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Abstract

This work is devoted to design and study efficient and accurate numerical schemes to ap-

proximate a chemo-attraction model with consumption effects, which is a nonlinear parabolic

system for two variables; the cell density and the concentration of the chemical signal that

the cell feel attracted to.

We present several finite element schemes to approximate the system, detailing the main

properties of each of them, such as conservation of cells, energy-stability and approximated

positivity. Moreover, we carry out several numerical simulations to study the efficiency of

each of the schemes and to compare them with others classical schemes.
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proximated positivity.

1 Introduction

Chemotaxis can be defined as the orientation or movement of an organism or cell in relation
to chemical agents. This movement can be towards a higher (attractive) or lower (repulsive)
concentration of the chemical substance. At the same time, the presence of living organisms
can produce or consume the chemical substance, producing nontrivial dynamics of the living
organisms and chemical substances. In 1971, Keller and Segel [16] introduced the model (1)
that can be considered the first realistic attempt to capture the chemotactic response of bacteria
towards chemical agents in a bounded spatial domain Ω ⊂ R

d (d = 1, 2, 3) during a time interval
[0, T ], where the cell population density u(x, t) moves towards the concentration of the chemical
substance v(x, t), which is produced by the cell population with a rate µ > 0:

{

ut −∆u+ χ∇ · (u∇v) = 0 ,

α vt −∆v + v − µu = 0 ,
(1)

where χ > 0 denotes the chemo-sensitivity parameter, α ∈ {0, 1} determines the character of the
chemical equation, being parabolic when α = 1 and elliptic when α = 0. Since then, many models
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following the same spirit have been proposed and studied mathematically (check [3, 14, 15] for
reviews on the development of this topic during the last years).
In this work we focus on developing numerical schemes for a system where the cell population
is attracted by the chemical substance, which is consumed by the cell population with a rate
proportional to the amount of living organisms:

{

ut −∆u+ χ∇ · (u∇v) = 0

vt −∆v + µu v = 0 .
(2)

There are several works that have focused on studying the analytical properties of model (2).
In [20] the corresponding d-dimensional problem was studied for d ≥ 2, proving global (in time)
regularity and uniqueness whether the following criterium holds

0 < χ ≤ 1

6(d+ 1)‖v0‖L∞(Ω)
.

For 3-dimensional domains and arbitrarily large initial data, in [21] it is showed that this type
of system admits at least one global weak solution. Moreover, it is asserted that such solutions
at least eventually (i.e., for large enough times) become bounded and smooth, and that they
approach the unique relevant constant steady state in the large time limit.

In recent times several groups have focused on numerical analysis for this type of attractive
chemotaxis models with consumption/production of chemical substance and many relevant works
have been produced. It is not our intention to provide a detailed review of all the works that have
been produced in recent years, but rather to provide the reader with some interesting works that
are related with the work that we present in this text. In [6] the authors investigate nonnegativity
of exact and Finite Element (FE) numerical solutions to a generalized Keller-Segel model, under
certain standard assumptions. Marrocco presented in [17] a new formulation of the Keller-Segel
system, based on the introduction of a new variable and he approximated this new system via a
mixed FE technique. Saito in [19] focused on presenting an error analysis of an approximation for
the Keller-Segel system using a semi-implicit time discretization with a time-increment control
and Baba-Tabata’s conservative upwind FE approximation [1], that allows to show the positivity
and mass conservation properties of the scheme.

Several works have also focused on numerical schemes to approximate the simplified Keller-Segel
system, where the parabolic equation for the concentration of the chemical substance is replaced
by an elliptic one (taking α = 0 in (1)), arriving at a parabolic-elliptic system. Filbet presented
in [9] a well-posed Finite Volume scheme to discretize the simplified Keller-Segel, providing a
priori estimates and convergence. In [25] a Finite Volume approximation of the simplified Keller-
Segel system is also considered, presenting a linear scheme that satisfies both positivity and mass
conservation, deriving some inequalities on the discrete free energy and under some assumptions
they establish error estimates in Lp norm with a suitable p > 2 for the 2-dimensional case. A
simplified Keller-Segel system with additional cross diffusion is presented in [4]. The main feature
of this model is that there exists a new entropy functional yielding gradient estimates for the
cell density and chemical concentration. The authors also present in [4] a Finite Volume scheme
that satisfy positivity preservation, mass conservation, entropy stability, and (under additional
assumptions) entropy dissipation. Moreover, the existence of a discrete solution and its numerical
convergence to the continuous solution is proved.
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There are more related models that have been studied recently. For instance, one related type
of models are the ones that focus on repulsive chemotaxis systems with the cell population
producing chemical substance, that is, a system like (1) with χ < 0. We refer the reader to
[11, 12] (and the references therein) where the authors focused on studying unconditionally
energy stable and mass-conservative FE numerical schemes, by introducing the gradient of the
chemical concentration variable, for chemo-repulsive systems with quadratic (−µu2) and linear
production terms (−µu) in (1)2, respectively.

On the other hand, it has been experimentally observed [22] that the chemotactic motion in liquid
environments affects substantially the migration of cells and this fact has increased the interest
of studying the coupling of chemotaxis systems with the Navier-Stokes equations. For instance,
Winkler in [23] has studied the d-dimensional problem (d = 2, 3) of attractive chemotaxis models
with consumption of chemical substance, showing that under suitable regularity assumptions on
the initial data, the chemotaxis-Navier-Stokes system admits a unique global classical solution
(d = 2) and the simplified chemotaxis-Stokes system possesses at least one global weak solution
(d = 3). Moreover, in [7] the authors construct numerical approximations for the same type of
system. The presented approximations are based on using the Finite Element method, obtaining
optimal error estimates and convergence towards regular solutions. Finally, we would like to
mention another related work [13], where Finite Elements together with singular potentials have
been used in the context of the Cahn-Hilliard equation to achieve energy-stable numerical schemes
that satisfy approximated positivity properties.

This work is organized as follows. In Section 2 we present the attractive chemotaxis with con-
sumption model that we have considered, its main properties and a reformulation that will allow
us to design numerical schemes satisfying some energy laws, getting in particular an energy
stable scheme in one-dimensional domains. The numerical schemes are developed and studied
in Section 3. In Section 4 we report some numerical experiments that we have performed to
study the efficiency and the accuracy of the schemes and to compare them with others classical
schemes. Finally, the conclusions of our work are presented in Section 5.

2 The model

In this work, we consider an attractive-consumption chemotaxis model in a bounded domain
Ω ⊂ R

d (d = 1, 2, 3) given by the following parabolic system of PDEs:



























ut −∆u+ χ∇ · (u∇v) = 0 in Ω , t > 0 ,

vt −∆v + µu v = 0 in Ω , t > 0 ,

∇u · n = ∇v · n = 0 on ∂Ω , t > 0 ,

u(0,x) = u0(x) ≥ 0, v(0,x) = v0(x) > 0 in Ω ,

(3)

where u(t,x) ≥ 0 denotes the cell population density and v(t,x) > 0 denotes the concentration
of the chemical substance that the cell feel attracted to and n denotes the outward normal
vector to ∂Ω. Moreover, (u0, v0) represents the initial density and concentration, χ > 0 is the
chemo-sensitivity coefficient and µ > 0 is the consumption one.
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2.1 Properties of the model

It is known that any regular enough solution (u, v) of problem (3) satisfies the following proper-
ties:

1. Positivity of u and strictly positivity of v ([20])
If u0 ≥ 0 in Ω then u(t, ·) ≥ 0 in Ω for any t > 0. Assuming u ∈ L∞((0,∞) × Ω) and
v0 ≥ vmin

0 > 0 in Ω then v(t, ·) > 0 in Ω for any t > 0. In fact, one has the lower bound

v(t, ·) ≥ vmin
0 exp(−µ t ‖u‖L∞((0,t)×Ω)).

2. Maximum principle for v ([8])
One has 0 ≤ v(t, ·) ≤ ‖v0‖L∞(Ω) in Ω for any t > 0. In fact, ‖v(t, ·)‖L∞(Ω) is a non-
increasing function.

3. Cell density conservation. Integrating equation (3)1,

d

dt

(
∫

Ω
u(t, ·)

)

= 0 , that is,

∫

Ω
u(t, ·) =

∫

Ω
u0 , ∀ t > 0 .

