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Abstract

In this paper the interpolating rational functions introduced by Floater and Hor-
mann are generalized leading to a whole new family of rational functions depending on
γ, an additional positive integer parameter. For γ = 1, the original Floater–Hormann
interpolants are obtained. When γ > 1 we prove that the new rational functions share
a lot of the nice properties of the original Floater–Hormann functions. Indeed, for
any configuration of nodes in a compact interval, they have no real poles, interpo-
late the given data, preserve the polynomials up to a certain fixed degree, and have
a barycentric-type representation. Moreover, we estimate the associated Lebesgue
constants in terms of the minimum (h∗) and maximum (h) distance between two
consecutive nodes. It turns out that, in contrast to the original Floater-Hormann in-
terpolants, for all γ > 1 we get uniformly bounded Lebesgue constants in the case of
equidistant and quasi-equidistant nodes configurations (i.e., when h ∼ h∗). For such
configurations, as the number of nodes tends to infinity, we prove that the new inter-
polants (γ > 1) uniformly converge to the interpolated function f , for any continuous
function f and all γ > 1. The same is not ensured by the original FH interpolants
(γ = 1). Moreover, we provide uniform and pointwise estimates of the approximation
error for functions having different degrees of smoothness. Numerical experiments il-
lustrate the theoretical results and show a better error profile for less smooth functions
compared to the original Floater-Hormann interpolants.

1 Introduction

In this paper, we consider the problem of interpolating a function f(x) on a finite interval
[a, b], given its values f(xi) in n + 1 nodes a = x0 < x1 < · · · < xn−1 < xn = b. Without
loss of generality the interval [−1,+1] can be taken. If one can choose the position of
the nodes xi in the interval, an analytic function can be approximated by polynomials
interpolating at the Chebyshev points of the first or second kind, leading to exponential
convergence. The speed of convergence is determined by the largest Bernstein ellipse that
can be taken in the analytic domain of the function. For differentiable functions, the
convergence is algebraic where the speed of convergence is determined by the smoothness
of the function. For further details we refer the reader to the book of Trefethen [14].
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If the nodes can not be freely chosen, the problem becomes much harder. E.g., when the
nodes are equidistant in the interval [−1,+1] and we want to approximate the function
1/(1 + 25x2), the Runge phenomenon occurs and the approximation error becomes very
large in the neighborhood of the endpoints of the interval when the number of nodes
increases. In [12] Huybrechs and Trefethen compare several methods to approximate a
function when the nodes are equidistant. One of these methods uses the Floater–Hormann
(briefly FH) interpolating rational functions [8]. This method is valid for any configuration
of the nodes but turns out to be very useful for equidistant configurations. Generalizing
[1], Floater and Hormann introduced a blended form of interpolating polynomials of fixed
degree 0 < d ≤ n, leading to the rational function [8]

r(x) =

∑n−d
i=0 λi(x)pi(x)
∑n−d

i=0 λi(x)
(1)

where, for all i = 0, . . . , (n − d),

λi(x) =
(−1)i

(x− xi)(x− xi+1) . . . (x− xi+d)
, (2)

and pi(x) denotes the unique polynomial of degree ≤ d interpolating f at the (d+1) points
xi < xi+1 < . . . < xi+d.

Note that in the limit case d = 0, we get pi(x) = f(xi), λi(x) = (−1)i(x − xi)
−1, and

(1) yields the Berrut rational interpolants studied in [1]. By taking any 1 ≤ d ≤ n,
Floater and Hormann proved that the approximant r(x) has no poles on the real line, it
coincides with f on the set of nodes Xn = {x0, x1, . . . , xn}, and, at any x 6∈ Xn, it admits
a barycentric representation allowing efficient and stable computations [5]. Moreover, for
any fixed d ∈ N, as h = max1≤i≤n(xi+1 − xi) → 0 (and hence n → ∞), regardless of the
distribution of nodes, the FH approximation error behaves as follows [8, Thm. 2]

‖r − f‖∞ = O(hd+1), ∀f ∈ Cd+2([a, b]), (3)

where, as usual, ‖f‖∞ = maxx∈[a,b] |f(x)|.
Therefore the FH interpolants, which for d = 0 reduce to Berrut interpolants [8], are able
to produce arbitrarily high approximation orders provided that the parameter d is large
enough. However, in the important case of equidistant or quasi–equidistant nodes, it has
been proved that the Lebesgue constants of FH interpolants grow logarithmically with n,
but exponentially with d [4, 10]. Hence, increasing d too much is not always advisable.

For an overview of linear barycentric rational interpolation, we refer the interested reader
to the paper of Berrut and Klein [2]. This overview also describes a generalization of the
FH interpolant developed by Klein [13] in the case of equidistant nodes. See also [6, 7].

In this paper we are also going to generalize the method of Floater and Hormann but in
a different way. For any distribution of nodes, we define a whole family of linear rational
approximants that are denoted by r̃(x) and depend, besides d, on an additional parameter
γ ∈ N = {1, 2, 3, . . .}. When γ = 1, r̃(x) reduces to the original FH interpolant r(x).
When γ = 2 and d = 0, r̃(x) reduces to the approximants studied in [15]. In this paper,
for brevity, we only consider the case of arbitrary 1 ≤ d ≤ n, the case d = 0 will be
investigated in future work.

Similarly to the original FH interpolants r(x), we show that, for all γ > 1, also r̃(x) has no
real poles, interpolates the data, and has a barycentric type representation. However, the
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main results of the paper concern the case of equidistant or quasi-equidistant configurations
of nodes, where we find some novelty by taking γ > 1. First of all, we prove that

lim
n→∞

‖r̃ − f‖∞ = 0, ∀f ∈ C([a, b]), ∀d ∈ N, ∀γ > 1, (4)

which is not ensured when γ = 1. Moreover, in contrast to the original FH interpolants,
we prove that for equidistant or quasi-equidistant nodes, the Lebesgue constants corre-
sponding to any 1 ≤ d ≤ n and γ > 1 are uniformly bounded both in n and γ, but still
grow exponentially with d.

With respect to the approximation rate, for equidistant or quasi-equidistant nodes, we
show that

‖r̃ − f‖∞ = O(hs), ∀f ∈ Cs([a, b]), 1 ≤ s ≤ d+ 1, (5)

holds as n → ∞, for arbitrarily fixed parameters d ∈ N and γ > s+1. Hence, generalized
FH interpolants also provide arbitrarily high convergence rates. Moreover, making the
comparison with (3), if we take s = d + 1 in (5) then we get that the generalized FH
functions r̃(x), with parameter γ > d + 2, also can reach the convergence order O(hd+1)
but supposing that f ∈ Cd+1([a, b]) instead of f ∈ Cd+2([a, b]) .

In addition, we estimate the error of generalized FH interpolants also for functions with a
non-integer smoothness degree. More precisely, in the class Lipα([a, b]) of Hölder contin-
uous functions with exponent 0 < α ≤ 1, we prove that

‖r̃ − f‖∞ = O(hα), ∀f ∈ Lipα([a, b]), ∀γ > α+ 1. (6)

Moreover, in the class Cs,α([a, b]) of functions that are s-times continuously differentiable
and have the s–th derivative Hölder continuous with exponent 0 < α ≤ 1, the generalized
FH function r̃(x) corresponding to any d ∈ N satisfies

‖r̃ − f‖∞ = O(hs+α), ∀f ∈ Cs,α([a, b]), ∀γ > s+ α+ 1. (7)

for all integers 1 ≤ s ≤ d.

Finally, we consider the pointwise error and show that, even in the case of almost every-
where continuous functions f with some isolated discontinuities, the approximation orders
displayed in (5)–(7) are locally preserved and continue to hold in all compact subintervals
I ⊂ [a, b] where f has the described smoothness degree (i.e., f ∈ Cs(I), f ∈ Lipα(I), and
f ∈ Cs,α(I), resp.)

The numerical experiments confirm the theoretical estimates and show that less restrictive
assumptions on γ could be possible for getting the previous error trend. Moreover, in
comparison with the original FH interpolants, the generalized ones exhibit a much better
error profile when the interpolated function is less smooth.

