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Contact angle is an essential characteristic in wetting, capillarity and moving 

contact line; however, although contact angle phenomena are effectively simulated, an 

accurate and real-time measurement for contact angle has not been well studied in 

computational fluid dynamics, especially in dynamic environments. Here, we design a 

geometry-based mesoscopic scheme for on-the-spot measurement of the contact angle 

in the lattice Boltzmann method. The measuring results without gravity effect are in 

good agreement with the benchmarks from the spherical cap method. The 

performances of the scheme are further verified in gravitational environments by 

simulating sessile and pendent droplets on smooth solid surfaces and dynamic contact 

angle hysteresis on chemically heterogeneous surfaces. This scheme is simple and 

computationally efficient. It requires only the local data and is independent of 

multiphase models. 
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1. Introduction 

Contact angle, which indicates the wettability of a solid surface by a liquid, is a 

characteristic quantity in a great amount of wonderfully natural phenomena and 

significantly industrial applications, such as capillarity, microfluidics, nanotechnology, 

moving contact line, coating technology, etc[1, 2]. Essentially, both of the static and 

dynamic contact angles should be measured at contact line on the microscale[1]. 

Experimenters have developed all kinds of methods to determine contact angle. 

Bigelow et al. set up the most widely used technique, which utilized a 

telescope-goniometer to directly measure the tangent angle at the three-phase contact 

point on a sessile droplet profile[3]. Angles measured in such a way are often quite 

close to advancing contact angles. Equilibrium contact angles can be obtained through 

the application of well-defined vibrations[4]. Extrand and Kumagai studied the 

contact angle hysteresis on a variety of polymer surfaces by using an inclined plate 

method, in which a sessile droplet locates on a inclined plate and both of the 

advancing and receding contact angles are simultaneously obtained[5]. Kwok et al. 

used a motor-driven syringe to control the rate of liquid addition and removal to study 

advancing, receding, or dynamic contact angles[6]. Besides observing a sessile 

droplet on a solid sample, a telescope-goniometer is also necessary in other contact 

angle measurements. The captive bubble method  forms an air bubble beneath the 

solid sample, which is immersed in the testing liquid[7]. The contact angle formed by 

the air bubble in liquid can also be directly measured. The tilting plate method applies 

a solid plate with one end immersed in the liquid and forms a meniscus on both sides 

of the plate[8]. The plate inclines slowly until the meniscus becomes horizontal on 

one side of the plate and then the angle between the plate and the horizontal is the 

contact angle. It is generally recognized that the direct measurement of drop contact 

angles with a telescope-goniometer can yield an accuracy of approximately ±2°[9]. 

The Wilhelmy balance method is another type of popular scheme to measure contact 

angle[10]. A solid sample is manipulated to immerse into or emerge from the wetting 

liquid. The task of measuring an angle is reduced to the measurements of the weight 

and length, which can be performed with high accuracy and without subjectivity. The 



method is also suitable to measure dynamic contact angle and hysteresis, because the 

three-phase line can be in wholesale motion assuring achievement of maximal 

advancing and minimum receding contact angles[11]. The experimental 

measurements of the contact angle promote to investigate the surface tensions and 

wetting mechanisms of the solid surfaces, especially interpretation of contact angles 

in terms of surface energetics of solids[9]. 

Numerical simulation has been developed into an effective way to research fluid 

flow and is expected to provide more rich details than experiments. In computational 

fluid dynamics, there are usually several methods available to measure a contact angle. 

The measurement of the drop image by a goniometer is relatively rough and 

subjective after the images are generated from the simulation data[12]. In a more 

accurate way, a graphical analysis can be applied to obtain the contact angle from the 

image[13]. Since the fluid images have to be exported before the measurement, these 

methods are time-consuming and cannot serve as an on-the-spot measurement. 

Ignoring the gravity effect, a droplet holds a perfect spherical cap on a horizontal solid 

surface owing to the surface tension. The contact angle can be accurately calculated 

based on the measurement of the height and bottom width of the droplet[14, 15]. This 

scheme is referenced here as the spherical-cap method. On chemically striped 

patterned surfaces, the contact line is corrugativus, the contact angle can be 

determined using the height of the droplet and the radius of curvature, which fits the 

droplet profile[16]. It is more complex in molecular dynamics simulations. Since the 

drop size reduces to nanoscale, there is not a steady interface between gas and liquid. 