4. Weak regularity for v. Testing equation (3)2 by v, one has

d

dt
‖v(t, ·)‖2L2(Ω) + ‖∇v(t, ·)‖2L2(Ω) ≤ 0 . (4)

5. Estimate of a singular functional. Assuming u(t, x) > 0 for all (t, x), one has the time
differential inequality

d

dt

(
∫

Ω
G(u)dx

)

+
1

2

∫

Ω

1

u2
|∇u|2dx ≤ χ2

2

∫

Ω
|∇v|2dx , (5)

where
G(u) = − log(u) + C

is a convex function and the right hand side of (5) belongs to L1(0,+∞) owing to (4).
Relation (5) is derived testing equation (3)1 by G′(u) = −1/u,

d

dt

(
∫

Ω
G(u)dx

)

+

∫

Ω

1

u2
|∇u|2dx = −χ

∫

Ω

1

u
∇u · ∇v dx ,

hence (5) holds by using Hölder inequality. This differential inequality (5) is analogous to
the one derived in [24] for a Keller-Segel system with singular sensitivity.

6. Energy law [23]. Assuming u(t, x) > 0 for all (t, x), one has the energy law:

d

dt
E(u, v) + µD1(u) + χD2(v) + µχD3(u, v) = χR(v) , (6)
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where

E(u, v) :=
µ

4

∫

Ω
F (u)dx+

χ

2

∫

Ω
|∇(

√
v)|2dx , with F ′(u) = log(u),

D1(u) :=
1

4

∫

Ω

1

u
|∇u|2dx =

∫

Ω
|∇(

√
u)|2dx ≥ 0 ,

D2(v) :=

∫

Ω
(∆(

√
v))2dx+

1

3

∫

Ω

1

v
|∇(

√
v)|4dx ≥ 0 ,

D3(u, v) :=
1

2

∫

Ω
u |∇(

√
v)|2dx ≥ 0 ,

R(v) := −2χ

3

∫

Ω

1√
v

[

∇ ·
(

∣

∣∇(
√
v)
∣

∣

2∇(
√
v)
)

− 3
(

∇(
√
v)
)t
(

∇
(

∇(
√
v)
)

)t

∇(
√
v)
]

dx ,

Energy law (6) can be proved following the same ideas presented in Theorem 2.2 below.
Moreover, in the particular case of 1-dimensional domains, the energy E(u, v) is dissipative
due to the right-hand term of (6) vanishes. In fact,

R(v) = −2χ

3

∫

Ω

1√
v

[(

(

(
√
v)x
)3
)

x
− 3
(

(
√
v)x
)2
(
√
v)xx

]

dx = 0 .

On the contrary, in higher dimensions it is not clear the sign of R(v), preventing the
possibility of obtaining a dissipative energy law without introducing constraints on the
physical parameters.

Remark 2.1. Notice that functional G(u) = − log(u) +C in the inequality (5) is more singular
(for u = 0) than the energy potential F (u) = u log(u) − u + 1 in (6). These singularities will
be crucial to prove the approximate positivity of some of the numerical schemes presented in this
work. A similar idea has been considered in [13] in the context of the Cahn-Hilliard equation.

2.2 Reformulation of the problem. The (u, v,σ) problem

In order to develop a numerical scheme satisfying a discrete version of the energy estimate (6),
we need to reformulate problem (3). The idea is to rewrite the v-equation (3)2 multiplying it by
w′(v) = 1/(2

√
v) (hence w(v) =

√
v), as follows

(
√
v)t −

∆((
√
v)2)

2
√
v

+
µ

2
u
√
v = 0 .

Then, by introducing the notation w :=
√
v > 0 (due to the positivity of v) we obtain the PDE

wt −
1

w
|∇w|2 − ∆w +

µ

2
uw = 0 . (7)

Now we can take the gradient with respect to x of (7) to obtain:

(∇w)t +
1

w2
|∇w|2∇w − 1

w
∇
(

|∇w|2
)

− ∇∆w +
µ

2
u∇w +

µ

2
w∇u = 0 . (8)

Introducing a new unknown σ := ∇w = ∇(
√
v) we can reformulate three of the terms in (8):

• Use the definition of σ to rewrite the term
1

w2
|∇w|2∇w as

1

w2
|∇w|2∇w =

1

3v
|σ|2σ +

2

3v
|σ|2∇(

√
v) .
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• Use σ and a truncation of u to rewrite term
µ

2
∇wu as

µ

2
σ u+, where u+ denotes the

positive part of u (u+(x) = max{u(x), 0}).

• Rewrite the term
µ

2
w∇u as

µ

2

√
v ∇u.

Using these considerations, we formally arrive at the following (u, v,σ) reformulation of the
problem (3):































































ut −∆u+ 2χ∇ · (u√v σ) = 0 in Ω , t > 0 ,

vt −∆v + µu v = 0 in Ω , t > 0 ,

σt −
2√
v
(∇σ)tσ +

1

3v
|σ|2σ +

2

3v
|σ|2∇(

√
v)

−∇(∇ · σ) + rot(rotσ) +
µ

2
σ u+ +

µ

2

√
v ∇u = 0 in Ω , t > 0 ,

∇u · n = ∇v · n = σ · n = (rotσ × n)
∣

∣

tang
= 0 on ∂Ω , t > 0 ,

u(x, 0) = u0(x) ≥ 0 , v(0,x) = v0(x) > 0 ,σ(x, 0) = σ0(x) in Ω ,

(9)

where rotσ denotes the well-known rotational operator (also called curl) which is scalar for 2D
domains and vectorial for 3D ones. We have introduced the term rot(rotσ)(= rot(rot∇v) = 0)
as in [12] to complete the H

1
σ-norm of σ, where:

H
1
σ(Ω) := {σ ∈ H

1(Ω) : σ · n = 0 on ∂Ω} ,

and
‖σ‖2

H
1
σ

:= ‖σ‖2
L

2 + ‖rotσ‖2
L

2 + ‖∇ · σ‖2L2 ,

with ‖ · ‖
H

1
σ

being equivalent to ‖ · ‖
H

1 .

Theorem 2.2. Any regular enough solution (u, v,σ) of (9) satisfy the following energy law:

d

dt
E(u,σ) + µD1(u) + χD2(v,σ) + χµD3(u,σ) = R(v,σ) , (10)

where

E(u,σ) :=
µ

4

∫

Ω
F (u)dx +

χ

2

∫

Ω
|σ|2dx , D1(u) :=

1

4

∫

Ω

1

u
|∇u|2 dx ,

D2(v,σ) :=

∫

Ω

(

|∇ · σ|2 + |rotσ|2
)

dx+
1

3

∫

Ω

1

v
|σ|4dx , D3(u,σ) :=

1

2

∫

Ω
u+ |σ|2dx .

R(v,σ) := −2χ

3

∫

Ω

1√
v

(

∇ · (|σ|2σ)− 3σt(∇σ)tσ
)

dx ,

(11)
with D1(u), D2(v, σ), D3(u, σ) ≥ 0.

Proof. The key argument of this proof is to test by functions that allow us to relate the chemotaxis
term in (9)1 with one of the consumption terms in (9)2. With this idea in mind, we test (9)1 by
µ

4
F ′(u) to obtain

d

dt

(

µ

4

∫

Ω
F (u)dx

)

+ µD1(u) − χµ

2

∫

Ω
u
√
v σ · ∇(F ′(u)) dx = 0 . (12)

6



Testing (9)3 by χσ we obtain

d

dt

(

χ

2

∫

Ω
|σ|2dx

)

− 2χ

∫

Ω

1√
v
σ
t(∇σ)tσ dx +

χ

3

∫

Ω

1

v
|σ|4dx +

2χ

3

∫

Ω

1

v
|σ|2∇(

√
v) · σdx

+χ

∫

Ω
(∇ · σ)2dx + χ

∫

Ω
|rotσ|2dx +

χµ

2

∫

Ω
u+ |σ|2dx +

χµ

2

∫

Ω

√
v∇u · σ dx = 0 .