The paper is organized as follows. In Section 2 the generalized FH rational interpolants
are presented. In Section 3 we state and prove several properties of these new interpolants
which are similar to those of the original FH interpolants. In Section 4 we focus on the
case of equidistant or quasi-equidistant nodes and estimate the behaviour of the associated
Lebesgue constants. This section concludes with two subsections: in the former the proof
and the necessary technical lemmas are given, in the latter a useful related result is stated.
In Section 5 the convergence theorem and all the error estimates are given. In Section 6 we
illustrate several numerical examples comparing generalized and original FH approximants.
Finally, Section 7 gives the conclusion of our paper.
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2 Generalized Floater–Hormann interpolants

Let
a = x0 < x1 < . . . < xn−1 < xn = b, n ∈ N, (8)

be any sequence of nodes where we assume the function f : [a, b] → R has been sampled.
The generalized FH approximation of f is defined very similarly to (1) and (2). For any
integer 0 ≤ d ≤ n, it is also a blended form of the polynomial interpolants pi of degree at
most d. However, the blending functions depend on an additional parameter γ ∈ N and
are defined as follows

λ̃i(x) =
(−1)iγ

(x− xi)γ(x− xi+1)γ . . . (x− xi+d)γ
, i = 0, . . . , n− d. (9)

Hence, for arbitrarily fixed γ ∈ N and d ∈ {0, . . . , n}, the generalized FH approximation
of f is given by

r̃(x) =

∑n−d
i=0 λ̃i(x)pi(x)
∑n−d

i=0 λ̃i(x)
, x ∈ R (10)

where λ̃i(x) is defined in (9) and pi(x) is the polynomial of degree ≤ d interpolating f at
the (d+ 1) nodes xi < xi+1 < . . . < xi+d.

We point out that the function r̃(x) depends on f , on n, on the nodes (8), and on two
integer parameters: 0 ≤ d ≤ n and γ ≥ 1. Sometimes we also use the notation r̃(f, x) =
r̃(x) and r̃d(f, x) = r̃(x) in order to highlight the dependence on f and d.

Note that the original FH interpolants are a special case of the generalized ones with
parameter γ = 1 (compare (2) and (9)).

If we multiply both the numerator and denominator of (10) by the polynomial

π(x) = (−1)γ(n−d)
n
∏

k=0

(x− xk)
γ , (11)

then we get

r̃(x) =

∑n−d
i=0 µ̃i(x)pi(x)
∑n−d

i=0 µ̃i(x)
(12)

where we set

µ̃i(x) = λ̃i(x)π(x) =

i−1
∏

k=0

(x− xk)
γ

n
∏

k=i+d+1

(xk − x)γ (13)

being understood that
∏n2

k=n1
ak = 1 whenever the product is empty, i.e., if n1 > n2.

Equation (12) yields the generalized FH approximant r̃(x) as a quotient of two polynomials

P (x) =

n−d
∑

i=0

µ̃i(x)pi(x) and Q(x) =

n−d
∑

i=0

µ̃i(x) (14)

where the maximum degree is γ(n−d)+d at the numerator and γ(n−d) at the denominator,
i.e., for all γ ∈ N, r̃(x) is a rational function of type (γn− (γ − 1)d, γn− γd).

3 Properties

In this section, we are going to prove that, for any choice of the integer parameter γ > 1,
the generalized FH function r̃(x) has similar properties to the original r(x).
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3.1 No poles on the real line

In the case γ = 1 the polynomials µ̃i(x) defined in (13) were investigated by Floater and
Hormann in [8, Thm. 1]. Using their result, the following lemma can be easily deduced:

Lemma 3.1 Let n ∈ N, d ∈ {0, 1, . . . , n}, and i ∈ {0, 1, . . . , n− d} be arbitrarily fixed.

For any γ ∈ N that is even, and ∀x ∈ R, we have

µ̃i(x)

{

= 0 if x ∈ {xk : 0 ≤ k < i
∨

i+ d < k ≤ n}
> 0 otherwise

(15)

If γ ∈ N is odd, we distinguish the following cases:

• In the case x ∈ {x0, . . . , xn} we have

µ̃i(xk)

{

> 0 if (k − d) ≤ i ≤ k
= 0 otherwise

(16)

• In the case x ∈ [a, b]− {x0, . . . , xn}, if xℓ < x < xℓ+1 for any ℓ = 0, . . . , n− 1, then
we have the following

(A) If (ℓ− d+ 1) ≤ i ≤ ℓ then µ̃i(x) > 0

(B) Suppose ℓ − d ≥ 0, for i = 0, 1, . . . , (ℓ − d), the sequence µ̃i(x) has alternate
signs, ending with µ̃ℓ−d(x) > 0, and it has increasing absolute values, i.e.,

µ̃ℓ−d−k(x) > −µ̃ℓ−d−k−1(x) > 0, k = 0, 2, 4, . . . (17)

(C) For i = (ℓ + 1), . . . , n, the sequence µ̃i(x) has alternate signs, starting with
µ̃ℓ+1(x) > 0, and it has decreasing absolute values, i.e.,

µ̃ℓ+k(x) > −µ̃ℓ+k+1(x) > 0, k = 1, 3, 5, . . . (18)

• In the case x < a, the sequence µ̃i(x), for i = 0, . . . , (n − d), has alternate sign,
starting with µ̃0(x) > 0, and it has decreasing absolute values, i.e.,

µ̃k(x) > −µ̃k+1(x) > 0, k = 0, 2, 4, . . . (19)

• In the case x > b, the sequence µ̃i(x), for i = 0, . . . , (n − d), has alternate sign,
ending with µ̃n−d(x) > 0, and it has increasing absolute values, i.e.,

µ̃n−d−k(x) > −µ̃n−d−k−1(x) > 0, k = 0, 2, 4, . . . (20)

From the previous lemma we deduce the following result that generalizes [8, Thm. 1].

Theorem 3.2 For all integers n, γ ∈ N and 0 ≤ d ≤ n, the generalized FH rational
function r̃(x) has no real poles.

Proof of Theorem 3.2
Recalling (12), it is sufficient to prove that

Q(x) =

n−d
∑

i=0

µ̃i(x) > 0, ∀x ∈ R. (21)

5



This follows from (15) in the case that γ ∈ N is even. If γ ∈ N is odd, by (16) we get

Q(xk) =
k
∑

i=max{0,(k−d)}

µ̃i(xk) > 0, k = 0, 1, . . . , n,

while (19) and (20) imply

Q(x) =































∑

k = 0, 2, 4, ...
k < n− d

[µ̃k(x) + µ̃k+1(x)] > 0, ∀x < a

∑

k = 0, 2, 4, ...
k < n− d

[µ̃n−d−k(x) + µ̃n−d−k−1(x)] > 0, ∀x > b,

in the case that (n− d) is odd, and

Q(x) =































∑

k = 0, 2, 4, ...
k < n− d

[µ̃k(x) + µ̃k+1(x)] + µ̃n−d(x) > 0, ∀x < a

∑

k = 0, 2, 4, ...
k < n− d

[µ̃n−d−k(x) + µ̃n−d−k−1(x)] + µ̃0(x) > 0, ∀x > b,

when (n − d) is even. Hence, it remains to prove (21) only in the case that γ ∈ N is odd
and xℓ < x < xℓ+1 for some ℓ = 0, 1, . . . , n− 1. In such a case, we write

Q(x) =
∑

0≤i≤ℓ−d

µ̃i(x) +
∑

ℓ−d+1≤i≤ℓ

µ̃i(x) +
∑

ℓ+1≤i≤n

µ̃i(x)

=: Q1(x) +Q2(x) +Q3(x)

being understood that
∑

n1≤i≤n2
ai = 0 in case of empty summation, i.e., if n1 > n2.

Finally, we observe that whenever the previous summation Qi(x) are non empty, they are
positive by virtue of Lemma 3.1 (cf. (A)–(C)). Since at least one term of the summation
Qi(x) is not empty, we have proven the theorem. ♦

Remark 3.3 We remark that the previous proof also states that for all n, γ ∈ N, and
1 ≤ d ≤ n, if x ∈]xℓ, xℓ+1[, with ℓ = 0, . . . , n− 1, then we have

|Q(x)| =
∣

∣

∣

∣

∣

n−d
∑

i=0

µ̃i(x)

∣

∣

∣

∣

∣

≥
∑

i∈Iℓ

µ̃i(x) > µ̃j(x) > 0, ∀j ∈ Iℓ (22)

where
Iℓ = {i ∈ {0, . . . , (n− d)} : ℓ− d+ 1 ≤ i ≤ ℓ} (23)

Note that Iℓ is a non empty set since d ≥ 1. Moreover, if we divide all terms in (22) by
|π(x)|, with π(x) defined in (11), then, by virtue of (13), we obtain

∣

∣

∣

∣

∣

n−d
∑

i=0

λ̃i(x)

∣

∣

∣

∣

∣

≥
∑

i∈Iℓ

λ̃i(x) > λ̃j(x) > 0, ∀j ∈ Iℓ, ∀x ∈]xℓ, xℓ+1[ (24)
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3.2 Interpolation of the data

In the case γ = 1 it is known that the FH rational function r(x) is equal to f(x) if x is
one of the nodes (8). Such interpolation property remains valid for the generalized FH
approximation.

Theorem 3.4 For all n, γ ∈ N and any integer 0 ≤ d ≤ n, we have

r̃(f, xk) = f(xk), k = 0, 1, . . . , n (25)

Proof of Theorem 3.4 Set

Jk = {i ∈ {0, . . . , (n− d)} : k − d ≤ i ≤ k} , k = 0, . . . , n (26)

we note that
pi(xk) = f(xk), ∀i ∈ Jk.

