to similar results.
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2 The fast reduced matrix product computation

2.1 The basic algorithm

We first present some observations which lead us to an efficient algorithm for computing
XA.

Let X = [x>0 ,x>1 , . . . ,x>N−1]> be the N × s-matrix whose k-th row is the k-th point of
the reduced lattice point set (written as a row vector). Let ξj denote the j-th column of
X, i.e. X = [ξ1, ξ2, . . . , ξs]. Let A = [a1,a2, . . . ,as]>, where aj ∈ R1×τ is the j-th row of
A. Then we have

XA = [ξ1, ξ2, . . . , ξs]


a1
a2
...
as

 = ξ1a1 + ξ2a2 + · · ·+ ξsas. (10)

In order to illustrate the inherent repetitiveness of a reduced lattice point set, consider
a reduction index 0 < wj < m and the corresponding component zj of the generating
vector. The j-th component of the N = bm points of the reduced lattice point set (i.e., the
j-th column ξj of X) is then given by

ξj :=
(

0 · zj mod bm−wj
bm−wj

,
1 · zj mod bm−wj

bm−wj
, . . . ,

(bm − 1) · zj mod bm−wj
bm−wj

)>
= (Xj , . . . , Xj)>︸ ︷︷ ︸

bwj times

,

where

Xj =
(

0, zj mod bm−wj
bm−wj

, . . . ,
(bm−wj − 1)zj mod bm−wj

bm−wj

)>
.

We will exploit this repetitive structure within the reduced lattice points to derive a fast
matrix-vector multiplication algorithm.

Based on the above observations, it is possible to formulate the following algorithm
to compute (10) in an efficient way. Note that for j > s∗ the j-th column of X consists
only of zeros, so there is nothing to compute for the entries of X corresponding to these
columns.
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Algorithm 1 Fast reduced matrix product

Input: Matrix A ∈ Rs×τ , integer m ∈ N, prime b, reduction indices 0 = w1 ≤ w2 ≤ · · · ≤
ws, corresponding generating vector of reduced lattice rule, z = (z1, b

w2z2, . . . , b
wszs).

Set N = bm and set Ps∗+1 = 01×τ ∈ R1×τ .
for j = s∗ to 1 do
• Compute the bm−wj reduced lattice points

Xj =
(

0, zj mod bm−wj
bm−wj

, . . . ,
(bm−wj − 1)zj mod bm−wj

bm−wj

)>
∈ Rb

m−wj×1.

• Compute Pj as

Pj =

bm
in

(w
j

+
1
,m

)−
w
j
tim

es


Pj+1
Pj+1
...

Pj+1

 +Xjaj ∈ Rb
m−wj×τ ,

where aj ∈ R1×τ denotes the j-th row of the matrix A.
end for
Set P = P1.

Return: Matrix product P = XA.

The following theorem gives an estimate of the computational cost of Algorithm 1,
which shows that by using a reduced point set we can obtain an improved computation
time over that in [4], which only depends on the index s∗, but not on s anymore.

Theorem 2. Let a matrix A ∈ Rs×τ , an integer m ∈ N, a prime b, and reduction indices
0 = w1 ≤ w2 ≤ · · · ≤ ws be given. Furthermore, let z = (z1, b

w2z2, . . . , b
wszs) be the

generating vector of a reduced lattice rule corresponding to N = bm and the given reduction
indices (wj)sj=1. Then the matrix product P = XA can be computed via Algorithm 1 using

O

τ N s∗∑
j=1

b−wj


operations and requiring O(Nτ) storage. Here, X is the N × s-matrix whose rows are the
N reduced lattice points.

Proof. In the j-th step the generation of the bm−wj lattice points requires O(bm−wj )
operations and storage. The most costly operation in each step is the product Xjaj which
requires O(bm−wj τ) operations, but this step only needs to be carried out for those j with
j ≤ s∗. Summing over all j = 1, . . . , s∗, the computational complexity amounts to

O

 s∗∑
j=1

bm−wj τ

 = O

τ bm s∗∑
j=1

b−wj


10



operations. Furthermore, storing the matrix Pj requires O(bm−wj τ) space, which attains a
maximum of O(bm τ) for w1 = 0. Note that in an efficient implementation the matrices Pj
are overwritten in each step and do not all have to be stored.

In the next section we discuss the fast reduced QMC matrix-vector product where the
number of points is a power of 2.

2.2 An optimized algorithm

Recall that, for a sequencew of reduction indices, we have s∗ = max{j ∈ N : wj < m}. Since
for j > s∗ the j-th column of X consists only of zeros, we can restrict our considerations in
this section to the product X̃Ã, where X̃ is an N × s∗-matrix, and Ã is an s∗ × τ -matrix.

Assume that 0 = w1 ≤ w2 ≤ · · · ≤ ws∗ < m and define, for I ∈ {0, 1, . . . ,m− 1}, the
quantity

τI := #{j ∈ {1, . . . , s∗} | wj = I},

which denotes the number of wj which equal I. Obviously, we then have that∑m−1
I=0 τI = s∗.

Consider then the following alternative fast reduced matrix product algorithm.

Algorithm 2 Optimized fast reduced matrix product

Input: Matrix Ã ∈ Rs∗×τ , integer m ∈ N, prime b, reduction indices 0 = w1 ≤ w2 ≤
· · · ≤ ws∗ < m, the corresponding generating vector of a reduced lattice rule, z =
(z1, b

w2z2, . . . , b
ws∗zs∗).