(13)
Using integration by parts we rewrite the fourth term of (13) as

2χ

3

∫

Ω

1

v
|σ|2∇(

√
v) · σdx = −2χ

3

∫

Ω
|σ|2∇

(

1√
v

)

· σdx =
2χ

3

∫

Ω

1√
v

(

∇ · (|σ|2σ)
)

dx ,

Finally, using ∇u = u∇(ln(u)) = u∇(F ′(u)) and adding equations (12) and (13), the terms
∫

Ω u
√
v σ · ∇(F ′(u)) dx and

∫

Ω

√
v∇u · σ dx cancel, and the desired relation (10) holds.

Corollary 2.3. In the particular case of considering one-dimensional domains (1D), the right
side of relation (10) vanishes, implying the following energy dissipative law of the system:

d

dt
E(u, σ) + µD1(u) + χD2(v, σ) + χµD3(u, σ) = 0 . (14)

Proof. Since, in one-dimensional domains variable σ is a scalar quantity, then the term R(v, σ)
reads:

R(v, σ) = −2χ

3

∫

Ω

1√
v

(

∂x(σ
3)− 3σ(∂xσ)σ

)

dx = 0 . (15)

3 Numerical Schemes

We discretize the time interval [0, T ] using Finite Differences and the spatial domain Ω ⊂ R
d

d = 1, 2, 3 using Finite Elements with a shape-regular and quasi-uniform family of triangulations
of Ω, denoted by {Th}h>0. For the sake of simplicity we consider a constant time step ∆t := T/N ,
where N represents the total number of time intervals considered and we denote by δt the
(backward) discrete time derivative

δtu
n+1 :=

un+1 − un

∆t
.

In our analysis we will consider C0-FE spaces of order 1 (denoted by P1) for the approximation
of (u, v,σ) via the discrete spaces Uh, Vh and Σh. Additionally, we consider in our schemes
mass-lumping ideas [5] to help us achieve positivity of the unknowns in some of the proposed
schemes. In order to do that, we introduce the discrete semi-inner product on C0(Ω) and its
induced discrete seminorm:

(φ,ψ)h :=

∫

Ω
Ih(φψ) and |φ|h :=

√

(φ, φ)h . (16)

with Ih(f(x)) denoting the nodal P1-interpolation of the function f(x).

7



3.1 UV-schemes

In this section we present three different schemes to approximate the weak formulation that
appears when we test (3)1 and (3)2 by regular enough test functions ū and v̄, that is, find
(u, v) : [0, T ] × Ω 7→ R

2 such that for all (ū, v̄) : Ω 7→ R
2:

{

(ut, ū) + (∇u,∇ū)− χ (u∇v,∇ū) = 0 ,

(vt, v̄) + (∇v,∇v̄) + µ (uv, v̄) = 0 .
(17)

3.1.1 Scheme UV

• [Step 1] Given (un, vn) ∈ Uh × Vh, find un+1 ∈ Uh = P1 solving the linear problem:

(

δtu
n+1, ū

)

h
+
(

∇un+1,∇ū
)

− χ
(

un+1∇vn,∇ū
)

= 0 ∀ ū ∈ Uh . (18)

• [Step 2] Given (un+1, vn) ∈ Uh × Vh, find vn+1 ∈ Vh = P1 solving the linear problem:

(

δtv
n+1, v̄

)

h
+
(

∇vn+1,∇v̄
)

+ µ
(

(un+1)+v
n+1, v̄

)

h
= 0 ∀ v̄ ∈ Vh . (19)

Note that scheme UV is linear, decoupled and conservative, because taking ū = 1 in (18),

∫

Ω
un+1dx =

∫

Ω
undx = · · · =

∫

Ω
u0dx =: m0 .

Theorem 3.1 (un+1-problem). Given vn ∈ Vh, assuming ∆t small enough satisfying

∆t <
2

χ2‖∇vn‖∞
, (20)

then there exist a unique solution un+1 ∈ Uh solving (18).

Proof. Since problem (18) is a squared algebraic linear system, it suffices to prove uniqueness
(that implies existence). In fact, it suffices to prove that if u ∈ Uh is a solution of the corre-
sponding homogeneous problem

1

∆t
(u, ū)h + (∇u,∇ū)− χ

(

u∇vn,∇ū
)

= 0,

then u = 0. In fact, testing by ū = u and applying Holder and Young inequalities, one has

1

∆t

∫

Ω
Ih

(

u2
)

dx+
1

2

∫

Ω
|∇u|2dx ≤ χ2

2

∫

Ω
u2|∇vn|2dx ≤ χ2

2
‖∇vn‖∞

∫

Ω
u2dx .

Using the relation
∫

Ω u
2dx ≤

∫

Ω Ih

(

u2
)

dx (see [10]), we obtain

(

1

∆t
− χ2

2
‖∇vn‖∞

)
∫

Ω
u2dx+

1

2

∫

Ω
|∇u|2dx ≤ 0 .

Therefore, assuming hypothesis (20), we have u = 0.
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Theorem 3.2 (vn+1-problem). There exist a unique solution vn+1 ∈ Vh solving (19). Moreover,
if the triangulation {Th} is acute, that is, all angles of the simplices are less or equal than π/2,
then the discrete maximum principle holds, that is,

if vn > 0 then vn+1 > 0, and if vn ≤M then vn+1 ≤M . (21)

Finally, the following weak estimate holds:

∆t
N−1
∑

n=0

∫

Ω
|∇vn+1|2dx ≤

∫

Ω
Ih
(

(v0)2
)

dx . (22)

Proof. Existence and uniqueness. Since problem (19) is linear, it suffices to prove that if
v ∈ Vh is a solution of the homogeneous problem

1

∆t
(v, v̄)h + (∇v,∇v̄) + µ

(

(un+1)+v, v̄
)

h
= 0 ,

then v = 0. Indeed, testing by v̄ = v ∈ Vh we obtain

1

∆t

∫

Ω
Ih

(

v2
)

dx+

∫

Ω
|∇v|2dx+ µ

∫

Ω
Ih

(

(un+1)+v
2
)

dx = 0 .

Thus previous relation implies that v = 0.

Discrete Maximum Principle. Assume that vn > 0. We can define the following problem:
Taking zn := min

x∈Ω
vn > 0, find zn+1 ∈ R such that

zn+1 − zn

∆t
+ µ‖un+1

+ ‖∞zn+1 = 0 ,

that is,

zn+1 =
zn

1 + µ∆t‖un+1
+ ‖∞

> 0 .

Looking at zn+1 as a constant function, ∇zn+1 = 0, then

(

zn+1 − zn

∆t
, v̄

)

h

+ (∇zn+1,∇v̄) + µ
(

‖un+1
+ ‖∞zn+1, v̄

)

h
= 0 , ∀ v̄ ∈ Vh. (23)

Let see that zn+1 solving (23) satisfy zn+1 ≤ vn+1. For this, we define wn+1 = vn+1− zn+1 ∈ Vh
(wn = vn − zn ≥ 0). Subtracting (19) with (23) we obtain:

(

wn+1 − wn

∆t
, v̄

)

h

+ (∇wn+1,∇v̄) + µ
(

un+1
+ wn+1 + (un+1

+ −‖un+1
+ ‖∞)zn+1, v̄

)

h
= 0 , ∀ v̄ ∈ Vh.

Testing by v̄ = Ih(w
n+1
− ) ∈ Vh (with w− := min{w, 0}) and using the relation Ih(v v−) =

Ih((v−)
2):

1

∆t

∫

Ω
Ih
(

(wn+1
− )2

)

dx− 1

∆t

∫

Ω
Ih(w

nwn+1
− )dx+ (∇Ih(wn+1

+ ) +∇Ih(wn+1
− ),∇Ih(wn+1

− ))

+µ

∫

Ω
Ih

(

zn+1(un+1
+ − ‖un+1

+ ‖∞)wn+1
−

)

dx+ µ

∫

Ω
Ih

(

un+1
+ (wn+1

− )2
)

dx ≤ 0 .

9



Using that we are considering an acute triangulation, that is, the interior angles of the triangles
or tetrahedra are less or equal than π/2, we can deduce [5]:

(∇Ih(wn+1
+ ),∇Ih(wn+1

− )) ≥ 0 .

Hence, due to the positivity of all the integrands, we can deduce that Ih(w
n+1
− ) = 0 so wn+1 ≥ 0

and therefore vn+1 = wn+1 + zn+1 ≥ zn+1 > 0.