Moreover, by Lemma 3.1 we have

µ̃i(xk) = 0, ∀i 6∈ Jk

Consequently, we get

r̃(f, xk) =

∑n−d
i=0 µ̃i(xk)pi(xk)
∑n−d

i=0 µ̃i(xk)
=

∑

i∈Jk
µ̃i(xk)pi(xk)

∑

i∈Jk
µ̃i(xk)

= f(xk).

♦

3.3 Preservation of polynomials

Similarly to the classical FH interpolants, also the generalized ones reduce to the identity
on the set Pd of all polynomials of degree at most d.

Indeed, for all f ∈ Pd we have

pi(x) = f(x), i = 0, . . . , n− d, ∀x ∈ [a, b].

Consequently, by (12), we deduce that

r̃(f, x) = f(x), ∀x ∈ [a, b], ∀f ∈ Pd, (27)

holds for any n, γ ∈ N, and d ∈ {0, . . . , n}.

3.4 Barycentric-type representation

We recall that the classical FH interpolants are rational functions of type (n, n−d), hence
they can be expressed in barycentric form. In this subsection, we give a barycentric-type
expression for the generalized FH interpolants defined by (10) and (9), for any parameter
γ ∈ N.

The Lagrange representation for the interpolating polynomial pi is

pi(x) =
i+d
∑

k=i

f(xk)
i+d
∏

s=i,s 6=k

x− xs
xk − xs

.

7



Combining this with (9), we get

λ̃i(x)pi(x) = (−1)iγ
i+d
∏

s=i

1

(x− xs)γ





i+d
∑

k=i

f(xk)
i+d
∏

s=i,s 6=k

x− xs
xk − xs





= (−1)iγ
i+d
∑

k=i

f(xk)

(x− xk)γ

i+d
∏

s=i,s 6=k

1

(xk − xs)(x− xs)γ−1
.

Hence, we obtain

n−d
∑

i=0

λ̃i(x)pi(x) =
n−d
∑

i=0

(−1)iγ
i+d
∑

k=i

f(xk)

(x− xk)γ

i+d
∏

s=i,s 6=k

1

(xk − xs)(x− xs)γ−1
,

and changing the order of the summations, we get

n−d
∑

i=0

λ̃i(x)pi(x) =

n
∑

k=0

f(xk)

(x− xk)γ





∑

i∈Jk

(−1)iγ
i+d
∏

j=i,j 6=k

1

(xk − xj)(x− xj)γ−1





where we recall Jk = {i ∈ {0, 1, . . . , n− d} : k − d ≤ i ≤ k} has been introduced in (26).

Hence, defining

wk(x) =
∑

i∈Jk

(−1)iγ
i+d
∏

s=i,s 6=k

1

(xk − xs)(x− xs)γ−1
, γ ∈ N (28)

we can write
n−d
∑

i=0

λ̃i(x)pi(x) =

n
∑

k=0

f(xk)

(x− xk)γ
wk(x). (29)

Similarly, we obtain
n−d
∑

i=0

λ̃i(x) =
n
∑

k=0

1

(x− xk)γ
wk(x), (30)

that is (29) in the case of the unit function f(x) = 1, x ∈ [a, b].

In conclusion, the generalized FH interpolant (10) can be expressed in the following
barycentric-type form

r̃(x) =

∑n
k=0

wk(x)
(x−xk)γ

f(xk)
∑n

k=0
wk(x)

(x−xk)γ

, γ ∈ N (31)

Note that in the case γ = 1, this yields the classical barycentric form

r(x) =

∑n
k=0

wk

(x−xk)
f(xk)

∑n
k=0

wk

(x−xk)

, wk =
∑

i∈Jk

(−1)i
i+d
∏

s=i,s 6=k

1

(xk − xs)
, (32)

where the weights wk can be computed in advance and where, in the denominators, we
have a factor (x− xk) instead of (x− xk)

γ .

Note that for γ > 1 the weights can not be precomputed. Hence, to evaluate the new
interpolant, in m x-values O(mnd2) FLOPS are needed while for the classical barycentric
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form the weights can be computed beforehand using (32) in O(nd2) FLOPS. Using a more
complicated pyramid algorithm [11], this can even be reduced toO(nd) FLOPS. Evaluating
the classical barycentric form in m x-values costs an additional O(mn) FLOPS. Hence,
it is more efficient to evaluate the classical FH interpolant in comparison to the new one.
However, the new approximant exhibits better performance with respect to the error,
especially for less smooth functions, as will be shown in the numerical examples.

4 Lebesgue constants

Set for brevity

D(x) =
n−d
∑

i=0

λ̃i(x). (33)

By (10) and (29) we get

r̃(f, x) =
n
∑

k=0

f(xk)
wk(x)

(x− xk)γD(x)

i.e., defining

bk(x) =















1 if x = xk
0 if x ∈ {x0, . . . , xn} − {xk}

wk(x)

(x− xk)γD(x)
if x 6∈ {x0, . . . , xn}

k = 0, . . . , n, (34)

we can write

r̃(f, x) =
n
∑

k=0

f(xk)bk(x), x ∈ R. (35)

The Lebesgue constant and function of the generalized FH interpolants at the nodes (8)
are given by

Λn = sup
x∈[a,b]

|Λn(x)|, Λn(x) =
n
∑

k=0

|bk(x)|.

Their behaviour as n → ∞ is an important measure for the conditioning of the problem,
being well–known that

|r̃(f, x)− r̃(F, x)| ≤ Λn(x)ǫ, ǫ = max
0≤k≤n

|f(xk)− F (xk)|.

Moreover, using the polynomial reproducing property (27), it is easy to prove that the
Lebesgue constants are also involved in the error estimate

|r̃(f, x)− f(x)| ≤ [1 + Λn]Ed(f), x ∈ [a, b]

where Ed(f) denotes the error of best approximation of f in Pd w.r.t. the uniform norm
‖f‖∞ = supx∈[a,b] |f(x)|, namely

Ed(f) = inf
P∈Pd

‖f − P‖∞. (36)

For classical FH interpolation (γ = 1) the Lebesgue constants have been estimated in [3, 4]
for equidistant nodes and in [10] for quasi–equidistant nodes. In both cases, they result
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to grow as log n with n and as 2d with d. Here we show that, introducing the additional
parameter γ > 1, for the generalized FH interpolation we succeed in getting Lebesgue
constants uniformly bounded w.r.t. n.

More precisely, setting

h = max
0≤k<n

(xk+1 − xk), h∗ = min
0≤k<n

(xk+1 − xk) (37)

we have the following

Theorem 4.1 For all n, d, γ ∈ N, with d ∈ [1, n] and γ > 1, we have

Λn(x) ≤ C d2d
(

h

h∗

)γ+d

, ∀x ∈ [a, b], (38)

where C > 0 is a constant independent of n, h, x, d and γ.

Remark 4.2 Similarly to the classic FH interpolation, we note that the dependence on d
of the Lebesgue constants is exponential for all γ > 1 too. Indeed, we conjecture the linear
factor d in (38) can be removed, but we were not able to prove it.

An immediate consequence of Thm. 4.1 is the following

Corollary 4.3 Let n, d, γ ∈ N, with d ∈ [1, n] and γ > 1. In the case of equidistant
nodes (i.e., if h = h∗) and, more generally, in the case of quasi–equidistant nodes (i.e., if
h/h∗ ≤ ρ holds with ρ ∈ R independent of n), we get

sup
n

Λn < ∞.

4.1 Proof of Theorem 4.1

In order to prove Thm. 4.1 let us first state three preliminary lemmas

Lemma 4.4 Let n, d, γ ∈ N with 1 ≤ d ≤ n and γ > 1. If xℓ < x < xℓ+1, with 0 ≤ ℓ < n,
then for all i ∈ {0, . . . , n − d} and any k ∈ {i, . . . , i+ d}, we have

1

|D(x)|

i+d
∏

s=i, s 6=k

1

|x− xs|γ−1
≤



















































|x− xℓ+1|γ
ℓ
∏

s=ℓ−d+1

|x− xs| if i ≤ ℓ− d

|x− xk|γ
i+d
∏

s=i,s 6=k

|x− xs| if i ∈ Iℓ

|x− xℓ|γ
ℓ+d
∏

s=ℓ+1

|x− xs| if i ≥ ℓ+ 1

(39)

where D(x) and Iℓ are defined in (33) and (23), respectively.