Set N = bm, set P̃m = 01×τ ∈ R1×τ , and ws∗+1 = m.
for I = m− 1 to 0 do
• Compute the matrix

X̃I = (W I
1 , . . . ,W

I
τI

) ∈ Rb
m−I×τI ,

whose columns are the reduced lattice points

W I
r =

(
0, zjr mod bm−I

bm−I
, . . . ,

(bm−I − 1)zjr mod bm−I
bm−I

)>
∈ Rb

m−I×1, 1 ≤ r ≤ τI ,

and where the jr, 1 ≤ r ≤ τI , are those indices for which wjr = I. If τI = 0, then set
X̃I = 0bm−I×τI .
• Compute P̃I as

P̃I =

b
tim

es



P̃I+1
...

P̃I+1

 + X̃IÃI ∈ Rb
m−I×τ ,

where ÃI ∈ RτI×τ denotes the rows of the matrix Ã that correspond to the j with
wj = I. If τI = 0, then set ÃI = 0τI×τ ∈ RτI×τ .

end for
Set P̃ = P̃0.

Return: Matrix product P̃ = X̃Ã.
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The next theorem provides an estimate on the computation time of Algorithm 2, which
again is independent of s.
Theorem 3. Let a matrix A ∈ Rs×τ , an integer m ∈ N, a prime b, and reduction indices
0 = w1 ≤ w2 ≤ · · · ≤ ws∗ < m be given. Furthermore, let z = (z1, b

w2z2, . . . , b
wszs) be the

generating vector of a reduced lattice rule corresponding to N = bm and the given reduction
indices (wj)sj=1. Then the matrix product P = XA can be computed via Algorithm 2 using

O (τ Nm)

operations and requiring O(Nτ) storage. Here, X is the N × s-matrix whose rows are the
N reduced lattice points.

Proof. As outlined above, it is no relevant restriction to reduce the matrices X and A to
an N × s∗-matrix X̃ and an s∗ × τ -matrix Ã, respectively, and then apply Algorithm 2.

In the I-th step of the algorithm, the generation of the τIbm−I lattice points requires
O(τIbm−I) operations and storage. The most costly operation in each step is the product
X̃IÃI which, via the fast QMC matrix product in [4], requires O((m−I) bm−I τ) operations.
Summing over all I = 0, . . . ,m− 1, the computational complexity amounts to

O
(
m−1∑
I=0

(m− I) bm−I τ
)

= O
(
τ bm

m−1∑
I=0

m− I
bI

)
= O

(
τ bm

b2m

(b− 1)2

)
= O (τ N m)

operations. Furthermore, storing the matrix P̃j requires O(bm−I τ) space, which attains a
maximum of O(bm τ) for I = 0. Note that in an efficient implementation the matrices P̃j
are overwritten in each step and do not all have to be stored.

2.3 Transformations, shifting, and computation for transformation func-
tions

In applications from mathematical finance or uncertainty quantification, the integral to
be approximated is often not over the unit cube but over Rs with respect to a normal
distribution. In order to be able to use lattice rules in this context, one has to apply a
transformation and use randomly shifted lattice rules. In the following we show that the
fast reduced QMC matrix-vector product can still be used in this context.

We have noted before that projections Pj = πj(P ) of a reduced lattice point set P onto
the j-th component possess a repetitive structure, that is,

Pj = (Xj , . . . , Xj)>︸ ︷︷ ︸
bmin(wj,m) times

with

Xj =
(

0, zj mod bm−min(wj ,m)

bm−min(wj ,m) , . . . ,
(bm−min(wj ,m) − 1)zj mod bm−min(wj ,m)

bm−min(wj ,m)

)>
.

This repetitive structure is preserved when applying a mapping ϕ : [0, 1]→ R elementwise
to the projection Pj since

ϕ(Pj) = (ϕ(Xj), . . . , ϕ(Xj))>︸ ︷︷ ︸
bmin(wj,m) times

.
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This approach also works for the map ψ : [0, 1] → [0, 1] with ψ(x) = {x + ∆}, i.e,
for shifting of the lattice points modulo one. In particular, this observation holds for
componentwise maps of the form ϕ : [0, 1]s → R with ϕ(x) = (ϕ1(x1), . . . , ϕs(xs)) that
are applied simultaneously to all N elements of the lattice point set. For a map of this
form Algorithm 1 can be easily adapted by replacing Xj by ϕj(Xj). If we wish to apply
Algorithm 2 instead, the matrices X̃I can be replaced by the correspondingly transformed
matrices, however, the fast reduced QMC matrix vector product can only be used here if
all components with indices in τI use the same transformation.

3 Reduced digital nets
In this section we present a reduced point construction for so-called digital (t,m, s)-nets.
Typical examples are digital nets derived from Sobol’, Faure, and Niederreiter sequences.
In general, a (t,m, s)-net is defined as follows.

Given an integer b ≥ 2, an elementary interval in [0, 1)s is an interval of the form∏s
j=1[ajb−dj , (aj + 1)b−dj ) where aj , dj are nonnegative integers with 0 ≤ aj < bdj for

1 ≤ j ≤ s. Let t,m, with 0 ≤ t ≤ m, be integers. Then a (t,m, s)-net in base b is a point
set Pm in [0, 1)s with bm points such that any elementary interval in base b with volume
bt−m contains exactly bt points of Pm.

Note that a low t-value of a (t,m, s)-net implies better equidistribution properties and
usually also better error bounds for integration rules based on such nets. How to find nets
with low t-values is an involved question, see, e.g., [7, 13]. Due to the important role of
the t-value, one sometimes also considers a slightly refined notion of a (t,m, s)-net, which
is then referred to as a ((tu)u⊆[s],m, s)-net. The latter notion means that for any u 6= ∅,
u ⊆ [s], the projection of the net is a (tu,m, |u|)-net.