On the other hand, we can rewrite (19) as

1

∆t
(vn+1−M, v̄)h+

(

∇(vn+1−M),∇v̄
)

+µ
(

(un+1)+(v
n+1−M+M), v̄

)

h
=

1

∆t
(vn−M, v̄)h (24)

for all v̄ ∈ Vh. Then, testing (24) by v̄ = Ih((v
n+1 −M)+) (and using that vn ≤M) we obtain

1

∆t

∫

Ω
Ih

[

(

(vn+1 −M)+
)2
]

dx+

∫

Ω

[

∇
(

Ih(v
n+1 −M)+

)

]2
dx

+

∫

Ω
∇
(

Ih(v
n+1 −M)−

)

· ∇
(

Ih(v
n+1 −M)+

)

dx

+µ

∫

Ω
Ih

(

(un+1)+
(

[(vn+1 −M)+]
2 +M(vn+1 −M)+

)

)

dx

≤ 1

∆t

∫

Ω
Ih((v

n −M)(vn+1 −M)+)dx ≤ 0 .

Using that the interior angles of the triangles or tetrahedra are less or equal than π/2 we can
deduce

∫

Ω
∇
(

Ih(v
n+1 −M)−

)

· ∇
(

Ih(v
n+1 −M)+

)

dx ≥ 0 .

that implies Ih
[(

(vn+1 −M)+
)2]

= 0 and therefore vn+1 ≤M .

Weak Estimate. Testing (19) by vn+1 we obtain

1

2∆t

∫

Ω
Ih
(

(vn+1)2
)

dx− 1

2∆t

∫

Ω
Ih
(

(vn)2
)

dx+
1

2∆t

∫

Ω
Ih
(

(vn+1 − vn)2
)

dx

+

∫

Ω
|∇vn+1|2dx+

∫

Ω
Ih
(

(un+1)+(v
n+1)2

)

dx = 0 .

Adding the previous relation for n from 0 to N − 1, and multiplying by 2∆t

∫

Ω
Ih
(

|vN |2
)

dx+ 2∆t

N−1
∑

n=0

∫

Ω
|∇vn+1|2dx ≤

∫

Ω
Ih
(

|v0|2
)

dx ,

and estimate (22) is derived.
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3.1.2 Scheme UV-ND (Nonlinear Diffusion)

The main idea of this scheme is to rewrite the diffusion term in a way that we can use it for
obtaining a discrete version of inequality (5). In order to do that, for any ε > 0 small enough, we
introduce a new functional Gε(u) such that is a C2-approximation of G(u). This can be achieved
by defining

G′′
ε(u) :=















1
ε2

if u < ε ,

1
u2 if ε ≤ u ≤ 1

ε
,

ε2 if 1
ε
≤ u ,

(25)

with G′
ε(u), Gε(u) being the corresponding integral functions such that G′

ε(u) = −1/u and
Gε(u) = − log(u) + 1

ε
when ε ≤ u ≤ 1/ε, assuring that Gε(u) ≥ 0 for all u ∈ R.

Then the scheme UV-ND reads:

• [Step 1] Find un+1 ∈ Uh = P1 solving the nonlinear problem:

(

δtu
n+1, ū

)

h
+
(

(un+1)2∇(IhG
′
ε(u

n+1)),∇ū
)

− χ
(

un+1∇vn,∇ū
)

= 0 ∀ ū ∈ Uh . (26)

Note that (26) is nonlinear and conservative (taking ū = 1 one has
∫

Ω u
n+1dx =

∫

Ω u
ndx).

• [Step 2] Find vn+1 ∈ Vh = P1 solving the same linear problem (19) presented in
scheme UV. Consequently, Theorem 3.2 also holds for this scheme.

Notice that parameter ε > 0 has been introduced for the spatial approximation, and then it will
be taken as ε = ε(h) → 0 as h→ 0.

Theorem 3.3. If (un+1, vn+1) solves scheme UV-ND, then the following discrete inequality
holds:

δt

(
∫

Ω
IhGε(u

n+1)dx

)

+
1

2

∫

Ω
(un+1)2

∣

∣∇
(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx ≤ χ2

2

∫

Ω
|∇vn+1|2dx . (27)

Proof. By using Taylor expansion and the convexity of Gε, due to G′′
ε(u) ≥ 0 for all u, we have

∫

Ω
Ih
(

(un+1 − un)G′
ε(u

n+1)
)

dx ≥ (Gε(u
n+1), 1)h − (Gε(u

n), 1)h , (28)

which is nonnegative because G′
ε(u) is an increasing function (G′

ε(u) ∼ −1/u). Therefore, testing
(26) by IhG

′
ε(u

n+1) we have

δt

(
∫

Ω
IhGε(u

n+1)dx

)

+

∫

Ω
(un+1)2

∣

∣∇
(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx ≤ χ

∫

Ω
un+1∇

(

IhG
′
ε(u

n+1)
)

·∇vn+1 dx .

Finally, by using Hölder inequality we arrive at expression (27).

Corollary 3.4. If (un+1, vn+1) solves scheme UV-ND, the following estimates hold

∫

Ω
IhGε(u

n+1)dx ≤ C , ∀n , (29)

∆t

N−1
∑

n=0

∫

Ω
(un+1)2

∣

∣∇
(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx ≤ C , (30)

11



where C is a constant that bounds both
∫

Ω IhGε(u
0)dx and

∫

Ω Ih
(

(v0)2
)

dx. Moreover, the follow-
ing estimates hold

∫

Ω

(

Ih(u
n
−)
)2
dx ≤ C ε2 and ‖un‖L1 ≤ m0 +Cε ∀n ≥ 1 . (31)

Proof. Adding up (27), using estimate (22) and Gε(u) ≥ 0 for all u ∈ R
d, we can derive the

estimates (29) and (30). On the other hand, estimate (31) is deduced from the inequality

1

ε2
(u−)

2 ≤ Gε(u) , ∀u ∈ R ,

following the same arguments presented in [12].

Remark 3.5. From estimate (31), we can say that scheme UV-ND satisfies an approximate
positivity property for un, because Ih(u

n
−) → 0 in L2(Ω) as ε→ 0, with O(ε) accuracy rate.

3.1.3 Scheme UV-NS (Nonlinear Sensitivity)

In this section we present another scheme developed to satisfy a discrete version of inequality
(5). The key point now is to rewrite the sensitivity term in a nonlinear way introducing d new
functionals Λi

ε(u) : Uh → P0 (i = 1, . . . , d) such that they satisfy

(

Λi
ε(u)∂xi

(

IhG
′
ε(u)

)

)2
= ∂xi

u∂xi

(

IhG
′
ε(u)

)

∀ i = 1, . . . , d , (32)

that is, Λi
ε(u) are constant by elements functions such that (32) holds in each element of the

triangulation. In fact, (32) holds in any dimension by imposing the constraint of considering
a structured mesh and the choice of Uh = P1, as it has been done with related expressions in
[2, 12, 13].

Remark 3.6 (How to construct Λi
ε(u)). In the one-dimensional case, the domain Ω = [a, b] can

be splitted into N subintervals named Ij with Ij = [xj , xj+1] (1 ≤ j ≤ N), being xj the nodes of
the partition. Moreover, the discrete derivative with respect to x can be defined as the vector of
length N with components:

δxu
∣

∣

Ij
=
uj+1 − uj

|Ij |
,

with uj ∼ u(xj) and |Ij | denoting the length of the interval Ij. Then, in the one-dimensional
case, Λi

ε(u) can be constructed in the following way:

Λ1
ε(u)

∣

∣

Ij
=



















±
√

δx(u)
∣

∣

Ij
δx
(

IhG′
ε(u)

)∣

∣

Ij

δx
(

IhG′
ε(u)

)∣

∣

Ij

if uj 6= uj+1 ,

uj if uj = uj+1 ,

(33)

and choosing the sign ± such that sign(Λ1
ε(u)

∣

∣

Ij
) = sign((uj+1 + uj)/2) .

The definition (33) can be extended to higher dimensional domains just by using the same con-
struction for each functional Λi

ε(u), where Ij represents now the intervals in the corresponding
i-direction.

Now, we state the new scheme UV-NS as:

12



• [Step 1] Find un+1 ∈ Uh = P1 solving the nonlinear problem:

(

δtu
n+1, ū

)

h
+
(

∇un+1,∇ū
)

− χ
(

Λε(u
n+1)∇vn,∇ū

)

= 0 ∀ ū ∈ Uh , (34)

with Λε(u
n+1) = diag(Λi

ε(u
n+1))i=1,...,d. Note that (34) is nonlinear and conservative.