Proof of Lemma 4.4
Firstly note that the following inequality

i+d
∏

s=i, s 6=k

1

|x− xs|γ−1
≤



























ℓ
∏

s=ℓ−d+1

1

|x− xs|γ−1
if i ≤ ℓ− d

ℓ+d
∏

s=ℓ+1

1

|x− xs|γ−1
if i ≥ ℓ+ 1

(40)
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can be proved by taking into account that

|x− xi+j | ≥
{ |x− xℓ−d+1+j | if 0 ≤ j < k − i

|x− xℓ−d+j| if k − i < j ≤ d
∀i ≤ ℓ− d

|x− xi+j| ≥
{ |x− xℓ+1+j| if 0 ≤ j < k − i

|x− xℓ+j| if k − i < j ≤ d
∀i ≥ ℓ+ 1

In addition, by (24), we deduce

|D(x)| ≥



















































|λ̃ℓ−d+1(x)| =
ℓ+1
∏

s=ℓ−d+1

1

|x− xs|γ
if i ≤ ℓ− d

|λ̃i(x)| =
i+d
∏

s=i

1

|x− xs|γ
if ℓ− d+ 1 ≤ i ≤ ℓ

|λ̃ℓ(x)| =
ℓ+d
∏

s=ℓ

1

|x− xs|γ
if i ≥ ℓ+ 1

(41)

Hence, by collecting (40) and (41), we obtain (39). ♦

Lemma 4.5 Let n, d, γ ∈ N with 1 ≤ d ≤ n and γ > 1. If xℓ < x < xℓ+1, with 0 ≤ ℓ < n,
then for all i ∈ {0, . . . , n − d} and any k ∈ {i, . . . , i+ d}, we have

1

|D(x)|

i+d
∏

s=i, s 6=k

1

|x− xs|γ−1
≤







hd+γd! if i ∈ Īℓ

hd|x− xk|γ(ℓ+ 1− i)!(d + i− ℓ)! if i ∈ Iℓ

(42)

where Iℓ = {i ∈ {0, . . . , n − d} : i ≤ ℓ − d ∨ i ≥ ℓ + 1} is the complementary set of Iℓ
defined in (23).

Proof of Lemma 4.5
Taking into account that

|xk − xs| ≤ h|k − s|, ∀k, s ∈ {0, . . . , n} (43)

we get

ℓ
∏

s=l−d+1

|x− xs| ≤
ℓ
∏

s=l−d+1

|xℓ+1 − xs| ≤ hd
ℓ
∏

s=l−d+1

|l + 1− s| = hdd! (44)

ℓ+d
∏

s=l+1

|x− xs| ≤
ℓ+d
∏

s=l+1

|xℓ − xs| ≤ hd
ℓ+d
∏

s=l+1

(ℓ− s) = hdd! (45)

Also, by (43), ∀i ∈ Iℓ we have

i+d
∏

s=i, s 6=k

|x− xs| ≤
ℓ
∏

s=i, s 6=k

|xℓ+1 − xs|
i+d
∏

s=ℓ+1, s 6=k

|xℓ − xs|

≤ hd(ℓ+ 1− i)!(d + i− ℓ)! (46)

Hence, the statement follows by applying (44)–(46) to the result of Lemma 4.4. ♦
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Lemma 4.6 For all n ∈ N and i ∈ Jk = {i ∈ {0, . . . , (n − d)} : k − d ≤ i ≤ k}, with
k = 0, . . . , n, we have

i+d
∏

s=i, s 6=k

1

|xk − xs|
≤
(

1

h∗

)d 1

(k − i)!(d + i− k)!
(47)

Proof of Lemma 4.6
Since

|xk − xs| ≥ h∗|k − s|, ∀k, s ∈ {0, . . . , n} (48)

we get

i+d
∏

s=i, s 6=k

1

|xk − xs|
≤
(

1

h∗

)d i+d
∏

s=i, s 6=k

1

|k − s| =
(

1

h∗

)d 1

(k − i)!(d + i− k)!
(49)

♦
Proof of Theorem 4.1

First of all, note that if x ∈ {x0, . . . , xn} then the statement is trivial since, by (34), we
have

Λn(xk) = 1, k = 0, 1, . . . , n.

Hence, let us assume xℓ < x < xℓ+1 with ℓ = 0, . . . , (n− 1), and prove (38).

By (34) and (28) we get

Λn(x) =

n
∑

k=0

|bk(x)| =
n
∑

k=0

|wk(x)|
|x− xk|γ |D(x)|

≤
n
∑

k=0

∑

i∈Jk

1

|x− xk|γ |D(x)|

i+d
∏

s=i, s 6=k

1

|xk − xs||x− xs|γ−1

i.e., set for brevity

Ai,k =

i+d
∏

s=i, s 6=k

1

|xk − xs|
, Bi,k(x) =

i+d
∏

s=i, s 6=k

1

|x− xs|γ−1
(50)

we have

Λn(x) ≤
n
∑

k=0

∑

i∈Jk

Ai,k Bi,k(x)

|x− xk|γ |D(x)| (51)

Now we note that
Jk = (Jk ∩ Iℓ) ∪ (Jk ∩ Iℓ), k = 0. . . . , n,

where Iℓ is given by (23) and Iℓ is the complementary set.

Hence, we decompose the summation in (51)

Λn(x) ≤
n
∑

k=0







∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)| +
∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|







=:
n
∑

k=0

{σk(x) + µk(x)} =: S1(x) + S2(x)
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where, as usual, we mean that
∑

i∈I ai = 0 whenever I is the empty set.

Let us first estimate

S1(x) =
n
∑

k=0

σk(x) =
n
∑

k=0





∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|





by distinguishing the following cases:

• Case k = ℓ. Let us estimate the term σℓ(x)

Note that when k = ℓ we have Jk ∩ Iℓ = {ℓ− d} if ℓ ≥ d, otherwise it is Jk ∩ Iℓ = ∅.
Hence, suppose ℓ ≥ d (otherwise σℓ(x) = 0 holds), we have

σℓ(x) :=
∑

i∈Jℓ∩Iℓ

Ai,ℓ Bi,ℓ(x)

|x− xℓ|γ |D(x)| =
Aℓ−d,ℓ Bℓ−d,ℓ(x)

|x− xℓ|γ |D(x)|

In this case, we use (24) as follows

|D(x)| ≥ |λ̃ℓ−d+1| =
ℓ+1
∏

s=ℓ−d+1

1

|x− xs|γ

and by Lemma 4.6, we have

Aℓ−d,ℓ ≤
(

1

h∗

)d 1

d!

Consequently, we get

σℓ(x) =
Aℓ−d,ℓ Bℓ−d,ℓ(x)

|x− xℓ|γ |D(x)|

≤ 1

d!(h∗)d
1

|x− xℓ|γ |λ̃ℓ−d+1(x)|

ℓ−1
∏

s=ℓ−d

1

|x− xs|γ−1

=
1

d!(h∗)d
|x− xℓ+1|γ
|x− xℓ−d|γ

ℓ−1
∏

s=ℓ−d

|x− xs|

≤ 1

d!(h∗)d
|xℓ − xℓ+1|γ

|xℓ−d+1 − xℓ−d|γ
ℓ−1
∏

s=ℓ−d

|xℓ+1 − xs|

and by (43), (48), we conclude

σℓ(x) ≤
(

h

h∗

)d+γ 1

d!

ℓ−1
∏

s=ℓ−d

|ℓ+ 1− s| =
(

h

h∗

)d+γ

(d+ 1). (52)

• Case k = ℓ+ 1. Let us estimate the term σℓ+1(x)

When k = ℓ+ 1 we have Jk ∩ Iℓ = {ℓ+ 1} and σℓ+1(x) can be estimated by means
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of (24), (47), (43), and (48) similarly to the previous case, getting

σℓ+1(x) :=
∑

i∈Jℓ+1∩Iℓ

Ai,ℓ+1 Bi,ℓ+1(x)

|x− xℓ+1|γ |D(x)| =
Aℓ+1,ℓ+1 Bℓ+1,ℓ+1(x)

|x− xℓ+1|γ |D(x)|

≤ 1

d!(h∗)d
1

|x− xℓ+1|γ |λ̃ℓ(x)|

ℓ+1+d
∏

s=ℓ+2

1

|x− xs|γ−1

=
1

d!(h∗)d
|x− xℓ|γ

|x− xℓ+1+d|γ
ℓ+1+d
∏

s=ℓ+2

|x− xs|

≤ 1

d!(h∗)d
|xℓ − xℓ+1|γ

|xℓ+d − xℓ+1+d|γ
ℓ+1+d
∏

s=ℓ+2

|xℓ − xs|

≤
(

h

h∗

)d+γ 1

d!

ℓ+1+d
∏

s=ℓ+2

|ℓ− s| =
(

h

h∗

)d+γ

(d+ 1). (53)

• Case k 6∈ {ℓ, ℓ+ 1}. Let us estimate the summation of the remaining terms σk(x).