The drop contours have to be fitted by a least square technique[17, 18]. Although 

these theoretical methods are simple and easy to implement, they are limited in a 

zero-gravity equilibrium environment. For diffuse-interface simulations, Ding et al. 

proposed a geometric formulation of wetting condition based on the gradient of the 

volume fraction for binary fluid flows, by which the prescribed contact angle can be 

correctly obtained[19]. Lee et al. improved the accuracy of the contact angle 

boundary condition as well as its numerical stability by a characteristic 

interpolation[20]. Considering to the relaxation of dynamic contact angle, Dong 



further extended the contact-angle boundary conditions to simulate dynamic 

wall-bounded gas/liquid flows with large density ratio[21]. Leclaire et al. imposed the 

desired contact angle at the boundary as a Dirichlet boundary condition and then 

studied immiscible two-phase pore-scale imbibition and drainage in porous media [22, 

23]. As for these contact angle conditions, the main efforts were focusing on the 

wetting boundary constraints, but not on the evaluations of contact angles, even more 

not on the calculation of the dynamic contact angle. Moreover, these imposing 

procedures of contact-angle boundary conditions are computationally complex and 

nonlocal. Especially, they involve the intervention to the evolution of flow field. 

Therefore, a simple, exact and on-the-spot measurement of contact angle is 

meaningful for the numerical investigation of wetting phenomena.  

Essentially, contact angle is a geometrical concept. Only for some special cases, 

such as a sessile droplet at zero-gravity mechanical equilibrium on a horizontal 

surface, the contact angle can be theoretically explained by Young’s equation. In a 

dynamic or nonequilibrium environment, the contact angle should be measured 

through a geometrical method. The lattice Boltzmann method has developed into an 

alternative tool to model multiphase flow systems, and been successfully applied to 

many of the fields related to the surface wetting science and engineering application 

[15, 24]. Its regular and mesoscopic lattices lay a foundation for efficient contact 

angle measurement. In this paper, we design a geometry-based mesoscopic scheme to 

measure the real-time contact angle. The various test cases with and without gravity 

are conducted to verify the proposed scheme. The computational results show that the 

scheme is simple, accurate and efficient.  

The paper is organized as follows. In section 2, we introduce the 

chemical-potential multiphase lattice Boltzmann model. Section 3 proposes the 

mesoscopic contact angle measurement, whose computational accuracy is verified by 

comparing with the benchmarks. In section 4, a series of droplet deformations under 

gravity are simulated and the contact angles are measured by the proposed method. 

Section 5 is about the investigations of the contact angle hysteresis. Finally, section 6 

concludes the paper. 



2. Chemical-potential-based multiphase model 

Numerical simulation of multiphase flow is one of the most successful 

applications for the lattice Boltzmann method (LBM)[15, 24]. Originating from the 

cellular automaton concept and kinetic theory, the intrinsic mesoscopic properties 

make LBM outstanding to model complex fluid systems involving interfacial 

dynamics[25-28] and phase transitions[29-37]. Discretized fully in space, time and 

velocity, the lattice Boltzmann equation with a single relaxation time can be concisely 

written as [38] 
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where i  is the weighting coefficient and u  is the fluid velocity. The evolution of 

the LBE can be decomposed into two elementary steps, collision and advection: 
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where if  and if
~

 denote pre-collision and post-collision states of the particle 

distribution functions, respectively. The mass density and the momentum density are 

defined by  if  and  ii feu , respectively. 

Considering a nonideal fluid system, the free-energy functional within a 

gradient-squared approximation is [30, 34, 39] 
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where the first term of the integrand is the bulk free-energy density at a given 

temperature with the density   and the second term gives the free-energy 

contribution from density gradients in a inhomogeneous system. The free energy 



function in turn determines the diagonal term of the pressure tensor 
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with the general expression of equation of state (EOS)  
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The full pressure tensor can be written as 
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where   is the Kronecker delta.  