• [Step 2] Find vn+1 ∈ Vh = P1 solving the same linear problem (19) presented in
scheme UV.

Theorem 3.7. If (un+1, vn+1) solves scheme UV-NS, then the following discrete inequality
holds:

δt

(
∫

Ω
IhGε(u

n+1)dx

)

+
1

2

∫

Ω

∣

∣Λε(u
n+1)∇

(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx ≤ χ2

2

∫

Ω
|∇vn+1|2dx . (35)

Proof. Testing (34) by IhG
′
ε(u

n+1) we have

δt

(
∫

Ω
IhGε(u

n+1)dx

)

+

∫

Ω
∇un+1 · ∇

(

IhG
′
ε(u

n+1)
)

dx

≤ χ

∫

Ω
Λε(u

n+1)∇
(

IhG
′
ε(u

n+1)
)

· ∇vn+1dx

≤ 1

2

∫

Ω

∣

∣Λε(u
n+1)∇

(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx +

χ2

2

∫

Ω
|∇vn+1|2dx ,

and taking into account (32) we can deduce expression (35).

Remark 3.8. The estimates presented in Corollary 3.4 also holds in this scheme, substituting
estimate (30) by the corresponding one

∆t

N−1
∑

n=0

∫

Ω

∣

∣Λε(u
n+1)∇

(

IhG
′
ε(u

n+1)
)
∣

∣

2
dx ≤ C . (36)

In particular, estimate (31) holds, giving approximate positivity for scheme UV-NS in the sense
of Remark 3.8.

3.2 Scheme UVS

In this section we present a scheme that approximates the weak formulation obtained when we
test (9) by regular enough functions (ū, v̄, σ̄) : Ω 7→ R

1×1×d by using a Galerkin approximation
and mass lumping ideas. In order to do that, we first introduce a function aε to define a
truncation function of F (u) (and its derivatives), namely Fε, by considering F ′′

ε (u) := 1/aε(u)
as an approximation of 1/u, where aε(u) is a C1-truncation function of a(u) = u defined as

aε(u) :=















ε if u ≤ ε ,

u if u ∈
(

ε, 1
ε

)

,

1
ε

if u ≥ 1
ε
.

(37)

In fact, the corresponding integration constants that arise in computations from F ′′
ε (u) to Fε(u)

are fixed considering that F ′
ε(u) = ln(u) and Fε(u) = u ln(u)− u+ 1 when u ∈ (ε,+∞).

The proposed numerical scheme UVS is:

13



• [Step 1] Find (un+1,σn+1) ∈ Uh × Σh = P1 × P1 with σ
n+1|∂Ω = 0 and solving the

coupled and nonlinear system














































(

δtu
n+1, ū

)

h
+ (∇un+1,∇ū)− 2χ

(

un+1
√
vnσn+1,∇ū

)

= 0 ,

(

δtσ
n+1, σ̄

)

− 2

(

1√
vn

(∇σ
n+1)tσn+1, σ̄

)

+
1

3

(

1

vn
|σn+1|2σn+1, σ̄

)

+
2

3

(

1

vn
∇(

√
vn)|σn+1|2, σ̄

)

+ (∇ · σn+1,∇ · σ̄) + (rotσ,n+1 rot σ̄)

+
µ

2
(σn+1 un+1

+ , σ̄) +
µ

2

(√
vn un+1∇(IhF

′
ε(u

n+1)), σ̄
)

= 0 ,

(38)

for all (ū, σ̄) ∈ Uh × Σh with σ̄|∂Ω = 0. In the last term of the σ-system, ∇u has been
approximated by u∇IhFε(u). Note that (38) is a nonlinear and conservative problem.

• [Step 2] Find vn+1 ∈ Vh = P1 ⊂ H1(Ω) solving the same linear problem (19) presented
in scheme UV.

Now we present a result that provides a discrete version of the estimate (10) derived in Theo-
rem 2.2.

Theorem 3.9. If (un+1,σn+1) solves Step 1 (38), then the following discrete version of (10)
holds:

δtE
ε
h(u

n+1,σn+1) +µDε
1,h(u

n+1) +χD2(v
n,σn+1) +χµD3(u

n+1,σn+1) ≤ R(vn,σn+1) , (39)

where D2(v,σ), D3(u,σ) and R(v,σ) are defined in (11) and

Eε
h(u,σ) :=

µ

4

∫

Ω
IhFε(u)dx +

χ

2

∫

Ω
|σ|2dx and Dε

1,h(u) :=
1

4

∫

Ω
∇u · ∇

(

IhF
′
ǫ(u)

)

dx .

Proof. Testing (38)1 by ū =
µ

4
IhF

′
ε(u

n+1) and using Taylor expansion and convexity of Fε (as

we have done for Gε in (28)) we have

δt

(

µ

4

∫

Ω
IhFε(u

n+1)dx

)

+ µDε
1,h(u

n+1)− χµ

2

∫

Ω
un+1

√
vnσn+1 · ∇(IhF

′
ε(u

n+1)) dx ≤ 0 . (40)

Testing (38)2 by σ̄ = χσn+1 we have

δt

(

χ

2

∫

Ω
(σn+1)2dx

)

− 2χ

∫

Ω

1√
vn

(σn+1)t(∇(σn+1))tσn+1 dx

+
2χ

3

∫

Ω

1

vn
|σn+1|2∇(

√
vn) · σn+1dx+

χ

3

∫

Ω

1

vn
|σn+1|4dx

+χ

∫

Ω

(

(∇ · σn+1)2 + |rotσn+1|2
)

dx

+
χµ

2

∫

Ω
|σn+1|2 un+1

+ dx+
χµ

2

∫

Ω

√
vn un+1 ∇(IhF

′
ε(u

n+1)) · σn+1dx = 0 .

(41)

Using integration by parts:
∫

Ω

1

vn
|σn+1|2∇(

√
vn)·σn+1dx = −

∫

Ω
|σn+1|2∇

(

1√
vn

)

·σn+1dx =

∫

Ω

1√
vn

∇·(|σn+1|2σn+1)dx,

then the desired relation (39) holds by adding equations (40) and (41) .
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Corollary 3.10. In the particular case of considering one-dimensional domains (1D), relation
(39) implies:

δtE
ε
h(u

n+1, σn+1) + µDε
1,h(u

n+1) + χD2(v
n, σn+1) + µχD3(u

n+1, σn+1) ≤ 0 , (42)

with Dε
1,h(u

n+1), D2(v
n, σn+1), D3(u

n+1, σn+1) ≥ 0. In particular, scheme UVS is uncondi-
tional energy-stable with respect to the energy Eε

h(u, σ) defined in (11)1.

Proof. From Theorem 3.9, we only need to prove that Dε
1,h(u

n+1) ≥ 0 and R(vn, σn+1) = 0.

Since un+1 ∈ Uh = P1 and we are working in 1D, we can write:

Dε
1,h(u

n+1) =
1

4

∫

Ω
(un+1

x )(Ih F
′
ε(u

n+1))x dx =
1

4

J
∑

j=1

(

un+1
j+1 − un+1

j

h

)(

F ′
ε(u

n+1
j+1 )− F ′

ε(u
n+1
j )

h

)

,

which is nonnegative because F ′
ε(u) is an increasing function (F ′

ε(u) ∼ lnu). Finally, in one-
dimensional domains variable σ is a scalar quantity, so the term R(vn, σn+1) reads:

R(vn, σn+1) = −2χ

3

∫

Ω

1√
vn

(

∂x((σ
n+1)3)− 3(∂xσ

n+1)(σn+1)2
)

dx = 0 .

Corollary 3.11. In the particular case of considering one-dimensional domains (1D), the fol-
lowing estimates hold

∫

Ω
IhFε(u

n+1)dx ≤ C ∀n ≥ 1 , (43)

∆t

N−1
∑

n=0

(

µDε
1,h(u

n+1) + χDε
2(v

n, σn+1) + µχD3(u
n+1, σn+1)

)

≤ C , (44)

where C > 0 is a constant that bounds
∫

Ω IhFε(u
0)dx. Moreover, the following estimates also

hold
∫

Ω

(

Ih(u
n
−)
)2
dx ≤ C ε and ‖un‖L1 ≤ m0 + C

√
ε ∀n ≥ 1 . (45)

Proof. The proof follows the same arguments presented in Corollary 3.4 considering now the
estimate

1

ε
(u−)

2 ≤ Fε(u), ∀u ∈ R.