By applying Lemma 4.5 and Lemma 4.6 we have

n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

σk(x) =
n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

∑

i∈Jk∩Iℓ

(

Ai,k Bi,k(x)

|x− xk|γ |D(x)|

)

≤
n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

∑

i∈Jk∩Iℓ

hγ

|x− xk|γ
(

h

h∗

)d(
d

k − i

)

and taking into account that

∑

i∈Jk∩Iℓ

(

d
k − i

)

≤
∑

i∈Jk

(

d
k − i

)

≤
d
∑

j=0

(

d
j

)

= 2d

we continue the estimate as follows

n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

σk(x) ≤ hγ
(

h

h∗

)d n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

1

|x− xk|γ
∑

i∈Jk∩Iℓ

(

d
k − i

)

≤ 2d hγ
(

h

h∗

)d
(

ℓ−1
∑

k=0

1

|xℓ − xk|γ
+

n
∑

k=ℓ+2

1

|xℓ+1 − xk|γ

)

≤ 2d
(

h

h∗

)γ+d
(

ℓ−1
∑

k=0

1

|ℓ− k|γ +
n
∑

k=ℓ+2

1

|ℓ+ 1− k|γ

)

≤ 2d+1

(

h

h∗

)γ+d n
∑

j=1

1

jγ
≤ C2d

(

h

h∗

)γ+d

. (54)

having used
∑n

j=1
1
jγ

≤∑∞
j=1

1
j2

< ∞ in the last inequality.

Summing up, by (52)–(54) we have proved that S1(x) satisfies the bound in (38).
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Now let us prove that the same holds for

S2(x) =

n
∑

k=0

µk(x) =

n
∑

k=0





∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|



 .

We note that if k ≤ ℓ− d or k > ℓ+ d then we certainly have Jk ∩ Iℓ = ∅. Thus, S2(x) is,
indeed, given by the following sum

S2(x) =

ℓ+d
∑

k = ℓ+ 1− d
0 ≤ k ≤ n





∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|





Hence, by using Lemma 4.5 and Lemma 4.6, we get

S2(x) ≤
(

h

h∗

)d ℓ+d
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

∑

i∈Jk∩Iℓ

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
.

Now we distinguish the following cases:

• If k < ℓ then we have (ℓ + 1− i) > (k − i) and (i + d− ℓ) < (i+ d − k). Hence we
can write

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
=

(ℓ+ 1− i)(ℓ+ 1− i− 1) · · · (k − i+ 1)

(i+ d− k)(i+ d− k − 1) · · · (i+ d− ℓ+ 1))

and taking into account that, for i ∈ Iℓ, the right hand side term takes its maximum
value when i = ℓ+ 1− d, we get

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
≤ d(d− 1) · · · (d− (ℓ− k))

(ℓ+ 1− k)(ℓ− k) · · · 2 =

(

d
ℓ+ 1− k

)

. (55)

• If k = ℓ then we have

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
= (ℓ+ 1− i) ≤ d. (56)

• If k = ℓ+ 1 then we have

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
= (i+ d− ℓ) ≤ d. (57)

• If k > ℓ+ 1 then we have (ℓ+ 1− i) < (k − i) and (i + d− ℓ) > (i + d− k). Hence
we can write

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
=

(i+ d− ℓ)(i+ d− ℓ− 1) · · · (i+ d− k + 1))

(k − i)(k − i− 1) · · · (ℓ+ 2− i)

and since, for i ∈ Iℓ, the maximum value of the right hand side term is achieved
when i = ℓ, we get

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
≤ d(d− 1) · · · (d− (k − ℓ− 1))

(k − ℓ)(k − ℓ− 1) · · · 2 =

(

d
k − ℓ

)

. (58)
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Thus, by virtue of (55)–(58), we have proved

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!
≤



















(

d
ℓ+ 1− k

)

if ℓ+ 1− d ≤ k ≤ ℓ

(

d
k − ℓ

)

if ℓ+ 1 ≤ k ≤ ℓ+ d

Consequently, taking into account that the set Jk∩Iℓ has at most d elements, the estimate
of S2(x) continues as follows

S2(x) ≤
(

h

h∗

)d ℓ+d
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

∑

i∈Jk∩Iℓ

(ℓ+ 1− i)!(i+ d− ℓ)!

(k − i)!(i + d− k)!

≤
(

h

h∗

)d









ℓ
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

∑

i∈Jk∩Iℓ

(

d
ℓ+ 1− k

)

+

ℓ+d
∑

k=ℓ+1

∑

i∈Jk∩Iℓ

(

d
k − ℓ

)









≤
(

h

h∗

)d

d 2

d
∑

j=1

(

d
j

)

= 2

(

h

h∗

)d

d 2d. (59)

4.2 A related result

Going along the same lines as the proof of Thm. 4.1, we get the following result which
will be useful in the next section.

Theorem 4.7 For all n, γ, d ∈ N, with 1 ≤ d ≤ n and γ > 1, let {bk(x)}k be the
interpolating basis defined in (34). If the distribution of nodes is such that h ∼ h∗ ∼ n−1

holds (a ∼ b meaning that the ratio a/b is between two absolute, positive, constants) then
for all α > 0 we have

Σ(x) :=

n
∑

k=0

|x− xk|α|bk(x)| ≤ C































1

nα
if γ > 1 + α

log n

nα
if γ = 1 + α

1

nγ−1
if 1 < γ < 1 + α

∀x ∈ [a, b], (60)

where C > 0 is a constant independent of n, x, bounded with respect to γ > 1 but exponen-
tially growing with d.

Proof of Theorem 4.7. Recalling that bk(xj) = δk,j (cf. (34)), if x ∈ {x0, . . . , xn} then the
statement is trivial since Σ(x) = 0. Hence, let us fix xℓ < x < xℓ+1 with ℓ = 0, . . . , n − 1.
Following the same lines as in the proof of Thm. 4.1 and using the notations therein
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introduced, we note that

Σ(x) :=

n
∑

k=0

|x− xk|α|bk(x)|

≤
n
∑

k=0

|x− xk|α
∑

i∈Jk

Ai,k Bi,k(x)

|x− xk|γ |D(x)|

=

n
∑

k=0

|x− xk|α






∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)| +
∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|







=
n
∑

k=0

|x− xk|ασk(x) +
n
∑

k=0

|x− xk|αµk(x) =: Σ1(x) + Σ2(x).

Hence, we estimate Σ1(x) and Σ2(x) using the results obtained in the proof of Thm. 4.1
for S1(x) and S2(x), respectively.

For simplicity, in the sequel we denote by C all positive constants as in the statement,
even if they have different values.

As regards Σ1(x), similarly to S1(x) in the proof of Thm. 4.1, we deduce

Σ1(x) = |x− xℓ|ασℓ(x) + |x− xℓ+1|ασℓ+1(x) +
n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

|x− xk|ασk(x)

≤ 2(d+ 1)

(

h

h∗

)d

hα +

(

h

h∗

)d

hγ
n
∑

k = 0
k 6∈ {ℓ, ℓ+ 1}

∑

i∈Jk∩Iℓ

|x− xk|α
|x− xk|γ

(

d
k − i

)

≤ 2(d+ 1)

(

h

h∗

)d

hα + 2d
(

h

h∗

)d

hγ

(

ℓ−1
∑

k=0

|xℓ+1 − xk|α
|xℓ − xk|γ

+
n
∑

k=ℓ+2

|xℓ − xk|α
|xℓ+1 − xk|γ

)

≤ 2(d+ 1)

(

h

h∗

)d

hα + 2d
(

h

h∗

)d+γ

hα

(

ℓ−1
∑

k=0

|ℓ+ 1− k|α
|ℓ− k|γ +

n
∑

k=ℓ+2

|ℓ− k|α
|ℓ+ 1− k|γ

)

≤ C
(

h

h∗

)d+γ

hα





n
∑

j=1

1

jγ−α



 ≤ C 1

nα





n
∑

j=1

1

jγ−α





having used the hypothesis h ∼ h∗ ∼ n−1 to get the last inequality.

Now we observe that for all p > 0 it is

n
∑

j=1

1

jp
≤ 1+

n
∑

j=1

1

(j + 1)p
≤ 1+

n
∑

j=1

∫ j+1

j

dx

xp
= 1+

∫ (n+1)

1

dx

xp
=







1 + log(n+ 1) if p = 1

(n+1)1−p−p
1−p

if p 6= 1

and for all p < 0 it is

n
∑

j=1

1

jp
≤

n
∑

j=1

∫ j+1

j

x−pdx =

∫ n+1

1
x−pdx =

(n+ 1)1−p − 1

1− p
.
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Hence, the following holds

∞
∑

j=1

1

jp
≤















C log n if p = 1

Cn1−p if p < 1

p
p−1 if p > 1

, ∀p ∈ R (61)

which implies

Σ1(x) ≤
C
nα





n
∑

j=1

1

jγ−α



 ≤ C
nα















log n if γ − α = 1

n1−γ+α if γ − α < 1

1 if γ − α > 1

Finally, as regards Σ2(x), we deduce the following from the results achieved for S2(x) in
the proof of Thm. 4.1

Σ2(x) =

n
∑

k=0

|x− xk|α




∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|





=
ℓ+d
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

|x− xk|α




∑

i∈Jk∩Iℓ

Ai,k Bi,k(x)

|x− xk|γ |D(x)|





≤
(

h

h∗

)d ℓ+d
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

|x− xk|α
∑

i∈Jk∩Iℓ

(ℓ+ 1− i)!(i + d− ℓ)!

(k − i)!(i + d− k)!