For a van der Waals fluid, the chemical potential can be defined from the free 

energy density functional[39-41] 
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Then the chemical potential can be computed by the density and free-energy density 

 2' )(             (11) 

Substituting Eq. (7) and (11) into Eq. (8), a graceful relationship is obtained[42]  
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Thus, the nonideal force can be easily evaluated by the chemical potential avoiding 

the pressure tensor 
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0 sc  is the ideal-gas equation of state. Then, the nonideal force acts on 

the collision process by simply increasing the particle momentum in 
)(eq

if  in terms 

of the momentum theorem. The velocity in Eq. (2) is replaced by an equilibrium 

velocity[43] 
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Correspondingly, the macroscopic fluid velocity is redefined by the averaged 

momentum before and after the collision 
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This multiphase model satisfies thermodynamics and Galilean invariance [42]. It can 

work together with various equations of state to simulate all kinks of multiphase 

flows.  

In this paper, we model the popular water-vapor system by the 

chemical-potential-based multiphase lattice Boltzmann method together with the 

famous Peng-Robinson (PR) EOS, 
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where the temperature function is 
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critical temperature is 07292.0cT  and the critical density is 65730.2c . The 

chemical potential of PR EOS is [42] 
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In an effort to relate the numerical results to the real physical properties, the reduced 

variables cr TTT   and 
cr    are used in the following simulations. 

 

 

3. Mesoscopic contact angle measurement 

3.1. Chemical-potential boundary condition 

Endowing a solid surface with a chemical potential, the wettability, namely the 

interaction between the fluid and the solid, can be well regulated. As shown in Fig. 1, 

a straight interface between fluid and solid locates on a row of lattice nodes (y=1), 



which are treated as fluid nodes. The distribution functions on these interfacial fluid 

nodes still collide and stream, and the bounce-back boundary condition is applied to 

make up those distribution functions from solid. During the evaluation of nonideal 

force, the densities of the solid nodes (y=0) must be estimated in order to calculate the 

density gradients by Eq. (15) on these interfacial nodes. A simple weighted average 

scheme of the neighbor fluid nodes is used here 
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A uniform chemical potential is assigned to the solid nodes (y=0) in order to specify 

the wettability of the solid surface. It will be used to evaluate the gradient of chemical 

potential in Eq. (20). By changing the chemical potential, the contact angle can be 

easily adjusted. 

 

Fig. 1. (color online) A schematic diagram to illustrate the chemical-potential 

boundary condition and the measurement of contact angle on mesoscopic scale. The 

small black spots are the intersections of droplet surface and gas-liquid links. The 

first point (y=1) and the second point (y=2) are marked by blue circles. The red line 

represents the tangential line of the droplet at the triple-phase contact point. 



3.2. Contact angle measurement 

Aiming to calculate contact angle with high resolution on mesoscopic scale, two 

questions must be solved at first. One is where the gas-liquid interface locates exactly 

and the other is how to get the stable extreme value of contact angle at the triple-phase 

contact point. Fortunately, once the questions are raised, the answers emerge naturally. 

The drop surface must intersect with the gas-liquid links, each of which connects a 

gas node, whose density is smaller than the mean density, and a liquid node, whose 

density is greater than the mean density. A linear interpolation is the best candidate to 

locate the accurate position of the drop surface on a gas-liquid link, 
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where gx  and lx  are the gas and liquid lattice nodes connected by a gas-liquid link, 

m  denotes the average of the gas and liquid density, and e  represents the link 

direction from gas to liquid. It is worth to notice that )( gx  and )( lx  in the 

transition region may be not equal to the coexistence densities g  and l  

respectively. Consequently, a series of discrete surface points of the droplet are 

obtained as shown in Fig. 1 and the point on the solid surface (y=1) is set as the 

triple-phase contact point on mesoscopic scale. Now, we need to select another point 

to determine the contact angle. Among the nearby points, we find that the point (y=2) 

gives the most accurate and stable angle value for most of contact angle range. The 

reasons are easy to understand: for one thing the point (y=2) keeps an appropriate 

distance to the triple-phase contact point (y=1); for another, both of the two points are 

on the horizontal gas-liquid link and then receive similar calculation errors induced by 