The most common method to obtain (t,m, s)-nets are so-called digital constructions,
yielding digital (t,m, s)-nets. These work as follows. Let b be a prime number and recall
that Fb denotes the finite field with b elements. We identify this set with the integers
{0, 1, . . . , b− 1}. We denote the (unique) b-adic digits of some n ∈ N by ~n ∈ FN

b , ordered
from the least significant, that is n = ~n · (1, b, b2, . . .). Here, the sum is always finite as
there are only finitely many non-zero digits in ~n. Thus, with a slight abuse of notation we
write ~n ∈ Fmb if n < bm. Analogously, we denote the b-adic digits of y ∈ [0, 1) by ~y ∈ FN

b ,
i.e. y = ~y · (b−1, b−2, . . .), with the additional constraint that ~y does not contain infinitely
many consecutive entries equal to b− 1.

Given generating matrices C(j) =
(
C

(j)
p,q

)m
p,q=1

∈ Fm×mb for j = 1, . . . , s, a digital net is
defined as Pm({C(j)}j) := {y0, . . . ,ybm−1}, where yn = (y1,n, . . . , ys,n) ∈ [0, 1)s,

~yj,n := C(j)~n and yj,n = ~yj,n · (b−1, b−2, . . . , b−m). (11)

From this definition, given reduction indices w, one can construct a reduced digital net by
setting the last min(wj ,m) rows of C(j) to 0. To be more precise,

Ĉ(j)
p,q :=

{
C

(j)
p,q if p ∈ {1, . . . ,m−min(wj ,m)},

0 if p ∈ {m−min(wj ,m) + 1, . . . ,m},
(12)
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and applying (11) with the latter choice Ĉ(j) =
(
Ĉ

(j)
p,q

)m
p,q=1

of the generating matrices.

Note that Ĉ(j) is just the zero matrix if j > s∗. For the reduced digital net, we then write
Pm({Ĉ(j)}j) := {z0, . . . ,zbm−1}.

The construction (12) allows us to generate a reduced digital net for any given digital
net.

Algorithm 3 Computation of a reduced digital net

Input: Prime b, generating matrices C(j) ∈ Fm×mb , j = 1, . . . , s, reduction indices 0 =
w1 ≤ w2 ≤ · · · ≤ ws.
Set y0 = (0, . . . , 0)
for j = 1, . . . , s do

for n = 0, 1, . . . , bm − 1 do
Compute ~zj,n = Ĉ(j)~n, with the choice Ĉ(j) from (12).
Set zj,n = ~zj,n · (b−1, b−2, . . .)

end for
end for

Return: Pm({Ĉ(j)}j) = {zn = (z1,n . . . , zs,n) ∈ [0, 1)s : n = 0, . . . , bm − 1}.

The advantage of using a reduced digital net is that in component j all the values of
the zj,n are in the set {0, 1/bm−min(wj ,m), 2/bm−min(wj ,m), . . . , 1 − 1/bm−min(wj ,m)}. Since
the digital net has bm points, the values necessarily repeat bmin(wj ,m) times. This can be
used to achieve a reduction in the computation of XA in the following way.

Algorithm 4 Fast reduced matrix product for digital nets

Input: Matrix A ∈ Rs×τ with j-th row vector aj , j = 1, 2, . . . , s, integer m ∈ N, prime
b, reduction indices 0 = w1 ≤ w2 ≤ · · · ≤ ws. Let s∗ ≤ s be the largest index such that
ws∗ < m. Let {yn = (yn,1, yn,2, . . . , yn,s)> ∈ [0, 1)s : n = 0, 1, . . . , bm − 1} be a digital net.

Set Ps∗+1 = 0 ∈ Rbm×τ .
for j = s∗ to 1 do
• Compute the row vectors

ck = k

bm−wj
aj , k = 0, 1, . . . , bm−wj − 1.

• Compute Pj as

Pj = Pj+1 +


cby0,jb

m−wj c
cby1,jb

m−wj c
...

cbybm−1,jb
m−wj c

 ∈ Rb
m×τ .

end for
Set P = P1.

Return: Matrix product P = XA.
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Compared with computing XA directly, Algorithm 4 reduces the number of multi-
plications from O(τbm) to O(τbm−wj ) in coordinate j and to O(τbm∑s∗

j=1 b
−wj ) overall

compared to O(sτbm). The number of additions is the same in both instances.
The difference here to the approach for lattice point sets is that although component j

has bwj repeated values, the repeating pattern in each component is different and so when
we add up the vectors resulting from the different components, we do not have repetitions
in general and so we do not get a reduced number of additions. The analogue to the method
in Section 2.1 for lattice point sets applied to digital nets would be to delete columns of
C(j) (rather than rows as we did in this section). The problem with this approach is that
if we delete columns, then the (t,m, s)-net property of the digital net is not guaranteed
anymore. A special construction of digital (t,m, s)-nets with additional properties would
be needed in this case.

For the case of reduced lattice point sets, we can use Theorem 1 to obtain an error
bound on the performance of the corresponding QMC rule when using (2) to approximate
(1). For the case of reduced digital nets, there is no existing error bound analogous to
Theorem 1. We outline the error analysis in the subsequent section.