≤ d

(

h

h∗

)d









ℓ
∑

k = ℓ+ 1− d
k ≥ 0

|xℓ+1 − xk|α
(

d
ℓ+ 1− k

)

+

ℓ+d
∑

k = ℓ+ 1
k ≤ n

|xℓ − xk|α
(

d
k − ℓ

)









≤ d hα
(

h

h∗

)d









ℓ
∑

k = ℓ+ 1− d
0 ≤ k ≤ n

|ℓ+ 1− k|α
(

d
ℓ+ 1− k

)

+

ℓ+d
∑

k = ℓ+ 1
0 ≤ k ≤ n

|ℓ− k|α
(

d
k − ℓ

)









≤ 2d hα
(

h

h∗

)d





d
∑

j=1

jα
(

d
j

)



 ≤ Chα
(

h

h∗

)d

≤ C
nα

having used h ∼ h∗ ∼ n−1 to get the last inequality. ♦

5 Error estimates

First of all let us state the following fundamental result

Theorem 5.1 Let the parameters d, γ ∈ N be arbitrarily fixed with γ ≥ 2. Moreover, let
the distribution of nodes satisfy h ∼ h∗ ∼ n−1. as n → ∞. Then for any continuous
function f ∈ C([a, b]) we have

lim
n→∞

‖r̃(f)− f‖∞ = 0 (62)
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Proof of Theorem 5.1. Let us arbitrarily fix d, γ ∈ N with γ ≥ 2, and consider arbitrarily
large integers n ≥ d. First, we prove that (62) holds if f = P is any polynomial. Due to
(27), this is trivial if degP ≤ d. Hence let P be a polynomial of degree s > d ≥ 1

Taking into account that r̃(f, x) certainly preserves the constant function f(x) = 1 (since
d ≥ 1), by (35) we have

1 =
n
∑

k=0

bk(x), ∀x ∈ [a, b],

and consequently, for all integers n ≥ d, we get

f(x)− r̃(f, x) =

n
∑

k=0

[f(x)− f(xk)] bk(x), ∀x ∈ [a, b], ∀f ∈ C([a, b]). (63)

On the other hand, by the Mean Value Theorem, we note that

|P (x)− P (y)| ≤ M |x− y|, ∀x, y ∈ [a, b], M = ‖P ′‖∞ > 0. (64)

In conclusion, by collecting (63) and (64), ∀x ∈ [a, b], we get

|P (x)− r̃(P, x)| ≤
n
∑

k=0

|P (x)− P (xk)| |bk(x)| ≤ M

n
∑

k=0

|x− xk| |bk(x)|,

and applying Thm. 4.7 we obtain

‖P − r̃(P )‖∞ ≤ C















1

n
if γ > 2

log n

n
if γ = 2

where C > 0 is independent of n.
Hence, by taking the limit as n → ∞, we conclude that (62) holds whenever f = P is a
polynomial. Now let us prove it for any f ∈ C([a, b]).

Corresponding to each ǫ > 0, by the Weierstrass Theorem, there exists a polynomial P ∗

such that
‖f − P ∗‖∞ < ǫ.

Moreover, since limn→∞ ‖P ∗ − r̃(P ∗)‖∞ = 0, there exists νǫ > 0 such that

‖P ∗ − r̃(P ∗)‖∞ < ǫ, ∀n > νǫ.

Finally, note that by applying Thm. 4.1 with h ∼ h∗ ∼ n−1, we get

‖r̃(F )‖∞ ≤ Λn‖F‖∞ ≤ C‖F‖∞, ∀F ∈ C([a, b]),

where C > 0 is independent of n.

Summing up, from the above results we conclude that ∀ǫ > 0 ∃νǫ > 0 such that ∀n > νǫ
we have

‖f − r̃(f)‖∞ ≤ ‖f − P ∗‖∞ + ‖P ∗ − r̃(P ∗)‖∞ + ‖r̃(f − P ∗)‖∞
≤ 2ǫ+ Λn‖f − P ∗‖∞ ≤ (2 + C)ǫ

that means (62) holds for arbitrary f ∈ C([a, b]). ♦
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In the following, we provide several estimates of the convergence order by supposing dif-
ferent degrees of smoothness for the function f ∈ C([a, b]).

Let us start by providing an error estimate in the case that f is a Hölder continuous
function satisfying

|f(x)− f(y)| ≤ M |x− y|α, ∀x, y ∈ [a, b], (65)

with 0 < α ≤ 1 and M > 0 independent of x and y.

Denoted by Lipα([a, b]) the class of all such functions, we state the following

Theorem 5.2 Let r̃(f, x) be the generalized FH interpolant corresponding to fixed pa-
rameters d, γ ∈ N, γ ≥ 2, arbitrary large n ≥ d, and a distribution of nodes satisfying
h ∼ h∗ ∼ n−1. For any 0 < α ≤ 1, if we have f ∈ Lipα([a, b]) then we get

|f(x)− r̃(f, x)| ≤ C















1

nα
if γ > α+ 1

log n

nα
if γ = α+ 1

∀x ∈ [a, b], (66)

where C > 0 is a constant as in Theorem 4.7.

Proof of Theorem 5.2. From (63) and (65) we deduce that

|f(x)− r̃(f, x)| ≤
n
∑

k=0

|f(x)− f(xk)| |bk(x)| ≤ M
n
∑

k=0

|x− xk|α |bk(x)|

holds for all x ∈ [a, b]. Hence, the statement follows by applying Thm. 4.7. ♦
Now, let us estimate the error in the case f belongs to the class Cs([a, b]) of all functions
that are s–times continuously differentiable in [a, b].

Theorem 5.3 Let r̃(f, x) be the generalized FH interpolant corresponding to fixed param-
eters d, γ ∈ N with γ ≥ 2, arbitrary large n ≥ d, and a distribution of nodes satisfying
h ∼ h∗ ∼ n−1. For any integer 1 ≤ s ≤ (d+ 1), if f ∈ Cs([a, b]) then we have

|f(x)− r̃(f, x)| ≤ C



































1

ns
if γ > s+ 1

log n

ns
if γ = s+ 1

1

nγ−1
if 1 < γ < s+ 1

∀x ∈ [a, b], (67)

where C > 0 is a constant as in Theorem 4.7.

Proof of Theorem 5.3. Due to the interpolation property (25), it is sufficient to prove (67)
in the case that x ∈]xℓ, xℓ+1[ is arbitrarily fixed, for any ℓ ∈ {0, . . . , n− 1}.
Since f ∈ Cs([a, b]) with s ≥ 1, we can certainly consider the Taylor polynomial of f
centered at xℓ and having degree s− 1 ≥ 0, namely

T (y) =

s−1
∑

j=0

f (j)(xℓ)

j!
(y − xℓ)

j, ∀y ∈ [a, b]. (68)
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Recalling the Lagrange form of the remainder term, we get the following error-bound

|f(y)− T (y)| ≤ ‖f (s)‖∞
s!

|y − xℓ|s = C|y − xℓ|s, ∀y ∈ [a, b] (69)

where here and in the following C > 0 denotes any constant as in Thm. 4.7 which can
take also different values at different occurrences.

Since deg T ≤ d, we can use the polynomial preservation property (27), that combined
with (69) yields

|f(x)− r̃(f, x)| = |f(x)− T (x) + r̃(T − f, x)|

≤ |f(x)− T (x)|+
n
∑

k=0

|T (xk)− f(xk)||bk(x)|

≤ C|x− xℓ|s + C
n
∑

k=0

|xk − xℓ|s|bk(x)|

≤ C
ns

+ C
n
∑

k=0

|xk − xℓ|s|bk(x)|

where in the last inequality we used |x− xℓ| ≤ (xℓ+1 − xℓ) ≤ h ∼ n−1.
On the other hand, since

(u+ v)d ≤ 2d−1
(

ud + vd
)

, ∀u, v ∈ R
+,

holds, we have

|xk − xℓ|s = |(xk − x) + (x− xℓ)|s ≤ (|xk − x|+ |x− xℓ|)s ≤ C (|xk − x|s + |x− xℓ|s)

Thus, we conclude that

|f(x)− r̃(f, x)| ≤ C
ns

+ C
n
∑

k=0

|xk − xℓ|s|bk(x)|

≤ C
ns

+ C
n
∑

k=0

|x− xk|s|bk(x)|+ C|x− xℓ|s
n
∑

k=0

|bk(x)|

≤ C
ns

[

1 +

n
∑

k=0

|bk(x)|
]

+ C
n
∑

k=0

|x− xk|s|bk(x)|

and the statement follows by applying Theorems 4.1 and 4.7. ♦
We remark that Thm. 5.3 for s = d+1 states that the analogous of (3) holds for generalized
FH interpolants too, but under weaker assumption on the function f .

Now we estimate the error in the class Cs,α([a, b]) of all functions that are s–times con-
tinuously differentiable with f (s) ∈ Lipα([a, b]), 0 < α ≤ 1.