Eq. (20). As for emphasis in Fig. 1, both of the first point (y=1) and the second point 

(y=2) are marked by blue circles. Thus, the contact angle θ can be defined by the 

horizontal positive direction and the ray from the first point to the second point, which 

is red in Fig. 1. When the contact angle is larger than 170
o
, the nearer second point 

has to be used to reduce the angle error. Especially, when the first point is no longer 



on the solid surface and the droplet keeps touching to the solid, the contact angle 

reaches 180
o
, which is a delicate state in a zero-gravity environment. It should be 

noted that the mesoscopic scheme of contact angle measurement is independent of the 

chemical-potential-based multiphase model.  

 

 

3.3. Mesoscopic morphology 

We select the popular water-vapor system to demonstrate the present model by 

using the famous Peng-Robinson (PR) EOS. Ignoring the gravity effect, a sessile 

droplet on a solid surface with various specified chemical potentials is simulated to 

achieve different surface wettabilities. The computational domain is a rectangular 

with the length 300Dx  and the width 100Dy . The density field is initialized as 

follows [44]:  
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where g  and l  are the two-phase coexistence densities obtained by the Maxwell 

equal-area construction, 5W  is the initial interface width, 
0r  is the drop initial 

radius and 
2
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2

0 )()( yyxxr  , in which 2/0 Dxx   and 100  ry . The 

temperature takes 8.0rT  and the drop radius is 300 r . Each case performs 

100,000 time steps of evolution to achieve its equilibrium state. The periodical 

boundary condition is applied to the left and right sides of the flow field, while the 

chemical potential boundary condition is used for the top and bottom sides. For the 

top side, the value of chemical potential is optional because the droplet never touches 

it. Typically, the chemical potential on a top side node takes the same value as that of 

the neighbor fluid nodes, which is always gas phase in the simulations. For the bottom 

side, a set of chemical potentials are specified to the nodes.  

 



 

Fig. 2. (Color online) The mesoscopic morphology of contact angles: (a) θ = 64
o
 at 

CP = 0.2, (b) θ = 100
o
 at CP = 0.3, (c) θ = 135

o
 at CP = 0.4, (d) θ = 155

o
 at CP = 

0.45. 

 

The equimolar dividing surface is usually considered as the theoretical interface 

between gas and liquid[39]; however, its determination has to perform a heavy 

computation. Here, we define the drop surface as a contour line where the density is 

equal to the mean density of the gas phase and liquid phase. Fig. 2 further draws the 

mesoscopic morphology of different contact angles. It is clearly shown that the 

droplet surfaces directly fall on the solid surface. This feature offers an opportunity to 

accurately measure the contact angle at mesoscopic scale. 

 

 

4. Droplets without gravity  

Without gravity, a droplet on a horizontal solid surface will form a perfect 

spherical cap. If the base and height of the droplet are L and H, the radius of the 

droplet is calculated by HLHR 8/)4( 22   and then the spherical cap method 

evaluates the contact angle by the formula )(2/tan HRL  . Since the 

measurements of the droplet base and height are convenient and accurate, the 



spherical cap method can be used as a benchmark to verify the proposed mesoscopic 

measurement of contact angle. The computational domain is extended to 500Dx  

and 200Dy , and the drop radius takes 400 r . The droplets on a horizontal solid 

surface at two temperatures 8.0,7.0rT  are simulated by using PR EOS and the 

numerical contact angles are compared with those from the spherical cap method. As 

shown in Figs. 3 and 4, with the growth of the chemical potential of the solid surface, 

the simulating contact angles smoothly increase and are in good agreement with the 

benchmarks. Therefore, the chemical-potential multiphase model is competent to 

simulate the contact angle phenomena and the mesoscopic measurement is accurate. 

Remarkably, the contact angle increases almost linearly along with the chemical 

potential, hence it is very convenient to regulate the contact angle for practical 

requirements in the present chemical-potential multiphase model. 

 

Fig. 3. (Color online) Contact angle increasing with the chemical potential of the 

solid surface at the reduced temperature 0.8. 