Remark 3.12. From estimate (45), we can say that the one-dimensional version of scheme
UVS satisfies an approximate positivity property for un, because Ih(u

n
−) → 0 in L2(Ω) as ε→ 0,

with O(
√
ε) order.

4 Numerical simulations in 1D domains

The aim of this section is to report the numerical results obtained carrying out simulations using
the schemes presented through the paper in one-dimensional domains. The idea is to illustrate
the type of dynamics exhibit by chemo-attraction and consumption models and to compare the
effectiveness of each of the presented schemes. All the simulations have been performed using
MATLAB software [18].
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We consider a regular partition of the spatial domain Ω = [a, b] denoted by Th :=
⋃J−1

i=1 Ii, where
J denotes the number of nodes, {xj}Jj=1 the coordinates of these nodes and h the size of the
mesh, that for simplicity we assume that is constant in the whole domain. We will compare the
schemes presented in Section 3 together with a conservative and positive Finite Volume scheme
that can be viewed as a Finite Element scheme with artificial diffusion, and it has been derived
following the ideas presented in [25].

The physical and discrete parameters for each example will be detailed in each subsection except
the value of the truncation parameter and the tolerance used for the iterative methods for the
nonlinear schemes, that are going to be always chosen as:

ε = h2 and Ctol = 10−8 . (46)

The section is organized as follows: Firstly we introduce the iterative algorithms to approximate
the nonlinear problems and the Finite Element scheme with artificial diffusion equivalent to
a conservative and positive Finite Volume scheme. Then we present one example with the
complete dynamics, that is, until it reaches the equilibrium configuration. The purpose of this
example is to show that the system tends to a flat/constant equilibrium configuration of u (with
ueq = m0 = 1

|Ω|

∫

Ω u
0dx) and v = 0, while the energy E(u, v) decreases and the volume of u

remains constant. After that, we compare the ability of each scheme to maintain the positivity
of the u unknown using a choice of the initial condition and physical parameters designed in
such a way that in some regions u tends to be very close to zero while in other parts the value
of u is far away form zero. In the third part we focus on studying how each scheme capture
the evolution of the energy in time using different values of the spatial and time discretization
parameters. Finally, we perform a numerical study of the experimental order of convergence in
space for each scheme.

4.1 Iterative Methods

Some of the presented schemes are nonlinear. In the following we detail the iterative algorithms
that we have considered for approximating each of the nonlinear systems.

4.1.1 Scheme UV-ND (Nonlinear Diffusion)

Iterative algorithm to approximate the nonlinear problem (26): Find uℓ+1 ∈ Uh such that

1

∆t
(uℓ+1, ū)h + (∇uℓ+1,∇ū) =

1

∆t
(un, ū)h + (∇(uℓ),∇ū) + χ

(

uℓ∇vn,∇ū
)

−
(

(uℓ)
2∇(IhG

′
ε(u

ℓ)),∇ū
)

(47)

Stopping criterium: Iterates until
‖uℓ+1−uℓ‖H1(Ω)

‖uℓ‖H1(Ω)
≤ Ctol , with Ctol a given tolerance.

4.1.2 Scheme UV-NS (Nonlinear Sensitivity)

Iterative algorithm to approximate the nonlinear problem (34): Find uℓ+1 ∈ Uh such that

1

∆t
(uℓ+1, ū)h + (∇uℓ+1,∇ū) =

1

∆t
(un, ū)h + χ

(

Λε(uℓ)∇vn,∇ū
)

(48)

Stopping criterium: Iterate until
‖uℓ+1−uℓ‖H1(Ω)

‖uℓ‖H1(Ω)
≤ Ctol .
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4.1.3 Scheme UVS

We consider the following iterative algorithm to approximate this nonlinear problem (38):

Substep.1 Find uℓ+1 ∈ Uh such that

1

∆t
(uℓ+1, ū)h + (∇(uℓ+1),∇ū) =

1

∆t
(un, ū)h + 2χ

(

uℓ
√
vnσℓ,∇ū

)

, ∀ ū ∈ Uh. (49)

Substep.2 Find σℓ+1 ∈ Σh such that, for all σ̄ ∈ Σh,

1

∆t
(σℓ+1, σ̄) + (∇ · σℓ+1,∇ · σ̄) + (rotσ,ℓ+1 rot σ̄) + µ

2 (σℓ+1 (uℓ+1)+, σ̄)

=
1

∆t
(σn, σ̄)− 1

3

(

1

vn
|σℓ|2σℓ, σ̄

)

+ 2

(

1√
vn

(∇σ
ℓ)tσℓ, σ̄

)

− 2

3

(

1

vn
∇(

√
vn)|σℓ|2, σ̄

)

− µ

2

(

√

(vn)uℓ ∇(IhF
′
ε(uℓ)), σ̄

)

.

(50)

Substep 3: Stopping criterium. Iterate until
‖(uℓ+1,σℓ+1)−(uℓ,σℓ)‖H1(Ω)×H1(Ω)

‖(uℓ,σℓ)‖H1(Ω)×H1(Ω)
≤ Ctol .

4.2 Scheme UV-AD (Artificial Diffusion) in 1D

We introduce the upwind Finite Volume scheme presented in [25] that can be viewed as a Finite
Element scheme with artificial diffusion. For this, we define the interior control volume as
Kj = [xj− 1

2
, xj+ 1

2
] for j = 2, . . . , J − 1, while the boundary control volumes are defined as

K1 = [x1, x1+ 1
2
] and KJ = [xJ− 1

2
, xJ ], with xj+ 1

2
= (xj + xj+1)/2. Moreover we consider the

notation for discrete spatial derivatives δxuj+ 1
2
:= (uj+1 − uj)/h for j = 1, . . . , J − 1. Using this

notation the boundary conditions are discretized as

δxu1− 1
2
= δxuJ+ 1

2
= 0 and δxv1− 1

2
= δxvJ+ 1

2
= 0 .

The proposed upwind finite volume scheme is the following:

• [Step 1] For all j = 1, . . . , J , find un+1
j solving the linear problem:

|Kj |δtun+1
j −

(

δxu
n+1
j+ 1

2

− δxu
n+1
j− 1

2

)

+χ
(

(δxv
n
j+ 1

2

)+u
n+1
j + (δxv

n
j+ 1

2

)−u
n+1
j+1 − (δxv

n
j− 1

2

)+u
n+1
j−1 − (δxv

n
j− 1

2

)−u
n+1
j

)

= 0.

(51)

• [Step 2] For all j = 1, . . . , J , find vn+1
j solving the linear problem:

|Kj |δtvn+1
j −

(

δxv
n+1
j+ 1

2

− δxv
n+1
j− 1

2

)

+ µun+1
j vn+1

j = 0 . (52)

In fact, it is easy to check that scheme (51)-(52) is equivalent to the following linear Finite
Element scheme with artificial diffusion, denoted by UV-AD:
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• [Step 1] Find un+1 ∈ Uh = P1 ⊂ H1(Ω) solving the linear problem:

(

δtu
n+1, ū

)

h
+
(

un+1
x , ūx

)

+ h
χ

2

(

|vnx |un+1
x , ūx

)

− χ
(

un+1(vn)x, ūx

)

= 0 ∀ ū ∈ Uh . (53)

Note that (53) is conservative, because taking ū = 1 one has
∫

Ω u
n+1dx =

∫

Ω u
ndx .

• [Step 2] Find vn+1 ∈ Vh = P1 ⊂ H1(Ω) solving the same linear problem (19) presented
in scheme UV.