Theorem 5.4 Let r̃(f, x) be the generalized FH interpolant corresponding to fixed param-
eters d, γ ∈ N with γ ≥ 2, arbitrary large n ≥ d, and a distribution of nodes satisfying
h ∼ h∗ ∼ n−1. For any 0 < α ≤ 1 and each s ∈ N with s ≤ d, if f ∈ Cs,α([a, b]) then we
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have

|f(x)− r̃(f, x)| ≤ C



































1

ns+α
if γ > s+ α+ 1

log n

ns+α
if γ = s+ α+ 1

1

nγ−1
if 1 < γ < s+ α+ 1

∀x ∈ [a, b], (70)

where C > 0 is a constant as in Theorem 4.7.

Proof of Theorem 5.4. The proof follows similarly to that of Thm. 5.3 but this time we
take, as T (y), the Taylor polynomial of f having degree s ≤ d and centered at xℓ (supposed
that x ∈]xℓ, xℓ+1[). By (27) we get

|f(x)− r̃(f, x)| ≤ |f(x)− T (x)|+
n
∑

k=0

|f(xk)− T (xk)||bk(x)|.

Hence, taking into account Thm. 4.7, the crucial step to get the statement is proving that

|f(y)− T (y)| ≤ C |y − xℓ|s+α, ∀y ∈ [a, b], ∀f ∈ Cs,α([a, b]) (71)

where C > 0 is independent of y and xℓ.

This can be easily proved by induction on s, keeping 0 < α ≤ 1 arbitrarily fixed.
Since the statement is trivial when y = xℓ, let us arbitrarily fix, for instance, xℓ < y ≤ b,
the proof is similar if a ≤ y < xℓ.
For s = 1, (71) holds since by the Mean Value Theorem

f(y)− f(xℓ) = f ′(ξ)(y − xℓ), xℓ < ξ < y,

and consequently ∀f ∈ C1,α([a, b]) we have

|f(y)− T (y)| = |f(y)− f(xℓ)− f ′(xℓ)(y − xℓ)|
= |f ′(ξ)− f ′(xℓ)||y − xℓ|
≤ C|ξ − xℓ|α|y − xℓ| ≤ C|y − xℓ|α+1.

Now suppose that (71) holds for s−1 and prove it for s. By applying the Cauchy Theorem
to the following functions

F (y) := f(y)− T (y), G(y) := (y − xℓ)
s+α,

we get there exists ξ ∈]xℓ, y[ such that

|f(y)− T (y)|
(y − xℓ)s+α

=
|F (y)− F (xℓ)|
|G(y) −G(xℓ)|

=
|F ′(ξ)|
|G′(ξ)|

=

∣

∣

∣
f ′(ξ)−

(

∑s−1
j=0

(f ′)(j)(xℓ)
j! (ξ − xℓ)

j
)∣

∣

∣

(s+ α)|ξ − xℓ|s+α−1
.

Thus, since (71) holds for s−1, by applying it to f ′ ∈ Cs−1,α([a, b]), the previous estimate
continues as follows

|f(y)− T(y)|
(y − xℓ)s+α

=

∣

∣

∣
f ′(ξ)−

(

∑s−1
j=0

(f ′)(j)(xℓ)
j! (ξ − xℓ)

j
)∣

∣

∣

(s+ α)|ξ − xℓ|s+α−1
≤ C|ξ − xℓ|s−1+α

(s+ α)|ξ − xℓ|s+α−1
≤ C
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i.e., (71) holds for s too. ♦
Finally, we focus on the general case that f : [a, b] → R is a function of bounded variation
(f ∈ BV ([a, b])) and show that all the previous error estimates continue to hold locally,
in all compact subintervals I where we have the above-prescribed smoothness, namely
f ∈ Lipα(I) with 0 < α ≤ 1, or f ∈ Cs(I) with s ≤ d+ 1, or f ∈ Cs,α(I), with s ≤ d. In
order to give a unified treatment of all these cases, we introduce the following notation

Cs,α :=







Lipα if 0 < α ≤ 1 and s = 0
Cs if α = 0 and s ∈ N with s ≤ d+ 1
Cs,α if 0 < α ≤ 1 and s ∈ N with s ≤ d

(72)

Theorem 5.5 Let f ∈ BV ([a, b]) and let r̃(f, x) be the generalized FH interpolant of f
corresponding to fixed d, γ ∈ N with γ ≥ 2, arbitrarily large n ≥ d and nodes satysfying
h ∼ h∗ ∼ n−1. Under the assumptions in (72), if f ∈ Cs,α(I) with I = [a′, b′] ⊂ [a, b] ,
then we have

|f(x)− r̃(f, x)| ≤ C



































1

ns+α
if γ > s+ α+ 1

log n

ns+α
if γ = s+ α+ 1

1

nγ−1
if 1 < γ < s+ α+ 1

∀x ∈ [a′, b′] (73)

where C > 0 is a constant as in Theorem 4.7.

Proof of Theorem 5.5. As usual, we consider the case x ∈ [a′, b′]−{x0, . . . , xn} is arbitrarily
fixed and we denote by C a positive constant that can take different values at different
occurrences and has the qualities described in Thm.4.7.
As n → ∞, we can suppose that xℓ < x < xℓ+1 with [xℓ, xℓ+1] ⊂ [a′, b′]. In this way, we
can take the Taylor polynomial of f centered at xℓ and with degree

{

s if s ≤ d
s− 1 if s = d+ 1 and α = 0

Denoted by T (y) such polynomial, since f ∈ Cs,α([a′, b′]), we have (cf. (69) and (71) )

|f(y)− T (y)| ≤ C |y − xℓ|s+α, ∀y ∈ [a′, b′], (74)

and since deg(T ) ≤ d, by (27), we also have r̃(T ) = T .
Consequently, we get

|f(x)− r̃(f, x)| ≤ |f(x)− T (x)|+ |r̃(T − f, x)|

≤ C|x− xℓ|s+α +
n
∑

k=0

|T (xk)− f(xk)||bk(x)|,

and setting

I1 = {k ∈ {0, 1, . . . , n} : |x− xk| ≤ (b′ − a′)},
I2 = {k ∈ {0, 1, . . . , n} : |x− xk| > (b′ − a′)}
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we obtain

|f(x)− r̃(f, x)| ≤ C
ns+α

+







∑

k∈I1

+
∑

k∈I2







|T (xk)− f(xk)||bk(x)|

=:
C

ns+α
+ s1(x) + s2(x)

As regards s1(x), the estimate (74) can be applied because k ∈ I1 implies xk ∈ [a′, b′].
Consequently, by (74), Thm. 4.1 and Thm.4.7, we get

s1(x) :=
∑

k∈I1

|T (xk)− f(xk)||bk(x)|

≤ C
∑

k∈I1

|xk − xℓ|s+α|bk(x)|

≤ C
n
∑

k=0

(

|x− xℓ|s+α + |x− xk|s+α
)

|bk(x)|

≤ C
ns+α

+ C
n
∑

k=0

|x− xk|s+α|bk(x)| ≤ C



























1

ns+α
if γ > s+ α+ 1

log n

ns+α
if γ = s+ α+ 1

1

nγ−1
if 1 < γ < s+ α+ 1

Finally, concerning s2(x), we note that

s2(x) :=
∑

k∈I2

[ |T (xk)− f(xk)|
|x− xk|s+α

]

|x− xk|s+α|bk(x)|

≤
[

sup
k∈I2

|T (xk)− f(xk)|
|x− xk|s+α

]

∑

k∈I2

|x− xk|s+α|bk(x)|

≤ ‖T − f‖∞
(b′ − a′)s+α

∑

k∈I2

|x− xk|s+α|bk(x)|

≤ C
n
∑

k=0

|x− xk|s+α|bk(x)|

Hence, by Thm. 4.7, we obtain that s2(x) can be estimate as s1(x). ♦

6 Some numerical experiments

In this section we compare the error function

en,d,γ(x) = f(x)− r̃(f, x)

for different functions f and different values of n, d and γ. We denote the maximum error
by

En,d,γ = max
x∈[−1,+1]

|en,d,γ(x)|.