 

Fig. 4. (Color online) Contact angle increasing with the chemical potential of the 

solid surface at the reduced temperature 0.7. 

 

 

Fig. 5. (Color online) Contact angles of the droplets with a series of initial 

radiuses on different solid surface.     

 

 



Theoretically, without gravity, the contact angles will remain the same for 

different sizes of drops on the same solid surface at a given temperature. This can be 

used to examine the effect of drop size on the contact angle measurement. We 

simulate a series of droplets, whose initial radiuses gradually increase from 200 r  

to 2000 r . It can be seen clearly in Fig. 5 that for all kinds of solid surfaces, the 

contact angles of the droplets with different radiuses are highly consistent. Therefore, 

the present mesoscopic measurement of contact angle is independent of the size and 

resolution of the drop. 

 

 

5. Droplet deformations under gravity 

Theory and experiments support that gravity has no effect on the equilibrium 

contact angle of a droplet on a smooth homogeneous surface[45]. Naturally, with the 

effect of gravity, a droplet on a solid surface will deform deviating from an ideal 

spherical cap: a sessile droplet is squashed and forms an ellipsoidal cap, while a 

pendent droplet is stretched and forms a protuberant cap. Thus, the spherical cap 

method will produce serious deviations, which grow fast along with the drop size. The 

sessile droplets and pendent droplets are separately simulated. The computational 

domain keeps 500Dx  and 200Dy , the drop radius takes 500 r  and the 

temperature is 8.0rT . The drop density is 1 g/cm
3
, the gravity acceleration is 

980G  cm/s
2
. The droplet on lattice unit is mapped to the macroscopic droplet by 

dimensional transformation. With the growth of the macroscopic drop size, the effect 

of gravity is increasingly pronounced. The initialization of flow field is the same as 

that in section 3.2. After 10,000 time steps of free evolution, the gravity force is 

gradually exerted on the fluid, both gas and liquid, and then the system evolves till 

100,000 time step.  

 

 



5.1. Sessile droplets 

Owing to the gravity effect, a sessile droplet will be flattened, its base extends 

and its height lowers. The contact angle calculated by the spherical cap method will 

reduce unsurprisingly. We simulate a series of droplets, whose diameters change from 

0.01 cm to 0.5 cm. These droplets are located on three solid surfaces with the 

chemical potentials 0.2, 0.3 and 0.4, respectively. The macroscopic diameter 0 equals 

to the situation of zero gravity. Fig. 6 illustrates that when the initial drop diameter is 

less than 0.1 cm, the influence of gravity is negligible. The present method and the 

spherical cap method obtain similar contact angles. This is consistent to the 

literature[46], in which Picknett and Bexon reported that a droplet resting on a smooth 

homogeneous surface takes the shape of a spherical cap provided that its mass is less 

than about 1 mg. When the droplets are larger than this scale, the contact angle 

computed by the spherical cap method noticeably decreases and increasingly deviates 

from the values without gravity. However, the contact angle evaluated by the present 

method keeps almost the same all the time. The droplet deformations are drawn in Fig. 

7. The two macroscopic droplet diameters are 0.3 and 0.5 cm on the three kinds of 

solid surfaces with the chemical potentials 0.2, 0.3 and 0.4, respectively. The surface 

tensor is constant for a water-vapor system at a given temperature; therefore the 

deformation of a bigger droplet, which suffers a larger gravity force, is more than that 

of a smaller one. It can be clearly seen that the droplets with the initial diameter 0.5 

cm are flattened much more than those with the initial diameter 0.3 cm. This is 

consistent to the results of Xie et al.[47].  



 

Fig. 6. (color online) The contact angles of sessile droplets with different diameters on 

three kind of solid surfaces. The drop diameters change from 0.01 cm to 0.5 cm and 

the chemical potentials of the solid surfaces are set to 0.2, 0.3 and 0.4, respectively. 

The black solid symbols are the results of the present method and the blue hollow ones 

are those from the spherical cap method. 

 

 

Fig. 7. (color online) The deformations of sessile droplets with different diameters on 

three kind of solid surfaces. The initial diameter is 0.3 cm for the left droplets and 0.5 

cm for the right droplets. The chemical potentials of the solid surfaces are (a) 0.4, (b) 

0.3 and (c) 0.2, respectively. 