4.3 Example I: Dynamic towards constants

In this case we consider as initial configuration two smooth functions with the same amplitude
and the physical parameters shown below:

{

u0 = 1.0001 + cos(5πx) ,

v0 = 1.0001 + cos(2πx) ,
[0, T ] = [0, 0.3] , χ = 100 and µ = 1000 . (54)

In Figure 1 we present the dynamics of the system using scheme UV with discretization parame-
ters h = 10−3 and ∆t = 10−6, where we can observe that initially the system tends to accumulate
the cell population density close to the boundaries (due to the attraction of the cell population
towards the chemical substance), then the consumption effects dominates the dynamics produc-
ing that the amount of v decreases and finally the system start to minimize the gradients of u
and the system reaches the expected equilibrium configuration, that is, a flat configuration of
u and v = 0. Moreover, we can see in Figure 2 that the energy is decreasing until the system
reaches the equilibrium configuration and the amount of each unknown is presented in Figure
3, showing that the amount of chemical substance decreases to zero (due to the consumption
effects) and the volume cell population density remains constant in time.

4.4 Example II: Positivity test

The initial configuration and the physical parameters for this example are:







u0 = 1.1− e−(x−0.5
0.1

)2 ,

v0 = 2− e−(x−0.5
0.01

)2 ,
[0, T ] = [0, 10−4] , χ = 100 and µ = 1 . (55)

The initial configuration corresponds with two symmetric smooth functions with the physical
parameters chosen such that the attraction effects dominates over the consumption ones, in
order to produce a dynamic with the variable u tending to zero in the central region, and with
high gradients on it, in order to test how well the schemes maintain at a discrete level the
positivity of the unknown u. The exact dynamics of this example is presented in Figure 4 and
it has been computed using scheme UV with parameters h = 10−5 and ∆t = 10−9. In Table 1
we present the minimum values achieved by u in the whole domain Ω during the complete time
interval [0, T ] (i.e. mint∈[0,T ]minx∈Ω u), for each of the schemes using different values of the
discretization parameters h and ∆t. Scheme UV is able to maintain u positive using the two
time steps considered (∆t = 10−7, 10−8) but only for h small enough, in fact when h ≤ 1/5000.
This fact can be explained by taking into account that this discrete formulation when h is small
enough is the closest one to the continuous in space problem, which satisfies a maximum principle.
Schemes UV-ND and UV-NS do not work well when ∆t = 10−7, because the iterative methods
(49) and (50) are not convergent for that choice of the time step. The reason why we obtain some
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Figure 1 – Example I: Dynamic of scheme UV using data in (54). The evolution in time of u and v is
presented from Left to Right and from Top to Bottom.
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Figure 4 – Example II: Dynamic of scheme UV using data in (55) for the time interval [0, 10−4], computed
using h = 10−5 and ∆t = 10−9.

values for scheme UV-NS is because we have added an additional condition to the iterative loop,
which states that if after 100 iterations the stopping criterium is not satisfied, the algorithm has
to take the last obtained result and move forward (hoping that this idea might help the scheme in
case that the desired tolerance is not achieved but the error is getting close to it). This idea does
not prevent scheme UV-ND to crash, but it helps somehow scheme UV-AD to obtain some
intermediate results, not satisfying a good approximation of scheme UV-AD. On the other hand,
if we consider ∆t = 10−8, then the iterative schemes associated with both schemes, UV-ND
and UV-NS, are convergent and both schemes are able to achieve the expected approximated
positivity (the obtained values are not strictly positive but they are very small in absolute value).
The obtained results are in agreement with the results in Remarks 3.5 and 3.8, which state that
schemes UV-ND and UV-NS will satisfy the positivity constraint approximatively. For scheme
UV-AD we can observe that it is always capture the positivity of the unknown u as expected,
given that upwind schemes were designed with that purpose in mind. Finally, scheme UVS is
not reliable for ∆t = 10−7 due to the fact that for small values of h the simulations crashes. But
it performs very well when ∆t = 10−8 achieving approximated positivity when h = 1/1000 and
strictly positivity when h ≤ 1/5000. The obtained results are in agreement with Remark 3.12,
which states that scheme UVS will satisfy the positivity constraint approximatively.

4.5 Example III: Energy stability test

The aim of this test is to compare the approximation of the evolution of the energy for the
different schemes. The initial configuration are two smooth functions with different amplitude
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min
t∈[0,T ]

min
x∈Ω

u h = 1/100 h = 1/500 h = 1/1000 h = 1/5000 h = 1/10000

Scheme UV

∆t = 10−7 −0.3414 −0.0674 −3.24× 10−4 6.45 × 10−22 7.96 × 10−22

∆t = 10−8 −0.3450 −0.0838 −4.50× 10−4 2.61 × 10−22 3.28 × 10−22

Scheme UV-ND

∆t = 10−7 × × × × ×
∆t = 10−8 −3.13× 10−4 −6.90 × 10−6 −9.20× 10−7 −1.43 × 10−8 −2.57 × 10−9

Scheme UV-NS

∆t = 10−7 −0.0011 −1.44 × 10−5 −2.25× 10−6 −0.1514 −0.1622

∆t = 10−8 −0.0011 −1.40 × 10−5 −1.86× 10−6 −2.68 × 10−8 −4.98 × 10−9

Scheme UV-AD

∆t = 10−7 4.84 × 10−5 1.55 × 10−10 3.15× 10−14 5.98 × 10−20 7.33 × 10−21

∆t = 10−8 4.84 × 10−5 1.54 × 10−10 2.82× 10−14 3.16 × 10−20 3.44 × 10−21

Scheme UVS

∆t = 10−7 −0.1425 −0.0065 −1.50× 10−4 × ×
∆t = 10−8 −0.1454 −0.0118 −1.63× 10−4 2.32 × 10−22 2.90 × 10−22

Table 1 – Example II: Evolution in time of the minimum values achieved by u in the domain Ω in the whole
interval [0, T ] for different values of the discretization parameters h and ∆t.

and the physical parameters are:
{

u0 = 4(2.0001 + cos(7πx)) ,

v0 = 3(2.0001 + cos(12πx)) ,
[0, T ] = [0, 10−4] , χ = 30 and µ = 10000 . (56)

The parameters are chosen in order that consumption effects are stronger than the attraction
ones. We present the exact dynamics of the system in Figure 5, which has been computed using
scheme UV with discretization parameters h = 10−5 and ∆t = 10−8. The evolution of the energy
for schemes UV, UV-ND, UV-NS and UV-AD is presented in Figure 6, and for scheme UVS
in Figure 7. We can observe how schemes UV, UV-ND, UV-NS and UV-AD approximates
well the evolution of the energy once the discretization parameters are small enough (for this
example the requirements are h ≤ 10−3 and ∆t ≤ 10−7). In fact, it is interesting to mention that
scheme UV is able to produce a reasonable approximation even when ∆t = 10−6 while schemes
UV-ND and UV-NS crashes. Moreover, it is interesting to check Figure 8 to understand why
scheme UV-AD does not perform well with the choice ∆t = 10−6. The reason is that this scheme
has been designed as an upwind scheme, which are a type of schemes famous for behaving well
when approximating transport effects due to some (incompresible) velocity, while maintaining
the positivity of the solution variable. But, in the chemotaxis model considered in this work,
the transport of u is due to the term ∇ · (u∇v) so that the transport velocity is represented by
∇v which in general is not incompresible (because ∇ · (∇v) 6= 0 in general). Then, it produces
nonphysical oscillations in the solution if the time step is not small enough (although the scheme
always preserve the positivity of the solution as expected). On the other hand, scheme UVS
does not seem to produce as good approximations of the evolution of the exact energy E(u, v)
as the other schemes are producing with the considered time steps. In fact, what it is known by
Corollary 3.10 is that this scheme satisfy the energy law (39) for E(u,σ), but it is not clear that
this property implies that the evolution of energy E(u,σ) has to exactly match the evolution
of energy E(u, v). As a matter of fact, we can observe in Figure 7, that those energies do not
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Figure 5 – Example III: Dynamic of scheme UV using data in (56).

match in this example for the considered time steps.

4.6 Example IV: Approximation and error estimates test

In this example we perform a numerical error estimate study in space for each of the schemes
presented in the manuscript. The initial configuration and the physical parameters considered
for this test are:
{

u0 = 3(1.0001 + cos(8πx)) ,

v0 = 5(1.0001 + cos(7πx)) ,
[0, T ] = [0, 10−4] , χ = 10 and µ = 1500 . (57)

We will compute the EOC (Experimental Order of Convergence) taking ∆t = 10−9 and using as
reference (or exact) solution the one obtained by solving the system using scheme UV with spatial
discretization parameter h = 10−5 at final time T = 10−4. The very non-trivial dynamics of this
system are presented in Figure 9. We observe in the dynamics that the cell population density u
moves towards the regions of high concentration of chemical substance, which is consumed at a
very high rate, producing that the location of high concentration regions of chemical substance
v changes fast in time, so the cell population density needs to rearrange itself also in a very fast
way in order to move towards the new locations with high concentration of substance v.
We now introduce some additional notation. The individual errors using discrete norms and the
convergence rate between two consecutive meshes of size h and h̃ are defined as:

e(φ) := ‖φexact − φh‖L2(Ω) and r(φ) :=

[

log

(

e(φ)

ẽ(φ)

)] [

log

(

h

h̃

)]−1

.