3.1 Error analysis

Consider the case of digital nets from Algorithm 3. For this we fix m ∈ N. The weighted
star discrepancy is a measure of the worst-case quadrature error for a node set Pm, with
bm nodes, defined as

D∗bm,γ(Pm) := sup
x∈(0,1]s

max
∅6=u⊆[s]

γu |∆Pm,u(x)| , (13)

where
∆Pm,u(x) := #{(y1, . . . , ys) ∈ Pm : yj < xj , ∀j ∈ u}

bm
−
∏
j∈u

xj . (14)

We additionally write ∆Pm(x) = ∆Pm,[s](x). For all k ∈ {0, . . . , bm − 1}, define ~k =
(~κ0, . . . , ~κm−1) ∈ Fmb its vector of b-adic digits, ordered from the least significant to the
most significant. Moreover, define

ρ(k) =


1, if k = 0,

1
br sin(πκr−1/b) , if k = κ0 + κ1b+ · · ·+ κr−1b

r−1,

with κ0, . . . , κr−2 ∈ {0, 1, . . . , b− 1}, κr−1 ∈ {1, . . . , b− 1}.

In the following proposition, we prove a bound on ∆Pm,u(x).

Proposition 1. Let P̂m := Pm({Ĉ(j)}j) = {z0, . . . ,zbm−1} be generated by Algorithm 3,
and let x ∈ (0, 1]s. Let 0 = w1 ≤ w2 ≤ · · · ≤ ws and let s∗ ∈ [s] be the largest index such
that ws∗ < m. Then for any u ⊆ [s] with u 6= ∅ we have

∣∣∣∆
P̂m,u

(x)
∣∣∣ ≤



1 if u 6⊆ [s∗],

1−
∏
j∈u

(
1− 1

bm−wj

)
+

∑
ku∈N|u|0 \{0}

kj∈{0,...,bm−wj−1}∑
j∈u(Ĉ(j))>~kj≡~0 (mod b)

∏
j∈u

ρ(kj), if u ⊆ [s∗],
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where Ĉ(j) is defined in (12).

To prove Proposition 1, we need the next elementary lemma, extending [7, Lemma
3.18], which can be verified by induction on s.

Lemma 1. Let J be a finite index set and assume uj , vj ∈ [0, 1], |uj − vj | ≤ δj ∈ [0, 1] for
all j ∈ J . Then ∣∣∣∣∣∣

∏
j∈J

uj −
∏
j∈J

vj

∣∣∣∣∣∣ ≤ 1−
∏
j∈J

(1− δj) ≤
∑
j∈J

δj .

Proof of Proposition 1. The bound for the case when u 6⊆ [s∗] is trivial. Hence we can now
focus on the case when u ⊆ [s∗]. We operate along the lines of the proof of [7, Theorem
3.28]. We define the mapping T : [0, 1]|u| → [0, 1]|u| given by

T (xu) = T ((xj)j∈u) = ((Tm−wj (xj))j∈u),

where Tv(x) = dxbveb−v.
Now, let us assume that xu = (xj)j∈u ∈ (0, 1]|u| has been chosen arbitrarily but fixed.

For short, we write xu = (xj)j∈u := T (xu).
Recall that, by the definition of the matrices Ĉ(j), j ∈ {1, . . . , s}, the points zn =

(z1,n, . . . , zs,n) are such that the zj,n have at most m−min(wj ,m) non-zero digits.
Using the triangle inequality we get∣∣∣∆

P̂m,u
(x)
∣∣∣ ≤ ∣∣∣∆

P̂m,u
(x)−∆

P̂m,u
(x)
∣∣∣+ ∣∣∣∆

P̂m,u
(x)
∣∣∣ .

For any zn ∈ P̂m, we denote the b-adic digits of the j-th component zj,n by zj,n,i, i ∈
{1, . . . ,m}. By construction, we see that zj,n,i = 0 for i > m−min{wj ,m}. Hence

P̂m ⊆
{(
h1b
−(m−min{w1,m}), . . . , hsb

−(m−min{ws,m})
)

: hj ∈ N0
}
.

This implies, as xu = T (xu),

#{(z1, . . . , zs) ∈ P̂m : zj < xj , ∀j ∈ u} = #{(z1, . . . , zs) ∈ P̂m : zj < xj , ∀j ∈ u},

and thus

∣∣∣∆
P̂m,u

(x)−∆
P̂m,u

(x)
∣∣∣ =

∣∣∣∣∣∣
∏
j∈u

xj −
∏
j∈u

xj

∣∣∣∣∣∣ =
∏
j∈u

xj −
∏
j∈u

xj ≤ 1−
∏
j∈u

(
1− 1

bm−wj

)
,

where we used Lemma 1 for the last inequality.
Since [0,x) is a disjoint union of intervals of the form

J =
s∏
j=1

[ hj

bm−min(wj ,m) ,
hj + 1

bm−min(wj ,m) ),

an application of [7, Lemma 3.9] implies that χ̂[0,x)(k) = 0 for all k ∈ Ns0 \ {0} such that
kj ≥ bm−min(wj ,m) for at least one j. Here χ[0,x) denotes the indicator function and χ̂[0,x)(k)
are the corresponding Walsh coefficients (we use similar notation as in [7, Chapter 2]). The
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complete analogue of this observation holds if we consider the projection of J , given by
Ju = ∏

j∈u[
hj

bm−min(wj,m) ,
hj+1

bm−min(wj,m) ), the projections xu and ku of x and k, respectively,
and the projections zn,u of the points zn in P̂m. Then, [7, Lemmas 3.29 and 4.75] yield

∣∣∣∆
P̂m,u

(x)
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
1
bm

∑
ku∈N|u|0 \{0}

kj∈{0,...,bm−wj−1}

χ̂[0,xu)(ku)
bm−1∑
n=0

walku(zn,u)

∣∣∣∣∣∣∣∣∣∣∣
≤

∑
ku∈N|u|0 \{0}

kj∈{0,...,bm−wj−1}

∏
j∈u

ρ(kj)
∣∣∣∣∣ 1
bm

bm−1∑
n=0

walk(zn,u)
∣∣∣∣∣

=
∑

ku∈N|u|0 \{0}
kj∈{0,...,bm−wj−1}∑
j∈u(Ĉ(j))>~kj≡~0 mod b

∏
j∈u

ρ(kj).