5.2. Pendent droplets 

A pendent droplet is adsorbed on the undersurface of a homogeneous surface. 

Due to the gravity effect, a pendent droplet will be stretched, its base shrinks and its 

height will increase. Thus the contact angle calculated by the spherical cap method 

will increase. We simulate a series of droplets located on three solid undersurfaces 

with the chemical potentials 0.2, 0.3 and 0.4, respectively. The macroscopic diameters 

grow gradually and the diameter 0 equals to the situation of zero gravity. Fig. 8 

supports that the contact angles evaluated by the present method again remain the 

same value for droplets with different diameters. When the initial drop diameter is 

less than 0.1 cm, the influence of gravity is slight and the results from the present 

method are almost equal to those from the spherical cap method. An apparent 

distinction between a pendent droplet and a sessile droplet is that a pendent one will 

drop when its diameter becomes big enough, because the gravity force is increasing 

along with the growth of the drop size and, finally, it may be larger than the adhesion 

force. Therefore, as shown in Fig. 8, the drop size cannot increase continuously. The 

dropping happens when the diameters are larger than 0.40, 0.35 and 0.30 cm for the 

undersurfaces with the chemical potentials 0.2, 0.3 and 0.4, respectively. The 

stretching deformations are illustrated in Fig. 9. We draw the largest deformation 

before dropping, comparing with the smaller droplets. The droplet has a smaller base 

on a hydrophobic surface than on a hydrophilic one. Therefore, the droplet on the 

surface with the chemical potential 0.4 is stretched much more and looks more 

unstable than those on more hydrophilic surface, although it perhaps has a smaller 

size. 

 



 

Fig. 8. (color online) The contact angles of pendent droplets with different diameters 

on three kind of solid undersurfaces. The drop diameters change from 0.01 cm to 0.5 

cm and the chemical potentials of the solid undersurfaces are 0.2, 0.3 and 0.4, 

respectively. The black solid symbols are the results of the present method and the red 

hollow ones are those from the spherical cap method. 

 

 

Fig. 9. (color online) The deformations of pendent droplets with different diameters 

on three kind of solid undersurfaces. The chemical potentials of the solid 

undersurfaces are (a) 0.4, (b) 0.3 and (c) 0.2. The initial diameters are (a1) 0.2, (a2) 

0.3, (b1) 0.25, (b2) 0.35, (c1) 0.3 and (c2) 0.4 cm.  



6. Contact angle hysteresis 

In practice, even the cleanest surfaces are not perfectly homogeneous and show 

chemical or geometrical heterogeneities and these unavoidably lead to contact angle 

hysteresis[2]. In this section, a droplet on an inclined plate with alternant hydrophobic 

and hydrophilic patterns is simulated to exhibit contact angle hysteresis on a 

chemically heterogeneous surface. As shown in Fig. 10, the green segments represent 

hydrophilic surfaces, while the red segments represent hydrophobic ones. With the 

effects of gravity and the slope angle  , the contact angles of the two sides of the 

droplet are no longer symmetric and are called advancing and receding contact angles 

( A  and R ), respectively. In this situation, the spherical cap method cannot do 

anything about the contact angle. The initial drop radius is still 500 r  lattice units 

and its macroscopic diameter is 0.3 cm. The slope angle of the plate increases step by 

step until the droplet destabilization, at which the advancing or receding contact 

angles leaves their initial equilibrium locations. Generally, the droplet destabilization 

is companied with a decrease of the advancing contact angle or an increase of the 

receding contact angle.  

 

Fig. 10. (color online) A schematic diagram to illustrate a droplet located on a 

chemically heterogeneous surface with a slope angle  . The segments in green and 

red represent hydrophilic and hydrophobic surfaces, respectively. With gravity G, the 

droplet displays an advancing contact angle A  and a receding contact angle R . 