The convergence history for a sequence of triangulations for all the schemes is presented in
Table 2. We can observe that schemes UV, UV-ND, UV-NS and UV-AD show order of
convergence, and between these four schemes it is clear that UV, UV-ND and UV-NS performs
better than UV-AD, due to the fact that this last scheme introduces extra numerical dissipation
to help the scheme to achieve the positivity of u, but at the same time this numerical dissipation
prevents the scheme to achieve a higher order of convergence. On the other hand, scheme UVS
does not seem to achieve order of convergence when compared with a reference solution computed
using scheme UV (although the errors are small, for instance smaller than the ones obtained with
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Figure 6 – Example III: Comparison of the evolution of the energy E(u, v) for Schemes UV, UV-ND,
UV-NS and UV-AD (from first to fourth row, respectively) using different spatial meshes with ∆t = 10−6

(Left) and ∆t = 10−7 (Right) (schemes UV-ND and UV-NS do not converge for ∆t = 10−6 with h = 10−3

and h = 10−4).
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Figure 7 – Example III: Comparison of the evolution of the energies E(u, v) (Left) and E(u, σ) (Right) for
Scheme UVS using different spatial meshes with ∆t = 10−6 (Top) and ∆t = 10−7 (Bottom) (schemes do
not converge for ∆t = 10−6 with h = 10−3 and h = 10−4).
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Figure 8 – Example III: Scheme UV-AD at time t = 10−5 for ∆t = 10−6 with h = 1/100 (left), h = 1/1000
(center) and h = 1/10000 (right).
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Figure 9 – Example IV: Dynamic of scheme UV using data in (57).
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scheme UV-AD). But it achieves optimal orders when the study is performed using a reference
solution computed using scheme UVS itself with h = 10−5. These results make evident that the
scheme UVS is well behaved although it needs very small discretization parameters to achieve
exactly the same solution than the one obtained by the other schemes.

5 Conclusions

In this work we have proposed and studied numerical schemes to approximate a chemo-attraction
and consumption model, and we have compared them numerically in 1D domains. We have
focused on designing schemes in such a way that they maintain the main properties of the
continuous problem at the discrete level. In fact, the three more challenging properties that
we have identified and focused on are: (a) positivity, (b) dissipative energy law (6) and (c) an
estimate of a singular functional (5). We have developed several schemes:

• Schemes UV-ND and UV-NS. Satisfying discrete versions of (a) and (c).

• Scheme UVS. Satisfying a discrete version of (a) and (b).

We have compared these schemes with a straightforward Scheme UV and with Scheme UV-
AD (an upwind Finite Volume scheme known to satisfy (a) and that it can be reinterpreted as
a Finite Element scheme with artificial numerical dissipation).

The numerical tests reported in this work have been designed to check how well the schemes
behave with respect to positivity approximation, the approximation of the evolution in time
of the energy and the behavior of the error as the size of the spatial mesh is reduced (error
estimates).

Scheme UVS has been designed to satisfy the energy property (b), having to rewrite the original
system introducing regularization terms that to be properly approximated they might need small
choices of the discrete parameters. The numerical results illustrate that the scheme perform well
in all the tests if the discretization parameters are small enough (as small as the one needed
for the rest of the schemes), although it is not able to exactly capture the decreasing evolution
of the energy E(u, v). This fact it is not a surprise because the scheme UVS is designed to
satisfy a relation for a modified energy E(u,σ), which will only approximates well to E(u, v)
for very small discretization parameters. The other four schemes (UV, UV-ND, UV-NS and
UV-AD) performs well in the three proposed tests but we need to remark that schemes UV,
UV-ND and UV-NS performs much better than UV-AD in the approximation test, because
schemes UV, UV-ND and UV-NS show second order convergence for all the unknowns, while
UV-AD achieves only first order (due to the artificial dissipation introduced to maintain the
positivity). Moreover, we have detected that some spurious oscillations might appear when using
scheme UV-AD with a not very small time step, due to the fact that upwind schemes can have
problems when the transport velocity is not incompressible. Although both schemes UV-ND
and UV-NS perform equally well in the numerical tests, it is worth to mention that scheme
UV-ND is much more flexible than scheme UV-NS, because the latter needs the requirement
of considering structured meshes in order to satisfy the derived properties.

Finally, this work emphasizes two interesting points that can be extended to other problems
where there are dissipative energy laws and maximum/minimum principles involved:
(I) For numerical schemes that satisfy a energy stability property with respect to a modified
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h e(u) r(u) e(v) r(v) e(vx) r(vx)

Scheme UV

1/200 0.0344 − 0.0046 − 0.7893 −
1/400 0.0079 2.1171 0.0012 1.9859 0.2038 1.9536
1/600 0.0035 2.0093 0.0005 1.9943 0.0904 2.0052
1/800 0.0020 1.9916 0.0003 1.9968 0.0508 2.0037
1/1000 0.0013 2.0000 0.0002 1.9980 0.0325 2.0025

Scheme UV-ND

1/200 0.0355 − 0.0032 − 0.6240 −
1/400 0.0119 1.5785 0.0009 1.8814 0.1772 1.8162
1/600 0.0060 1.6656 0.0004 1.8811 0.0852 1.8049
1/800 0.0037 1.7198 0.0002 1.9069 0.0500 1.8564
1/1000 0.0025 1.8046 0.0001 1.9353 0.0327 1.8958

Scheme UV-NS

1/200 0.0298 − 0.00400 − 0.7671 −
1/400 0.0074 2.0132 0.00099 2.0069 0.1946 1.9787
1/600 0.0032 2.0473 0.00044 1.9965 0.0859 2.0163
1/800 0.0018 1.9928 0.00024 1.9981 0.0482 2.0071
1/1000 0.0012 1.9987 0.00015 1.9991 0.0308 2.0044

Scheme UV-AD

1/200 0.1032 − 0.0232 − 1.4694 −
1/400 0.0558 0.8865 0.0124 0.9029 0.8023 0.8730
1/600 0.0384 0.9197 0.0085 0.9405 0.5568 0.9010
1/800 0.0294 0.9321 0.0064 0.9569 0.4275 0.9185
1/1000 0.0238 0.9388 0.0052 0.9662 0.3472 0.9328

Scheme UVS
Reference solution computed with scheme UV

1/200 0.0782 − 0.0071 − 0.9256 −
1/400 0.0311 1.3284 0.0037 0.9605 0.2546 1.8621
1/600 0.0258 0.4587 0.0032 0.3135 0.1353 1.5588
1/800 0.0247 0.1545 0.0031 0.1274 0.0998 1.0568
1/1000 0.0244 0.0587 0.0031 0.0580 0.0868 0.6286

Scheme UVS
Reference solution computed with scheme UVS

1/200 0.0757 − 0.0063 − 0.9193 −
1/400 0.0195 1.9564 0.0018 1.8221 0.2368 1.9565
1/600 0.0087 1.9990 0.0008 1.9479 0.1059 1.9859
1/800 0.0048 2.0317 0.0005 2.0183 0.0599 1.9800
1/1000 0.0031 1.9533 0.0003 1.9576 0.0384 1.9959

Table 2 – Example IV: Experimental absolute errors and order of convergences for schemes UV, UV-ND,
UV-NS, UV-AD and UVS
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energy, it is important to keep in mind that even if in the continuous case the two energies
are equivalent, the discrete versions will coincide only if the discretization parameters are really
small.
(II) Finite Volume schemes achieve positivity by introducing artificial numerical dissipation in
the system, but this dissipation can interfere with the accuracy of the scheme. Moreover, when a
transport term appears with no incompressible velocity and the time step is not carefully chosen,
the solutions can exhibit nonphysical oscillations.
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