This completes the proof.

Let w = (wj)sj=1, 0 = w1 ≤ w2 ≤ · · · ≤ ws, and let P̂m := Pm({Ĉ(j)}j) =
{z0, . . . ,zbm−1} be generated by Algorithm 3. Let u 6= ∅, u ⊆ [s] be given. We then
define the reduced dual net,

P⊥m,u,w({Ĉ(j)}j)

= {ku ∈ N|u|0 : kj ∈ {0, . . . , bm−min(wj ,m) − 1} ∀j ∈ u,
∑
j∈u

(Ĉ(j))>~kj ≡ ~0 mod b},

and we also define the reduced dual net without zero components,

P⊥,∗m,u,w({Ĉ(j)}j)
= {ku ∈ N|u| : kj ∈ {1, . . . , bm−min(wj ,m) − 1} ∀j ∈ u,

∑
j∈u

(Ĉ(j))>~kj ≡ ~0 mod b}.

Furthermore, we let

Rw({Ĉ(j)}j∈u) :=
∑

ku∈P⊥m,u,w({Ĉ(j)}j)\{0}

∏
j∈u

ρ(kj). (15)

Applying Proposition 1 to all projections of P̂m onto the sets u ⊆ [s], u 6= ∅, gives the
following bound on the weighted discrepancy.

Proposition 2. Let m ∈ N, let w be a given set of reduction indices with 0 = w1 ≤ w2 ≤
· · · ≤ ws, let s∗ ∈ [s] be the largest index such that ws∗ < m, and let P̂m := Pm({Ĉ(j)}j) be
generated by Algorithm 3. Then,

D∗bm,γ(P̂m) ≤ max
∅6=u⊆[s]

γu

1 if u 6⊆ [s∗],[
1−∏j∈u

(
1− 1

bm−wj

)
+Rw({Ĉ(j)}j∈u)

]
if u ⊆ [s∗].

(16)
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We will now analyze the expressions occurring in the square brackets in (16) in greater
detail. To this end, we restrict ourselves to product weights in the following, i.e., we assume
weights γu = ∏

j∈u γj with γ1 ≥ γ2 ≥ · · · > 0.
Then, using the second inequality of Lemma 1 yields for the first term for the case

u ⊆ [s∗] in (16),

γu

1−
∏
j∈u

(
1− 1

bm−wj

) ≤ 1
bm
γu
∑
j∈u

bwj ≤ 1
bm

∏
j∈u

γj(1 + bwj ). (17)

For the case u 6⊆ [s∗] in (16), we use that wj ≥ m if j ∈ u \ [s∗], and obtain for
v = u ∩ [s∗] that

γu ≤ γvγu\v
1
bm

∏
j∈u\v

(1 + bwj ) ≤ 1
bm

∏
j∈u

γj(1 + bwj ). (18)

Regarding the remaining term in (16), we show the following lemma.

Lemma 2. Let w be a given set of reduction indices with 0 = w1 ≤ w2 ≤ · · · ≤ ws,
and let P̂m := Pm({Ĉ(j)}j) be generated by Algorithm 3. Assume that the matrices
Ĉ(1), . . . , Ĉ(s) ∈ Fm×mb are the generating matrices of a digital ((tu)u⊆[s],m, s)-net. As
above, let s∗ ∈ [s] be the largest number such that ws∗ < m, and assume that v 6= ∅, v ⊆ [s∗].
Then,

Rw({Ĉ(j)}j∈v)

≤
∑
∅6=p⊆v

btp

bm

1
b

(
b2 + b

3

)|p|
max

(
(m− tp)|p|−1

(|p| − 1)! ,
1
b

)
+
(
b2 − 1

3b

)|p|∏
j∈p

(m− wj)

 .
(19)

Proof. Recall that for each Ĉ(j), j ∈ v, only the first m − wj rows of Ĉ(j) are non-zero.
Consequently,

Rw({C(j)}j∈v) =
∑

kv∈P⊥m,v,w({Ĉ(j)})\{0}

∏
j∈v

ρ(kj)

≤
∑

kv∈P⊥m,v,0({Ĉ(j)})\{0}

∏
j∈v

ρ(kj)

=
∑
∅6=p⊆v

∑
kp∈P⊥,∗m,p,0({Ĉ(j)})

∏
j∈p

ρ(kj). (20)

We use the estimate (sin(x))−1 ≤ (sin(x))−2 for 0 < x < π to estimate ρ(kj) ≤
1

br sin2(πκj,aj−1/b)
for positive kj , where we write kj = κj,0 + κj,1b + · · · + κj,aj−1b

aj−1,
with κj,aj−1 6= 0. Now we can adapt the proof of [7, Lemma 16.40], where we replace

1
b2r

(
1

sin2(πκj,aj−1/b)
− 1

3

)
with 1

br sin2(πκj,aj−1/b)
, and [s] by p to get the result.
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To simplify the notation we prove an upper bound on the inner sum in (20) for the special
case p = [s∗] and assume that the underlying point set generated by {Ĉj}j∈p = {Ĉj}j∈[s∗]
is a digital (t,m, s∗)-net. Then we obtain∑

kp∈P⊥,∗m,p,0({Ĉ(j)})

∏
j∈p

ρ(kj)

=
∑

k[s∗]∈P
⊥,∗
m,[s∗],0({Ĉ(j)})

s∗∏
j=1

ρ(kj)