As interpolation nodes, we take equidistant points in the interval [−1,+1]. Note that the
generalized FH interpolants are defined for a general configuration of the interpolation
points.
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Experiment 1: Let us consider the function f(x) = |x|0.5 ∈ Lipα([−1,+1]) with α = 0.5
to illustrate Thm. 5.2. According to this theorem, γ should be taken greater than α+1 =
1.5. The numerical experiment shows that in this case the theorem is also valid when
γ = 1. We get that for n = 2k, k = 1, 2, . . . , 10, the maximum error E2k,d,γ is divided by

a factor approximately equal to
√
2 when k is increased by one. So the maximum error

behaves as O(h0.5). This is true for γ = 1, 2, . . . and d = 0, 1, 2, . . .. Figure 1 illustrates
this by plotting E2k,d,γ for k = 1, 2, . . . , 10 and γ = 1, . . . , 5 with d = 2. The curve for
γ is above the one for γ − 1. So, one would think that increasing the value of γ is not a

2 3 4 5 6 7 8 9 10

k

10 -1

100

 = 1
 = 2
 = 3
 = 4
 = 5

Figure 1: Maximum error E2k ,d,γ for k = 1, 2, . . . , 10 and γ = 1, . . . , 5 with d = 2 and
f(x) = |x|0.5.

good idea. However, the factors between the errors for γ = 5 and γ = 1 are small and
around 1.08. More importantly the error function en,d,γ for this function f(x) = |x|0.5
behaves much better for γ = 2 compared to γ = 1. Figure 2 shows the error function
en,d,γ for n = 1024, d = 2 and γ = 1, 2. The blue dots represent the error function for
γ = 1 (original FH interpolants), the red dots for γ = 2. Although the peak increases
slightly for increasing values of γ, the behaviour away from the origin is much better. We
did not show the behaviour of the error function for γ = 3, 4, 5. In this case the behaviour
is between the behaviour for γ = 1 and γ = 2.

Experiment 2: Let us consider the function f(x) = |x| ∈ Lipα([−1,+1]) with α = 1.
The conditions of Thm. 5.2 require that γ should be greater than α + 1 = 2 to obtain a
maximum error that behaves as O(h). However, the numerical experiments indicate that
this behaviour is also obtained for γ = 1 and 2. We have that for n = 2k, k = 1, 2, . . . , 10,
the maximum error E2k,d,γ is divided by a factor approximately equal to 2 when k is
increased by one. So the maximum error behaves as O(h). This is true for γ = 1, 2, . . .
and d = 0, 1, 2, . . .. Figure 3 illustrates this by plotting E2k ,d,γ for k = 1, 2, . . . , 10 and
γ = 1, . . . , 5 with d = 1. The curve for γ is above the one for γ − 1. Also here, one would
think that increasing the value of γ is not a good idea. However, the factors between the
errors for γ = 5 and γ = 1 are also small and around 1.55. More importantly, the error
functions en,d,γ in the case f(x) = |x| also behave much better for increasing values of
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Figure 2: The error function en,d,γ for n = 1024, d = 2 and γ = 1, 2, for the func-
tion f(x) = |x|0.5. The blue dots represent the error function for γ = 1 (original FH
interpolants), the red dots for γ = 2.
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Figure 3: Maximum error E2k ,d,γ for k = 1, 2, . . . , 10 and γ = 1, . . . , 5 with d = 1 and
f(x) = |x|.

γ. Figure 4 shows the error function en,d,γ for n = 1024, d = 1 and γ = 1, 2, . . . , 5. The
blue dots represent the error function for γ = 1 (original FH interpolants), the red dots
for γ = 2 and so on. Although the peak increases slightly for increasing values of γ, the
behavior away from the origin is much better.
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Figure 4: The error function en,d,γ for n = 1024, d = 1 and γ = 1, 2, . . . , 5, for the
function f(x) = |x|. The blue dots represent the error function for γ = 1 (original FH
interpolants), the red dots for γ = 2 and so on.

Experiment 3: Let us consider the analytic function f(x) = e−x2 ∈ C∞([−1,+1]). Figure
5 shows the error function en,d,γ for n = 1024, d = 2 and γ = 1, 2. The blue dots represent
the error function for γ = 1 (original FH interpolants), the red dots for γ = 2. Following
the theory, the maximum error for the interpolants should behave as O(hd+1) when γ = 1
(cf. (3)). This can be also observed in practice for γ = 1 but for γ = 2 too, although
Thm. 5.3 predicts a lower order of convergence when 1 < γ ≤ d + 2. The behavior in
between the peaks is much better when γ = 2 compared to γ = 1.

Experiment 4: Let us consider the analytic Runge-function f(x) = 1/(1 + 25x2) ∈
C∞([−1,+1]). Figure 6 shows the error function en,d,γ for n = 1024, d = 2 and γ = 1, 2.
The blue dots represent the error function for γ = 1 (original FH interpolants), the red
dots for γ = 2. As in the previous experiment, according to (3), the maximum error for
the interpolants behaves as O(hd+1) when γ = 1, and this is also observed for γ = 2.
Moreover, the behavior in between the peaks is much better when γ = 2 compared to
γ = 1. However, if we take a similar figure for n = 26 = 64 we obtain Figure 7. In this
case, γ = 2 performs worse compared to γ = 1.

Experiment 5: In [10] an upper bound is derived for the Lebesgue constant in case
γ = 1:

Λn ≤ 2d(1 + log n). (75)

To illustrate this, in Figure 8 the Lebesgue constant is plotted in function of d where the
different lines correspond to values of n = 2k, k = 4, 5, . . . , 10 (left) and in function of
n for different values of d = 1, 2, . . . , 10 (right). The left figure clearly demonstrates the
factor 2d in (75) while the right figure illustrates the log n dependency. Plotting similar
figures for γ = 2 we obtain Figure 9. This figure shows that for γ = 2 the Lebesgue
constant is independent of n. For γ = 3 we obtain similar figures. In Figure 10 we plot
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Figure 5: The error function en,d,γ for n = 1024, d = 2 and γ = 1, 2, for the func-

tion f(x) = e−x2
. The blue dots represent the error function for γ = 1 (original FH

interpolants), the red dots for γ = 2.

Figure 6: The error function en,d,γ for n = 1024, d = 2 and γ = 1, 2, for the function
f(x) = 1/(1 + 25x2). The blue dots represent the error function for γ = 1 (original FH
interpolants), the red dots for γ = 2.
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Figure 7: The error function en,d,γ for n = 64, d = 2 and γ = 1, 2, for the function
f(x) = 1/(1 + 25x2). The blue dots represent the error function for γ = 1 (original FH
interpolants), the red dots for γ = 2.
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Figure 8: The Lebesgue constant for γ = 1 as function of d for n = 2k, k = 4, 5, . . . , 10
(left) and as function of n for d = 1, 2, . . . , 10 (right).

the Lebesgue constant for d = 10 : 10 : 50, n = 2k, k = 10 and for γ = 1, 2, 3. We compare
this behaviour with the plot 2d. This figure shows that the Lebesgue constant behaves as
C2d with C independent of d.

In Figure 11 the Lebesgue function is plotted for n = 26, d = 5 and γ = 1 and 2.

Experiment 6: In this experiment, we compare the elapsed time of the classical Floater-
Hormann algorithm with computing and evaluating the new approximant. We imple-
mented the two algorithms in Matlab and measured the elapsed time using the tic - toc
commands. We used the following values: d = 5, n = 210, γ = 3 and m = 105, the number
of x-values in which the approximant is evaluated. The weights for the classical barycen-
tric form can be computed beforehand by O(nd2) FLOPS using (32) or in O(nd) FLOPS
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Figure 9: The Lebesgue constant for γ = 2 as function of d for n = 2k, k = 4, 5, . . . , 10
(left) and in function of n for d = 1, 2, . . . , 10 (right).
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Figure 10: The Lebesgue constant for d = 10 : 10 : 50, n = 2k, k = 10 and for γ = 1, 2, 3.
We compare this behaviour with the plot 2d.

using a more complicated pyramid algorithm [11]. We implemented the former method.
Running the methods 50 times and averaging, computing the weights for the classical FH
approximant took 4 ·10−7nd2 seconds while evaluating it in the m points costed 2 ·10−9mn
seconds. Computing and evaluating the new approximant took 2 · 10−9mnd2 seconds. For
a different value of γ, we obtained comparable results.

7 Conclusion

In this paper, we have defined a whole family of generalized Floater–Hormann interpolants
depending on an additional parameter γ ∈ N, besides the usual parameter d ∈ N. For
γ = 1 we obtain the original Floater–Hormann interpolants. The numerical examples show
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Figure 11: The Lebesgue function for n = 26, d = 5 and γ = 1 and 2.

that this family has potential to approximate non-smooth as well as smooth functions. In
future work, the (sub-)optimal choice of the parameters d and γ could be investigated
when the n interpolation points are given. For the original Floater–Hormann interpolants
Güttel and Klein [9] have developed a heuristic method to determine the parameter d. To
remedy the bad behaviour of the error function at the endpoints, Klein [13] designed a
method adding some interpolation points at the two endpoints. A similar technique could
be applied to the generalized Floater–Hormann approximants here introduced. However,
this approach seems useful only when the interpolated function is periodic [6]. Moreover,
in [7] it is shown that Klein’s method is numerically unstable. It could be interesting to
investigate the well-conditioned case d = 0 for all γ ≥ 2, looking for some improvement
w.r.t. the cases γ = 1, 2 studied in [1, 15]. This and the following questions are left for
future research: (A) Refine the theoretical bound of the Lebesgue constant in (38) and also
state a lower bound according to the numerical experiments; (B) Investigate the Lebesgue
constants and the error for other configurations of nodes too; (C) Deeper explore the role
of γ in view of the numerical experiments that suggest larger theoretical bounds on γ.
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