    The numerical simulations are performed on three kinds of surfaces, which 

consist of hydrophilic segments with chemical potentials 0.15, 0.20, 0.25 and 

hydrophobic segments with chemical potentials 0.30, 0.35, 0.40, respectively. Fig. 11 

shows the effects of the slope angle of the plate on the contact angles. With the 

growth of the slope angle, the advancing contact angles gradually increase, while the 

receding contact angles gradually reduce. These lead to an increasing contact angle 

hysteresis. Due to the same differences of the hydrophilic and hydrophobic chemical 

potentials, the change trends of the contact angles on the three surfaces are highly 

consistent. The more hydrophilic the surface is, the earlier the destabilization happens. 

Fig. 12 draws the deformation of the droplet on the plate with the slope angles 3
o
, 6

o
, 

9
o
 and 12

o
, respectively. The hydrophilic and hydrophobic chemical potentials are 

0.25 and 0.40. When the plate is inclined, the advancing contact angle is pushed and 

enlarged by gravity; meanwhile the receding contact angle is dragged and squeezed 

by gravity. Therefore, the droplet is askew and the contact angles at the two sides of 

the droplet are divided into a bigger advancing contact angle and a smaller receding 

contact angle. The results clearly show that the present contact angle measurement 

method is valid to capture the dynamic contact angles. 

 

Fig. 11. (color online) The trends of the contact angles along with the increase of the 



slope angle of the plate. The symbols represent: ■: A , cp=0.15/0.30; □: R , 

cp=0.15/0.30; ◆ : A , cp=0.20/0.35; ◇ : R , cp=0.20/0.35; ● : A , 

cp=0.25/0.40; ○: R , cp=0.25/0.40. 

 

 

Fig. 12. (color online) Deformations of droplet on an inclined plate with a chemically 

heterogeneous surface. The hydrophilic and hydrophobic chemical potentials are 

0.25and 0.40, respectively. The slope angles are (a) 3
o
, (b) 6

o
, (c) 9

o
, (d) 12

o
. 

 

When the slope angle   is big enough, the destabilized drop will continually 

slip on the chemically patterned surfaces. The initial drop radius is 600 r  lattice 

units and the macroscopic diameter takes 0.36 cm. A long computational domain with 

the width 3000 and height 300 lattice units is applied in order that the drop can move 

long enough for several periods. The contact angles of the hydrophilic and 

hydrophobic segments are 60
o
 and 120

o
, and the slope angle of the plate is 20

o
. An 

apparent stick-slip movement is observed and leads to a dynamic contact angle 

hysteresis. Fig. 13 draws three periods of the drop stick-slip movements. The contact 

angle hysteresis changes periodically in a range of 5
o
 to 65

 o
 and shows two peaks and 

two troughs in a period. These fluctuations are mainly because the stick-slip 

movements of the advancing and receding contact angles have a time-phase difference. 

In Fig. 13 (b) and (c), the lines in light grey are the results of the drop with 1000 r . 



Although there is also a time-phase difference, they are in good agreement with the 

data from 600 r  in a period.  

 

Fig. 13. (color online) Stick-slip movement of a drop on the chemical patterned 

surface. The lines in light grey are the results of the drop 1000 r . 

 

 

7. Conclusions 

   Many researches require the spreading of a liquid on a solid surface, which may 

be clean flat or present some degree of roughness contaminated by compounds with 

different chemical-physical qualities[12]. Contact angle, which indicates the 

interactions between solid surface and nonideal fluid, becomes particularly important 

in these researches. In this paper, we design a geometry-based mesoscopic scheme to 

measure the contact angle basing on the regular and discrete lattice of the lattice 

Boltzmann method. The contact angle measurements without the gravity effect are in 

good agreement with the benchmarks from the spherical cap method. Sessile and 



pendent droplets on smooth solid surfaces in gravitational environments are simulated 

and the computational results support that the contact angle is independent of gravity. 

Furthermore, contact angle hysteresis is simulated on three chemically heterogeneous 

surfaces. The same differences of the hydrophilic and hydrophobic chemical 

potentials lead to the similar contact angle hysteresis. These tests fully demonstrate 

that the proposed contact angle measurement is simple, accurate, robust, and it is 

suitable for the evaluations of both static and dynamic contact angles. This efficient 

scheme is expected to promote the on-the-spot measurement of contact angle in 

dynamic multiphase flow field. 
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