≤
m−w1∑
a1=1

· · ·
m−ws∗∑
as∗=1

b−a1−···−as∗
ba1−1∑

k1=ba1−1

· · ·
bas∗−1∑

ks∗=bas∗−1︸ ︷︷ ︸
(Ĉ(1))>~k1+···+(Ĉ(s∗))>~ks∗≡~0 (mod b)

s∗∏
j=1

1
sin2(πκj,aj−1/b)

≤
m−w1∑
a1=1

· · ·
m−ws∗∑
as∗=1

b−a1−···−as∗
(
b−1∑
κ=1

1
sin2(πκ/b)

)s∗
×


0 if a1 + · · ·+ as∗ ≤ m− t,
1 if m− t < a1 + · · ·+ as∗ ≤ m− t+ s∗,

ba1+···+as∗−s∗−m+t if a1 + · · ·+ as∗ > m− t+ s∗,

where the second inequality follows from estimating the number of solutions of the linear
system (Ĉ(1))>~k1 + · · · + (Ĉ(s∗))>~ks∗ ≡ ~0 (mod b), which was done in the proof of [7,
Lemma 16.40]. From [7, Corollary A.23] we have ∑b−1

κ=1
1

sin2(πκ/b) = b2−1
3 .

Set

Σ1 :=
(
b2 − 1

3

)s∗ m−w1∑
a1=1

· · ·
m−ws∗∑
as∗=1︸ ︷︷ ︸

m−t+1≤a1+···+as∗≤m−t+s∗

b−a1−···−as∗ ,

Σ2 :=
(
b2 − 1

3

)s∗ m−w1∑
a1=1

· · ·
m−ws∗∑
as∗=1︸ ︷︷ ︸

a1+···+as∗>m−t+s∗

b−s
∗−m+t,

then the inner sum in (20) is bounded by Σ1 + Σ2.
If m− t+ 1− s∗ ≥ 0, then we have

Σ1 =
(
b2 − 1

3b

)s∗ m−w1−1∑
b1=0

· · ·
m−ws∗−1∑
bs∗=0︸ ︷︷ ︸

m−t+1−s∗≤b1+···+bs∗≤m−t

b−b1−···−bs∗

≤
(
b2 − 1

3b

)s∗ m−t∑
`=m−t−s∗+1

b−`
(
`+ s∗ − 1
s∗ − 1

)

≤
(
b2 − 1

3b

)s∗ ∞∑
`=m−t−s∗+1

b−`
(
`+ s∗ − 1
s∗ − 1

)
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≤
(
b2 − 1

3b

)s∗ 1
bm−t−s∗+1

(
m− t
s∗ − 1

)(
b

b− 1

)s∗

=
(
b2 + b

3

)s∗
bt

bm+1
(m− t)s∗−1

(s∗ − 1)! ,

where we used [7, Lemma 13.24] to estimate the infinite sum.
If m− t+ 1− s∗ < 0, then we have

Σ1 ≤
(
b2 − 1

3b

)s∗ ∞∑
`=0

(
`+ s− 1
s− 1

)
b−` ≤

(
b2 − 1

3b

)s∗ (
b

b− 1

)s∗
≤
(
b2 + b

3

)s∗
bt

bm
1
b2 .

For Σ2 we use the estimate

Σ2 ≤
(
b2 − 1

3b

)s∗
bt

bm

m−w1∑
a1=1

· · ·
m−ws∗∑
as∗=1

1 ≤
(
b2 − 1

3b

)s∗
bt

bm

∏
j∈[s∗]

(m− wj).

The argument for the case p = [s∗] can be repeated analogously for all ∅ 6= p ⊆ v in
(20), by adapting notation, and in particular by replacing t by tp. This yields the result
claimed in the lemma, by plugging these estimates into (20).

Inserting the estimates in (17), (18), and (19) into (16) yields the following theorem.

Theorem 4. Let w be a given set of reduction indices with 0 = w1 ≤ w2 ≤ · · · ≤ ws, and
let P̂m := Pm({Ĉ(j)}j) be generated by Algorithm 3. Furthermore, assume product weights
γu = ∏

j∈u γj with γ1 ≥ γ2 ≥ · · · > 0. Then,

D∗bm,γ(P̂m) ≤ max
∅6=u⊆[s]

 1
bm

∏
j∈u

γj(1 + bwj )


+ max
∅6=v⊆[s∗]

γv ∑
∅6=p⊆v

btp

bm

1
b

(
b2 + b

3

)|p|
max

(
(m− tp)|p|−1

(|p| − 1)! ,
1
b

)

+
(
b2 − 1

3b

)|p|∏
j∈p

(m− wj)

 . (21)

We impose that the term

max
∅6=u⊆[s]

 1
bm

∏
j∈u

γj(1 + bwj )


in (21) be bounded by κ/bm for some constant κ > 0 independent of s. Let j0 ∈ N be
minimal such that γj ≤ 1 for all j > j0. Then we impose ∏s

j=1 γj(1 + bwj ) ≤ γj01
∏s
j=1(1 +

γjb
wj ) ≤ κ. Hence it is sufficient to choose κ > γj01 and for all j ∈ [s],

wj := min


logb


(

κ

γ
j0
1

)1/s
− 1

γj


 ,m

 . (22)
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Corollary 1. Let γ be product weights of the form γu = ∏
j∈u γj with γ1 ≥ γ2 ≥ · · · > 0

such that
∑∞
j=1 γj <∞. Let C(1), . . . , C(s) ∈ Fm×mb be the generating matrices of a digital

((tu)u⊆[s],m, s)-net. Let the reduction indices w be chosen according to (22) and let s∗ ∈ [s]
be the largest number such that ws∗ < m. Then there is a constant C > 0 independent of s
and m, such that

D∗bm,γ(Pm({C(j)}j)) ≤
C

bm

+ max
∅6=v⊆[s∗]

γv ∑
∅6=p⊆v

btp

bm

1
b

(
b2 + b

3

)|p|
max

(
(m− t)|p|−1

(|p| − 1)! ,
1
b

)

+
(
b2 − 1

3b

)|p|∏
j∈p

(m− wj)

 .
Remark 1. Note that the choice of the quantities wj in (22) depends on s. For sufficiently
fast decaying weights γj , it is possible to choose the wj such that they do no longer depend
on s. Indeed, suppose, e.g., that γj = j−2. Then we could choose the wj such that, for
some τ ∈ (1, 2),

wj ≤ min
(⌊

logb
(
j2−τ

)⌋
,m
)
.

This then yields

s∏
j=1

(1 + γjb
wj ) ≤ exp

 s∑
j=1

log(1 + γjb
wj )

 ≤ exp

 s∑
j=1

γjb
wj

 ≤ exp(ζ(τ)),

where ζ(·) is the Riemann zeta function. This then yields a dimension-independent bound
on the term ∏s

j=1 γj(1 + bwj ) from above.
Remark 2. The term involving the maximum in the error bound of Corollary 1 crucially
depends on the weights γ and their interplay with the t-values of the projections of P̂m.
In particular, small t-values in combination with sufficiently fast decaying weights should
yield tighter error bounds. However, the analysis of t-values of (t,m, s)-nets is in general
non-trivial (see, e.g., [7]).

4 Reduced Monte Carlo
The idea of reduction is not limited to QMC algorithms, but can also be applied to Monte
Carlo algorithms, as shall be discussed in this section.

Let N = bm for some b,m ∈ N with b ≥ 2. Further let 0 = w1 ≤ w2 ≤ w3 ≤
· · · ≤ ws ≤ ws+1 = m be some integers. Let Nj = Nb−wj = bm−wj and Ns+1 = 1. In
particular, N1 = N . Further we define Mj = Nj/Nj+1 = bwj+1−wj for j = 1, 2, . . . , s − 1
and Ms = Ns = bm−ws . Then Nj = MjMj+1 · · ·Ms−1Ms and any integer 0 ≤ n < Nj can
be represented by n = msNs+1 +ms−1Ns + · · ·+mjNj+1 with 0 ≤ mj < Mj for 1 ≤ j ≤ s.

For each coordinate 1 ≤ j ≤ s we generate Nj i.i.d. samples yj,0, . . . , yj,Nj−1. Different
coordinates are also assumed to be independent.
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Now for 0 ≤ mj < Mj for 1 ≤ j ≤ s let

xj,msNs+1+ms−1Ns+···+m1N2 = yj,msNs+1+···+mjNj+1 . (23)

This means that in coordinate j we only have Nj different i.i.d. samples.

4.1 Computational cost reduction

For each 0 ≤ n < N we need to compute

x1,na1 + x2,na2 + · · ·+ xs,nas,

where aj is the j-th row of A. Using (23) we can write this as
s∑
j=1

yj,msNs+1+···+mjNj+1aj ,

which we need to compute for each 0 ≤ mj < Mj . We can do this recursively in the
following way:

• First compute: zs,ms = ys,msas for 0 ≤ ms < Ms and store the results.

• For j = s− 1, s− 2, . . . , 1 compute:

zj,msNs+1+···+mjNj+1 = yj,msNs+1+···+mjNj+1aj + zj+1,msNs+1+···+mj+1Nj+2

for mj = 0, 1, . . . ,Mj − 1, and store the resulting vectors.

Computing the values zs,ms costs O(τNs) operations. Computing zj,msNs+1+···+mjNj+1

costs O (τNj) operations.
Computing all the values therefore costs

O (τ (Ns +Ns−1 + · · ·+N1)) = O
(
τbm

(
b−w1 + b−w2 + · · ·+ b−ws

))
operations.

If ∑∞j=1 b
−wj <∞, then the computational cost is independent of the dimension.

4.2 Error analysis

Since the samples are i.i.d., it follows that the estimator is unbiased, that is,

E(Q(f)) = E(f).

For a given vector x = (x1, . . . , xs)> and u ⊆ [s] let xu = (xj)j∈u and x−u = (xj)j /∈u.
We now consider the variance of the estimator. Let

µu := ExuEx−uEy−u
f =

∫ ∫
f(xuu,x−u) dx−u

∫
f(xu,y−u) dy−u dxu.

For instance, µ∅ = (E(f))2 and µ{1,...,s} =
∫
f2.

In classical Monte Carlo integration, one studies the variance Var(Q(f)) = (µ{1,...,s} −
µ∅)/N . We now show how the reduced MC construction influences the variance.
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Theorem 5. The variance of the reduced Monte Carlo estimator is given by

Var(Q(f)) =
s∑

k=1
µ{k,k+1,...,s}

s∏
j=k

M−1
j

(
1− 1

Mk−1

)
− µ∅
Ms

,

where we set 1− 1
M0

= 1.

Proof. The variance of Q(f) can be written as E(Q2(f)) − (E(Q(f)))2. The last term
(E(Q(f)))2 equals (E(f))2 = µ∅.

We have

Q(f) = 1
M1

M1−1∑
m1=0

· · · 1
Ms

Ms−1∑
ms=0

f(y1,n1 , . . . , ys,ns),

where nj = msNs+1 + · · ·+mjNj+1. Hence

Q2(f) = 1
M2

1

M1−1∑
m1,m′1=0

· · · 1
M2
s

Ms−1∑
ms,m′s=0

f(y1,n1 , . . . , ys,ns)f(y1,n′1 , . . . , ys,n′s)

=
∑

u⊆{1,...,s}

1
N2

∑
f(y1,n1 , . . . , ys,ns)f(y1,n′1 , . . . , ys,n′s),

where the second sum is over all 0 ≤ mj ,m
′
j < Mj such that mj = m′j for j ∈ u and

mj 6= m′j for j /∈ u.
Let 1 ≤ k ≤ s. If mj = m′j for k ≤ j ≤ s, then nj = n′j for k ≤ j ≤ s and if

mk−1 6= m′k−1, then ni 6= n′i for 1 ≤ i < k. In this case

E
(
f(y1,n1 , . . . , ys,ns)f(y1,n′1 , . . . , ys,n′s)

)
= µ{k,k+1,...,s}.

The number of such instances is given by ∏s
j=kMj(M2

k−1 −Mk−1)∏k−2
j=1 M

2
j . Since N =

M1M2 · · ·Ms, we obtain ∏s
j=kMj(M2

k−1 −Mk−1)∏k−2
j=1 M

2
jN
−2 = ∏s

j=kM
−1
j (1−M−1

k−1).
If ms 6= m′s we obtain that

E
(
f(y1,n1 , . . . , ys,ns)f(y1,n′1 , . . . , ys,n′s)

)
= µ∅.

This case occurs (M2
s −Ms)

∏s−1
j=1 M

2
j times, and therefore (M2

s −Ms)
∏s−1
j=1 M

2
jN
−2 =

1−M−1
s .

Using the linearity of expectation we obtain the formula.

5 Numerical experiments
In this section we give exemplary numerical results regarding the use of reduced rank-1
lattice point sets for matrix products, as outlined in Section 2.
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5.1 Reduced matrix-vector products

In each case, we compute the generating vectors z = (z1b
w1 , . . . , zsb

ws) depending on the
reduction indices wj via a reduced CBC construction with product weights γj = 0.7j , as
developed in [2]. For a fair comparison, we do not include in the timings the construction of
z and we average the computing times over 10 runs. Computations are run using MATLAB
2019a on an Octa-Core (Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz) laptop.

As a first example, we illustrate the benefit of Algorithm 1 compared to the standard
matrix-vector product to compute P = XA for A ∈ Rs×τ . In Figure 1 we compare different
combinations of s,m, for the choice of reduction indices wj = min(blog2(j)c ,m) and fixed
b = 2. We repeat the same experiment on Algorithm 2 with the same settings.

In Figures 1–3, the blue graphs show the results for the reduced matrix-matrix product
according to Algorithm 1, the red graphs show the results for the optimized reduced
matrix-matrix product according to Algorithm 2, and the light brown graphs show the
results for a straightforward implementation of the matrix-matrix product without any
adjustments.

We conclude that the computational saving due to Algorithms 1 and 2 is more pro-
nounced for larger m, s. Note that the right plot is in semi-logarithmic scale.
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100

101

102

Figure 1: m = 12, τ = 20, varying s (left) and s = 800, τ = 20, varying m (right).

Next we study in Figure 2 the behavior as the size τ increases. Also here, we see
a clear advantage of Algorithms 1 and 2 over a straightforward implementation of the
matrix-matrix product.
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Figure 2: s = 800, varying τ for m = 12 (left) and m = 16 (right).

When the reduction is less aggressive, that is, wj increases more slowly, the benefit is
still considerable for large s especially for Algorithm 2, see Figure 3.
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Figure 3: m = 12, τ = 20, varying s for wj = min
(⌊

log2(j1/2)
⌋
,m
)
(left) and wj =

min
(⌊

log2(j1/4)
⌋
,m
)
(right).

We now test the reduced matrix-vector product for Monte Carlo integration with respect
to the normal distribution. As an example, we consider the pricing of a basket option [9,
Section 3.2.3]. We define the payoff H(S) = max(1

s

∑s
j=1 Sj(T )−K, 0), where Sj(T ) is the

price of the j-th asset at maturity T . Under the Black and Scholes model with zero interest
rate we have Sj(T ) = Sj(0) exp(−Σjj/2T + Wj

√
T ), where Wj = LZ, Z ∼ N (0, Ids×s)

and LLT = Σ is the covariance matrix of the random vector S = (S1, . . . , Ss).
We set Sj(0) = 100 for all j, s = 10, T = 1, strike price K = 110, and as the covariance
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matrix we pick σ = 0.4, ρ = 0.2 and

Σ =


σ ρ
ρ σ ρ

. . . . . . . . .
ρ σ ρ

ρ σ

 .

We approximate the option price E(S) ≈ 1
bm
∑bm

k=1 Sj(0) exp(−σ/2T + Lxk
√
T ), with xk

random samples from Z. The main work is to compute XL> (recall that X was defined in
(3)) and thus the reduced matrix-vector multiplication can be beneficial in this example.
Results for different choices of reduction indices wj are displayed in Figure 4, where we
plot the mean error over R = 5 repetitions for different values of reduction indices, using
Rbm,m = 25, Monte Carlo samples for the reference value. Note that the performance of
QMC methods in this illustration appears to be not particularly strong as compared to
standard Monte Carlo, as we consider a setting without coordinate weights, which usually
is unfavorable for QMC methods.

10 12 14 16 18 20 22 24
10 -4

10 -3

10 -2

10 -1

10 0

Figure 4: Option pricing example: standard Monte Carlo (corresponding to c = 0, compared
with reduced Monte Carlo for wj = min (blog2(jc)c ,m), c ∈ {1, 0.5}.
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